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Abstract. Let Eλ be the Legendre family of elliptic curves. Given n linearly inde-

pendent points P1, . . . , Pn ∈ Eλ
(
Q(λ)

)
we prove that there are at most finitely many

complex numbers λ0 such that Eλ0
has complex multiplication and P1(λ0), . . . , Pn(λ0)

are dependent over End(Eλ0
). This implies a positive answer to a question of Bertrand

and, combined with a previous work in collaboration with Capuano, proves the Zilber-

Pink conjecture for a curve in a fibered power of an elliptic scheme when everything is

defined over Q.

1. Introduction

Let Eλ denote the elliptic curve with equation

(1.1) Y 2Z = X(X − Z)(X − λZ).

We see this as a family of elliptic curves Eλ → S = A1 \ {0, 1} and consider the n-fold

fibered power Eλ ×S · · · ×S Eλ, for some positive integer n. By abuse of notation we

indicate this fibered power by En
λ . This defines again a family En

λ → S.

Now, suppose we are given an irreducible curve C ⊆ En
λ , defined over the algebraic

numbers and not contained in a single fiber of the family. This defines n points P1, . . . , Pn

on Eλ(C(C)), which we suppose to be independent, i.e., there is no generic non-trivial

relation between them. In other words, C is not contained in a proper subgroup scheme

of En
λ → S.

For any point c ∈ C(C) we have n specialized points P1(c), . . . , Pn(c) on the specialized

curve Eλ(c), which might become dependent over Z or over a possibly larger endomorphism

ring.

In joint work with Capuano [2] we proved that there are at most finitely many c ∈ C(C)

such that P1(c), . . . , Pn(c) satisfy two independent relations over Z (see [24] for the case

n = 2). The Zilber-Pink Conjecture predicts that finiteness holds as well when one

considers relations over the endomorphism rings of the fibers and, in the case of CM

fibers, one relation is enough.

The main result of this article is the following theorem.

Theorem 1.1. Let C ⊆ En
λ be an irreducible curve defined over Q, not contained in a fixed

fiber of En
λ and such that the n points P1, . . . , Pn defined by it are generically independent.
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Then there are at most finitely many c ∈ C(C) such that Eλ(c) has complex multiplication

and there exists (a1, . . . , an) ∈ End
(
Eλ(c)

)n \ {0} with

a1P1(c) + · · ·+ anPn(c) = O.

In case n = 1 we have one non-identically torsion point and the theorem says that there

are only finitely many specializations such that we have complex multiplication and the

point has finite order. This was proved by André [1] in unpublished notes and later by

Pila in [26].

The basic idea of André’s proof is the following: by a theorem of Silverman [29] the

height of the points c such that P1(c) is torsion is bounded while if there were infinitely

many c such that Eλ(c) has CM a result of Colmez [8] would imply that their height must

tend to infinity.

In our case Silverman’s theorem cannot be applied because it does not provide bounded

height for the c such that the coefficients of the relation between the Pi(c) are not all in

Z.

Pila did not use Silverman’s Theorem and followed the general strategy, first introduced

by Pila and Zannier in [27], which has been very successful in proving several new instances

of the Zilber-Pink conjecture. We use the same strategy and give here a sketch of the

proof. The elliptic curve Eλ is analytically isomorphic to C/Λτ , where Λτ = Z + τZ, for

some τ in the complex upper-half plane. Let C ′ be the subset of C we want to prove to

be finite. Fix c0 in C ′, let D0 be the discriminant of the endomorphism ring of Eλ(c0)

and let a1, . . . , an be the coefficients of a non-trivial relation between the Pi(c0). By the

theory of complex multiplication we have that the corresponding τ0 is imaginary quadratic

and has height � |D0|, while using works of Masser and David we can suppose that the

ai have height bounded by a positive power of |D0|, up to a constant. Moreover, all

conjugates of c0 are in C ′ with the same CM discriminant and coefficients of the relation

between the Pi. Again, the theory of complex multiplication tells us that there are at

least |D0|1/3 such conjugates. We consider the elliptic logarithms z1, . . . , zn of P1, . . . , Pn

and the uniformization map (τ, z1, . . . , zn) 7→ (λ, P1, . . . , Pn). This map, restricted to a

suitably chosen fundamental domain, is definable in the o-minimal structure Ran,exp by

a work of Peterzil and Starchenko. The preimage of C via this map is then a definable

surface. Our point c0 and all its conjugates will correspond to points on this surface lying

in a linear variety defined by equations whose coefficients are related to τ0 and the ai and

so are forced to be quadratic numbers of height� |D0|γ, for some positive γ. A Theorem

of Habegger and Pila implies that there are at most �ε |D0|γε points of that kind on the

surface, provided the functions z1, . . . , zn are algebraically independent over C(τ). This is

ensured by a result of Bertrand. Finally, recalling that we have ≥ |D0|1/3 of such points

coming from conjugating c0,if we choose a small enough ε we have a bound on |D0| and

the claim of the Theorem.
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Let us see an example. Let

P1 =
(

2,
√

2(2− λ)
)
, P2 =

(
3,
√

6(3− λ)
)
.

These are generically independent points on Eλ. Indeed, they are defined over disjoint

quadratic extensions of Q(λ) and therefore if they were dependent, by conjugating, we

see that they would be identically torsion. This is not the case. For instance, P1(6) has

infinite order on E6. In [22], Masser and Zannier proved that there are at most finitely

many values λ0 such that P1(λ0) and P2(λ0) are both torsion. Our theorem implies that

there are at most finitely many λ0 such that Eλ0 has complex multiplication and the

points P1(λ0) and P2(λ0) are dependent over End(Eλ0).

As mentioned above, our Theorem 1.1 is a special case of the so-called Zilber-Pink

Conjectures on Unlikely Intersections. In particular, combined with results in [2], [31]

and [15], it settles the conjecture for a curve in a fibered power of an elliptic scheme,

when everything is defined over Q. For an account on these conjectures see [28], [32] or

[17].

Let E → S be a non-isotrivial elliptic scheme over an irreducible, smooth, quasi-

projective curve S, both defined over Q. Moreover, let A → S be its n-fold fibered

power. An irreducible subvariety of A is called special if it is an irreducible component

of an algebraic subgroup of a CM fiber or an irreducible component of a flat subgroup

scheme of A. We will define flat subgroup schemes in the next section, where we will also

see how Theorem 1.1 implies the following statement.

Theorem 1.2. Let A be as above and let C be an irreducible curve in A defined over Q
and not contained in a proper special subvariety of A. Then there are at most finitely

many points in C that are contained in special subvarieties of A of codimension at least

2.

Bertrand in [4] asked the following question, as one of the ingredients needed for proving

the Zilber-Pink Conjecture for curves in Poincaré biextensions of elliptic schemes.

Question ([4], Question 1). Let E be a non-isotrivial elliptic scheme over a curve S/Q,

and let p, q be two sections of E/S defined over Q. Assume that there are infinitely many

points λ ∈ S(Q) such that the fiber Eλ of E/S above λ admits complex multiplication

and such that the points p(λ) and q(λ) are linearly dependent over End(Eλ). Must the

section p and q then be linearly dependent over Z?

The example above is clearly an instance of such problem. In the next section we will

see how Theorem 1.2 implies a positive answer to Bertrand’s question.

In this paper we use the � notation: we say a � b for non-negative real numbers a

and b if there exists a positive c such that a ≤ cb. The constant c will usually depend on

C. Any further dependence will be specified with an index.



4 F. BARROERO

2. Proof of Theorem 1.2

Recall that we have a non-isotrivial elliptic scheme E → S over an irreducible, smooth,

quasi-projective curve S, both defined over Q. Non-isotrivial means that E cannot become

a constant family after a finite base change. We have its n-fold fibered power A and an

irreducible curve C defined over Q and not contained in a flat subgroup scheme or in a

fixed fiber. We call ϕ the structural morphism A → S.

The following definitions and results are borrowed from a work of Habegger [16].

First, a subgroup scheme G of A is a closed, possibly reducible, subvariety of A which

contains the image of G ×S G under the addition morphism and the image of the zero

section, and is mapped to itself by the inversion morphism. A subgroup scheme G is

called flat if ϕG : G → S is flat, i.e., all irreducible components of G dominate the base

curve S (see [18], Chapter III, Proposition 9.7).

For every a = (a1, . . . , an) ∈ Zn we have a morphism a : A → E defined by

a(P1, . . . , Pn) = a1P1 + · · ·+ anPn.

We identify the elements of Zn with the morphisms they define. The fibered product

α = a1 ×S · · · ×S ar, for a1, . . . ,ar ∈ Zn defines a morphism A → B over S where B
is the r-fold fibered power of E . The kernel of α, kerα indicates the fibered product of

α : A → B with the zero section S → B. We consider it as a closed subscheme of A.

Lemma 2.1. Let G be a flat subgroup scheme of A of codimension ≥ r, with 1 ≤ r ≤ n.

Then, there exist independent a1, . . . ,ar ∈ Zn such that G ⊆ ker(a1 ×S · · · ×S ar) and

ker(a1×S · · ·×S ar) is a flat subgroup scheme of A of codimension r. Moreover, for every

s ∈ S(C) we have dimGs = dimG− 1. Finally, the point (P1, . . . , Pn) ∈ As is contained

in a proper algebraic subgroup of As if and only if there exists (a1, . . . , an) ∈ End(Es)n\{0}
with a1P1 + · · ·+ anPn = 0.

Proof. This follows from Lemma 2.5 of [16] and its proof. The last claim is classical. �

By this lemma it is then clear that Theorem 1.2 implies a positive answer to Bertrand

question. Indeed, the two sections p and q correspond to a curve in the fibered square of

a non-isotrivial elliptic scheme. If this curve intersects the union of special subvarieties

of codimension at least 2 in infinitely many points then it must be contained in a proper

special subvariety which can only be a flat subgroup scheme because the curve is not

contained in a fixed fiber. Therefore, the two sections p and q are dependent over Z.

Consider now the Legendre family with equation (1.1). This gives an example of an

elliptic scheme, which we call EL, over the modular curve Y (2) = P1 \{0, 1,∞}. We write

AL for the n-fold fibered power of EL.

Lemma 2.2 ([16], Lemma 5.4). Let A be as above. After possibly replacing S by a Zariski

open non-empty subset there exists an irreducible non-singular quasi-projective curve S ′
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defined over Q such that the following is a commutative diagram

A f←−−− A′ e−−−→ ALy y y
S ←−−−

l
S ′ −−−→

λ
Y (2)

where l is finite, λ is quasi-finite, A′ is the abelian scheme A ×S S ′, f is finite and flat

and e is quasi-finite and flat. Moreover, the restriction of f and e to any fiber of A′ → S ′

is an isomorphism of abelian varieties.

We will also need the following technical lemma.

Lemma 2.3. If G is a flat subgroup scheme of A then e (f−1(G)) is a flat subgroup

scheme of AL of the same dimension. Moreover, let X be a subvariety of A dominating

S and not contained in a proper flat subgroup scheme of A, X ′′ an irreducible component

of f−1(X) and X ′ the Zariski closure of e(X ′′) in AL. Then X ′ has the same dimension

of X, dominates Y (2) and is not contained in a proper flat subgroup scheme of AL.

Proof. This follows from the proof of Lemma 5.5 of [16]. �

We can now see how Theorem 1.2 follows from our Theorem 1.1 in combination with

works of Viada, Galateau, and a previous work of the author with Capuano.

First, by hypothesis C is not contained in a fixed CM fiber. Moreover, the claim of

the theorem follows from works of Viada [31] and Galateau [15] if C is contained in a

fixed non-CM fiber because, by Lemma 2.1, flat subgroup schemes specialize to algebraic

subgroups of the same codimension. Therefore, we can suppose C is not contained in a

fixed fiber.

Now, Theorem 2.1 of [2] implies that C intersects the union of flat subgroup schemes

of codimension at least 2 in finitely many points. We then only have to prove that the

intersection of C with the union of all proper algebraic subgroups of CM fibers is finite.

Suppose this is not the case and consider the diagram in Lemma 2.2. Then, using

Lemma 2.2 and 2.3 one can see that the Zariski closure C ′ of the image via e of some

irreducible component of f−1(C) would be a curve in AL, which is not contained in a

flat subgroup scheme or in a fixed fiber. Since the restriction of f and e to any fiber of

A′ → S ′ is an isomorphism and l is a finite map, we have that C ′ would contain infinitely

many point lying in proper algebraic subgroups of CM fibers. Therefore, we are reduced

to proving the claim for the Legendre family. This follows from Theorem 1.1 by the last

claim of Lemma 2.1.

3. Preliminaries

In this section we introduce some notations and collect results needed later.
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3.1. Heights. By h we will indicate the logarithmic absolute Weil height on the projective

space PN , as defined in [6], p. 16, while ĥ denotes the Néron-Tate or canonical height

defined for the algebraic points of an elliptic curve defined over the algebraic numbers.

For this see [30], VIII.9.

Now, if α is an algebraic number, we set h(α) = h([1, α]) and define its multiplicative

height as H(α) = exp(h(α)).

We need a further definition of height. Set min ∅ = +∞. The d-height of a complex

number α, for some integer d ≥ 1, is defined as

Hd(α) = min{max{|c0|, . . . , |cd|}, c0, . . . , cd ∈ Z coprime,

not all zero and c0α
d + · · ·+ cd = 0}.

For an N -tuple (α1, . . . , αN), we set Hd(α1, . . . , αN) = max{Hd(αj)}. Note that an N -

tuple (α1, . . . , αN) has finite d-height if and only if all the entries are algebraic numbers

of degree at most d over Q. Moreover, if α ∈ Q then Hd(α) = H(α) for all d.

By Lemma 1.6.7 of [6] one can see that, if α is an algebraic number of degree at most

d, then

(3.1) Hd(α) ≤ 2dH(α)d.

Let α be an imaginary quadratic number with minimal polynomial aX2+bX+c ∈ Z[X].

Then, we have

(3.2) |α| =
∣∣∣∣−b±√b2 − 4ac

2a

∣∣∣∣� H2(α),

(3.3) H2(Re(α)) ≤ max{|b|, |2a|} ≤ 2H2(α),

and

(3.4) H2(Im(α)) ≤ max{|b2 − 4ac|, |4a2|} � H2(α)2.

We call A the quasi-projective variety in Y (2)× (P2)n with coordinates

(λ, [X1, Y1, Z1], . . . , [Xn, Yn, Zn])

and defined by the n equations

Y 2
i Zi = Xi(Xi − Zi)(Xi − λZi),

for i = 1, . . . , n. We set Pi = [Xi, Yi, Zi] and we have a curve C ⊆ A defined over a number

field k such that λ is non-constant. Then, if c0 is an algebraic point of C, using standard

properties of heights we have that

(3.5) h(Pi(c0))� h(λ(c0)) + 1,

for all i = 1, . . . , n. Moreover, we have

(3.6) [k(c0) : k]� [k(λ(c0)) : k].
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3.2. Uniformisation. We want to define a uniformisation map for A. For more details

we refer to Chapter VII of [14].

It is well known that an elliptic curve over the complex numbers is analytically isomor-

phic to a complex torus C/Λτ where τ is an element of the complex upper-half plane H
and Λτ is the lattice generated by 1 and τ . Moreover, let

Lτ = {z ∈ C : z = x+ τy, for x, y ∈ [0, 1)} ,

be a fundamental domain for such lattice.

The well-known Weierstrass ℘-function ℘(z, 1, τ) = ℘(z, τ) is a Λτ -periodic function

satisfying a differential equation of the form

(3.7) (℘(z, τ)′)2 = 4℘(z, τ)3 − g2(τ)℘(z, τ)− g3(τ),

where ℘(z, τ)′ = d℘(z, τ)/dz. Consider the values of the ℘-function at the half periods

e1(τ) = ℘

(
1

2
, τ

)
, e2(τ) = ℘

(
1 + τ

2
, τ

)
, e3(τ) = ℘

(τ
2
, τ
)
.

These are the zeroes of the cubic polynomial on the right hand side of (3.7), i.e.,

(3.8) (℘(z, τ)′)2 = 4(℘(z, τ)− e1(τ))(℘(z, τ)− e2(τ))(℘(z, τ)− e3(τ)).

Note that the ei(τ) are distinct and e3(τ)− e1(τ) has a regular square root for all τ ∈ H.

Therefore, we can define

ξ(z, τ) =
℘(z, τ)− e1(τ)

e3(τ)− e1(τ)
,

and

η(z, τ) =
℘(z, τ)′

2(e3(τ)− e1(τ))3/2
.

By (3.8) we have

η(z, τ)2 = ξ(z, τ)(ξ(z, τ)− 1)(ξ(z, τ)− λ(τ)),

where

λ(τ) =
e2(τ)− e1(τ)

e3(τ)− e1(τ)
.

The map (z, τ) 7→ (λ(τ), P (z, τ)), where

P (z, τ) =

{
[ξ(z, τ), η(z, τ), 1], if z 6∈ Λτ ,

[0, 1, 0] , otherwise,

gives a parameterisation of the Legendre family. Define

(3.9)
π : H× Cn → A

(τ, z1, . . . , zn) 7→ (λ(τ), P (z1, τ), . . . , P (zn, τ))

We would like to find a subset of H × Cn over which it is possible to define a univalued

inverse function of π.

By Chapter VII of [14], there exists a finite index subgroup Γ of SL2(Z) such that

λ(γτ) = λ(τ) for all γ ∈ Γ. As a fundamental domain for the action of Γ on H one can
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take the union of six suitably chosen fundamental domains for the action of SL2(Z) (see

Fig. 48 and 49 on p. 161 of [14]). We call this set B.

Now we set

FB = {(τ, z1, . . . , zn) : τ ∈ B, z1, . . . , zn ∈ Lτ} .

Then π has a univalued inverse A→ FB and we define

(3.10) Z = π−1(C) ∩ FB.

Finally, we consider a small open disc D on C and see τ, z1, . . . , zn as holomorphic

functions on D. The following is a consequence of Théorème 5 of [3].

Lemma 3.1. Consider τ, z1, . . . , zn as functions on D. If 1, τ, z1, . . . , zn are Z-linearly

independent then τ, z1, . . . , zn are algebraically independent over C.

3.3. Complex Multiplication. Suppose now that Eλ0 has complex multiplication for

some λ0. Then, the associated τ0 ∈ B is a quadratic number with minimal polynomial

aX2 + bX + c and discriminant D0 = b2 − 4ac. By Theorem 1 on p. 90 of [19] we have

End(Eλ0) = Oλ0 = Z[ρ], where ρ = (D0 +
√
D0)/2. Let cl(Oλ0) be the class number of

Oλ0 . Since the endomorphism ρ has degree (D2
0 −D0)/4, we have

(3.11) h(ρP )� |D0|2(h(P ) + 1),

for any P ∈ Eλ0(Q).

Now, by the general theory of complex multiplication we have that

(3.12) [Q(j0) : Q] = cl(Oλ0),

where j0 is the j-invariant of Eλ0 . Moreover, a theorem of Siegel in the form of Theorem

1.2 of [7] gives us the estimate

(3.13) |D0|
1
2
−ε �ε cl(Oλ0)�ε |D0|

1
2
+ε.

We know that to λ0 we can associate a unique τ0 ∈ B and a τ ′0 in the usual fundamental

domain for the action of SL2(Z). These two have the same discriminant D0. There is a

finite set of elements of SL2(Z) that sends any τ ∈ B to the usual fundamental domain.

Therefore, we have H(τ0) � H(τ ′0). If a′X2 + b′X + c′ is the minimal polynomial of

τ ′0, then τ ′0 = (−b′ ±
√
D0)/(2a

′). Since |Re(τ ′0)| ≤ 1/2 and Im(τ ′0) ≥ 1/2, we have

|b′| ≤ |a′| ≤ |D0|1/2. Therefore, by standard properties of heights we have

(3.14) H(τ0)� H(τ ′0) ≤ 2H

(
b′

2a′

)
H

(√
D0

2a′

)
� |D0|

3
2 .

Recall the q-expansion of the j invariant j(τ) = q−1 + 744 + 196884q + . . . where

q = e2πiτ . If τ is in the usual fundamental domain then Im(τ) ≥
√

3/2 and therefore

|log |j(τ)| − 2πIm(τ)| � 1,

(see also equation (1) on p. 146 of [5]). Now, let λ0, D0, τ
′
0 and j0 be as above. We

have that Im(τ ′0) ≤ |D0|1/2. Now, j0 is an algebraic integer and therefore only the the
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archimedean places contribute to its height. Moreover, all conjugates of j0 correspond

to elliptic curves with complex multiplication with the same discriminant. Therefore, we

have

h(j0) =
1

[Q(j0) : Q]

∑
log+ |jσ0 | � |D0|1/2

and, since j0 is a rational function of λ0, we have

(3.15) h(λ0)� |D0|1/2.

4. O-minimality, definability and rational points

For the basic properties and examples of o-minimal structures we refer to [11] and [13].

Definition 4.1. A structure is a sequence S = (SN), N ≥ 1, where each SN is a collection

of subsets of RN such that, for each N,M ≥ 1:

(1) SN is a boolean algebra (under the usual set-theoretic operations);

(2) SN contains every semialgebraic subset of RN ;

(3) if A ∈ SN and B ∈ SM , then A×B ∈ SN+M ;

(4) if A ∈ SN+M , then π(A) ∈ SN , where π : RN+M → RN is the projection onto the

first N coordinates.

If S is a structure and, in addition,

(5) S1 consists of all finite union of open intervals and points

then S is called an o-minimal structure.

Given a structure S, we say that S ⊆ RN is a definable set if S ∈ SN . Let S ⊆
RN and f : S → RM be a function. We call f a definable function if its graph{

(x, y) ∈ S × RM : y = f(x)
}

is a definable set. It is not hard to see that images and

preimages of definable sets via definable functions are still definable.

There are many examples of o-minimal structures. In this article we deal with sets

definable in the structure Ran,exp. The o-minimality of this structure was proved by van

den Dries and Miller [12].

We now fix an o-minimal structure S. We are going to use a result from [17].

For a Z ⊆ RM+N , a positive integer d and a positive real number T we define

Z∼(d, T ) = {(y, z) ∈ Z : Hd(y) ≤ T} .

By π1 and π2 we indicate the projections of Z to the first M and the last N coordinates,

respectively.

Proposition 4.2 ([17], Corollary 7.2). Let Z ⊆ RM+N be a definable set. For every

ε > 0 there exists a constant c = c(Z, d, ε) with the following property. If T ≥ 1 and

|π2 (Z∼(d, T )) | > cT ε, then there exists a continuous definable function δ : [0, 1] → Z

such that

(1) the composition π1 ◦ δ : [0, 1] → RM is semi-algebraic and its restriction to (0, 1)

is real analytic;
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(2) the composition π2 ◦ δ : [0, 1]→ RN is non-constant.

We now want to prove that the set Z defined in (3.10) is definable in Ran,exp. From now

on, by definable we mean definable in Ran,exp and complex sets and functions are said to

be definable if they are as real objects considering their real and imaginary parts.

In [25], Peterzil and Starchenko proved that, if D is the usual fundamental domain

for the action of SL2(Z) on H, then ℘(z, τ) is a definable function when restricted to

{(τ, z) : τ ∈ D, z ∈ Lτ}, and therefore definable if restricted to {(τ, z) : τ ∈ γD, z ∈ Lτ},
where γD is any fundamental domain for SL2(Z). Since B is the union of six suitably

chosen fundamental domains we have that ℘(z, τ) is also definable when restricted to

{(τ, z) : τ ∈ B, z ∈ Lτ}. Therefore, the function π, defined in (3.9), is definable when

restricted to FB. Finally, since C is semialgebraic we can conclude that Z is definable.

5. The main estimate

Recall the definition of Z in (3.10). Define, for T ≥ 1,

Z(T ) =
{

(τ, z1, . . . , zn) ∈ Z :
∑

ajzj ∈ Z + Zτ, for some (a1, . . . , an) ∈ Cn \ {0},

with H2(τ, a1, . . . , an) ≤ T
}
.

Note that, even if for each value of T this is a definable set, if we see Z(T ) as family

parameterized by T , it is not a definable family.

Proposition 5.1. Under the hypotheses of Theorem 1.1, for all ε > 0, we have |Z(T )| �ε

T ε, for all T ≥ 1.

We indicate the imaginary unit by I and define

W =

{
(α1, β1, . . . , αn, βn, µ1, µ2, u, v, x1, y1, . . . , xn, yn) ∈ R4n+4 :

(u+ vI, x1 + y1I, . . . , xn + ynI) ∈ Z,
n∑
i=1

(αi + βiI)(xi + yiI) = µ1 + µ2(u+ vI)

}
,

which is a definable set.

We want to apply Proposition 4.2 to W with

W∼(2, T ) = {(α1, . . . , βn, µ1, µ2, u, v, x1, . . . , yn) ∈ W : H2(α1, . . . , βn, µ1, µ2, u, v) ≤ T} .

We let π1 and π2 be the projections on the first 2n + 4 and the last 2n coordinates,

respectively.

Lemma 5.2. For all ε > 0, we have |π2 (W∼(2, T )) | �ε T
ε, for all T ≥ 1.

Proof. If |π2 (W∼(2, T )) | > cT ε, for some positive constant c, then Proposition 4.2 implies

that there exists a continuous definable function δ : [0, 1] → W such that δ1 = π1 ◦ δ :

[0, 1] → R2n+4 is semi-algebraic and δ2 = π2 ◦ δ : [0, 1] → R2n is non-constant. This in
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turn implies that there exists a connected J ⊆ [0, 1] such that δ1(J) is an algebraic curve

segment and δ2(J) has positive dimension.

We consider the coordinates α1, . . . , βn, µ1, µ2, u, v, x1, . . . , yn as functions on J and set

τ = u+ vI and zi = xi + yiI. Moreover, we consider

W = (τ(J), z1(J), . . . , zn(J)) ⊆ Z.

On J the functions α1, . . . , βn, µ1, µ2, τ generate a field of transcendence degree at most

1 over C. Moreover, we have the relation∑
(αi + βiI)zi = µ1 + µ2τ.

Therefore, τ, z1, . . . , zn are algebraically dependent on J .

Finally, we can consider τ, z1, . . . , zn as functions on π(W). They satisfy an algebraic

relation which can be analytically continued to an open disc in C. By Lemma 3.1 this

would imply that 1, τ, z1, . . . , zn are Z-linearly dependent contradicting the hypothesis of

generic independence of P1, . . . , Pn. �

Lemma 5.3. There exists a positive constant c′ = c′(Z) such that for all (z1, . . . , zn) ∈ Cn

and T there are at most c values of τ ∈ C with (τ, z1, . . . , zn) ∈ Z(T ).

Proof. Consider the projection map ϕ of Z to the last n coordinates. By o-minimality, if

ϕ−1(z1, . . . , zn) has dimension 0, then there is a uniform bound on its cardinality, which

only depends on Z. Therefore, we only need to prove that if (τ, z1, . . . , zn) ∈ Z(T ) for

some T , then ϕ−1(z1, . . . , zn) has dimension 0. Suppose it has positive dimension and

recall that the fixed z1, . . . , zn are algebraically dependent over C. As above, this would

imply that the holomorphic functions z1, . . . , zn would be algebraically dependent on some

open disc in C, again contradicting Lemma 3.1. �

We are now in position to prove Proposition 5.1.

If (τ, z1, . . . , zn) ∈ Z(T ) then τ is imaginary quadratic and there are a1, . . . , an not

all zero and each of degree at most 2 over Q and integers an+1, an+2 with
∑
aizi =

an+1+an+2τ . Since H2(τ, a1, . . . , an) ≤ T and zi ∈ Lτ and using (3.2), we have |
∑
aizi| ≤∑

|ai||zi| � T max{1, |τ |} � T 2 and therefore we can suppose that an+1, an+2 have

absolute value � T 2.

By these considerations and by (3.3) and (3.4), we have that

(Re(a1), Im(a1), . . . ,Re(an), Im(an), an+1, an+2,

Re(τ), Im(τ),Re(z1), Im(z1), . . . ,Re(zn), Im(zn)) ∈ W∼(2, γT 2),

for some positive constant γ. By Lemma 5.3, any point of π2 (W∼(2, γT 2)) is associated to

at most c′ different elements of Z(T ). Therefore, Lemma 5.2 gives the claim of Proposition

5.1.
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6. Proof of Theorem 1.1

In this section γ1, γ2, . . . will be positive constants depending only on C. Recall that C
is defined over a number field k.

We call C ′ the set of points c ∈ C(C) such that Eλ(c) has complex multiplication and

there exists (a1, . . . , an) ∈ End(Eλ(c))
n \ {0} with

a1P1(c) + · · ·+ anPn(c) = O,

i.e., the set we want to prove to be finite. Note that, if Eλ(c) has complex multiplication,

then λ(c) is algebraic and therefore C ′ consists of algebraic points of C.
Fix c0 ∈ C ′, call d0 its degree over k and D0 the discriminant of End(Eλ(c0)). Now, for

all σ ∈ Gal(k/k), we have that all conjugates cσ0 of c0 are in C ′. Actually, all End(Eλ(cσ0 ))

are isomorphic and

(6.1) aσ1P1(c
σ
0 ) + · · ·+ aσnPn(cσ0 ) = O,

on Eλ(cσ0 ).

Lemma 6.1. For all c0 ∈ C ′ there is (a1, . . . , an) ∈ End(Eλ(c0))
n \ {0} satisfying (6.1)

with

H2(a1, . . . , an)� |D0|γ1 ,

for some positive γ1.

Proof. We fix a c0 ∈ C ′ and set λ0 = λ(c0), K0 = k(c0,
√
D0), κ0 = [K0 : Q] and

Pi = Pi(c0). Recall that, by (3.6), (3.12) and (3.13), we have that |D0|1/3 � κ0 � |D0|.
Moreover, let ρ = D0+

√
D0

2
so that End(Eλ0) = Z + ρZ.

Let E be the elliptic curve with Weierstrass equation

Y ′2 = 4X ′3 − g2X ′ − g3,

where g2 = 4
3
(λ20 − λ0 + 1) and g3 = 4

27
(λ0 − 2)(λ0 + 1)(2λ0 − 1). Then Eλ0 and E are

isomorphic via the map φ given by

X ′ = X − 1

3
(λ0 + 1), Y ′ = 2Y,

(see (3.7), p. 1683 of [23]), and E is defined over the same field Q(λ0).

We set Qi = φ(Pi) and Q′i = φ(ρPi). Then, Q1, . . . , Qn, Q
′
1, . . . , Q

′
n are 2n points in

E(K0) such that Qi and Pi have same Néron-Tate height and the same holds for Q′i
and ρPi. Moreover, Q1, . . . , Qn, Q

′
1, . . . , Q

′
n and P1, . . . , Pn, ρP1, . . . , ρPn satisfy the same

relation over Z.

Let w = max{1, h(g2), h(g3)}. Using the work of Zimmer [33] in the form of Lemma

3.4 of [9] and by (3.5) and (3.15) we have, for all i,

ĥ(Qi) ≤ h(Qi) +
3

4
w + 5 log(2)� h(Pi) + h(λ0) + 1� h(λ0) + 1� |D0|1/2.
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Similarly, using (3.11), we have

ĥ(Q′i)� |D0|2h(Pi) + h(λ0) + 1� |D0|5/2.

Suppose at least one Pi has infinite order. We use a result of Masser. By Theorem E

of [20] we can suppose that Q1, . . . , Qn, Q
′
1, . . . , Q

′
n satisfy

b1Q1 + · · ·+ bnQn + b′1Q
′
1 + · · ·+ b′nQ

′
n = O

on E, for some integers b1, . . . , bn, b
′
1, . . . , b

′
n, not all zero, with

max{|b1|, . . . , |bn|, |b′1|, . . . , |b′n|} ≤ (2n)2n−1ω

(
q

η

) 1
2
(2n−1)

,

where ω = |Etors(K0)|, η = inf ĥ(Q) for Q ∈ E(K0) \ Etors(K0) and q ≥ η is an upper

bound for ĥ(Qi) and ĥ(Q′i). By our previous considerations we can take q � |D0|5/2. We

need to bound ω and η.

For the first we use a result of David [10]. By his Théorème 1.2(i) we have, after having

chosen an archimedean v and noting that hv(E) ≥
√
3
2

,

ω � κ0t+ κ0 log κ0,

where t = max{1, h(jE)}. Since E and Eλ0 are isomorphic they have the same j-invariant

and therefore, by (3.15), we can take t� |D0|1/2. Therefore we have ω � |D0|γ2 .
The lower bound on η relies on a result of Masser. By Corollary 1 of [21] we have

η � κ−γ30 w−γ4 ,

where recall that w = max{1, h(g2), h(g3)}. Actually, in Masser’s bound a constant

depending on κ0 appears in the denominator but going through the proof one can see

that it depends polynomially on κ0, as noted by David on p. 109 of [10]. We have

w � h(λ0) + 1 which is in turn � |D0|1/2. Therefore, we have η � |D0|γ5 . Combining

the bounds on q, ω and η we can suppose

max{|b1|, . . . , |bn|, |b′1|, . . . , |b′n|} � |D0|γ6 .

In case all Pi are torsion we can get the same estimate using only the bound on ω.

Finally, by (3.1) we have H2(bi + ρb′i) ≤ 4H(bi + ρb′i)
2 for all i, and using standard

properties of heights we have the claim. �

Now, recall the definition (3.9) of the map π and consider π−1(cσ0 )∩FB which consists

of one point (τσ0 , z
σ
1 , . . . , z

σ
n) belonging to Z. We remark that, for varying σ, the points

(τσ0 , z
σ
1 , . . . , z

σ
n) are not Galois conjugates of each other. We have

a1z
σ
1 + · · ·+ anz

σ
n ∈ Z + τσ0 Z,

with H2(a1, . . . , an)� |D0|γ1 .
Recall that, by (3.1) and (3.14), we have H2(τ

σ
0 ) � |D0|3. This implies π−1(cσ0 ) ∈

Z(|D0|γ7), for some positive γ7. Now, by (3.13) and (3.12), we have d0 � |D0|1/3.
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Thus, there are � |D0|
1
3 different (τσ0 , z

σ
1 , . . . , z

σ
n) in Z(|D0|γ7). Applying Proposition

5.1 with ε = 1/(4γ7) we get a contradiction if |D0| is large enough. Therefore, |D0| is

bounded giving us the claim of Theorem 1.1.
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