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ABSTRACT. We study a double mean field–type PDE related to a prescribed curvature problem
on compacts surfaces with boundary:

(0.1)


−∆u = 2ρ

(
Keu´
Σ
Keu

− 1

|Σ|

)
in Σ,

∂νu = 2ρ′
(

he
u
2´

∂Σ
he

u
2
− 1

|∂Σ|

)
on ∂Σ.

Here ρ and ρ′ are real parameters, K,h are smooth positive functions on Σ and ∂Σ respec-
tively and ν is the outward unit normal vector to ∂Σ.

We provide a general blow–up analysis, then a Moser–Trudinger inequality, which gives
energy–minimizing solutions for some range of parameters. Finally, we provide existence of
min–max solutions for a wider range of parameters, which is dense in the plane if Σ is not
simply connected.

1. INTRODUCTION

Let Σ be a compact surface with boundary equipped with a metric g̃. We consider the
following boundary value problem

(1.1)

 −∆u+ 2K̃ = 2Keu in Σ,

∂νu+ 2h̃ = 2he
u
2 on ∂Σ,

where ∆ = ∆g̃ is the Laplace–Beltrami operator in (Σ, g̃), ∂ν is the normal derivative with ν
the outward normal vector to ∂Σ and K, K̃ : Σ→ R and h, h̃ : ∂Σ→ R are smooth.

This kind of equations has a special interest due to its geometric meaning. Indeed, the
problem allows us to prescribe at the same time Gaussian curvature in Σ and geodesic cur-
vature on ∂Σ. More precisely, given a metric g = g̃eu conformal to g̃, if K, K̃ are the Gaussian
curvatures and h, h̃ the geodesic curvatures of ∂Σ, relative to the metrics g, g̃, then u satisfies
(1.1).

Integrating (1.1) and applying the Gauss–Bonnet theorem, one obtains
ˆ

Σ
Keu +

ˆ
∂Σ
he

u
2 =

ˆ
Σ
K̃ +

ˆ
∂Σ
h̃ = 2πχ(Σ),

which imposes necessary conditions on the choice of the functions K,h.

Some versions of the problem has been studied in the literature. Regarding the solvability,
in [13, 38] the case h = 0 is considered, whereas if K = 0 there are some results available in
[12, 33, 36].

Concerning the prescription of constant curvatures, it is worth referring to [10], where so-
lutions are obtained by the use of a parabolic flow. By means of complex analysis, explicit
solutions were found for the disk and the annulus, [25, 27]. There exist also some classifica-
tion results when Σ is the half–plane in [46, 22].
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The case of non constant curvature has not been as much studied. For instance, [15] gives
partial existence results, which includes an undetermined Lagrange multiplier; in [24], the
author derives a Kazdan–Warner condition for the existence of solution.

It is easy to see that, using a conformal change of metric, we can always prescribe the

constant values h̃ ≡ 0, K̃ ≡ K̃0 :=
2πχ(Σ)

|Σ|
(see [37], Proposition 3.1, for a precise deduction).

Hence, without loss of generality, we can assume that the initial metric satisfies K̃ =
2πχ(Σ)

|Σ|
and h̃ = 0. The problem then becomes:

(1.2)


−∆u+

4πχ(Σ)

|Σ|
= 2Keu in Σ,

∂νu = 2he
u
2 on ∂Σ.

One possible strategy to obtain solutions to (1.2) is to exploit the variational structure of
the problem. In [37] the energy functional I : H1(Σ)→ R is considered:

I(u) =

ˆ
Σ

(
1

2
|∇u|2 +

4πχ(Σ)

|Σ|
u− 2Keu

)
− 4

ˆ
∂Σ
he

u
2 .

By minimizing the previous Euler–Lagrange energy functional or via min–max methods,
the authors obtain several existence results for surfaces with χ(Σ) 6 0 and a compactness
criterion for solutions. Actually, it is shown that the relation between K and h on ∂Σ dramat-
ically affects the geometry of I.

An alternative variational formulation was introduced by Cruz and Ruiz in [16]. Defin-

ing the parameter ρ :=

ˆ
Σ
Keu = 2πχ(Σ) −

ˆ
∂Σ
he

u
2 , the problem (1.2) is equivalent to the

following mean field equation:

(1.3)



−∆u+
4πχ(Σ)

|Σ|
= 2ρ

Keu´
ΣKe

u
in Σ,

∂νu = 2(2πχ(Σ)− ρ)
he

u
2´

∂Σ he
u
2

on ∂Σ,

(2πχ(Σ)− ρ)2

|ρ|
=

(´
∂Σ he

u
2

)2∣∣´
ΣKe

u
∣∣ .

Solutions of the problem (1.3) can be found as critical points of this new energy functional,
defined on H1(Σ)× R:

I0(u, ρ) =

ˆ
Σ

(
1

2
|∇u|2 +

4πχ(Σ)

|Σ|
u

)
− 2ρ log

∣∣∣∣ˆ
Σ
Keu

∣∣∣∣− 4(2πχ(Σ)− ρ) log

∣∣∣∣ˆ
∂Σ
he

u
2

∣∣∣∣
+ 4(2πχ(Σ)− ρ) log |2πχ(Σ)− ρ|+ 2ρ+ 2ρ log |ρ|.

In [16], the authors are concerned with the case in which Σ is the unit disk and the func-
tions K,h are nonnegative and verify certain symmetry properties. In this case 0 < ρ < 2π
and I0(u, ρ) is coercive by using a Moser–Trudinger type inequality, hence a solution can be
derived by minimizing.

In this context, the mean field formulation seems to be convenient, but it does not seem to
be as useful for noncoercive ranges.

Mean field type equations have been object of several works, see for instance [20, 2, 7],
not only motivated by its geometrical meaning but also due to its relevance in some current
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physical theories. As a limit problem, they appear in the abelian Chern–Simons Theory (see
[21]), or in the study of vortex type configurations in the Electroweak theory of Glashow–
Salam–Weinberg, see [31]. We refer to the reader the monographs [45, 43] for further details
and a complete set of references concerning these applications.

In this paper we will focus on a slightly different case, namely

(1.4)


−∆u+

2(ρ+ ρ′)

|Σ|
= 2ρ

Keu´
ΣKe

u
in Σ,

∂νu = 2ρ′
he

u
2´

∂Σ he
u
2

on ∂Σ.

Clearly, problem (1.4) can be obtained by (1.2) by setting ρ :=

ˆ
Σ
Keu and ρ′ :=

ˆ
∂Σ
he

u
2 ,

and includes also the nongeometrical case ρ + ρ′ 6= 2πχ(Σ). Anyway, unlike (1.3), not all the
solutions to (1.4) correspond to (1.2), because the third relation in (1.3) may not be verified.

Moreover, it can be seen that equation (1.4) can be transformed into (0.1). In order to do it,
it suffices to notice that u+ ϕ is solution to (0.1), where u solves (1.4) and ϕ satisfies

(1.5)


∆ϕ =

2ρ′

|Σ|
in Σ,

∂νϕ =
2ρ′

|∂Σ|
on ∂Σ.

Since the difference between both formulations does not play any role, we will consider
(1.4) and we will not comment on this issue any further.

From now on, we will consider potentials that do not change sign. We shall not impose any
extra assumption on the sign of the parameters ρ, ρ′. For that reason, let us reduce ourselves
to the case of positive potentials, namely (due to Σ and ∂Σ being compact)

(H)
1

C
6 K(x) 6 C ∀x ∈ Σ,

1

C
6 h(x) 6 C ∀x ∈ ∂Σ.

Therefore, the sign of both right hand sides in (1.4) will be determined by the sign of ρ and
ρ′ respectively.

Problem (1.4) again admits a variational formulation, with the energy functional given by

(1.6) J (u) = Jρ,ρ′(u) :=

ˆ
Σ

(
1

2
|∇u|2 +

2(ρ+ ρ′)

|Σ|
u

)
− 2ρ log

ˆ
Σ
Keu − 4ρ′ log

ˆ
∂Σ
he

u
2 .

A well-known tool to deduce crucial properties on the energy functional are the Moser–
Trudinger type inequalities. Such inequalities show that the Sobolev emedding in the critical
dimension is exponential, proved in the pioneer works of Moser and Trudinger [44, 41]. As a
consequence, for closed surfaces it holds:

(1.7) 16π log

ˆ
Σ
eu 6

ˆ
Σ
|∇u|2 +

16π

|Σ|

ˆ
Σ
u+ C, ∀u ∈ H1(Σ).

On the other hand, if Σ has a boundary, then the former inequality is no longer true and
the constant 16π must be divided by 2, as shown by Chang and Yang in [13]:

(1.8) 8π log

ˆ
Σ
eu 6

ˆ
Σ
|∇u|2 +

8π

|Σ|

ˆ
Σ
u+ C, ∀u ∈ H1(Σ).
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Finally, we recall a Moser–Trudinger type inequality with boundary integrals, rather than
interior ones, given by Li and Liu in [33]:

(1.9) 16π log

ˆ
∂Σ
e
u
2 6
ˆ

Σ
|∇u|2 +

8π

|∂Σ|

ˆ
∂Σ
u+ C, ∀u ∈ H1(Σ).

Interpolating (1.8) and (1.9), one derives the inequality

(1.10) 4ρ log

ˆ
Σ
eu + 8(2π − ρ) log

ˆ
∂Σ
e
u
2 6
ˆ

Σ
|∇u|2 +

8π

|Σ|

ˆ
Σ
u+ Cρ, ∀u ∈ H1(Σ).

for every ρ ∈ [0, 2π].
One of the aims of this paper is to extend the previous inequality to the case ρ 6 4π,

including negative ρ, whose proof is not as immediate. Our approach is inspired by the ideas
of [28, 4, 8] to obtain other Moser–Trudinger type inequalities. In fact, such a proof is based
on a blow–up analysis for sequences of minimizing solutions to (1.4).

By plugging (1.10) in the definition of the energy functional (1.6) one easily obtains that J
is coercive if ρ < 4π, ρ+ρ′ < 2π. As an immediate consequence, in the coercivity case we can
state the following existence result.

Theorem 1.1. Assume (H), ρ < 4π and ρ+ ρ′ < 2π. Then, problem (1.4) admits a solution which is
a global minimizer of the energy functional J defined by (1.6).

On the other hand, we also prove that inequality (1.10) is somehow sharp, in the sense
that it cannot hold either ρ > 4π or 2π − ρ is replaced by any larger number. Therefore, for
any other choice of ρ, ρ′, critical points will not be global minimizers. However, we shall
prove that there exist critical points of another type, such as saddle-type ones, by means of a
min-max argument.

The strategy we will follow is based on the topological analysis of energetic sublevels

(1.11) J L :=
{
u ∈ H1(Σ) : J (u) 6 L

}
.

This argument was first introduced in the pioneer paper [20] and it is now a rather classical
tool in attacking mean field type problems, see [2, 40, 3, 7, 26, 9, 5, 18, 19, 6]. The main
ingredient is to prove that very low sublevels are non contractible. Actually, if J (u) � 0

then the measure
Keu´
ΣKe

u
is almost concentrated at just a finite number of points, due to a

localized version of the Moser–Trudinger inequality.
Therefore, low sublevels inherit some topology from such a space of finitely supported

measures, called barycenters which is not contractible under proper assumptions (a more de-
tailed definition and description will be given later). On the other hand, an argument from
[39] yields contractibility of very high sublevels, hence there must be some change of topol-
ogy between them which implies, via Morse theory, existence of solutions.

This approach requires some compactness property for solutions. As a consequence of the
blow–up analysis, one can deduce that a sequence of solutions to (1.4) remains uniformly
bounded if the parameter ρ is not a multiple of 4πN and ρ+ ρ′ is not a multiple of 2πN.

Thus we choose ρ between two consecutive multiples of 4π and ρ + ρ′ between two con-
secutive multiples of 2π. Precisely, setting

(1.12) N := inf{n ∈ N : ρ < 4π(n+1)}, M := inf{m ∈ N : ρ+ρ′ < 2π(m+1)};
we will have{

ρ < 4π if N = 0
4πN < ρ < 4π(N + 1) if N ∈ N ,

{
ρ+ ρ′ < 2π if M = 0
2πM < ρ < 2π(M + 1) if M ∈ N .
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Theorem 1.2. Assume (H), ρ /∈ 4πN, ρ + ρ′ /∈ 2πN and let N,M ∈ N ∪ {0} be as in (1.12), with
(N,M) 6= (0, 0).

If Σ is not simply connected, then problem (1.4) admits solutions for any N,M .
If Σ is simply connected and N < M , then problem (1.4) admits solutions.

Notice that the case N = M = 0 is the one considered in Theorem 3.1

Comparing with previous results obtained with similar methods, the interaction between
Σ and its boundary plays a major issue. Roughly speaking, when u concentrates at ∂Σ, then
both exponential terms are affected, whereas when u concentrates at the interior only one is
affected.

For this reason, problem (1.4) shares some similarities with systems of two equations hav-
ing similar features on closed surfaces (see [40, 7, 3, 9, 5, 26]). However, in our case the
interaction between interior and boundary nonlinearities is not symmetric, hence it needs to
be treated differently than the case of systems.

In particular, the inequality given by Proposition 4.7 will be essential in capturing the
relation between interior and boundary concentration.

Another crucial novelty is given by the barycenters used to model concentration on both
Σ̊ and ∂Σ (see (4.10)). Such objects seem to be rather mysterious and their topology has not
been completely understood yet.

In order to overcome such an issue, we will use a new topological construction given in
Proposition 4.10. Basically, such barycenters will be mapped on other spaces of barycenters,
centered either only at points on Σ̊ or only at ∂Σ. Since the homology of the latter barycenter
spaces is well-known, we are finally able to deduce non-contractibility, hence existence of
solutions.

Remark 1.3. In the paper [37] some obstructions are given to the existence of solutions to problem
(1.2) on multiply connected surfaces (Theorems 2.1 and 2.2), consequently also for (1.3). However,
Theorem 1.2 gives existence of solutions for almost every ρ in the non-geometric case.

This means that the third condition in (1.3) is not always satisfied by solutions to (1.4) and that
problems (1.3) and (1.4) are indeed different.

However, it is reasonable to hope that the tools and results introduced here will be useful to solve
related geometric problems, such as the prescription of Gaussian and geodesic curvatures in presence
of conical singularities, see [2, 18, 19] for more details.

The content of the paper is the following: in Section 2 we give a suitable blow–up anal-
ysis for solutions and prove a concentration–compactness theorem; in Section 3 we prove a
suitable Moser–Trudinger inequality; in Section 4 we show existence of min–max solutions.

We want to stress that references are cited in chronological order along this paper.

Notations.
Let us fix some notations. The metric distance between two points x, y ∈ Σ will be denoted

as dist(x, y). We will denote an open ball centered at a point p ∈ Σ of radius r > 0 as

Br(p) := {x ∈ Σ : dist(x, p) < r}.
We will use the following notation for some subsets of Br(p) ⊂ R2:

B+
r (p) := {(x1, x2) ∈ Br(p) : x2 > 0} ;

Γr(p) :=
{

(x1, x2) ∈ ∂B+
r (p) : x2 = 0

}
;

∂+Br(p) := ∂B+
r (p) \ Γr(p).

Given a subset Ω ⊂ Σ and δ > 0, we will denote the open δ-neighborhood of Ω as
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Ωδ := {x ∈ Σ : dist(x, y) < δ, for some y ∈ Ω}.
Writing integrals, we will drop the element of area or length induced by the metric; for

instance, we will only write
ˆ

Σ
Keu or

ˆ
∂Σ
he

u
2 .

In the estimates we will denote C as a positive constant, independent of the parameters,
that would vary from line to line. If we point out its dependence respect to certain parame-
ters, we will indicate it in the subscript, such as Cε or Cε,δ.

2. A BLOW–UP ANALYSIS

In this section we present some definitions and properties related to the blow–up of solu-
tions to the problem (1.4). In some points we will be brief since some of the tools and results
are rather classical and sometimes they only require minor changes.

Let us consider a sequence of solutions to

(2.1)


−∆un +

2(ρn + ρ′n)

|Σ|
= 2ρn

Kne
un´

ΣKneun
in Σ,

∂νun = 2ρ′n
hne

un
2´

∂Σ hne
un
2

on ∂Σ.

The singular set (see also [11]) is defined as

(2.2) S :=

{
p ∈ Σ : ∃xn →

n→+∞
p such that un(xn) →

n→+∞
+∞

}
.

The pioneer works of [11, 32], focused on the standard Liouville equation, show that
around any isolated point p ∈ S one can rescale the solution and obtain in the limit an entire

solution, which is classified. In this approach, the finite mass condition
ˆ

Σ
Kne

un < +∞

plays a decisive role.
In fact, the classification of the solutions to the equation

−∆v = ev in R2,

dates back to Liouville ([35]), and they form a large family of nonexplicit solutions. However,
under the finite mass assumption, all the solutions were classified in [14] and are given by

v(x) = log
8λ2

(1 + λ2|x− x0|2)2 , x0 ∈ R2, λ > 0.

Finite total mass implies also that the set S is finite, since eu behaves like a finite combina-
tion of Dirac deltas with weights bounded away from zero. The use of the Green’s represen-
tation formula gives then some global information on the behavior of the solutions.

However, the presence of nonhomogeneous boundary conditions gives a second possible
limit problem. As we will see, by a suitable rescaling, one can obtain the following limit
problem { −∆v = aev in R2

+,

∂νv = ce
v
2 on ∂R2

+.

Zhang classified the entire solutions on the half–plane in [46] under the finite mass condi-
tion

ˆ
R2

+

ev < +∞,
ˆ
∂R2

+

e
v
2 < +∞.
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Actually, it is proved that if a > 0, there exists solution for every c, whereas in case a 6 0,
then c >

√
−2a and the explicit form is given by

v(x) = log
8λ2(

a+ λ2
∣∣∣x− (s0,

c√
2λ

)∣∣∣2)2 , s0 ∈ R, λ > 0

Although the shape of the solution depends on the sign of the constants a and c, it is
remarkable that for any a, c, they verify the quantization property

a

ˆ
R2

+

ev + c

ˆ
∂R2

+

e
v
2 = 4π.

Let us emphasize that there exists a more general classification result, which includes un-
bounded mass solutions, given by Mira and Gálvez (see [22] for further details). Notice that
in the problem (2.1) the mass is prescribed by the finite values ρn and ρ′n, therefore the infinite
mass case will not be considered along this paper.

Next, we state the main result of this section.

Theorem 2.1. Let un be a sequence of solutions to (2.1) satisfying

(2.3)
1

C
6
ˆ

Σ
Kne

un +

(ˆ
∂Σ
hne

un
2

)2

6 C,

with Kn →
n→+∞

K, hn →
n→+∞

h in the C1 sense such that K,h verify (H) and (ρn, ρ
′
n) →

n→+∞
(ρ, ρ′).

Define the singular set S as in (2.2). Then, up to subsequences, the following alternative holds:
(1) either un is uniformly bounded in L∞(Σ);
(2) or max

Σ
un →

n→+∞
+∞ and S is nonempty, finite and

2ρn
Kne

un´
ΣKneun

⇀
n→+∞

8π
∑

p∈S∩Σ̊

δp +
∑

q∈S∩∂Σ

βqδq,

2ρ′n
hne

un
2´

∂Σ hne
un
2

⇀
n→+∞

∑
q∈S∩∂Σ

(4π − βq)δq + µ′0,

for some βq ∈ R and µ′0 ∈ L1(∂Σ), with µ′0 ≡ 0 if S ∩ ∂Σ 6= ∅.

We point out that the previous theorem unifies the results given in [1, 23, 37], which con-
sider different assumptions on the sign of the potentials. Recall that in this formulation, the
sign of the right hand side depends on ρ, ρ′ respectively.

Condition (2.3) is a normalization which is needed to compensate the fact that problem (2.1)
is invariant by addition of constant. In fact, for any solution u to (2.1), un := u∓ n still solves
(2.1) but clearly does not satisfy any of the alternative given by the previous theorem, as it
goes to +∞ or−∞ everywhere on Σ. However, given any solution un one may add a suitable

constant so that it satisfies
1

C
6
ˆ

Σ
Kne

un +

(ˆ
∂Σ
hne

un
2

)2

6 C, therefore Theorem 2.1 is not

restrictive in the study of solutions to (2.1)

Remark 2.2. The very same result can be extended to the case when the sign of h is constant on the
connected components of ∂Σ, and similarly one can also extend Theorem 1.2 to this case.

On the other hand, blow–up analysis seems more involved in the case of sign–changing potentials.
A priori, compensation phenomena between masses may occur around zeroes ofK or h (see for further
details [18, 19]). Some results concerning blow–up analysis with sign–changing potentials have been
provided in [19].

From Theorem 2.1 one easily deduces that alternative (2) can only occur if the parameters
belong to the critical set, defined as (see Figure 1):
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(2.4) Γ =
{

(ρ, ρ′) : ρ = 4πN or ρ+ ρ′ = 2πM with N,M ∈ N
}
.

Corollary 2.3. If (ρ, ρ′) /∈ Γ, then the set of solutions to the problem (2.1) is compact up to addition
of constants.

2π 4π 6π 8π 10π 12π
ρ

2π

4π

6π

8π

ρ′

FIGURE 1. The critical value set Γ

We will now collect some lemmas in order to prove Theorem 2.1.
We will suppose that un is a blowing–up sequence and p is a point of S. Moreover, by

conformal invariance, we can map a neighborhood of p to a disk Br(0) ⊂ R2 if p ∈ Σ̊ and
B+
r (0) in case that p ∈ ∂Σ. Therefore, to study the local blow–up we suffice to consider the

problem

(2.5) −∆un = 2K̃ne
un in Br(0),

or

(2.6)

 −∆un = 2K̃ne
un in B+

r (0),

∂νun = 2h̃ne
un
2 on Γr(0),

for some K̃n, h̃n having the same sign as ρn, ρ′n respectively.

A first step in the blow–up analysis is a minimal mass lemma, which implies finiteness of
the blow–up set S .

Such a result was first introduced by Brezis and Merle in [11] in the case of uniform Dirich-
let conditions. We will need a proper version which takes into account the interior and the
boundary integrals. Based on an adaptation for the boundary term given in [29], a first ver-
sion was deduced in [1]. In the latter paper, only constant potentials K̃n(x) ≡ K̃n,0 > 0 are
considered, which is directly adapted for non constant ones below. This argument does not
deal with a possible compensation between masses. For that reason, it is an open question to
find a sharp estimate.

Lemma 2.4. Let un be a sequence of solutions to (2.5) for some K̃n with K̃+
n 6 C. If
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ˆ
B+
r (0)

K̃+
n e

un 6 ε < 2π,

then u+
n is uniformly bounded in L∞

(
B r

2
(0)
)

.

Let un be a sequence of solutions to (2.6) for some K̃n, h̃n with K̃+
n , h̃

+
n 6 C. If

(2.7)
ˆ
B+
r (0)

K̃+
n e

un 6 ε <
π

2
,

ˆ
Γr(0)

h̃+
n e

un
2 6 ε <

π

2
,

then u+
n is uniformly bounded in L∞

(
B+
r
2

(0)
)

.

Proof. The first statement follows directly from [11], Corollary 4.
For the second one, let us decompose un = u1n,+ +u1n,−+u2n,+ +u2n,−+u3n, where u1n,±

and u2n,± satisfy 
−∆u1n,± = 2K̃±n e

un = f̃±n in B+
r (0),

∂νu1n,± = 0 on Γr(0),

u1n,± = 0 on ∂+Br(0),

and 
∆u2n,± = 0 in B+

r (0),

∂νu2n,± = 2h̃±n e
un
2 = g̃±n on Γr(0),

u2n = 0 on ∂+Br(0).

Clearly, u1n,−, u2n,− 6 0. Extending u1n,+ and f̃+
n evenly in Br(0), we can use Corollary 4

of [11] in order to obtain that
ˆ
B+
r (0)

ep|u1n,+| 6 C,

for some p > 1. On the other hand, in view of [29], Lemma 3.2, we have that, for 0 < δ1 < 4π
and 0 < δ2 < 2π then

ˆ
B+
r (0)

e

4π−δ1
‖g̃+n ‖L1

|u2n,+|
6 C and

ˆ
Γr(0)

e

2π−δ2
‖g̃+n ‖L1

|u2n,+|
6 C,

where
∥∥g̃+

n

∥∥
L1 =

ˆ
Γr(0)

g̃+
n .

Since
∥∥g̃+

n

∥∥
L1 < 2π, then
ˆ
B+
r (0)

ep1|u2n,+| 6 C and
ˆ

Γr(0)
ep2|u2n,+| 6 C,

for some p1, p2 > 1. Consequently, u1n,+, u2n,+ ∈ L1
(
B+
r (0)

)
and, moreover, u+

n ∈ L1
(
B+
r (0)

)
by the boundedness mass assumption. Notice that u+

3n = u+
n + u1n,+ + u2n,+, so applying the

mean value theorem, one gets u+
3,n ∈ L

∞
(
B+
r
2

(0)
)

.

Therefore, we have obtained that f̃n ∈ Lq
(
B+
r
2

(0)
)

and g̃n ∈ Lq
(

Γ r
2
(0)
)

for q > 1. Finally,
standard elliptic estimates provide the conclusion.

�

By Lemma 2.4, we conclude that if un blows up somewhere in Σ, then the mass is at least 4π
at the interior and there exist boundary contributions to be precised. Therefore the blow–up
set must be finite, as we are assuming the masses to be finite. Moreover, we get
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2ρn
Kne

un´
ΣKneun

⇀
n→+∞

∑
p∈S∩Σ̊

αpδp +
∑

q∈S∩∂Σ

βqδq + µ0,(2.8)

2ρ′n
hne

un
2´

∂Σ hne
un
2

⇀
n→+∞

∑
q∈S∩∂Σ

γqδq + µ′0,

for some αp, βq, γq with αp > 4π, βq, γq ∈ R and µ0 ∈ L1(Σ), µ′0 ∈ L1(∂Σ).

Next, we have a quantization of local blow–up masses. Whereas internal mass at each
concentration point corresponds to 4π, in case of blow–up at the boundary only the sum of
the two masses is quantized.

The proof is rather similar as [1] (Theorem 1.5), [37] (Lemma 7.5), therefore it will be
skipped. It is based on a Pohožaev identity around the blow–up point, the inequality

un + 2 log rn → −∞ if dist(x, p) = rn
for a proper rn → 0 and p ∈ S (see Lemma 3.1. in [34] for more details) and a uniformly
mean oscillation property, namely

max
∂Br(p)∩Σ

un − min
∂Br(p)∩Σ

un 6 C.

Lemma 2.5. Define, for p ∈ S, its blow–up value as

m(p) := lim
r→0

lim
n→+∞

(
ρn

´
Br(p)

Kne
un´

ΣKneun
+ ρ′n

´
Br(p)∩∂Σ hne

un
2´

∂Σ hne
un
2

)
.

Then, m(p) = 4π if p ∈ Σ̊ and m(p) = 2π if p ∈ ∂Σ.

Remark 2.6. If ρ 6 0, then there is no interior blow–up, i.e. S ⊂ ∂Σ. This is a direct consequence
of the first statement of Lemma 2.4. It is possible to deduce this property by means of the maximum
principle.

Finally, we focus on the residuals µ0 and µ′0.
In the classical case without boundary nonlinear terms, studied by [11], there is no residual

in case of blow–up. Here, the situation is similar concerning the internal mass, but one may
still have a residual mass on the boundary because of the fixed amount of mass.

Proposition 2.7. Assume that the singular set S is not empty. Then µ0 ≡ 0 in (2.8).
Moreover, if S ∩ ∂Σ 6= ∅, then µ′0 ≡ 0 in (2.8).

Proof. First we consider the interior blow–up case, namely p ∈ S \ ∂Σ. Without loss of gen-
erality suppose that un is solution to (2.5) and p = {0}. Next, take r small enough such that
Br(0) ∩ S = {0}.

By contradiction, assume that un > −C on ∂Br(0). Since un is uniformly bounded in
C2,γ(Br(0) \ {0}), it is possible to pass to the limit, up to subsequences, and to obtain

µn = 2K̃ne
un ⇀

n→+∞
µ

in the sense of measures on Br(0) and

un →
n→+∞

η in C2
loc(Br(0) \ {0}),

where η is a weak solution to −∆η = µ. By Lemma 2.5, then µ({0}) > 8π, hence by the
Green’s representation formula, we finally arrive at

(2.9) η > −4 log |x| − C in Br(0),
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which is in contradiction with
ˆ
Br(0)

K̃ne
un 6 C. Therefore, un →

n→+∞
−∞ uniformly in

compacts sets of Br(0) \ {0} and in particular µ0 ≡ 0.
If p ∈ S ∩ ∂Σ, we can repeat the previous argument. By a conformal transformation, we

can pass to the problem (2.6) and then apply Lemma 2.5. Arguing by contradiction, as before
un →

n→+∞
η in, and there exists z 6 η which satisfies the problem

(2.10)

 −∆z = 4πδq + µ0 in B+
r (0),

∂νz = µ′0 on Γr(0),
z = −C on ∂+Br(0).

Now, let us distinguish between cases depending on the signs of µ0, µ
′
0.

If µ0, µ
′
0 > 0, then by Green’s representation formula gives (2.9) which violates the con-

dition
ˆ

Γr(0)
h̃ne

un
2 6 C. Therefore, we deduce that un →

n→+∞
−∞ locally uniformly in

B+
r (0) \ {0} and so µ0 = µ′0 ≡ 0.
Suppose now that µ0 6 0.We write z = z1 + z2, where

(2.11)

 ∆z1 = 0 in B+
r (0),

∂νz1 = 4πδq + µ′0 on Γr(0),
z1 = −C on ∂+Br(0),

and

(2.12)

 −∆z2 = µ0 in B+
r (0),

∂νz2 = 0 on Γr(0),
z2 = 0 on ∂+Br(0).

On one hand, by using the Green’s representation formula, we obtain that

z1 > −4 log |x| − C.
On the other hand, applying the minimal mass lemma by Brezis-Merle, namely Theorem 1

in [11], one has that
ˆ
B+
r (0)

ep|z2| 6 C,

for some p > 1, which can be enlarged if it is necessary.
Therefore, we arrive at

ˆ
B+
r (0)

C

|x|
4
q

6
ˆ
B+
r (0)

e
z1
q =

ˆ
B+
r (0)

e
z−z2
q 6

(ˆ
B+
r (0)

ez

) 1
q
(ˆ

B+
r (0)

e
|z2|
q−1

) q−1
q

6 C,

by Hölder inequality with 1 < q < 2. Taking
1

q − 1
< p, the previous inequality gives us a

contradiction. Therefore, un → −∞ and µ0 = 0 = µ′0

Similarly, we obtain the same conclusion if µ′0 6 0
�

Now we are in position to prove Theorem 2.1

Proof of Theorem 2.1. Let us differentiate two cases:

Case 1: The sequence un is bounded from above in Σ.
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Then Kne
un ∈ Lp(Σ) and hne

un
2 ∈ Lp(∂Σ) for some p > 1, therefore −∆un ∈ Lp(Σ) and

∂νun ∈ Lp(∂Σ). Using elliptic regularity estimates, one can deduce that un − un ∈ W 2,p, and
in particular un − un ∈ L∞(Σ). If un remains bounded, then we obtain (1). Otherwise, a
sequence of un diverges negatively in Σ which violates the condition (2.3).

Case 2: un is not bounded from above.
Applying Lemma 2.4, we know that S is nonempty and finite. Moreover, combining

Proposition 2.7 and Lemma 2.5 we finally deduce (2).
�

An important consequence of the blow–up analysis is the following result, which will be
essential in the forthcoming sections.

Proposition 2.8. Let un be a sequence of solutions to (2.1) under the assumptions of Theorem 2.1
with S ∩ ∂Σ 6= ∅, ρ = 2π − ρ′ < 4π and ρ 6= 0, 2π. Then,

1

C
6

√´
ΣKneun´

∂Σ hne
un
2

6 C,

for some positive constant C.

Proof. By the choice of ρ, ρ′, as a consequence of Theorem 2.1 we have that S = {p} ⊂ ∂Σ.
Next, define

vn := un − 2 log min

{√ˆ
Σ
Kneun ,

ˆ
∂Σ
hne

un
2

}
,

which satisfies the equation
−∆vn +

2(ρn + ρ′n)

|Σ|
= 2ρnK̃ne

vn in Σ,

∂νvn = 2ρ′nh̃ne
vn
2 on ∂Σ.

where

either K̃n = Kn and h̃n = hn

√´
ΣKneun´

∂Σ hne
un
2

,

or K̃n = Kn

(´
∂Σ hne

un
2

)2

´
ΣKneun

and h̃n = hn.

Clearly,

(2.13)
ˆ

Σ
K̃ne

vn = 1 and
ˆ
∂Σ
h̃ne

vn
2 = 1.

Notice that 0 < K̃n, h̃n 6 C and vn blows up at the point p and min

{√ˆ
Σ
Kneun ,

ˆ
∂Σ
hne

un
2

}
is uniformly bounded due to assumption (2.3). Now, we take

vn(xn) = max
Σ

vn →
n→+∞

+∞ and δn := e
−vn(xn)

2 →
n→+∞

0,

hence xn →
n→+∞

p. Next, consider the following rescaling

ṽn = vn(δnx+ xn) + 2 log δn,

which verifies the equation
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(2.14)


−∆ṽn +

2(ρn + ρ′n)

|Σ|
δ2
n = 2ρnK̃n(δnx+ xn)eṽn in B+

rn
δn

(0),

∂ν ṽn = 2ρ′nh̃n(δnx+ xn)e
ṽn
2 on Γ rn

δn
(0),

where B+
rn
δn

(0) = B rn
δn

(0) ∩ Σ for some rn > 0 to be fixed.

Now, for r > 0, let us distinguish two cases:

Case 1:
dist

(
xn,Γ r

δn
(0)
)

δn
→

n→+∞
+∞.

In this case, let us set rn =
|xn|

2
in (2.14), so that

rn
δn
→ +∞. Moreover, ṽn 6 0 and it is

uniformly bounded in L∞loc by Harnack inequality. Therefore, it is standard to prove that

ṽn →
n→+∞

ṽ in C2
loc

(
R2
)
,

with ṽ solving 
−∆ṽ = 2ρK̃(p)eṽ in R2,
ˆ
R2

K̃(p)eṽ 6 C

However, by (2.13) and the classification of the solutions to the previous problem, we
conclude that

ρn =

ˆ
Σ
ρnK̃e

vn >
ˆ
B |xn|

2δn

(xn)
ρnK̃e

vn >
ˆ
R2

ρK̃(p)eṽ = 4π,

which is a contradiction with the choice of ρ.

Case 2: dist
(
xn,Γ r

δn
(0)
)

= O(δn).
Now, we consider a sequence ṽn of solutions to (2.14) with rn = r > 0. Again, ṽn 6 0 and

it is uniformly bounded in L∞loc by Harnack type inequality for (2.14) (see [30], Lemma A.2).
Consequently, up to a subsequence and after a proper translation, we get that

ṽn →
n→+∞

ṽ in C2
loc

(
R2

+

)
,

with ṽ solving 

−∆ṽ = 2ρK̃(p)eṽ in R2
+,

∂ν ṽ = 2ρ′h̃(p)e
ṽ
2 on ∂R2

+,ˆ
R2

+

eṽ 6 C,
ˆ
∂R2

+

e
ṽ
2 6 C

satisfying the quantization property
ˆ
R2

+

ρK̃(p)eṽ +

ˆ
∂R2

+

ρ′h̃(p)e
ṽ
2 = 2π.

1

C
6 K̃(p), h̃(p) 6 C.

Taking into account the definition of K̃ and h̃ and (H), the last fact implies directly the
desired conclusion. �

Remark 2.9. This result can be extended for every critical value (ρ, ρ′) ∈ Γ such that ρ /∈ 4πN and
S ∩ ∂Σ 6= ∅. On the other hand, if ρ ∈ 4πN, then the blow–up may approach the boundary so slowly
that the ratio between the masses is not controlled.
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3. A MOSER–TRUDINGER TYPE INEQUALITY

We will now start to study variationally problem (1.4). In particular, this section is devoted
to prove a Moser–Trudinger inequality (1.10), which generalizes previous inequalities (1.8),
(1.9).

Precisely, we have the following theorem:

Theorem 3.1. Inequality (1.10) holds true. In particular, the energy functional Jρ,ρ′ is:

(1) bounded from below on H1(Σ) if ρ 6 4π, ρ+ ρ′ 6 2π and (ρ, ρ′) 6= (4π,−2π);
(2) coercive on H1

(Σ) if and only if ρ < 4π, ρ+ ρ′ < 2π.

Here, H1
(Σ) is the subspace of H1(Σ) containing only functions with zero average

H
1
(Σ) :=

{
u ∈ H1(Σ) :

ˆ
Σ
u = 0

}
.

Notice that the energy functional Jρ,ρ′ can never be coercive on the whole space H1(Σ),
since it is invariant by addition of constant, as well as equation (1.4) is. On the other hand,

one can choose

√ˆ
Σ
|∇u|2 as an equivalent norm on H1

(Σ), due to Poincaré inequality. For

this reason, we will be discussing coercivity of J on H
1
(Σ) and we will omit the space we

are considering.

As an immediate corollary of Theorem 3.1, in the coercivity case we get minimizing solu-
tions to the double mean field equation, that is Theorem 1.1 is proved.

By comparing Theorem 3.1 with the blow–up analysis from Section 2, we see that Jρ,ρ′ is
coercive for ρ, ρ′ in an open region disjointed from the critical value set defined by (2.4). This
is not a coincidence, as Corollary 2.3 will be used in the proof of Theorem 3.1.

2π 4π 6π 8π 10π 12π
ρ

2π

4π

6π

8π

ρ′

FIGURE 2. The range of parameters for which Jρ,ρ′ is coercive and the critical set.

The only if part in Theorem 3.1 is rather easy to be proved, using suitable test functions.
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Proposition 3.2. If either ρ > 4π or ρ+ ρ′ > 2π, then inf
u∈H1(Σ)

Jρ,ρ′ = −∞.

If either ρ > 4π or ρ+ ρ′ > 2π, then Jρ,ρ′ is NOT coercive.

Proof. It is enough to consider, for λ > 0 and p ∈ Σ,

φλp(x) = log

(
λ

1 + λ2 dist2(x, p)

)2

.

One easily gets the following and well–known estimates (see for instance [20, 23]):

ˆ
Σ

∣∣∣∇φλp ∣∣∣2 =

{
32π log λ+O(1) if p ∈ Σ̊,

16π log λ+O(1) if p ∈ ∂Σ;

log

ˆ
Σ
Keφ

λ
p = O(1);

log

ˆ
∂Σ
he

φλp
2 =

{
− log λ+O(1) if p ∈ Σ̊,

O(1) if p ∈ ∂Σ;ˆ
Σ
φλp = −2|Σ| log λ+O(1).

Therefore, by taking p ∈ Σ̊ and evaluating Jρ,ρ′ one gets

Jρ,ρ′
(
φλp

)
→

λ→+∞
−∞ if ρ > 4π; Jρ,ρ′

(
φλp

)
6 C < +∞ if ρ > 4π.

On the other hand, if p ∈ ∂Σ, the same calculations give:

Jρ,ρ′
(
φλp

)
→

λ→+∞
−∞ if ρ+ ρ′ > 2π; Jρ,ρ′

(
φλp

)
6 C < +∞ if ρ+ ρ′ > 2π;

this concludes the proof. �

As a first step, by mixing inequalities (1.8) and (1.9), one easily obtains Theorem 3.1 for a
small range of parameters.

Lemma 3.3. The energy functional Jρ,ρ′ is bounded from below if ρ, ρ′ 6 2π and ρ+ ρ′ 6 2π.

Proof. Multiplying inequality (1.8) by
ρ

2π
, inequality (1.7) by

ρ′

2π
and adding both underlying

expressions, one has that

4ρ log

ˆ
Σ
eu + 8ρ′ log

ˆ
∂Σ
e
u
2 6

ρ+ ρ′

2π

ˆ
Σ
|∇u|2 +

4ρ

|Σ|

ˆ
Σ
u+

4ρ′

|∂Σ|

ˆ
∂Σ
u+ Cρ.

Now, we can estimate the mean value on ∂Σ in terms of the mean value on Σ, as in [16].
Precisely, we apply the previous inequality to u−ϕ, with ϕ ∈ C2(Σ) solving (1.5). Therefore,

4ρ log

ˆ
Σ
Keu + 8ρ′ log

ˆ
∂Σ
he

u
2 6 4ρ log

ˆ
Σ
eu−ϕ + 8ρ′ log

ˆ
∂Σ
e
u−ϕ

2 + C

6
ρ+ ρ′

2π

ˆ
Σ
|∇(u− ϕ)|2 +

4ρ

|Σ|

ˆ
Σ

(u− ϕ) +
4ρ′

|∂Σ|

ˆ
∂Σ

(u− ϕ) + Cρ.

6
ˆ

Σ

(
|∇u|2 + |∇ϕ|2 − 2∇u · ∇ϕ

)
+

4ρ

|Σ|

ˆ
Σ
u+

4ρ′

|∂Σ|

ˆ
∂Σ
u+ C

6
ˆ

Σ
|∇u|2 + 2

(ˆ
Σ
u∆ϕ−

ˆ
∂Σ
u∂νϕ

)
+

4ρ

|Σ|

ˆ
Σ
u+

4ρ′

|∂Σ|

ˆ
∂Σ
u+ C

=

ˆ
Σ
|∇u|2 +

4(ρ+ ρ′)

|Σ|

ˆ
Σ
u+ C;
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namely, Jρ,ρ′ > −
C

2
.

�

We have a characterization of the values for which J is super–quadratic, hence coercive.
See also [28] (Lemmas 4.2, 4.3), [8] (Lemmas 3.4, 3.5), [4] (Lemmas 4.3, 4.4).

Lemma 3.4. Define Λ as the set of parameters for which J is bounded from below, namely

(3.1) Λ :=
{

(ρ, ρ′) ∈ R2 : Jρ,ρ′ is bounded from below
}
.

Then, (ρ, ρ′) belongs to the interior Λ̊ of Λ if and only if there exists C > 0 such that

(3.2) Jρ,ρ′(u) >
1

C

ˆ
Σ
|∇u|2 − C ∀u ∈ H1(Σ).

In particular, the set of parameters for which J is coercive is open and coincides with Λ̊.

Proof. First of all, due to Jensen inequality one has

(3.3) log

ˆ
Σ
eu >

1

|Σ|

ˆ
Σ
u+ log |Σ| log

ˆ
∂Σ
e
u
2 >

1

|∂Σ|

ˆ
∂Σ
u+ log |∂Σ|.

Therefore, one sees that if (ρ, ρ′) ∈ Λ then
(
ρ̃, ρ′

)
∈ Λ for any ρ̃ 6 ρ. Moreover, one can

argue as in the proof of Lemma 3.3 and compute Jρ,ρ′ on u plus a suitable multiple of the
solution ϕ to (1.5), in order to switch the mean value on Σ and the mean value on ∂Σ; using
this and the second inequality in (3.3), one gets that

(
ρ̃, ρ̃′

)
∈ Λ if ρ̃′ 6 ρ′.

We are left with showing that (1 + δ)(ρ, ρ′) ∈ Λ if and only if (3.2) holds.
This will follow by writing

J(1+δ)ρ,(1+δ)ρ′(u) = (1 + δ)Jρ,ρ′(u)− δ

2

ˆ
Σ
|∇u|2;

in fact, this implies that J(1+δ),(1+δ)ρ′ > −C if and only if Jρ,ρ′(u) >
δ

2(1 + δ)

ˆ
Σ
|∇u|2.

�

Following the approach of [28], we introduce an auxiliary perturbation of Jρ,ρ′ in the case
of non-coercive parameters. This is particularly useful because the results concerning the
blow–up can be applied to its critical points.

Lemma 3.5. Assume that for (ρ0, ρ
′
0) there exists a sequence un ∈ H1(Σ) such that

(3.4)
ˆ

Σ
|∇un|2 →

n→+∞
+∞, lim inf

n→+∞

Jρ0,ρ′0
(un)´

Σ |∇un|2
6 0.

Then, there exists a smooth F : H1(Σ)→ R and such that, up to subsequences,

(3.5) 0 < F ′(u) < 1, F ′(u) →´
Σ |∇u|2→+∞

0 uniformly inf
H1(Σ)

(
Jρ0,ρ′0

− F
)

= −∞.

Proof. An elementary calculus lemma (see for instance [28], Lemma 4.4) states the following:
for any two real sequences {an}, {bn} satisfying

an →
n→+∞

+∞, lim inf
n→+∞

bn
an
6 0,

there exists a smooth f : [0,+∞)→ R such that
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0 < f ′(t) < 1, f ′(t) →
t→+∞

0, f(an)− bn →
n→+∞

+∞.

Apply such a result to an :=

ˆ
Σ
|∇un|2, bn := Jρ0,ρ′0

(un); then, F (u) := f

(ˆ
Σ
|∇u|2

)
will

satisfy the required properties. �

To extend the inequality to a wider range of parameters, we perform a blow–up analysis
using results from the previous section.

Proof of (1) in Theorem 3.1. Suppose, by contradiction, that Jρ,ρ′ is not coercive for some (ρ, ρ′)
satisfying ρ < 4π, ρ+ ρ′ < 2π.

In view of Lemma 3.4, the space of coercive parameters is given by Λ̊, with Λ given by
(3.1), and it is not empty because of Lemma 3.3. Therefore there will be some (ρ0, ρ

′
0) ∈ ∂Λ

with ρ0 < 4π and ρ0 + ρ′0 < 2π due to Proposition 3.2.
From Lemma 3.4 we get that (3.2) does not hold true for (ρ0, ρ

′
0), therefore (ρ0, ρ

′
0) will

satisfy (3.4) and we may apply Lemma 3.5.
Now, let us take (ρn, ρ

′
n) ∈ Λ̊ satisfying (ρn, ρ

′
n) →

n→+∞
(ρ0, ρ

′
0) and let us consider Jρn,ρ′n −

F . In view of (3.2) and the second assumption of (3.5), the new functional will be coercive for
any (ρn, ρ

′
n), as J is. Therefore, a sequence un of minimizers satisfying

−(1 + F ′(un))∆un +
2(ρn + ρ′n)

|Σ|
= 2ρn

Keun´
ΣKe

un
in Σ,

(1 + F ′(un))∂νun = 2ρ′n
he

un
2´

∂Σ he
un
2

on ∂Σ.

Since 1 + F ′(un) →
n→+∞

1 uniformly, we are in a position to apply Theorem 2.1. To get a

contradiction and conclude the proof we suffice to exclude both alternatives in the theorem.
Alternative (2) cannot hold true, because (ρ0, ρ

′
0) does not belong to the critical set Γ de-

fined in (2.4). On the other hand, if alternative (1) held true, then un →
n→+∞

u0 in H1(Σ), with

u0 being a minimizer of Jρ0,ρ′0
−F . But Jρ0,ρ′0

−F is unbounded from below by construction,
therefore this is impossible.

We found the desired contradiction and therefore completed the proof.
�

Finally, we can obtain a sharp inequality by performing a more accurate blow–up analysis.

Proof of (2) in Theorem 3.1. Fix ρ′ ∈ (−∞,−2π) and take ρn ↗
n→+∞

4π.

By the first part of Theorem 3.1, Jρn,ρ′ is coercive, hence it admits a sequence of minimizers
un. By writing, for any u ∈ H1(Σ),

J4π,ρ′(u) = lim
n→+∞

Jρn,ρ′(u) > lim
n→+∞

Jρn,ρ′(un),

we see that we suffice to prove that the latter sequence is uniformly bounded from below.
To this purpose, we apply blow–up analysis from Theorem 2.1 to un (to which in case we

may add a suitable constant to verify (2.3), which does not alter the values of J ).
In case alternative (1) hold, then Jρn,ρ′(un) is uniformly bounded because un is compact in

H1(Σ). On the other hand, if blow–up occurs, then the blow–up set S is disjointed with ∂Σ,
otherwise we would have

4π#(S ∩ ∂Σ) ←
n→+∞

2(ρn + ρ′) 6 8π + 2ρ′ < 4π.

Therefore, un is bounded from above on ∂Σ, hence one may use inequality (1.8) to get
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Jρn,ρ′(un) >
ˆ

Σ

(
1

2
|∇un|2 +

2ρn
|Σ|

un

)
− 2ρn log

ˆ
Σ
eun − C > −C.

Now, fix ρ ∈ (−∞, 4π) \ {0, 2π} and take (ρn, ρ
′
n) ↗

n→+∞
(ρ, 2π − ρ).

As in the previous case, we will suffice to show Jρn,ρ′n(un) > −C for some sequence un of
minimizers to Jρn,ρ′n . Again, we apply Theorem 2.1 to un.

If the first alternative occurs in the theorem, then boundedness of energy is immediate.
On the other hand, if un blows up, then S ∩ Σ̊ = ∅, since otherwise we would get 2ρn > 8π,
therefore S ∩ ∂Σ 6= ∅.

We are then in position to apply Proposition 2.8 to get a mutual control between the two
nonlinear term in J . From this, we obtain:

Jρn,ρ′(un) >
ˆ

Σ

(
1

2
|∇un|2 +

2(ρn + ρ′n)

|Σ|
un

)
− 4(ρn + ρ′n) log

ˆ
∂Σ
e
un
2 − C.

Now, we can pass from the mean values on Σ to the ones on ∂Σ by subtracting from u the
solution ϕ to (1.5), as in the proof of Lemma 3.3; then, one concludes by applying inequality
(1.9). �

Remark 3.6. The only case which is not covered by Theorem 3.1 is (ρ, ρ′) = (4π,−2π): we showed
that J4π,−2π is not coercive, but not whether it is bounded from below.

In fact, the proof of the theorem relies on Proposition 2.8, which does not hold for this case, as
pointed out in Remark 2.9.

4. EXISTENCE OF MIN–MAX SOLUTIONS

In this subsection we prove Theorem 1.2 in the cases where the energy functional is not
bounded from below, namely where N,M satisfy (1.12).

The argument consists in comparing very low energy sublevels J −L, defined in (1.11), with
some spaces of barycenters, whose homology is well–known. In particular, the homology
groups of J −L will contain a copy of the homology groups of such barycenters, which under
some assumptions is not trivial. Therefore, low energy sublevels are not contractible and
existence of solutions will follow.

The barycenters on a metric spaceM is given by finitely–supported probability measures
onM, namely convex combinations of Dirac deltas, equipped with the Lip′ topology:

(M)K =

{
K∑
i=1

tiδxi :

K∑
i=1

ti = 1, xi ∈M

}
‖µ‖Lip′(M) := sup

ϕ∈Lip(M),‖ϕ‖Lip(M)61

∣∣∣∣ˆ
M
ϕdµ

∣∣∣∣ .
We will take asM either ∂Σ or a compact subset Σ̃ b Σ well–separated from the boundary,

namely

(4.1) Σ̃ := Σ \ (∂Σ)δ = {x ∈ Σ : dist(x, ∂Σ) > δ} ,

with δ > 0 small enough so that (∂Σ)δ it is a deformation retract of ∂Σ and Σ̃ is a deformation
retract of Σ. In particular, taking M,N as in the statement of Theorem 1.2, we will consider
the space X defined by

(4.2) X :=


(

Σ̃
)
N

if N >M,

(∂Σ)M if N < M.
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Roughly speaking, if N , is greater, then the interior of Σ plays a more important role than
the boundary. This is consistent with the blow–up analysis from Theorem 2.1, where interior
blow–up depends on ρ and boundary blow–up depends on the sum ρ+ ρ′.

In the caseN < M we always get a noncontractible space, as ∂Σ is always noncontractible.
If N > M , X is contractible if Σ is, therefore in this last case we do not get existence of
solutions, as shown by Figure 3.

2π 4π 6π 8π 10π 12π
ρ

2π

4π

6π

8π

ρ′

FIGURE 3. The regions where (1.4) has solutions on any Σ or on multiply con-
nected Σ

Proposition 4.1. Let J −L be defined by (1.11) and X be defined by (4.2). Then, for L � 0 large
enough there exist two maps

Φ : X → J −L, Ψ : J −L → X ,

such that Ψ ◦ Φ : X → X is homotopically equivalent to the identity map.

From this it is standard to deduce Theorem 1.2, using compactness results from Theorem
2.1 and a deformation lemma from [39].

Proof of Theorem 1.2. From Proposition 4.1 and the properties of homology one getsH∗(X ) ↪→
H∗
(
J −L

)
. By assuming either N < M or Σ being multiply connected we get that X has

some nontrivial homology groups (see [6], Lemma 3.3 in the former case and [2], Proposition
3.2 in the latter case); therefore, J −L also has non-trivial homology, hence is not contractible.

On the other hand, since (ρ, ρ′) /∈ Γ, then Corollary 2.3 holds true. Therefore, one can argue
a deformation argument as in [39], Proposition 1.1 (see also [42]) to deduce that J L is a de-
formation retract of the whole space H1(Σ) if L� 0 is large enough, hence it is contractible.

Therefore, J L and J −L are not homotopically equivalent. Arguing again like in [39],
Proposition 1.1, there must be a sequence un of solutions to (2.1) with K = Kn, h = hn satis-
fying −L 6 Jρn,ρ′n(un) 6 L and (ρn, ρ

′
n) →

n→+∞
(ρ, ρ′). By Theorem 2.1 and the assumptions

on ρ, ρ′, we have un →
n→+∞

u, the latter being a solution to (1.4). �

Remark 4.2. One can similarly deduce multiplicity of solutions to (1.4) via Morse theory, as the
homology of X has been explicitly computed in [2, 18, 6] and in particular
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N >M ⇒ Hq(X ) =


Z(N+g−1

g−1 ) if q = 2N − 1,

0 if q 6= 2N − 1;

N < M ⇒ Hq(X ) =

 Z(q−M+g+1
g )( g

2M−q−1) if max{M − 1, 2M − g − 1} 6 q 6 2M − 1,

0 if q < max{M − 1, 2M − g − 1} or q > 2M − 1;

where g is the genus of Σ.
Multiplicity will hold true only if J is a Morse function; however, one can prove that this holds

true for a generic choice of the potentials K,h and the metric g. For further details see [17, 2].

The rest of this section will be devoted to the proof of Proposition 4.1.
We start with the construction of the map Φ, consisting in a family of test function modeled

on X whose energy is arbitrarily low; this is is a generalization of the construction made in
Proposition 3.2. Since such test functions are very well–studied in Liouville–type problems,
the proof will be sketchy.

Lemma 4.3. For any λ > 0 define Φλ : X → H1(Σ) as

X Φλ−→ H1(Σ)

ξ =
∑
i

tiδxi 7→ φλξ (x) = log
∑
i

ti

(
λ

1 + λ2 dist2(x, xi)

)2

.

Then, Jρ,ρ′
(
φλξ

)
→

λ→+∞
−∞ uniformly on X .

Proof. The following estimates can be easily verified (see for instance [20, 23]):

ˆ
Σ

∣∣∣∇φλξ ∣∣∣2 =

{
32Nπ log λ+O(1) if N >M,

16Mπ log λ+O(1) if N < M ;

log

ˆ
Σ
Keφ

λ
ξ = O(1);

log

ˆ
∂Σ
he

φλξ
2 =

{
− log λ+O(1) if N >M,

O(1) if N < M ;ˆ
Σ
φλξ = −2|Σ| log λ+O(1);

with O(1) independent of ξ. Therefore, one gets

J
(
φλξ

)
=

{
(16Nπ − 4ρ) log λ+O(1) if N >M,

(8Mπ − 4(ρ+ ρ′)) log λ+O(1) if N < M,

which in both cases goes uniformly to −∞ as λ→ +∞. �

Let us now consider the map Ψ : J −L → X . Its existence will follow by showing that for

any u ∈ J −L the unit measure
Keu´
ΣKe

u
is close to a barycenter of X .

The first step is an improved Moser–Trudinger inequality: roughly speaking, if u is spread in
some different regions of Σ, then the constants 4π,−2π in inequality (1.10) can be multiplied
by some integer numbers, depending on the number and the position of such regions. In
order to do it, the following localized version of Moser–Trudinger type inequalities will be of
use (see [38], Proposition 2.2 for a proof).



A DOUBLE MEAN FIELD EQUATION RELATED TO A CURVATURE PRESCRIPTION PROBLEM 21

Proposition 4.4. Let ε > 0, δ > 0 and Ω1 ⊂ Σ such that dist(Ω1, ∂Σ) > δ. Then, there exists
C = Cε,δ such that for every u ∈ H1(Σ),

16π log

ˆ
Ω1

eu 6
ˆ

Ωδ1

|∇u|2 + ε

ˆ
Σ
|∇u|2 +

16π

|Σ|

ˆ
Σ
u+ C.

We now extend this result to the case when Ω may touch the boundary, following [14],
Theorem 2.1.

Proposition 4.5. Let ε > 0, δ > 0 and Γ2 := Ω2 ∩ ∂Σ 6= ∅. Then, there exists C = Cε,δ such that
for every u ∈ H1(Σ)

16π log

ˆ
Ω2

eu − 16π log

ˆ
(Γ2)

δ
2

e
u
2 6
ˆ

Ωδ2

|∇u|2 +
8π

|Σ|

ˆ
Σ
u+ ε

ˆ
Σ
|∇u|2 + C.

Proof. First of all, as the inequality we want to prove is invariant by addition of constants, it
will not restrictive to prove it for u ∈ H1

(Σ).
Consider a smooth cut–off function g verifying

g(x) =

{
1 if x ∈ Ω2,

0 if x ∈ Σ \ (Ω2)
δ
2 .

Clearly gu ∈ H1(Σ), and moreover

16π

(
log

ˆ
Ω2

eu − log

ˆ
(Γ2)

δ
2

e
u
2

)
6 16π

(
log

ˆ
Σ
egu − log

ˆ
∂Σ
e
gu
2

)
6 (1 + ε)

ˆ
Σ
|∇(gu)|2 +

8π

|Σ|

ˆ
Σ
gu+ C,

by inequality (1.10) with ρ =
4π

1 + ε
. Since

ˆ
Σ
u = 0, Poincaré–Wirtinger inequality gives

ˆ
Σ
gu 6

ˆ
Σ
|u| 6 C

√ˆ
Σ
|∇u|2 6 ε

ˆ
Σ
|∇u|2 + C.

On the other hand, applying the product rule and Cauchy inequality one has

ˆ
Σ
|∇(gu)|2 6

ˆ
Σ

(
(1 + ε)g2|∇u|2 +

(
1 +

1

ε

)
u2|∇g|2

)
6
ˆ

(Ω2)δ
|∇u|2+ε

ˆ
Σ
|∇u|2+Cε,δ

ˆ
Σ
u2.

Now, for any a > 0, we define η := |{x ∈ Σ : u(x) > a}| and apply the previous computa-
tions to (u− a)+: we obtain

16π

(
log

ˆ
Ω2

eu − log

ˆ
(Γ2)

δ
2

e
u
2

)
6 16π

(
log

(
ea
ˆ

Ω2

e(u−a)+

)
− log e

a
2

ˆ
(Γ2)

δ
2

e
(u−a)+

2

)

6 8πa+

ˆ
(Ω2)δ

|∇u|2 + ε

ˆ
Σ
|∇u|2 + Cε,δ

ˆ
Σ

(
(u− a)+

)2
.(4.3)

To deal with the first term, we use Poincaré-Wirtinger and Cauchy inequalities:

(4.4) a 6
1

η

ˆ
{u>a}

u 6
1

η

ˆ
Σ
|u| 6 C

η

√ˆ
Σ
|∇u|2 6 ε

ˆ
Σ
|∇u|2 +

C

4εη2
.

On the other hand, the last term in (4.3) can be estimated using Hölder and Sobolev in-
equalities:
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(4.5)
ˆ

Σ

(
(u− a)+

)2
6
√
η

√ˆ
Σ

((u− a)+)4 6 C
√
η

ˆ
Σ

((
(u− a)+

)2
+ |∇u|2

)
.

If we choose a so large that η 6 ε2 and ε is small enough, then (4.5) gives
ˆ

Σ

(
(u− a)+

)2
6

C ′ε

ˆ
Σ
|∇u|2. This estimate, together with (4.3) and (4.5), concludes the proof.

�

We can now state and prove the following improved Moser–Trudinger inequality.

Lemma 4.6. Assume Ω11, . . . ,Ω1J ,Ω21, . . . ,Ω2K ⊂ Σ and u ∈ H1(Σ) satisfy

dist(Ωij ,Ωkl) > δ, ∀(i, j) 6= (k, l);

dist(Ω1j , ∂Σ) > δ, ∀j = 1, . . . , J ;
´

Ωij
eu´

Σ e
u
> δ, ∀i, j.(4.6)

Then, for any ε > 0 there exists C = Cε such that

16(J +K)π log

ˆ
Σ
eu − 16Kπ log

ˆ
∂Σ
e
u
2 6 (1 + ε)

ˆ
Σ
|∇u|2 +

8π(2J +K)

|Σ|

ˆ
Σ
u+ C.

Proof. First take Ω11, . . . ,Ω1J verifying (4.6) and apply Proposition 4.4 for each one, then

16π log

ˆ
Σ
eu 6 16π log

(
1

δ

ˆ
Ω1j

eu

)
6
ˆ

(Ω1j)δ
|∇u|2 + ε

ˆ
Σ
|∇u|2 +

16π

|Σ|

ˆ
Σ
u+ Cε,δ,

for j = 1, . . . , J . Now, take Ω21, . . . ,Ω2K verifying (4.6) and apply Proposition 4.5, so

16π

(
log

ˆ
Σ
eu − log

ˆ
∂Σ
e
u
2

)
6 16π log

(
1

δ

ˆ
Ω2k

eu
)
− log

ˆ
Γ2k

e
u
2

6
ˆ

(Ω2k)δ
|∇u|2 + ε

ˆ
Σ
|∇u|2 +

8π

|Σ|

ˆ
Σ
u+ Cε,δ,

for k = 1, . . . ,K. Finally, we sum both previous inequalities for all j, k to get

16(J +K)π log

ˆ
Σ
eu − 16Kπ log

ˆ
∂Σ
e
u
2

6
ˆ
⋃
i,j(Ωij)

δ

|∇u|2 + (J +K)ε

ˆ
Σ
|∇u|2 +

8π(2J +K)

|Σ|

ˆ
Σ
u+ Cε,δ

6 (1 + (J +K)ε)

ˆ
Σ
|∇u|2 +

8π(2J +K)

|Σ|

ˆ
Σ
u+ Cε,δ,

which concludes the proof. �

In order to apply Lemma 4.6 to a wider range of parameter, we need an estimate of the
boundary nonlinear term by means of the interior nonlinear term. Such a result somehow
contains important information about the relation between ρ and ρ′ in J .

The following proposition gives a sort of monotonicity property to the energy J , not only
with respect to each parameter ρ, ρ′, as shown in the proof of Lemma 3.4, but also with respect
to the sum ρ+ ρ′.
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Proposition 4.7. For any ε > 0 there exists a constant C = Cε such that for u ∈ H1(Σ),

(4.7) log

ˆ
∂Σ
e
u
2 6

1

2
log

ˆ
Σ
eu + ε

ˆ
Σ
|∇u|2 + C.

Proof. Take a C∞ vector field η whose restriction to ∂Σ is the outward normal vector field.
By the Stokes’ Theorem, we obtain that:

ˆ
∂Σ
e
u
2 =

ˆ
Σ

div
(
ηe

u
2

)
=

ˆ
Σ

(
div(η)e

u
2 + η

∇u
2
e
u
2

)
.

By the smoothness of the vector field and Hölder inequality we have

ˆ
Σ

div(η)e
u
2 6 C

(ˆ
Σ
eu
) 1

2

,

ˆ
Σ
η
∇u
2
e
u
2 6 C

ˆ
Σ
e
u
2 |∇u| 6 C

(ˆ
Σ
eu
) 1

2
(ˆ

Σ
|∇u|2

) 1
2

.

Therefore,

(4.8)
ˆ
∂Σ
e
u
2 6 C

(ˆ
Σ
eu
) 1

2

(
1 +

(ˆ
Σ
|∇u|2

) 1
2

)
Taking logarithms in (4.8) we obtain

log

ˆ
∂Σ
e
u
2 6

1

2
log

ˆ
Σ
eu + log

(
1 +

(ˆ
Σ
|∇u|2

) 1
2

)
+ C.

Using the fact that log(1+t) 6 t for any t > 0 and the general Cauchy inequality, we obtain
(4.7) as we wanted. �

Corollary 4.8. Under the assumptions of Lemma 4.6, Jρ,ρ′ is bounded from below for any ρ, ρ′ satis-
fying ρ < 4π(J +K), ρ+ ρ′ < 2π(2J +K).

Proof. We apply Lemma 4.6 with ε > 0 small enough to have

8π(J +K)

1 + 2ε
− 2ρ > 0,

8π(2J +K)

1 + 2ε
− 4ρ− 4ρ′ > 0.

Next, we apply Proposition 4.7 with some ε′, possibly different from ε, to be chosen later.
Notice also that, due to Jensen and trace Sobolev inequalities, we have

log

ˆ
∂Σ
e
u
2 >

1

|∂Σ|

ˆ
∂Σ
u+log |∂Σ| > 1

|Σ|

ˆ
Σ
u−C

√ˆ
Σ
|∇u|2+log |∂Σ| > 1

|Σ|

ˆ
Σ
u−ε′

ˆ
Σ
|∇u|2−C.

Therefore, assuming without loss of generality
ˆ

Σ
u = 0, we get

Jρ,ρ′(u) >
1 + ε

2 + 4ε

ˆ
Σ
|∇u|2 − 2ρ log

ˆ
Σ
eu − 4ρ′ log

ˆ
∂Σ
e
u
2 +

ε

2 + 4ε

ˆ
Σ
|∇u|2

>

(
8π(J +K)

1 + 2ε
− 2ρ

)
log

ˆ
Σ
eu −

(
8πK

1 + 2ε
+ 4ρ′

)
log

ˆ
∂Σ
e
u
2 +

ε

2 + 4ε

ˆ
Σ
|∇u|2 − C

>

(
8π(2J +K)

1 + 2ε
− 4ρ− 4ρ′

)
log

ˆ
∂Σ
e
u
2 − ε′

(
8π(J +K)

1 + 2ε
− 2ρ

) ˆ
Σ
|∇u|2 +

ε

2 + 4ε

ˆ
Σ
|∇u|2 − C

> −ε′
(

8π(2J +K)

1 + 2ε
− 4ρ− 4ρ′ +

8π(J +K)

1 + 2ε
− 2ρ

)ˆ
Σ
|∇u|2 +

ε

2 + 4ε

ˆ
Σ
|∇u|2 − C

which is bounded from below if ε′ is chosen properly. �
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Thanks to Lemma 4.6, we can show that, as Jρ,ρ′(u) is more negative, u is closer to some
barycenter space. However, this space will be not be the X introduced before, but rather a
larger X ′, containing more than one stratum of barycenters centered at both Σ̊ and ∂Σ. In
particular, X ′ will contain combinations of J points in Σ̊ and K points in ∂Σ satisfying either
J +K 6 N or 2J +K 6M , namely:

(4.9) X ′ :=


(Σ)N =

N⋃
i=0

(Σ)i,N−i if N >M,

M−N+1⋃
i=0

(Σ)i,M−2i ∪
N⋃

i=M−N
(Σ)i,N−i if N < M ;

where

(4.10) (Σ)J,K :=

{
J∑
i=1

tiδpi +
K∑
i=1

siδqi ; pi ∈ Σ̊, qi ∈ ∂Σ,

J∑
i=1

ti +
K∑
i=1

si = 1

}
.

Notice that the explicit expression of X ′, as well as X , is different in the cases N > M and
N < M , hinting that the two cases could be somehow different.

Lemma 4.9. For any ε > 0 there exists L = Lε > 0 such that any u ∈ J −L satisfies

distLip′(Σ)

(
Keu´
ΣKe

u
,X ′
)
< ε,

where X ′ is defined in (4.9).

Proof. We follow a rather widely-used scheme from [7] (see also [20, 6]), therefore we will be
sketchy.

We suffice to show the following fact: for any ε > 0 there exists L = Lε > 0 and
x11, . . . , x1J ∈ Σ, x21, . . . , x2K ∈ ∂Σ such that

(4.11)
either J +K 6 N

or 2J +K 6M
and

´⋃
i,j Bε(xij)

Keu´
ΣKe

u
> 1− ε.

In fact, arguing as in [7], Proposition 4.6, there exist t11, . . . , t1J , t21, . . . , t2K ∈ [0, 1] such that∑
i,j

tij = 1 and

ξ :=
∑
i,j

tijδxij ⇒ distLip′(Σ)

(
Keu´
ΣKe

u
, ξ

)
< ε;

notice that, due to the algebraic assumptions in (4.11) and the definition of X ′, we have ξ ∈
X ′.

To show the claim (4.11), we argue by contradiction. If

´⋃
i,j Bε(xij)

Keu´
ΣKe

u
< 1 − ε for any

such xij , then we can apply a covering argument ([7], Lemma 4.4; [6], Lemma 3.16 and minor
modifications) to get the following: there exist δ(ε) > 0 and x′11, x

′
1J ′ , x

′
21, x

′
2K′ with J ′+K ′ >

N + 1, 2J ′ +K ′ >M + 1 and
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dist
(
x′ij , x

′
kl

)
> δ, ∀(i, j) 6= (k, l);

dist
(
x′1j , ∂Σ

)
> δ, ∀j = 1, . . . , J ′;

´
Bδ(xij)

Keu´
ΣKe

u
> δ, ∀i, j.

We are now in position to apply Lemma 4.6 with Ωij := Bδ
(
x′ij
)

which gives, together
with Corollary 4.8, J (u) > −C. This proves the claim and the present proposition.

�

At this point, we need to fill the gap between the spaces X and X ′. Actually, we show that
the latter retracts on the former.

This is a crucial step in the proof of Theorem 1.2, as in some cases existence of min–max
solutions may fail if one only has maps Φ : X → J −L and Ψ : J −L → X ′ without any
relation between X and X ′.

More precisely, in the case N >M , we have an actual deformation retract, namely there is
no topological loss when passing from X ′ to the simpler X . In particular, in the case of a sim-
ply connected Σ, which is not covered by Theorem 1.2, not only X but also X ′ is contractible.

Proposition 4.10. There exists a retraction Π : X ′ → X such that Π(ξ) = ξ for any ξ ∈ X .
If N >M , such a map can be taken as a deformation retract.

Proof. We divide the case N >M and N < M .
If N > M we consider a deformation retract π : Σ → Σ̃ (see (4.1) for the definition of Σ̃)

and we extend it to X ′ via push-forward, namely applying π to any point of the support of
ξ ∈ X ′:

X ′ Π−→ X
ξ =

∑
i

tiδxi 7→
∑
i

tiδπ(xi).

Π is well-defined and continuous, because in the case N > M we have X ′ = (Σ)N (see
(4.9) for the definition). Moreover, it is a retraction because Π(ξ) = ξ if ξ ∈ X =

(
Σ̃
)
N

.

Furthermore, Π is a deformation retract between X ′ and X because if h : Σ× [0, 1] → Σ is
a homotopical equivalence with h(·, 0) = IdΣ and h(·, 1) = π, then

H(t, ξ) :=
∑
i

tiδxi 7→
∑
i

tiδh(xi,t)

is a homotopical equivalence on X ′ with H(·, 0) = IdX ′ and H(·, 1) = Π.

Let us now consider the case N < M .
This time we will map Σ onto a cone in the space (∂Σ)2 of barycenters centered at two

points on the boundary, then we will extend the map to X ′ via push-forward.

Take Σ̃ as before and Ω := Σ \ Σ̃. If Σ̃ is chosen properly, then Ω is homeomorphic to
∂Σ× [0, 1], with ∂Σ corresponding to ∂Σ× {1} and ∂Σ̃ corresponding to ∂Σ× {0}. Now, we
construct π in such a way that ∂Σ is fixed and the whole Σ̃ is identified with a given x0 ∈ ∂Σ;
to properly glue the two conditions, we exploit the identification between Ω and ∂Σ × [0, 1]
to linearly interpolate between the deltas centered at x0 and at some x ∈ ∂Σ:
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Σ
π−→ (∂Σ)2

x 7→


δx0 if x ∈ Σ̃,

(1− t)δx0 + tδy if x = (y, t) ∈ Ω,

δx if x = (x, 1) ∈ ∂Σ.

It is clear that π is well-defined and, due to the homeomorphism between Ω and ∂Σ× [0, 1],
it is continuous.

Figure 4 shows how the retraction behaves depending on the location of x ∈ Σ.

π(x) = δx

π(x) = (1− t)δx0 + tδy

x ∈ Σ̃

x ∈ Ω ≈ ∂Σ× [0, 1] 3 (y, t)

Σ π(x) = δx0

x ∈ ∂Σ ≈ ∂Σ× {1}

FIGURE 4. The map π : Σ→ (∂Σ)2

To extend π to some Π defined on the whole X = (∂Σ)M we set:

X ′ Π−→ X
ξ =

∑
i

tiδxi 7→
∑
i

tiδπ(xi).

First of all, since π(x) = x for any x ∈ ∂Σ, then Π|X = IdX .
Now, let us show that Π(ξ) ∈ X also for ξ ∈ X ′ \ X : in this case, from the definition of X , ξ

will be supported in at mostM−1 points. Therefore, since supp(Π(ξ)) = (supp(ξ)∩∂Σ)∪{x0},
Π(ξ) is supported in at most M points in ∂Σ, namely it belongs to X .

Finally, from the definition we also get that Π coincides on the intersections of different
strata of X and it is continuous, therefore it is the desired retraction. �

We have now all the tools to get the proof of Proposition 4.1.

Proof of Proposition 4.1. We take Φ := Φλ0 as in Lemma 4.3, with λ0 = λ0(L) so large that
Φ(ξ) 6 −L for any ξ ∈ X . Lemma 4.3 ensures that this can be done for any L > 0, which will
be chosen later.

As for Ψ, we exploit Lemma 4.9 and the fact that X ′ is an Euclidean deformation retract,
as each stratum is a Euclidean deformation retract. One can prove the latter fact by arguing
as in [7], Appendix A, or show the former fact by adapting the proof of [6], Lemma 3.1.

Therefore, for ε0 > 0 small enough we have a projection

π :
{
µ ∈ M(Σ) : distLip′(µ,X ′) < ε0

}
7→ X ′,

where M(Σ) is the space of signed measures on Σ equipped with Lip′ topology.
We then apply Lemma 4.9 with ε = ε0, hence for L = Lε we have
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ψ

(
Keu´
ΣKe

u

)
∈ X ′ ∀u ∈ J −L.

Finally, to define Ψ we need to pass from X ′ to X , which we will using the map Π defined
in Proposition 4.10: we set

Ψ(u) := Π ◦ ψ
(

Keu´
ΣKe

u

)
To get the homotopy between Φ ◦Ψ and the identity map on X , we just let λ go to +∞ in

the definition of Φ, namely:

X × [0, 1]
H−→ X

(ξ, t) 7→


Ψ ◦ Φ

λ0
1−t = Π ◦ ψ

 Keφ
λ0
1−t
ξ

´
ΣKe

φ

λ0
1−t
ξ

 if t < 1,

ξ if t = 1.

In fact, by the construction of Φ, one has
Keφ

λ
ξ´

ΣKe
φλξ

⇀
λ→+∞

ξ; moreover, ψ being a retraction

one has ψ(µn) →
n→+∞

µ for any sequence of measures satisfying µn ⇀
n→+∞

µ. Therefore, since

Π is also a retraction, we get the continuity of H at t = 1, which concludes the proof.
�
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