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Abstract
In this paper we prove the existence of small-amplitude quasi-periodic 
solutions with Sobolev regularity, for the d-dimensional forced Kirchhoff 
equation with periodic boundary conditions. This is the first result of this type 
for a quasi-linear equation in high dimension. The proof is based on a Nash–
Moser scheme in Sobolev class and a regularization procedure combined 
with a multiscale analysis in order to solve the linearized problem at any 
approximate solution.
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1. Introduction and main result

In this paper we consider the forced Kirchhoff equation on the d-dimensional torus Td

∂ttv −
(

1 +

∫

Td
|∇v|2 dx

)
∆v = δf (ωt, x) (1.1)

where δ > 0 is a small parameter, ω := λω̄ ∈ Rν , λ ∈ I := [1/2, 3/2], ω̄  a fixed diophantine 
vector, i.e.

|ω̄ · �| � γ0

|�|ν
, ∀� ∈ Zν \ {0}, (1.2)

and f : Tν ×Td → R  is a sufficiently smooth function with zero average, i.e.
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∫

Tν+d
f (ϕ, x) dϕ dx = 0. (1.3)

Following [11, 14, 20] we assume also
∣∣∣

∑
1�i,j�ν

ωiωjpij

∣∣∣ � γ0

|p|ν(ν+1) , ∀ p ∈ Zν(ν+1)/2 \ {0}. (1.4)

Rescaling v �→ δ
1
3 v, we see that (1.1) takes the form

∂ttv −
(

1 + ε

∫

Td
|∇v|2 dx

)
∆v = εf (ωt, x), ε := δ

2
3 . (1.5)

Our aim is to prove the existence of quasi-periodic solutions of (1.5) for ε small enough 
and λ in a large subset of parameters in I . Since ω  is nonresonant, finding a quasi-periodic 
solution with frequency ω  is equivalent to find a torus embedding ϕ �→ u(ϕ, ·) satisfying the 
equation F(v) = 0 where

F(v) ≡ F(λ, v) := (λω̄ · ∂ϕ)2v −
(

1 + ε

∫

Td
|∇v|2 dx

)
∆v − εf (ϕ, x) (1.6)

acting on the scale of real Sobolev spaces

Hs = Hs(Tν+d) :=
{

v(ϕ, x) =
∑
�∈Zν

j∈Zd

v�,jei�·ϕeij·x ∈ L2(Tν+d) : ‖v‖2
s :=

∑
�∈Zν

j∈Zd

〈�, j〉2s|v�,j|2 < +∞
}

 (1.7)
where 〈�, j〉 := max{1, |�|, |j|}. Our main result is the following.

Theorem 1.1. There exists q := q(ν, d) > 0 such that for all q � q and any f ∈ Cq(Tν ×Td) 
satisfying (1.3) there exist s1 = s1(ν, d, q) > 0, increasing in q, ε0 = ε0( f , ν, d) > 0 and for 
any ε ∈ (0, ε0) a Borel set Cε ⊆ I  with asymptotically full Lebesgue measure i.e.

lim
ε→0

meas(Cε) = 1

and there exists a function uε ∈ C1
(
I, Hs1(Tν ×Td)

)
 such that for any λ ∈ Cε, uε(λ) is a 

zero for the functional F appearing in (1.6). Finally, possibly for larger q, there exists ε1 
possibly smaller than ε, and for all ε ∈ (0, ε1) a Borel set Oε ⊆ Cε with asymptotically full 
Lebesgue measure such that for any λ ∈ Oε the found solution is linearly stable.

The Kirchhoff equation has been introduced for the first time in 1876 by Kirchhoff in dimen-
sion 1, without forcing term and with Dirichlet boundary conditions, to describe the transversal 
free vibrations of a clamped string in which the dependence of the tension on the deformation 
cannot be neglected. It is a quasi-linear PDE, namely the nonlinear part of the equation contains 
as many derivatives as the linear differential operator.

Concernig the existence of periodic solutions, Kirchhoff himself observed the existence 
of a sequence of normal modes, namely solutions of the form v(t, x) = vj(t) sin( jx) where 
vj(t) is 2π-periodic. Under the presence of the forcing term f (t, x) the normal modes do not 
persist3, since, expanding v(t, x) =

∑
j vj(t) sin( jx), f (t, x) =

∑
j fj(t) sin( jx), all the comp-

onents vj(t) are coupled.

3 This is true except in the case where f is uni-modal, i.e. f (t, x) = fk(t) sin(kx) for some k � 1.
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The existence of periodic solutions for the forced Kirchhoff equation  in any dimension 
has been proved by Baldi in [2], while the existence of quasi-periodic solutions in one space 
dimension under periodic boundary conditions has been proved in [41].

Note that equation (1.5) is a quasi-linear PDE and it is well known that the existence of 
global solutions (even not periodic or quasi-periodic) for quasi-linear PDEs is not guaran-
teed, see for instance the non-existence results in [35, 37] for the equation vtt − a(vx)vxx = 0, 
a  >  0, a(v) = v p, p � 1, near zero.

The existence of periodic solutions for wave-type equations with unbounded nonlineari-
ties has been proved for instance in [19, 20, 44]. For the water waves equations, which are 
fully nonlinear PDEs, we mention [1, 31–33]; see also [3] for fully nonlinear Benjamin–Ono 
equations.

The methods developed in the above mentioned papers do not work for proving the exist-
ence of quasi-periodic solutions.

The existence of quasi-periodic solutions for PDEs with unbounded nonlinearities has been 
developed by Kuksin [36] for KdV and then Kappeler–Pöschel [34]. This approach has been 
improved by Liu–Yuan [38, 39] to deal with DNLS (derivative nonlinear Schrödinger) and 
Benjamin–Ono equations. These methods apply to dispersive PDEs like KdV, DNLS but not 
to derivative wave equation (DNLW) which contains first order derivatives in the nonlinearity. 
KAM theory for DNLW equation has been recently developed by Berti–Biasco–Procesi in  
[9, 10]. Such results are obtained via a KAM-like scheme which is based on the so-called 
second Melnikov conditions and provides also the linear stability of the solutions.

The existence of quasi-periodic solutions can be also proved by imposing only first order 
Melnikov conditions and the so-called multiscale approach. This method has been developed, 
for PDEs in higher space dimension, by Bourgain in [17, 18, 20] for analytic NLS and NLW, 
extending the result of Craig–Wayne [21] for 1D wave equation with bounded nonlinearity. 
Later, this approach has been improved by Berti–Bolle [11, 12] for NLW, NLS with differenti-
able nonlinearity and by Berti–Corsi–Procesi [14] on compact Lie-groups.

This method is especially convenient in higher space dimension since the second order 
Melnikov conditions are violated, due to the high multiplicity of the eigenvalues. The draw-
back is that the linear stability is not guaranteed. Indeed there are very few results concerning 
the existence and linear stability of quasi-periodic solutions in the case of multiple eigen-
values. We mention [15, 22] for the case of double eigenvalues and [24, 25] in higher space 
dimension.

All the aforementioned results concern semi-linear PDEs, namely PDEs in which the order 
of the nonlinearity is strictly smaller than the order of the linear part. For quasi-linear (either 
fully nonlinear) PDEs, the first KAM results have been proved by the Italian team in [4–7, 
16, 26, 27, 30, 41].

To the best of our knowledge all the results for quasi-linear and fully nonlinear PDEs are 
only in one space dimension. The result proved in this paper is the first one concerning the 
existence of quasi-periodic solutions for a quasi-linear PDE in higher space dimension.

The reason why we achieve our result, whereas for other PDEs this is not possible (at least 
at the present time), is not merely technical and can be roughly explained as follows.

Almost all the literature about the existence of quasi-periodic solutions for dynamical sys-
tems in both finite and infinite dimension is ultimately related to a functional Newton scheme. 
It is well known that in the Newton scheme one has to solve the linearized problem, which in 
turn means that one has to invert the linearized functional. Such linearized functional is a liner 
operator acting on a scale of Hilbert spaces, hence one also needs appropriate bounds on the 
inverse in order to make the scheme convergent. Now, suppose that such linearized operator 
has the form L = ∆+ εa(ϕ, x)∆. In order to obtain bounds one wants to reduce this operator 
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to constant coefficients up to a remainder (at least of order zero). Passing to the Fourier side in 
space, the corresponding symbol is given by H(x, ξ) = |ξ|2 + εa(ϕ, x)|ξ|2 and hence reduc-
ing L to constant coefficients at leading order is equivalent to find a change of variables 
(x, ξ) �→ (x′, ξ′) such that in the new variables the Hamiltonian H(x, ξ) depends only on ξ′. 
In the 1D case this is always possible, whereas in dimension higher than one this is possible 
only in very special cases, due to the Poincaré ‘triviality’ theorem stating that generically a 
quasi-integrable Hamiltonian is not integrable; see for instance [29]. Of course there are some 
cases in which the Hamiltonian H(x, ξ) is integrable (up to lower order terms); see for instance 
[8, 28, 42]. Indeed in these cases the complete reduction to constant coefficients is achieved. 
However the three papers [8, 28, 42] deal only with linear equations, whereas in the nonlin-
ear case one has to fit the reducibility of the linearized operator with the Newton scheme. 
For instance, if in our case one tries to follow the above scheme and reduce completely the 
linearized operator (this is done in [42]), one obtains a bound on the inverse of the linearized 
operator L(u) of the form ‖L(u)−1h‖s �s ‖h‖s+σ + ‖u‖2s+σ‖h‖s0+σ for s � s0, where σ is a 
constant depending only on ν and d. It is well known that a bound of this type is not enough 
for making the Newton scheme convergent; see [40].

In the present paper we overcome this difficulty as follows. First of all the highest order of 
our Hamiltonian symbol H(x, ξ) does not depend on x so it is integrable; therefore we perform 
a reparametrization of time and we also apply a multiplication operator by a function depend-
ing only on time, and obtain a transformed operator of the form

(ω · ∂θ)− µ∆+R2,

where μ is a constant ε-close to 1 and R2 is a bounded operator satisfying decay bounds; see 
(4.12) and (4.5). Then we do not attempt a reduction scheme for the lower order term R2 but 
rather use the multiscale approach. A priori this implies that we may not have informations 
about the linear stability of the solution we find; however the linear stability is obtained a 
posteriori, namely here we prove the existence, then by linearizing on the found solution one 
can apply theorem 1.2 of [42] and obtain the linear stability of the solution; see theorem 9.1 
for details. An a posteriori approach of this type has been used for instance in [23] for the 
NLS on SU(2), SO(3).

Out of curiosity we finally note that our remainder R2 has a loss of regularity σ which is due 
to change of variables needed for the reduction up to order zero; see (4.5). We find it interesting 
that a similar loss of reguarity appears for semi-linear PDEs when the space variable lives on a 
compact Lie group instead of a torus; see (2.24c) in [14] where such loss is denoted by ν0.

The paper is organized as follows. After reducing the problem to the zero mean value func-
tions, we introduce the scale of Hilbert spaces and recall some of their properties. In section 4 
we discuss some properties of the linearized operator L(u), and we reduce it to constant coef-
ficients up to a remainder of order zero. We then discuss a Nash–Moser scheme converging 
on a set A∞ defined in terms of the reduced operator, and which in principle might be empty. 
Afterwards in section 6 we introduce a subset C∞ ⊆ A∞ where the multiscale approach can 
be used. Finally we provide measure esitmates on another subest Cε ⊆ C∞, defined in terms 
of the final solution only. The linear stability is obtained in section 9.

2. Reduction on the zero mean value functions

Following [41], we define the projectors Π0,Π⊥
0  as the orthogonal projections

Π0v := v0(ϕ) =
1

(2π)d

∫

Td
v(ϕ, x) dx, Π⊥

0 := Id −Π0,

L Corsi and R Montalto Nonlinearity 31 (2018) 5075
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so that writing v = v0 + u, u := Π⊥
0 v , f  =  f0  +  g, g := Π⊥

0 f , the equation  F(v) = 0 (see 
(1.6)) is equivalent to

{
(λω̄ · ∂ϕ)2u −

(
1 + ε

∫
Td |∇u|2 dx

)
∆u − εg = 0,

(λω̄ · ∂ϕ)2v0 − εf0 = 0.
 (2.1)

By (1.2) and (1.3), using that

1
(2π)ν

∫

Tν

f0(ϕ) dϕ =
1

(2π)ν+d

∫

Tν+d
f (ϕ, x) dϕ dx = 0

the second equation in (2.1) is easily solved and we get

v0(ϕ) := ε(λω̄ · ∂ϕ)−2f0.

Then we are reduced to look for zeroes of the nonlinear operator

F(u) ≡ F(λ, u) := (λω̄ · ∂ϕ)2u −
(

1 + ε

∫

Td
|∇u|2 dx

)
∆u − εg (2.2)

acting on Sobolev spaces of functions with zero average in x ∈ Td, i.e.

Hs
0 :=

{
u ∈ Hs :

∫

Td
u(ϕ, x) dx = 0

}
. (2.3)

3. Function spaces, norms, linear operators

Given a family of Sobolev functions u(ϕ, x;λ), λ ∈ Λ ⊂ R , we define the Sobolev norm || · ||s 
as

||||u||||s := ‖u‖sup
s + ‖∂λu‖sup

s−1,

‖u‖sup
s := sup

λ∈Λ
‖u(·;λ)‖s. 

(3.1)

If µ : Λ → R, we define

||||µ|||| := |µ|sup + |∂λµ|sup, |µ|sup := sup
λ∈Λ

|µ(λ)|. (3.2)

Note that the classical interpolation result for || · ||s holds, i.e. given u(·;λ), v(·;λ), λ ∈ Λ, one 
has

||||uv||||s � C(s)||||u||||s||||v||||s0 + C(s0)||||u||||s0 ||||v||||s, s � s0 (3.3)

where we fix once and for all

s0 :=
[ν + d

2

]
+ 1 (3.4)

and [x] denotes the integer part of x ∈ R.
For any N  >  0 let us define the spaces of trigonometric polynomials

EN := span
{

ei(�·ϕ+j·x) : 0 < |(�, j)| � N
}

 (3.5)

and the orthogonal projector

L Corsi and R Montalto Nonlinearity 31 (2018) 5075
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ΠN : L2(Tν+d) → EN , Π⊥
N := Id −ΠN ; (3.6)

of course the following standard smoothing estimates hold:

||||ΠNu||||s+α � Nα||||u||||s, ||||Π⊥
N u||||s � N−α||||u||||s+α. (3.7)

Let us introduce the notations � and �s; we write a � b if there exists a constant 
c = c(ν, d, γ0) such that a  <  cb, and a �s b if the constant depends also on s.

We now recall some results concerning operators induced by diffeomorphism of the torus.

Lemma 3.1. Let β(ϕ;λ) satisfy ||||β||||s0+1 � δ  for some δ small enough and ω = λω̄ with 
λ ∈ I . Then the composition operator

B : u �→ Bu, (Bu)(ϕ, x) := u(ϕ+ ωβ(ϕ), x) ,

satisfies

‖Bu‖s �s ‖u‖s + ‖β‖s+s0‖u‖1 , for all s � 1, (3.8)

‖(∂λB)u‖s �s ‖u‖s+1 + ||||β||||s+s0‖u‖2, ∀s � 2. (3.9)

Moreover the map ϕ �→ ϕ+ ωβ(ϕ) is invertible with inverse given by ϑ �→ ϑ+ ωβ̆(ϑ). The 
function β̆ satisfies the estimate

||||β̆||||s �s ||||β||||s+s0 . (3.10)

Proof. The lemma can be proved arguing as in the proof of lemma B.4 in [3] (using also that 
by Sobolev embedding ‖ · ‖Cs � ‖ · ‖s+s0). The estimate on ∂λB , follows by differentiating 
w.r. to λ, using the estimate (3.8) and by applying the interpolation estimate (3.3). ■ 

The following lemma follows directly by applying the classical Moser estimate for com-
position operators, see [43].

Lemma 3.2 (Composition operator). Let f ∈ Cq(Tν+d × BK ,R), where BK:  =  [−K, K]  
for some K  >  0 large enough. If u(·;λ) ∈ Hs(Tν+d), λ ∈ Λ is a family of Sobolev functions 
satisfying ‖u‖s0 � 1. Then for any s � s0

||||f (·, u)||||s � C(s, f )(1 + ||||u||||s) . (3.11)

3.1. Linear operators on Hs
0  and matrices

Set Zd
∗ := Zd \ {0} and let B, C ⊆ Zν ×Zd

∗. A bounded linear operator L : Hs
B → Hs

C  is rep-
resented, as usual, by a matrix in

MB
C :=

{(
Mk′

k

)
k∈C,k′∈B, Mk′

k ∈ C
}

. (3.12)

Definition 3.3 (s-decay norm). For any M ∈ MB
C we define its s-decay norm as

|M|2s :=
∑

k∈Zν+d

[M(k)]2〈k〉2s
 (3.13)

where, for k = (�, j) 〈k〉 := max(1, |k|) = max(1, |�|, |j|),

L Corsi and R Montalto Nonlinearity 31 (2018) 5075
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[M(k)] :=

{
sup

h−h′=k,h∈C, h′∈B

∣∣Mh′
h

∣∣, k ∈ C − B,

0, k /∈ C − B.
 (3.14)

If the matrix M depends on a parameter λ ∈ Λ ⊆ R , we define

||M||s := |M|sup
s + |∂λM|sup

s where |M|sup
s := sup

λ∈Λ
|M(λ)|s.

Remark 3.4. Note that if M represent a multiplication operator by a function a(ϕ, x) then

|M|s = ‖a‖s and ||M||s = ||||a||||s.

We have the following standard results; see for instance [12] and references therein.

Lemma 3.5 (Interpolation). For all s � s0 there is C(s) > 1 with C(s0)  =  1 such that, for 
any subset B, C, D ⊆ Zν ×Zd

∗ and for all M1 ∈ MC
D, M2 ∈ MB

C , one has

|M1M2|s �
1
2
|M1|s0

|M2|s +
C(s)

2
|M1|s|M2|s0

. (3.15)

In particular, one has the algebra property |M1M2|s � C(s)|M1|s|M2|s. Similar estimates hold 
by replacing | · |s with || · ||s if M1 and M2 depend on the parameter λ.

Iterating the estimate of the above lemma one easily gets

|Mn|s � C(s)n|M|n−1
s |M|s0 , ∀n ∈ N, s � s0. (3.16)

If M depends on the parameter λ, a similar estimate holds by replacing | · |s with || · ||s.

Lemma 3.6. For any B, C ⊆ Zν ×Zd
∗, let M ∈ MB

C. Then

‖Mh‖s � C(s)|M|s0
‖h‖s + C(s)|M|s‖h‖s0 , ∀h ∈ Hs

B . (3.17)

Of course all the results stated above hold replacing | · |s by || · ||s.

4. The linearized operator

In this section we study the linearized operator L(u) := DuF(u) for any u(ϕ, x;λ) which is C∞ 
w.r.t. (ϕ, x) ∈ Tν+d and C1 w.r.t. the parameter λ ∈ I . The linearized operator L : Hs+2

0 → Hs
0, 

s � 0 has the form

L = (ω · ∂ϕ)2 −
(
1 + a(ϕ)

)
∆+R

a(ϕ) := ε

∫

Td
|∇u(ϕ, x)|2 dx, R[h] := −2∆u

∫

Td
∆u h dx, h ∈ L2

0(T
ν+d).

 

(4.1)

4.1. Reduction to constant coefficients up to the order zero

In this section we prove the following proposition.

Proposition 4.1. There exists σ = σ(ν, d) > 0 such that if

||||u||||s0+σ � 1, (4.2)

L Corsi and R Montalto Nonlinearity 31 (2018) 5075
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there exists δ ∈ (0, 1) such that if εγ−1
0 � δ then there exist two invertible changes of variables 

Φ1,Φ2 such that

Φ1LΦ2 = L2 = (ω · ∂ϑ)2 − µ∆+R2

where μ is a constant and R2 is an operator of order 0 satisfying the following properties. The 
constant µ ≡ µ(λ, u(λ)) is C1 w.r.t. the parameter λ and

||||µ− 1|||| � ε, |∂uµ[h]| � ε‖h‖σ . (4.3)

The changes of variables Φ1,Φ2 are C1 w.r.t. the parameter λ and they satisfy the tame 
estimates

‖Φ±1
1 h‖s, ‖Φ±1

2 h‖s �s ‖h‖s + ‖u‖s+σ‖h‖s0 , ∀s � s0,

‖(∂λΦ±1
1 )h‖s−1, ‖(∂λΦ±1

2 )h‖s−1 �s ‖h‖s + ||||u||||s+σ‖h‖s0 , ∀s � s0.
 

(4.4)

The remainder R2 is self-adjoint in L2 and satisfies

||R2||s �s ε(1 + ||||u||||s+σ), ∀s � s0,

||∂uR2[h]||s �s ε
(
||||h||||s+σ + ||||u||||s+σ||||h||||s0+σ

)
, ∀s � s0.

 
(4.5)

4.1.1. Step 1: reduction of the highest order. In this section  we reduce to constant coeffi-
cients the highest order term a(ϕ)∆ in (4.1). Given a diffeomorphism of the torus Tν → Tν, 
ϕ �→ ϕ+ ωα(ϕ) we consider the induced operator

Ah(ϕ, x) := h(ϕ+ ωα(ϕ)) (4.6)

where α : Tν → R is a small function to be determined. The inverse operator A−1 has the 
form

A−1h(ϑ, x) := h(ϑ+ ωᾰ(ϑ), x) (4.7)

where ϑ �→ ϑ+ ωᾰ(ϑ) is the inverse diffeomorphism of ϕ �→ ϕ+ ωα(ϕ). One has the fol-
lowing conjugation rules:

A−1aA = A−1[a], A−1 ◦∆ ◦ A = ∆,

A−1(ω · ∂ϕ)A = A−1[1 + ω · ∂ϕα
]
ω · ∂ϑ,

A−1(ω · ∂ϕ)2A = A−1[(1 + ω · ∂ϕα)2](ω · ∂ϑ)2 +A−1[(ω · ∂ϕ)2α]ω · ∂ϑ.
 

(4.8)

By (4.1) and (4.8), one has

A−1LA = A−1[(1 + ω · ∂ϕα)2](ω · ∂ϑ)2 −A−1[1 + a]∆ +A−1[(ω · ∂ϕ)2α]ω · ∂ϑ +A−1RA.
 (4.9)

We choose the function α so that the coefficient of (ω · ∂ϑ)2 is proportional to the one of 
the Laplacian Δ, namely we want to solve

(1 + ω · ∂ϕα)2 =
1
µ
(1 + a) (4.10)

for some constant µ ∈ R  to be fixed. Note that by (4.1) and (4.2), one has that a(ϕ) = O(ε), 
then for ε small enough 

√
1 + a is well defined and of class C∞. Then the equation (4.10) can 

be written in the form

L Corsi and R Montalto Nonlinearity 31 (2018) 5075
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ω · ∂ϕα =
1
√
µ

√
1 + a − 1 (4.11)

and hence we choose μ so that the rhs of (4.11) has zero average, namely

µ :=
(∫
�

Tν

√
1 + a(ϕ) dϕ

)2
. (4.12)

Now, using that ω = λω̄ and ω̄  is diophantine, we choose

α := (ω · ∂ϕ)−1[ 1
√
µ

√
1 + a − 1

]
, (4.13)

and in this way, we obtain

A−1LA = ρL1, ρ := A−1[(1 + ω · ∂ϕα)2],

L1 := (ω · ∂ϑ)2 − µ∆+ a1ω · ∂ϑ +R1,

a1 := ρ−1A−1[(ω · ∂ϕ)2α], R1 := ρ−1A−1RA.

 

(4.14)

Lemma 4.2. One has 
∫
Tν a1(ϑ) dϑ = 0.

Proof. By (4.14)

a1(ϑ) = A−1
[ (ω · ∂ϕ)2α

(1 + ω · ∂ϕα)2

]
(ϑ) =

(ω · ∂ϕ)2α(ϑ+ ωᾰ(ϑ))

(1 + ω · ∂ϕα(ϑ+ ωᾰ(ϑ)))2 .

Considering the change of variables ϕ = ϑ+ ωᾰ(ϑ), one gets
∫

Tν

a1(ϑ) dϑ =

∫

Tν

(ω · ∂ϕ)2α(ϕ)

(1 + ω · ∂ϕα(ϕ))2 (1 + ω · ∂ϕα(ϕ)) dϕ

=

∫

Tν

(ω · ∂ϕ)2α(ϕ)

1 + ω · ∂ϕα(ϕ)
dϕ =

∫

Tν

ω · ∂ϕ log
(
1 + ω · ∂ϕα(ϕ)

)
dϕ = 0.

 
(4.15)

■ 

4.1.2. Step 2: reduction of the first order term. The aim of this section is to eliminate the term 
a1(ϑ)ω · ∂ϑ in the operator L1 defined in (4.14). We conjugate L1 by means of a multiplica-
tion operator

B : h �→ b(ϑ)h

where b : Tν → R  is a function close to 1 to be determined, so that its inverse is given by

B−1 : h �→ b(ϑ)−1h.

One has the following conjugation rules:

B−1∆B = ∆,

B−1ω · ∂ϑB = ω · ∂ϑ + b(ϑ)−1(ω · ∂ϑb),

B−1(ω · ∂ϑ)2B = (ω · ∂ϑ)2 + 2b(ϑ)−1(ω · ∂ϑb)ω · ∂ϑ + b(ϑ)−1(ω · ∂ϑ)2b.
 

(4.16)
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By (4.14) and (4.16) one gets

L2 := B−1L1B = (ω · ∂ϑ)2 − µ∆+
(

b(ϑ)−1ω · ∂ϑb + a1(ϑ)
)
ω · ∂ϑ +R2

 

(4.17)

where the remainder R2 is defined as

R2 := B−1R1B + b(ϑ)−1(ω · ∂ϑ)2b + a1(ϑ)b(ϑ)−1(ω · ∂ϑb). (4.18)

In order to eliminate the term of order ω · ∂ϑ one has to solve the equation

b(ϑ)−1ω · ∂ϑb + a1(ϑ) = 0. (4.19)

Since b(ϑ)−1ω · ∂ϑb = ω · ∂ϑ log(b(ϑ)), the function a1 has zero average, and recalling that 
ω = λω̄ with ω̄  diophantine, the equation (4.19) can be solved by setting

b(ϑ) := exp
(
− (ω · ∂ϑ)−1a1(ϑ)

)
. (4.20)

Then L2 in (4.17) has the final form

L2 = D +R2, D = D(λ, u(λ)) := (ω · ∂ϑ)2 − µ∆, (4.21)

and the estimates (4.3)–(4.5) follow similarly to [41]. Indeed they can be proved in an elemen-
tary way by using the explicit expressions for R2,Φ1,Φ2,µ found above and the estimate 
(3.3), lemmata 3.1, 3.2 and remark 3.4.

Remark 4.3. Note that for u ≡ 0 one has a  =  0, µ = 1, α = 1, A = 1, ρ = 1, a1  =  1, 
b  =  1, B = 1 and hence

L2(0) = L(0) = (ω · ∂ϑ)2 −∆.

In particular R2(0) = 0.

5. The Nash–Moser scheme

Here we prove the Nash–Moser scheme for parameters λ in a set A∞ (see below) which in 
principle might be empty; later we shall prove that A∞ contains the set Cε mentioned in theo-
rem 1.1 and that Cε has asymptotically full measure.

For any N  >  0 we decompose the operator L ≡ L(u) as

L(u) = LN(u) +R⊥
N (u) (5.1)

where

LN(u) := Φ1(u)−1(LN(u) + Π⊥
N )Φ2(u)−1,

LN(u) := DN(λ, u(λ)) + RN

DN(λ, u(λ)) := ΠND(λ, u(λ))ΠN ,
RN(u) := ΠNR2(u)ΠN

R⊥
N (u) := Φ1(u)−1Π⊥

N L2(u)ΠNΦ2(u)−1 +Φ1(u)−1ΠNL2(u)Π⊥
N Φ2(u)−1

+Φ1(u)−1Π⊥
N L2(u)Π⊥

N Φ2(u)−1 − Φ1(u)−1Π⊥
N Φ2(u)−1.

 
(5.2)

Note that, by applying the estimates (4.4) and recalling (4.1), the operator R⊥
N  satisfies
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||||R⊥
N h||||s0 � N−b

(
||||h||||s0+b+σ + ||||u||||s0+b+σ||||h||||s0+σ

)
, ∀b > 0,

||||R⊥
N h||||s �s ||||h||||s+σ + ||||u||||s+σ||||h||||s0+σ , ∀s � s0.

 
(5.3)

Let S > s1 > s0 + σ  and consider u ∈ C1(I, Hs1
0 ) such that

||||u||||s1 � 1; (5.4)

for any τ > 0, δ ∈ (0, 1/3) we define the set

GN(u) = GN,δ,τ (u) :=
{
λ ∈ I : ∀ s ∈ [s1, S], one has |LN(λ, u(λ))−1|s �s Na+δ(s−s1)(1 + ||||u||||s+σ)

}
,

 (5.5)
where a := τ + δs1.

For any set A ⊂ I  and η > 0 we define

N (A, η) :=
{
λ ∈ I : dist(λ, A) � η

}

and let

N0 > 0, Nn := N(3/2)n

0 . (5.6)

Let us introduce parameters κ1, κ2, κ3, satisfying

κ1 > σ, κ2 > max{3a+
3
2
(s1 − s0) + 3 +

9
4
κ1, 12a+ 24},

κ3 > 6a+ 6 + 3δ(S − s1) + 3σ +
3
2
κ1,

(1 − δ)(S − s1) > 2σ + 2 + 2a+
2
3
κ3 + κ2, S � q.

 

(5.7)

Note one needs to impose the condition 0 < δ < 1
3  because the second and the third condi-

tions are compatible only if (1 − 3δ)(S − s1) > 6a+ 6 + σ + κ1. Recall that q in the third 
line of (5.7) is the regularity of the forcing term f (ωt, x) in (1.5).

Theorem 5.1 (Nash–Moser). For τ , δ, κ1, κ2, κ3 ,s0, q � S > s1 > s0 + σ, satisfying 
(5.7), there are c, N0, such that, for all N0 � N0 and ε0 small enough such that

ε0NS
0 � c , (5.8)

and, for all ε ∈ [0, ε0) a sequence {un = un(ε, ·)}n�0 ⊂ C1(I, Hs1
0 ) such that

 (S1)n  un(ε,λ) ∈ ENn, un(0,λ) = 0, ||||un||||s1 � 1.
 (S2)n  For all 1 � i � n one has ||||ui − ui−1||||s1 � N−κ1

i .
 (S3)n  Set u−1:  =  0 and define

An :=
n⋂

i=0

GNi(ui−1) . (5.9)

     For λ ∈ N (An, N−κ1/2
n ) the function un(ε,λ) satisfies ||||F(un)||||s0 � CN−κ2

n .
 (S4)n  For any i = 1, . . . , n, ||||ui||||S � Nκ3

i .

As a consequence, for all ε ∈ [0, ε0), the sequence {un(ε, ·)}n�0 converges uniformly in 
C1(I, Hs1

0 ) to uε with u0(λ) ≡ 0, at a superexponential rate

||||uε(λ)− un(λ)||||s1 � N−κ1
n+1 , ∀λ ∈ I , (5.10)

and for all λ ∈ A∞ :=
⋂

n�0 An one has F(ε,λ, uε(λ)) = 0.
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5.1. Proof of theorem 5.1

First of all we note that by differentiating the nonlinear operator F  defined in (2.2) by using 
(3.3), the following tame properties hold: for any s ∈ [s0, S], with S � q, there is C = C(s) 
such that for any u, h ∈ C1(I, Hs

0) with ||||u||||s0+2 � 1 one has

 (F1)  ||||F(ε,λ, u)||||s � C(s)(1 + ||||u||||s+2),
 (F2)  ||||DuF(ε,λ, u)[h]||||s � C(s) (||||h||||s+2 + ||||u||||s+2||||h||||s0+2),

 (F3)  ||||F(ε,λ, u + h)− F(ε,λ, u)− DuF(ε,λ, u)[h]||||s � C(s) 
(||||h||||s+2||||h||||s0+2 + ||||u||||s+2||||h||||2s0+2).

Lemma 5.2. Let κ > a+ 2 and ||||u||||s1 � 1. For any λ ∈ N
(
GN(u), 2N−κ

)
, for s � s1 

there exists ε0 = ε0(s) ∈ (0, 1) small enough such that if ε � ε0, the operator LN(λ, u(λ)) is 
invertible and

||LN(u)−1||s �s N2a+2+δ(s−s1)(1 + ||||u||||s+σ). (5.11a)

Proof. Let λ ∈ GN(u) and λ′ ∈ I  so that |λ− λ′| � 2N−κ. We show by means of 
a Neumann series argument that LN(λ

′, u(λ′)) is invertible, hence we want to bound 
LN(ε,λ′, u(λ′))− LN(ε,λ, u(λ)). By (4.3) and (4.5) we have

|LN(ε,λ′, u(λ′))− LN(ε,λ, u(λ))|s � |ΠN(D(λ, u(λ))−D(λ′, u(λ′)))ΠN |s
+ |ΠN(R2(u(λ))−R2(u(λ′)))ΠN |s

�(N2 + ε(1 + ||||u||||s+σ))|λ− λ′| � (N2 + ε(1 + ||||u||||s+σ))N−κ,
 (5.12)

so that for s  =  s0, using that s0 + σ < s1 and ||||u||||s1 � 1 this reads

|LN(ε,λ′, u(λ′))− LN(ε,λ, u(λ))|s0 � N−κ+2. (5.13)

Setting A := LN(ε,λ, u(λ))−1(LN(ε,λ′, u(λ′))− LN(ε,λ, u(λ))), by Neumann series one 
can write formally

LN(λ
′, u(λ′))−1 =

∑
n�0

(−1)nAnLN(λ, u(λ))−1,

and hence, using (5.12) and (5.13), λ ∈ GN(u) and the interpolation estimate (3.15), we obtain

|A|s0 � N2+a−κ, |A|s �s Na+δ(s−s1)+2−κ
(
1 + ||||u||||s+σ

)
, (5.14)

so that by the estimate (3.16), one obtains

|LN(ε,λ′, u(λ′))−1|s �
(∑

p�0

C(s) p|A|s|A| p−1
s0

)
|LN(ε,λ, u(λ))−1|s0 +

(∑
p�0

C(s1)
p|A| p

s0

)
|LN(ε,λ, u(λ))−1|s

�s Na+δ(s−s1)(1 + ||||u||||s+σ).
 

(5.15)

Now for any λ ∈ N
(
GN(u), N−κ

)
 by applying (5.2), (4.3) and (4.5) one has

|∂λLN(λ, u(λ))|s �s N2 + ||||u||||s+σ . (5.16)

Finally, since ∂λLN(λ, u(λ))−1 = −LN(λ, u(λ))−1∂λLN(λ, u(λ))LN(λ, u(λ))−1, applying 
the estimates (5.15), (3.15) and (5.16) one obtains that
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|∂λLN(λ, u(λ))−1|s �s N2a+2+δ(s−s1)(1 + ||||u||||s+σ),

so that the assertion follows. ■ 

The first step of the Nash–Moser algorithm is standard and uses the smallness condition 
(5.8).

Suppose inductively that un is defined in such a way that the properties (S1)n − (S4)n hold. 
We now define un+1. We write

F(un + h) = F(un) + DuF(un)[h] +Q(un, h) (5.17)

where

Q(un, h) := F(un + h)−F(un)− DuF(un)[h], (5.18)

so that, using (5.1) with N  =  Nn and writing F(un) = ΠNn+1F(un) + Π⊥
Nn+1

F(un) one gets

F(un + h) = F(un) + LNn+1(un)[h] +R⊥
Nn+1

(un)[h] +Q(un, h). (5.19)

Note that by applying lemma 5.2, if λ ∈ N
(
An+1, 2N−κ1/2

n+1

)
 (recall (5.9)) the  

operator LNn+1(λ, un(λ)) : ENn+1 → ENn+1 (recall (5.2) and (5.5)) is invertible, implying  
that LNn+1(λ, un(λ)) + Π⊥

Nn+1
: Hs

0 → Hs
0 is invertible with ||

(
LNn+1(λ, un(λ)) + Π⊥

Nn+1

)−1||s �  

||LNn+1(λ, un(λ))
−1||s �s N2a+2+δ(s−s1)

n+1 (1 + ||||un||||s+σ). Since Φ1(λ, un(λ)) and Φ2(λ, un(λ)) 
are invertible for any λ ∈ I  and satisfy the estimates (4.4) then LNn+1(λ, un(λ)) is also invert-
ible. By the estimates (4.4), the definition of the set GNn+1(un), the estimate (3.17) and recall-
ing that, by the inductive hypothesis (S1)n one has ||||un||||s0+σ � ||||un||||s1 � 1, we obtain

||||LNn+1(un)
−1[h]||||s �s N2a+2

n+1 ||||h||||s + N2a+2+δ(s−s1)
n+1 (1 + ||||un||||s+σ)||||h||||s0 .

 
(5.20)

Let us now define, for λ ∈ N
(
An+1, 2N−κ1/2

n+1

)
,

h̃n+1(λ) := −ΠNn+1LNn+1(λ, un(λ))
−1F(λ, un(λ)), ũn+1 := un + h̃n+1.

 

(5.21)

Plugging (5.21) into (5.19) one obtains

F(ũn+1) = Π⊥
Nn+1

F(un) +R⊥
Nn+1

(un)[h̃n+1] +Q(un, h̃n+1). (5.22)

Estimate of h̃n+1. By applying (5.20), using that s1 > s0 + σ > s0, the property (3.7) and 
||||un||||s1 � 1, one gets

||||h̃n+1||||s1 � Ns1−s0
n+1 ||||LNn+1(un)

−1F(un)||||s0

� Ns1−s0+2a+2
n+1 ||||F(un)||||s0

(S3)n

� Ns1−s0+2a+2
n+1 N−κ2

n ,

||||h̃n+1||||S �S N2a+2
n+1 ||||F(un)||||S + N2a+2+δ(S−s1)

n+1 (1 + ||||un||||S+σ)||||F(un)||||s1

(F1), (3.7)
�S N2a+2+δ(S−s1)+σ

n+1 (1 + ||||un||||S).
 

(5.23)

Let us consider a C∞ cut-off function ψn+1 satisfying
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supp(ψn+1) ⊆ N
(
An+1, 2N−κ1

2
n+1

)
, 0 � ψn+1 � 1,

ψn+1(λ) = 1, ∀λ ∈ N
(

An+1, N−κ1
2

n+1

)

and define an extension of h̃n+1 to the whole parameter space I  as

hn+1 := ψn+1h̃n+1, un+1 := un + hn+1.

Using that ||||ψn+1|||| � N
κ1
2

n+1 and by the estimates (5.23) one has

||||hn+1||||s1 � Ns1−s0+2a+2+κ1
2

n+1 N−κ2
n

(5.7)
� N−κ1

n+1 , (5.24a)

||||hn+1||||S �S N2a+2+δ(S−s1)+σ+
κ1
2

n+1 (1 + ||||un||||S); (5.24b)

in particular (S2)n+1 is satisfied. Now

||||un+1||||S �S ||||un||||S + N2a+2+δ(S−s1)+σ+
κ1
2

n+1 (1 + ||||un||||S)
(S4)n

� C(S)N2a+2+δ(S−s1)+σ+
κ1
2

n+1 Nκ3
n � Nκ3

n+1
 

(5.25)
by (5.7) and by taking N0 = N0(S) > 0 large enough. Then also (S4)n+1 is proved.

Now we estimate F(un+1) on the set N (An+1, N−κ1
2

n+1 ). Using again that ||||un||||s0+σ � ||u||s1 < 1, 

one has

||||F(un+1)||||s0

(3.7),(5.3),(F3)
� N−(S−s0)

n+1

(
||||F(un)||||S + ||||hn+1||||S+σ + ||||un||||S+σ||||hn+1||||s1

)
+ ||||hn+1||||2s0

(F1),(3.7),s1>s0

� Nσ−(S−s1)
n+1

(
1 + ||||un||||S + ||||hn+1||||S

)
+ N4

n+1||||hn+1||||2s0

(5.23)
� N2σ+2+2a+(δ−1)(S−s1)

n+1

(
1 + ||||un||||S

)
+ N4a+8

n+1 ||||F(un)||||2s0

(S3)n,(S4)n

� N2σ+2+2a+(δ−1)(S−s1)
n+1 Nk3

n + N4a+8
n+1 N−2κ2

n � N−κ2
n+1

 

(5.26)

by (5.7) and taking N0 = N0(S) > 0 large enough, hence proving (S3)n+1. Finally, by using a 
telescoping argument un+1 =

∑n+1
i=0 hi, one has

||||un+1||||s1

(S2)n

�
n+1∑
i=0

N−κ1
i � 1

since by taking N0  >  0 is large enough, thus providing (S1)n+1.
Clearly the sequence (un)n∈N is a Cauchy sequence in C1(I, Hs1

0 ) and therefore the claimed 
statement follows. ■ 

The proof of theorem 5.1 is rather standard and follows the lines of the one in [13, 14]; 
however here we cannot apply directly the aforementioned results because the subspaces 
EN in (3.5) are not invariant under the change of variables A appearing in (4.6). We also 
mention that our truncation at the nth step is not N2n

0  but rather Nχn

0  with χ = 3/2; the 
reason for this choice is that, since the subspaces EN are not invariant, we cannot apply the 
contraction lemma at each step, but really the Newton scheme which converges only for 
1 < χ < 2.
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6. Multiscale analysis

Our aim is to prove that the set A∞ has asymptotically full measure; in order to do so, fol-
lowing [14] we first prove that A∞ contains another set C∞ and then we show that the set C∞ 
contains another set Cε that has asymptotically full measure.

In order to do so, in addition to the parameters τ > 0, δ ∈ (0, 1/3), σ, s1, s0, S, κ1,κ2,κ3 
satisfying (5.7) needed in theorem 5.1, we now introduce other parameters τ1, χ0, τ0, C1 and 
add the following constraints

τ > τ0 , τ1 > 2χ0d , τ > 2τ1 + d + ν + 1, C1 � 2 , (6.1)

then, setting κ := τ + d + ν + s0,

χ0(τ − 2τ1 − d − ν) > 3(κ+ (s0 + d + ν)C1), χ0δ > C1, (6.2a)

s1 > 3κ+ σ + 2χ0(τ1 + d + ν) + C1s0. (6.2b)

Note that no restrictions from above on S′ are required, i.e. it could be S′ = +∞.
Given Ω,Ω′ ⊂ Zν ×Zd

∗, we define

diam(Ω) := sup
k,k′∈Ω

dist(k, k′), dist(Ω,Ω′) := inf
k∈Ω,k′∈Ω′

|k − k′| .

Definition 6.1 (Regular/singular sites). We say that the index k = (�, j) ∈ Zν ×Zd
∗ is 

regular for a diagonal matrix D, if |D�,j| � 1, otherwise we say that k is singular.

Definition 6.2 (N-good/N-bad matrices). Let F ⊂ Zν ×Zd
∗ be such that diam(F) � 4N  

for some N ∈ N. We say that a matrix A ∈ MF
F is N-good if A is invertible and for all 

s ∈ [s0, s2] one has

|A−1|s � Nτ+δs.

Otherwise we say that A is N-bad.

Definition 6.3 ((A, N)-regular, good, bad sites). For any finite E ⊂ Zν ×Zd
∗, let 

A = D + εT ∈ ME
E  with D := diag(Dk), Dk ∈ C. An index k ∈ E  is

 •  (A, N)-regular if there exists F ⊆ E  such that diam(F) � 4N , dist({k}, E \ F) � N  and 
the matrix AF

F is N-good.
 •  (A, N)-good if either it is regular for D (definition 6.1) or it is (A, N)-regular. Otherwise k 

is (A, N)-bad.

The above definition could be extended to infinite E.
Let L be as in (5.2). Note that D in (4.21) is represented by a diagonal matrix

D(λ) := diag(�,j)∈Zν×Zd
∗
D�,j(λ), D�,j(λ) := −(λω̄ · �)2 + µ(λ)|j|2. (6.3)

Now for θ ∈ R let us introduce the matrix

D(λ, θ) := diag(�,j)∈Zν×Zd
∗
D�,j(λ, θ), D�,j(λ, θ) := −(λω̄ · �+ θ)2 + µ(λ)|j|2,

 
(6.4)

and denote

L(ε,λ, θ, u) := D(λ, θ) +R2(u) . (6.5)
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Lemma 6.4. For all τ > 1, N > 1,λ ∈ [1/2, 3/2], � ∈ Zν , j ∈ Zd
∗ one has

{θ ∈ R : |D�,j(λ, θ)| � N−τ} ⊆ I1 ∪ I2 intervals with meas(Iq) � N−τ .
 

(6.6)

Proof. A direct computation shows

{θ ∈ R : |D�,j| � N−τ
0 } = (θ1,−, θ1,+) ∪ (θ2,−, θ2,+)

with

θ1,± = λω · l +
√
µ|j|2 ± N−τ , θ2,± = λω · l −

√
µ|j|2 ± N−τ ,

and hence

meas((θq,−, θq,+)) =
N−τ

√
µ|j|2

+ O(N−2τ ), q = 1, 2.

Note that by the estimate (4.3), µ ≈ 1 and j �= 0 since we are working on the Sobolev space 
(2.3), so that the assertion follows. ■ 

For τ0 > 0, N0 � 1 we define the set

I := I(N0, τ0) :=
{
λ ∈ I : |(λω̄ · �)2 − |j|2| � N−τ0

0 for all k = (�, j) ∈ Zν ×Zd
∗ : |k| � N0

}
.

 (6.7)
In order to perform the multiscale analysis we need finite dimensional truncations of 

such matrices. Given a parameter family of matrices L(θ) with θ ∈ R and N  >  1 for any 
k = (�, j) ∈ Zν ×Zd we denote by LN,k(θ) (or equivalently LN,�,j(θ)) the sub-matrix of L(θ) 
centered at k, i.e.

LN,k(θ) := L(θ)F
F, F := {k′ ∈ Zν ×Zd

∗ : dist(k, k′) � N}. (6.8)

If � = 0, instead of the notation (6.8) we shall use the notation

LN,j(θ) := LN,0,j(θ) ,

if also j  =  0 we write

LN(θ) := LN,0(θ),

and for θ = 0 we denote LN,j := LN,j(0).

Definition 6.5 (N-good/N-bad parameters). Let e be large enough (to be computed). 
We denote

BN( j0, ε,λ) :=
{
θ ∈ R : LN,j0(ε,λ, θ, u) is N-bad

}
. (6.9)

A parameter λ ∈ I  is N-good for L if for any j0 ∈ Zd  one has

BN( j0, ε,λ) ⊆
Ne⋃

q=1

Iq , Iq intervals with meas(Iq) � N−τ1 . (6.10)

Otherwise we say that λ is N-bad. We denote the set of N-good parameters as

GN = GN(u) :=
{
λ ∈ I : λ is N-good for L

}
. (6.11)
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The following assumption is needed for the multiscale proposition 6.9; we shall verify it 
later in section 7.

Ansatz 1 (Separation of bad sites). There exist C1  >  2, N̂ = N̂(τ0) ∈ N and Î ⊆ I  (see 
(6.7)) such that, for all N � N̂ , and ‖u‖s1 < 1 (with s1 satisfying (6.2b)), if

λ ∈ GN(u) ∩ Î,

then for any θ ∈ R, for all χ ∈ [χ0, 2χ0] and all j0 ∈ Zd  the (L, N)-bad sites   
k = (�, j) ∈ Zν ×Zd

∗ of L = LNχ,j0(ε,λ, θ, u) admit a partition ∪βΩβ in disjoint clusters 
satisfying

diam(Ωβ) � NC1 , dist(Ωβ1 ,Ωβ2) � N2, for all β1 �= β2. (6.12)

For N  >  0, we denote

G0
N(u) :=

{
λ ∈ I : ∀ j0 ∈ Zd there is a covering

B0
N( j0, ε,λ) ⊂

Ne⋃
q=1

Iq, Iq = Iq( j0) intervals with meas(Iq) � N−τ1

}

 

(6.13)

where

B0
N( j0, ε,λ) := B0

N( j0, ε,λ, u) :=
{
θ ∈ R : ‖L−1

N,j0(ε,λ, θ, u)‖0 > Nτ1

}
.

 

(6.14)

We also set

JN(u) :=
{
λ ∈ I : ‖L−1

N (ε,λ, u)‖0 � Nτ1

}
. (6.15)

Under the smallness condition (5.8), theorem 5.1 applies, thus defining the sequence un and 
the sets An. We now introduce the sets

C0 := Î, Cn :=
n⋂

i=1

G0
Ni
(ui−1)

n⋂
i=1

JNi(ui−1) ∩ Î (6.16)

where Î  is the one appearing in proposition 7.3, JN(u) in (6.15), and G0
N(u) in (6.13).

Theorem 6.6. Consider parameters satisfying (5.7), (6.1) and (6.2). Then there exists 
N0 ∈ N, such that, for all N0 � N0 and ε ∈ [0, ε0) with ε0 satisfying (5.8), the following 
inclusions hold:

(S5)0 ‖u‖s1 � 1 ⇒ GN0(u) = I
(S6)0 C0 ⊆ A0,

and for all n � 1 (recall the definitions of An in (5.9))

(S5)n ‖u − un−1‖s1 � N−κ1
n ⇒

n⋂
i=1

G0
Ni
(ui−1) ∩ Î ⊆ GNn(u) ∩ Î,

(S6)n Cn ⊆ An .
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Hence C∞ :=
⋂

n�0 Cn ⊆ A∞ :=
⋂

n�0 An.

6.1. Initialization

Property (S5)0 follows from the following lemma.

Lemma 6.7. For all ‖u‖s1 � 1, N � N0, the set GN(u) = I .

Proof. We claim that, for any λ ∈ [1/2, 3/2] and any j0 ∈ Zd , if (recalling the definition 
(6.4))

|D�,j(λ, θ)| > N−τ1 , ∀(�, j) ∈ Zν ×Zd
∗ with |(�, j − j0)| � N , (6.17)

then LN,j0(ε,λ, θ) is N-good. This implies that

BN( j0, ε,λ) ⊂
⋃

|(l,j−j0)|�N

{
θ ∈ R : |D�,j(λ, θ)| � N−τ1

}
,

which in turn, by lemma 6.4, implies the thesis, see (6.10) and (6.11), for some e � d + ν + 1. 
The above claim follows by a perturbative argument. Indeed, recalling the definition (5.2), for 
‖u‖s1 � 1, s1 = s2 + σ, we use (4.5) to obtain

|(D−1
N,j0(λ, θ))|s2

|RN,j0(u)|s2
� εC(s1)|D−1

N,j0(λ, θ)|s2
(1 + ‖u‖s2+σ)

(6.17)
� εNτ1 C(s1)

(5.8)
�

1
2

.

Then we invert LN,j0 by Neumann series and obtain

|L−1
N,j0(ε,λ, θ)|s � 2|D−1

N,j0(λ, θ)|s � 2Nτ1�Nτ+δs, ∀s ∈ [s0, s2] ,

by (6.1), which proves the claim. ■ 

Lemma 6.8. Property (S6)0 holds.

Proof. Since Î ⊂ I  it is sufficient to prove that I ⊂ A0. By the definition of A0 in (5.9) and 
(5.5), we have to prove that

λ ∈ I =⇒ |L−1
N0

(ε,λ, 0)|s �s Na+δ(s−s1)
0 , ∀s ∈ [s1, S] . (6.18)

Indeed, if λ ∈ I  then |D�,j(λ)| � N−τ0
0 , for all |(�, j)| < N0, and so |DN0(λ)

−1|s � Nτ0
0 , ∀s. 

Hence the assertion follows immediately by remark 4.3 and (6.1). ■ 

6.2. Inductive step

By the Nash–Moser theorem 5.1 we know that (S1)n–(S4)n hold for all n � 0. Assume induc-
tively that (S5)i and (S6)i hold for all i � n. In order to prove (S5)n+1, we need the following 
multiscale proposition 6.9 which allows to deduce estimates on the | · |s—norm of the inverse 
of L from informations on the L2-norm of the inverse L−1, the off-diagonal decay of L, and 
separation properties of the bad sites.

Proposition 6.9 (Multiscale). Assume (6.1) and (6.2). For any s > s2, Υ > 0 there exists 
ε0 = ε0(Υ, s2) > 0 and N0 = N0(Υ, s) ∈ N such that, for all N � N0, |ε| < ε0, χ ∈ [χ0, 2χ0], 
E ⊂ Zν ×Zd

∗ with diam(E) � 4Nχ, if the matrix A = D + εT ∈ ME
E  satisfies

L Corsi and R Montalto Nonlinearity 31 (2018) 5075



5093

 (H1)  |T|s2
� Υ,

 (H2)  ‖A−1‖0 � Nχτ1,
 (H3)  there is a partition {Ωβ}β of the (A, N)-bad sites (definition 6.3) such that

diam(Ωβ) � NC1 , dist(Ωβ1 ,Ωβ2) � N2, for β1 �= β2,

then the matrix A is Nχ-good and

|A−1|s �
1
4

Nχτ
(
Nχδs + ε|T|s

)
, ∀s ∈ [s0, s] . (6.19)

Note that the bound (6.19) is much more than requiring that the matrix A is Nχ—good, 
since it holds also for s  >  s2.

This Proposition is proved by ‘resolvent type arguments’ and it coincides essentially with 
[12]-proposition 4.1. The correspondences in the notations of this paper and [12] respectively 
are the following: (τ , τ1, d + r, s2, s) � (τ ′, τ , b, s1, S), and, since we do not have a potential, 
we can fix Θ = 1 in definition 4.2 of [12]. Our conditions (6.1) and (6.2) imply conditions 
(4.4) and (4.5) of [12] for all χ ∈ [χ0, 2χ0] and our (H1) implies the corresponding Hypothesis 
(H1) of [12] with Υ � 2Υ. The other hypotheses are the same. Although the s—norm in this 
paper is different, the proof of [12]-proposition 4.1 relies only on abstract algebra and interpo-
lation properties of the s—norm (which indeed hold also in this case—see section 3.1). Hence 
it can be repeated verbatim, full details can be found in [14].

Now, we distinguish two cases:

 case 1:  (3/2)n+1 � χ0. Then there exists χ ∈ [χ0, 2χ0] (independent of n) such that

Nn+1 = N
χ

, N := [N1/χ0
n+1 ] ∈ (N1/χ

0 , N0) . (6.20)

   This case may occur only in the first steps.
 case 2:  (3/2)n+1 > χ0. Then there exists a unique p ∈ [0, n] such that

Nn+1 = Nχ
p , χ = 2n+1−p ∈ [χ0, 2χ0) . (6.21)

 Let us start from case 1 for n  +  1  =  1; the other (finitely many) steps are identical.

Lemma 6.10. Property (S5)1 holds.

Proof. We have to prove that G0
N1
(u0) ∩ Î ⊆ GN1(u) ∩ Î  where ‖u − u0‖s1 � N−κ1

1 . By defi-
nition 6.5 and (6.13) it is sufficient to prove that, for all j0 ∈ Zd ,

BN1( j0, ε,λ, u) ⊆ B0
N1
( j0, ε,λ, u0),

where we stress the dependence on u,u0 in (6.9) and (6.14). By the definitions (6.14) and (6.9) 
this amounts to prove that

‖L−1
N1,j0(ε,λ, θ, u0)‖0 � Nτ1

1 =⇒ LN1j0(ε,λ, θ, u) is N1 − good . (6.22)

We first claim that ‖L−1
N1,j0(ε,λ, θ, u0)‖0 � Nτ1

1  implies

|L−1
N1,j0(ε,λ, θ, u0)|s �

1
4

Nτ
1

(
Nδs

1 + |R2(u0)|s
) (4.5)

�
1
4

Nτ
1

(
Nδs

1 + ε(1 + ||||u0||||s+σ)
)

, ∀s ∈ [s0, S] .

 (6.23)
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Indeed we may apply proposition 6.9 to the matrix A = LN1,j0(ε,λ, θ, u0) with s = S , N = N , 

N1 = N
χ
 and E = {|l| � N1, |j − j0| � N1}. Hypothesis (H1) follows by (4.5) and ‖u0‖s1 � 1. 

Moreover (H2) is ‖L−1
N1,j0(ε,λ, θ, u0)‖0 � Nτ1

1 . Finally (H3) is implied by Ansatz 1 provided 
we take N1/χ0

0 > N̂(τ0) (recall (6.20)) and noting that λ ∈ GN(u0) ∩ Î  by lemma 6.7 (since 
N � N0 then GN(u0) = I ). Hence (6.19) implies (6.23).

We now prove (6.22); we need to distinguish two cases.

case 1. (|j0| > N3
1). We first show that B0

N1
( j0, ε,λ) ⊂ R \ [−2N1, 2N1]. Recall that if A, A′ are 

self-adjoint matrices, then their eigenvalues µp(A), µp(A′) (ranked in nondecreasing order) 
satisfy

|µp(A)− µp(A′)| � ‖A − A′‖0 . (6.24)

Threfore all the eigenvalues µ�,j(θ) of LN1,j0(ε,λ, θ, u0) are of the form

µ�,j(θ) = δ�,j(θ) + O(ε‖R2‖0), δ�,j(θ) := −(ω · �+ θ)2 + µ(u0)|j|2 . (6.25)

Since |ω|1 = λ|ω|1 � 3/2, |j − j0| � N1, |�| � N1, one has

δ�,j(θ) � −
(3

2
N1 + |θ|

)2
+ N2

1 >
1
2

N2
1 , ∀|θ| < 2N1

and this implies B0
N1
( j0, ε,λ) ∩ [−2N1, 2N1] = ∅. Hence the assumption 

‖L−1
N1,j0(ε,λ, θ, u0)‖0 � Nτ1

1  implies |θ| < 2N1. But then also the eigenvalues of LN1,j0(ε,λ, θ, u) 
are big since they are also of the form

−(ω · �+ θ)2 + µ(u)|j|2 + O(ε‖R2‖0). (6.26)

But then this implies

LN1j0(ε,λ, θ, u) is N1-good.

case 2. (|j0| < N3
1). Since ‖u − u0‖s1 � N−κ1

1  (recall that ‖u0‖s1 � 1 so ‖u‖s1 � 2) then

|LN1,j0(ε,λ, θ, u0)− LN1,j0(ε,λ, θ, u)|s2
� |LN1,j0(ε,λ, θ, u0)− LN1,j0(ε,λ, θ, u)|s1−σ

� |(µ(u0)− µ(u))diag|j−j0|,|�|<N1
|j|2 + RN(u0)− RN(u)|s1−σ

� N6
1‖u − u0‖s1 �

1
2

.
 

(6.27)

By Neumann series and (6.23) one has |L−1
N1,j0(ε,λ, θ, u)|s � Nτ+δs

1  for all s ∈ [s0, s2], namely 
LN1,j0(ε,λ, θ, u) is N1-good. ■ 

Lemma 6.11. Property (S6)1 holds.

Proof. Let λ ∈ C1 := G0
N1
(u0) ∩ JN1(u0) ∩ Î , see (6.16). By the definitions (5.9) and (5.5), 

and (S6)0, in order to prove that λ ∈ A1, it is sufficient to prove that λ ∈ GN1(u0). Since 

λ ∈ JN1(u0) the matrix ‖L−1
N1

(ε,λ, u0)‖0 � Nτ1
1  (see (6.15)) and so (6.23) holds with j0  =  0, 

θ = 0. Hence λ ∈ GN1(u0)  ■ 
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Now we consider case 2.

Lemma 6.12. 
⋂n+1

i=1 G0
Ni
(ui−1) ∩ Î ⊆ GNp(un) ∩ Î .

Proof. By (S2)n of theorem 5.1 we get ‖un − up−1‖s1 �
∑n

i=p ‖ui − ui−1‖s1 �
∑n

i=p N−κ1−1
i �  

N−κ1
p

∑n
i=p N−1

i � N−κ1
p . Hence (S5)p( p � n) implies

n+1⋂
i=1

G0
Ni
(ui−1) ∩ Î ⊆

p⋂
i=1

G0
Ni
(ui−1) ∩ Î

(S5)p

⊆ GNp(un) ∩ Î

proving the lemma. ■ 

Lemma 6.13. Property (S5)n+1 holds.

Proof. Fix λ ∈
⋂n+1

i=1 G0
Ni
(ui−1) ∩ Î . Reasoning as in the proof of lemma 6.10, it is sufficient 

to prove that, for all j0 ∈ Zd , ‖u − un‖s1 � N−κ1
n+1, one has

‖L−1
Nn+1,j0(ε,λ, θ, un)‖0 � Nτ1

n+1 =⇒ LNn+1,j0(ε,λ, θ, u) is Nn+1-good . (6.28)

We apply the multiscale proposition 6.9 to the matrix A = LNn+1,j0(ε,λ, θ, un) with Nχ = Nn+1 

and N  =  Np, see (6.21). Assumption (H1) holds and (H2) is ‖L−1
Nn+1,j0(ε,λ, θ, un)‖0 � Nτ1

n+1. 
Lemma 6.12 implies that λ ∈ GNp(un) ∩ Î  and therefore also (H3) is satisfied by Ansatz 1. 
But then proposition 6.9 implies

|L−1
Nn+1,j0(ε,λ, θ, un)|s �

1
4

Nτ
n+1

(
Nδs

n+1 + |R2(un)|s
)

, ∀s ∈ [s0, S] . (6.29)

Then we can follow word by word the proof of lemma 6.10 (with Nn+1 instead of N1, and un in-
stead of u0), i.e. we separate the cases |j0| > N3

n+1 and |j0| � N3
n+1 and the assertion follows.■ 

Lemma 6.14. Property (S6)n+1 holds.

Proof. Again the proof follows word by word the proof of lemma 6.11 with Nn+1 instead of 
N1, and un instead of u0. ■ 

Let us finally define the set

Cε :=
⋂
n�0

Ḡ0
N2n

0
∩ J̄N2n

0
∩ Ĩ ∩ I (6.30)

where Ĩ = Ĩ(N0) is defined in Hypothesis 1, I  in (6.7) and, for all N ∈ N,

J̄N :=
{
λ ∈ I : ‖L−1

N (ε,λ, uε(λ))‖0 � Nτ1/2
}

, (6.31)

Ḡ0
N :=

{
λ ∈ I : ∀ j0 ∈ Zd there is a covering

B̄0
N( j0, ε,λ) ⊂

Ne⋃
q=1

Iq, with Iq = Iq( j0) intervals with meas(Iq) � N−τ1

}

 (6.32)
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with

B̄0
N( j0, ε,λ) :=

{
θ ∈ R : ‖L−1

N,j0(ε,λ, θ, uε(λ))‖0 > Nτ1/2
}

. (6.33)

We have the following result.

Lemma 6.15. Cε ⊆ C∞.

Proof. We claim that, for all n � 0, the sets Ḡ0
Nn

⊆ G0
Nn
(un−1) and J̄Nn ⊆ JNn(un−1). These 

inclusions are a consequence of the super-exponential convergence (5.10) of un to uε. In view 
of the definitions (6.32) and (6.13), it is sufficient to prove that, ∀j0, if θ /∈ B̄0

Nn
( j0, ε,λ) then 

‖L−1
Nn,j0(θ, un−1)‖0 � Nτ1

n , namely θ /∈ B0
Nn
( j0, ε,λ, un−1) (recall (6.14)). Once again we have 

to distinguish two cases

case 1. (|j0| > N3
n). In this case, arguing again as in the proof of lemma 6.10 one has |θ| < 2Nn, 

so the eigenvalues of LNn,j0(θ, un−1) are big and hence ‖L−1
Nn,j0(θ, un−1)‖0 � Nτ1

n .

case 2. (|j0| � N3
n). One has ‖L−1

Nn,j0(ε,λ, θ, uε)‖0 � Nτ1
n /2 by (6.33), and so

‖L−1
Nn,j0(θ, un−1)‖0 � ‖L−1

Nn,j0(θ, uε)‖0

∥∥∥
(
1+ L−1

Nn,j0(θ, uε)(LNn,j0(θ, un−1)− LNn,j0(θ, uε))
)−1∥∥∥

0

� (Nτ1
n /2) 2 = Nτ1

n

by Neumann series expansions. The inclusion J̄Nn ⊆ JNn(un−1) follow similarly. ■ 

Theorem 6.6 and lemma 6.15 are essentially theorem 5.5 and lemma 5.21 of [14] respec-
tively, where (4.5) implies Hypothesis 1 of [14] with ν0 � σ , lemma 6.4 implies that 
Hypothesis 2 of [14] is satisfied and Ansatz 1 here is the separation property of Hypothesys 
4 in [14]. However we cannot directly apply the result of [14] for the following reason. The 
constant μ appearing in (6.3) depends on the function at wich the linearized operator is com-
puted; hence one has

LN(ε,λ, θ, u)− LN(ε,λθ, v) = (µ(u)− µ(v))∆ +R2(u)−R2(v).

The presence of the term (µ(u)− µ(v))∆ forces us to distinguish the cases |j0| large, where no 
small divisor appear, and |j0| small where one argues by Neumann series as in [14].

In what follows we are going to prove that Ansatz 1 is satisfied and later we shall provide 
measure estimates for Cε, thus concluding the proof of our main theorem 1.1.

7. Proof of Ansatz 1

Given Σ ⊆ Zν ×Zd
∗ we define for ̃ ∈ Zd

∗ the section

Σ(̃) := {k = (�, ̃) ∈ Σ}.

Definition 7.1. Let θ,λ be fixed and K  >  1. We denote by ΣK  any subset of singular sites 

of D(λ, θ) in Zν ×Zd
∗ such that, for all ̃ ∈ Zd

∗, the cardinality of the section Σ(̃)
K  satisfies 

#Σ
(̃)
K � K.

Definition 7.2 (Γ-chain). Let Γ � 2. A sequence k0, . . . , km ∈ Zν ×Zd
∗ with kp �= kq for 

0 � p �= q � m such that
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dist(kq+1, kq) � Γ, for all q = 0, . . . , m − 1, (7.1)

is called a Γ-chain of length m.

Proposition 7.3 (Separation of Γ-chains). There exists C = C(ν, d) and, for any 
N0 � 2 a set Ĩ = Ĩ(N0) defined as

Ĩ := Ĩ(N0) :=
{
λ ∈ [1/2, 3/2] : |P(λω)| �

N−1
0

1 + |p|ν(ν+1) , ∀ non zero polynomial

P(X) ∈ Z[X1, . . . , Xν ] of the form P(X) = p0 +
∑

1�i1�i2�ν

pi1,i2 Xi1 Xi2

} 
(7.2)

such that, for all λ ∈ Ĩ , θ ∈ R, and for all K,Γ with KΓ � N0, any Γ-chain of singular sites 
in ΣK  as in definition 7.1, has length m � (ΓK)C(ν,d).

Proof. The proof is a slight modification of lemma 4.2 of [12] and lemma 3.5 in [14]. First 
of all, it is sufficient to bound the length of a Γ-chain of singular sites for D(λ, 0). Then we 
consider the quadratic form

Q : R×Rr → R , Q(x, j) := −x2 + µ|j|2, (7.3)

and the associated bilinear form Φ = −Φ1 +Φ2 where

Φ1((x, j), (x′, j′)) := xx′, Φ2((x, j), (x′, j′)) := µj · j′ . (7.4)

For a Γ-chain of sites {kq = (�q, jq)}q=0,...,� which are singular for D(λ, 0) (definition 6.1) 
we have, recalling (6.3) and setting xq := ω · �q,

|Q(xq, jq)| < 2, ∀q = 0, . . . , � .

Moreover, by (7.3) and (7.1), we derive |Q(xq − xq0 , jq − jq0)| � C|q − q0|2Γ2, ∀0 � q, q0 � m, 
and so

|Φ((xq0 , jq0), (xq − xq0 , jq − jq0))| � C′|q − q0|2Γ2 . (7.5)

Now we introduce the subspace of R1+d  given by

S := SpanR{(xq − xq0 , jq − jq0) : q = 0, . . . , m}

and denote by s � d + 1 the dimension of S . Let ρ > 0 be a small parameter specified later 
on. We distinguish two cases.

Case 1. For all q0 = 0, . . . , m one has

SpanR{(xq − xq0 , jq − jq0) : |q − q0| � �ρ, q = 0, . . . , m} = S . (7.6)

In such a case, we select a basis fb := (xqb − xq0 , jqb − jq0) = (ω ·∆�qb ,∆jqb), b = 1, . . . , s of 
S , where ∆kqb = (∆�qb ,∆jqb) satisfies |∆kqb | � CΓ|qb − q0| � CΓmρ. Hence we have the 
bound

|fqb | � CΓmρ, b = 1, . . . , s. (7.7)
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Introduce also the matrix Ω = (Ωb′
b )sb,b′=1 with Ωb′

b := Φ( fb′ , fb), that, according to (7.4), we 
write

Ω =
(
−Φ1( fb′ , fb) + Φ2( fb′ , fb)

)s

b,b′=1
= −X + Y , (7.8)

where Xb′
b := (ω ·∆�qb′ )(ω ·∆�qb) and Yb′

b := µ(∆jq′b) · (∆jqb). The matrix Y has entries in 
µZ and the matrix X has rank 1 since each column is

Xb = (ω ·∆�qb)



ω · ∆�q1

...
ω · ∆�qs


 , b = 1, . . . , s.

Then, since the determinant of a matrix with two collinear columns Xb, Xb′, b �= b′, is zero, 
we get

P(ω) : = µd+1det(Ω) = µd+1det(−X + Y)

= µd+1(det(Y)− det(X1, Y2, . . . , Ys)− . . .− det(Y1, . . . , Ys−1, Xs))

which is a quadratic polinomial as in (7.2) with coefficients � C(Γmρ)2(d+1). Note that P �≡ 0. 
Indeed, if P ≡ 0 then

0 = P(iω) = µd+1 det(X + Y) = µd+1 det( fb · fb′)b,b′=1,...,s �= 0

because { fb}sb=1 is a basis of S . This contradiction proves that P �≡ 0. But then, by (7.2),

µd+1| det(Ω)| = |P(ω)| �
N−1

0

1 + |p|ν(ν+1) �
N−1

0

(Γmρ)C(d,ν) ,

the matrix Ω is invertible and

|(Ω−1)b′
b | � CN0(Γmρ)C′(d,ν). (7.9)

Now let S⊥ := S⊥Φ := {v ∈ Rs+1 : Φ(v, f ) = 0, ∀ f ∈ S}. Since Ω is invertible, the quad-
ratic form ΦS  is non-degenerate and so Rd+1 = S ⊕ S⊥. We denote ΠS : Rd+1 → S  the 
projector onto S . Writing

ΠS(xq0 , jq0) =

d+1∑
b′=1

ab′ fb′ , (7.10)

and since fb ∈ S , ∀b = 1, . . . , s, we get

wb := Φ
(
(xq0 , jq0), fb

)
=

s∑
b′=1

ab′Φ( fb′ , fb) =
s∑

b′=1

Ωb′
b ab′

where Ω is defined in (7.8). The definition of fb, the bound (7.5) and (7.6) imply |w| � C(Γmρ)2. 
Hence, by (7.9), we deduce |a| = |Ω−1w| � C′N0(Γmρ)C(ν,d)+2, whence, by (7.10) and (7.7),

|ΠS(xq0 , jq0)| � N0(Γmρ)C′(ν,d).
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Therefore, for any q1, q2 = 0, . . . , m, one has

|(xq1 , jq1)− (xq2 , jq2)| = |ΠS(xq1 , jq1)−ΠS(xq2 , jq2)| � N0(Γmρ)C1(ν,d),

which in turn implies |jq1 − jq2 | � N0(Γmρ)C1(r,d) for all q1, q2 = 0, . . . , m. Since all the jq 
have d components (being elements of Zd

∗) they are at most CNd
0 (Γmρ)C1(r,d)d. We are consid-

ering a Γ-chain in ΣK  (see definition 7.1) and so, for each q0, the number of q ∈ {0, . . . , m} 
such that jq = jq0 is at most K and hence

m � Nd
0 (Γmρ)C2(ν,d)K � (ΓK)d(Γmρ)C2(ν,d)K � mρC2(ν,d)(ΓK)d+C2(ν,d)

because of the condition ΓK � N0, Choosing ρ < 1/(2C2(ν, d)) we get m � (ΓK)2(m+C2(ν,d)).

Case 2. There is q0 = 0, . . . , m such that

dim(SpanR{(xq − xq0 , jq − jq0) : |q − q0| � mρ, q = 0, . . . , m}) � s− 1.

Then we repeat the argument of case 1 for the sub-chain {(�q, jq) : |q − q0| � mρ} and ob-
tain a bound for mρ. Since this procedure is applied at most d  +  1 times, at the end we get a 
bound like m � (ΓK)C3(ν,d). ■ 

Corollary 7.4. Ansatz 1 is satisfied.

The proof of corollary 7.4 follows almost word by word section 5.3 in [14]. However there 
is a minor issue to be discussed, namely that in section 5.3 in [14] it seems that one needs the 
index j to be in a lattice, whereas of course this is not the case in the present paper since we 
reduced to the zero mean valued functions. However the lattice structure is needed only in 
lemma 5.16 of [14] (see remark 5.17 of [14]). In particular if we replace definition 5.14 of [14] 
with definition 7.5 below, the argument of [14] can be repeated verbatim.

Definition 7.5. A site k = (�, j) ∈ Zν ×Zd is

 •  (L, N)-strongly-regular if LN,k is N-good,
 •  (L, N)-weakly-singular if, otherwise, LN,k is N-bad,
 •  (L, N)-strongly-good if either it is regular for D = D(λ, θ) (recall definition 6.1) or all 

the sites k′ = (�′, j′) with dist(k, k′) � N  are (L, N)-strongly-regular. Otherwise k is 
(L, N)-weakly-bad.

8. Measure estimates

We conclude the proof of theorem 1.1 by showing that the set Cε has asymptotically full 
measure.

One proceeds differently for |j0| � 6N  and |j0|  <  6N. We assume N � N0 > 0 large enough 
and ε‖R2‖0 � 1.

Lemma 8.1. For all j0 ∈ Zd
∗, |j0| � 6N , and for all λ ∈ [1/2, 3/2] one has

B̄0
N( j0, ε,λ) ⊂

Nd+ν+2⋃
q=1

Iq , with Iq = Iq( j0) intervals with meas(Iq) � N−τ1 .

Proof. First of all, as in the proof case 1 in lemma 6.10 we see that B̄0
N( j0, ε,λ) ⊂ R\  

[−2N, 2N]. Now set B0,+
N := B̄0

N( j0, ε,λ) ∩ (2N,+∞), B0,−
N := B̄0

N( j0, ε,λ) ∩ (−∞,−2N). 
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Since
∂θLN,j0(ε,λ, θ) = diag|�|�N,|j−j0|�N − 2(ω · �+ θ) � N1,

we apply lemma 5.1 of [11] with α = N−τ1, β = N  and |E| � CNν+d  and obtain

B0,−
N ⊂

Nd+ν+1⋃
q=1

I−q , I−q = I−q ( j0) intervals with meas(Iq) � N−τ1 .

We can reason in the same way for B0,+
N  and the lemma follows. ■ 

Consider now |j0|  <  6N. We obtain a complexity estimate for B̄0
N( j0, ε,λ) by knowing the 

measure of the set

B̄0
2,N( j0, ε,λ) :=

{
θ ∈ R : ‖L−1

N,j0(λ, ε, θ)‖0 > Nτ1/2
}

.

Lemma 8.2. For all |j0|  <  6N and all λ ∈ [1/2, 3/2] one has

B̄0
2,N( j0, ε,λ) ⊂ IN := [−10

√
dN, 10

√
dN].

Proof. If |θ| > 10
√

dN  one has |ω · �+ θ| � |θ| − |ω · �| > (10
√
ν − (3/2))N > 8

√
dN 

and then all the eigenvalues satisfy

µ�,j(θ) = −(ω · �+ θ)2 + µ|j|2 + O(ε‖R2‖0) � −62dN2 , ∀|θ| > 10
√

dN ,

proving the lemma. ■ 

Lemma 8.3. For all |j0| � 6N  and all λ ∈ [1/2, 3/2] one has

B̄0
N( j0, ε,λ) ⊂

ĈMNτ1+1⋃
q=1

Iq , Iq = Iq( j0) intervals with meas(Iq) � N−τ1

where M := meas(B̄0
2,N( j0, ε,λ)) and Ĉ = Ĉ(d).

Proof. This is lemma 5.5 of [11], where our exponent τ1 is denoted by τ. ■ 

Lemmas 8.2 and 8.3 imply that for all λ ∈ [1/2, 3/2] the set B̄0
N( j0, ε,λ) can be covered 

by  ∼Nτ1+2 intervals of length �N−τ1. This estimate is not enough. Now we prove that for 
‘most’ λ the number of such intervals does not depend on τ1, by showing that M = O(Ne−τ1) 
where e depends only on the dimensions (to be computed). To this purpose first we provide 
an estimate for the set

B0
2,N( j0, ε) :=

{
(λ, θ) ∈ [1/2, 3/2]×R : ‖L−1

N,j0(ε,λ, θ)‖0 > Nτ1/2
}

.

Then in lemma 8.5 we use Fubini theorem to obtain the desired bound for meas(B̄0
2,N( j0, ε,λ)).

Lemma 8.4. For all |j0|  <  6N one has meas(B0
2,N( j0, ε)) � N−τ1+ν+d+1.

Proof. Let us introduce the variables

ζ =
1
λ2 , η =

θ

λ
, (ζ, η) ∈ [4/9, 4]× [−20

√
dN, 20

√
dN] =: [4/9, 4]× JN ,

 

(8.1)
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and set

L(ζ, η) := λ−2LN,j0(ε,λ, θ) = diag|�|�N,|j−j0|�N

((
− ω · �+ η)2 + ζµ(ζ−1/2)|j|2

)
+ ζR2(ε, 1/

√
ζ).

Note that, since ||µ− 1|| � ε, one has

min
j∈Zd

∗

µ|j|2 �
1
2

. (8.2)

Then, except for (ζ, η) in a set of measure O(N−τ1+ν+d+1) one has

‖L(ζ, η)−1‖0 � Nτ1/8. (8.3)

Indeed

∂ζL(ζ, η) = diag|�|�N,|j−j0|�N

(
µ(ζ−1/2)|j|2 − 1

2
ζ−1/2∂λµ(ζ

−1/2)

)
+R2(ε, 1/

√
ζ)− 1

2
ζ−1/2∂λR2

(8.2)
�

1
4

,

for ε small (we used that ζ ∈ [4/9, 4] and |∂λµ| < 1/2). Therefore lemma 5.1 of [11] im-
plies that for each η, the set of ζ such that at least one eigenvalue of L(ζ, η) has modulus 
� 8N−τ1, is contained in the union of O(Nd+ν) intervals with length O(N−τ1) and hence has 
measure � O(N−τ1+d+ν). Integrating in η ∈ JN we obtain (8.3) except in a set with measure 
O(N−τ1+d+ν+1). The same measure estimates hold in the original variables (λ, θ) in (8.1). 
Finally (8.3) implies

‖L−1
N,j0(ε,λ, θ)‖0 � λ−2Nτ1/8 � Nτ1/2,

for all (λ, θ) ∈ [1/2, 2/3]×R except in a set with measure � O(N−τ1+d+ν+1). ■ 

Note that the same argument can be used to show that

meas([1/2, 3/2] \ ḠN) � N−τ1+d+ν+1 (8.4)

where ḠN is defined in (6.31).
Define the set

FN( j0) :=
{
λ ∈ [1/2, 3/2] : meas(B̄0

2,N( j0, ε,λ)) � ĈN−τ1+d+d+r+2
}

 (8.5)
where Ĉ is the constant appearing in lemma 8.3.

Lemma 8.5. For all |j0| � 6N  one has meas(FN( j0)) = O(N−d−1).

Proof. By Fubini theorem we have

meas(B0
2,N( j0, ε)) =

∫ 3/2

1/2
dλmeas(B̄0

2,N( j0, ε,λ)).

Now, for any β > 0, using lemma 8.4 we have

CN−τ1+d+ν+1 �
∫ 3/2

1/2
dλmeas(B̄0

2,N( j0, ε,λ))

� βmeas({λ ∈ [1/2, 3/2] : meas(B̄0
2,N( j0, ε,λ)) � β})

and for β = ĈN−τ1+2d+ν+2 we prove the lemma (recall (8.5)). ■ 

L Corsi and R Montalto Nonlinearity 31 (2018) 5075



5102

Lemma 8.6. If τ0 > d + 3ν + 1 then meas([1/2, 3/2] \ I) = O(N−1
0 ) where I  is defined 

in (6.7).

Proof. Let us write

[1/2, 3/2] \ I =
⋃

|�|,|j|�N0

Rl,j, R�,j :=
{
λ ∈ I : |(λω · �)2 − |j|2| � N−τ0

0

}
.

Since j ∈ Zd
∗, then R0,j = ∅ if N0  >  1. For � �= 0, using the Diophantine condition (1.2), we 

get meas(R�,j) � CN−τ0+2ν
0 , so that

meas([1/2, 3/2] \ I) �
∑

|�|,|j|�N0

meas(R�,j) � CN−τ0+d+3ν
0 = O(N−1

0 )

because τ0 − d − 3ν > 1. ■ 

The measure of the set Ĩ  in (7.2) is estimated in [11]-lemma 6.3 (where Ĩ  is denoted by 
G̃ ).

Lemma 8.7. If γ < min(1/4, γ0/4) (where γ0 is that in (1.4)) then 
meas([1/2, 3/2] \ Ĩ) = O(γ).

To conclude the measure esitimate we note that by the definition in (8.5) for all λ �∈ FN( j0) 
one has meas(B̄0

2,N( j0, ε,λ)) < O(N−τ1+2d+ν+2). Thus for any λ �∈ FN( j0), applying lemma 
8.3 we have

B̄0
N( j0, ε,λ) ⊂

N2d+ν+4⋃
q=1

Iq , Iq intervals with meas(Iq) � N−τ1 .

But then, using also lemma 8.1, we have that (recall (6.32) with e = 2d + ν + 4)

[1/2, 3/2] \ Ḡ0
N ⊂

⋃
|j0|�(c+5)c−1N

FN( j0) .

Hence, using lemma 8.5,

meas(I \ Ḡ0
N) �

∑
|j0|�6N

meas(FN( j0)) � O(N−1).

Moreover by (8.4) with τ1 > d + ν + 2 we get

meas(I \ ḠN) = O(N−1), (8.6)

and finally, lemmas 8.6 and 8.7 with γ = N−1
0  imply

meas(I \ (I ∩ Ĩ)) = O(N−1
0 ) .

Putting these estimates together and recalling the definition (6.30) of Cε, we have that

meas(I \ Cε) = meas
( ⋃

n�0

(Ḡ0
Nn
)c

⋃
n�0

(ḠNn)
c ∪ Ĩc ∪ Ic

)

�
∑
n�0

meas(I \ Ḡ0
Nn
) +

∑
n�0

meas(I \ ḠNn) + meas(I \ (I ∩ Ĩ))

(8.6)
�

∑
n�0

N−1
n + N−1

0 � N−1
0 �ε1/(S+1)

 

(8.7)

i.e. Cε has asymptotically full measure. ■
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9. Linear stability

In this section we discuss the linear stability of the quasi-periodic solutions found in theorem 
1.1. In order to precisely state the result we need to introduce some more notations. For any 
s � 0, we define the Sobolev spaces Hs(Td) = Hs(Td,C), Hs(Td,R) respectively of com-
plex and real valued functions

Hs(Td) :=
{

u(x) =
∑
j∈Zd

ujeijx : ‖u‖2
Hs

x
:=

∑
j∈Zd

〈 j〉2s|uj|2 < +∞
}

, Hs(Td,R) :=
{

u ∈ Hs(Td) : u = u
}

 (9.1)
where

〈 j〉 := max{1, |j|}, |j| :=
√

j21 + . . .+ j2d, ∀j = ( j1, . . . , jd) ∈ Zd.

Moreover we define

Hs
0(T

d) :=
{

u ∈ Hs(Td) :
∫

Td
u(x) dx = 0

}
, Hs

0(T
d,R) :=

{
u ∈ Hs(Td,R) :

∫

Td
u(x) dx = 0

}

 (9.2)
and introduce the real subspace Hs

0(T
d) of Hs

0(T
d)× Hs

0(T
d)

Hs
0(T

d) :=
{

u := (u, u) : u ∈ Hs
0(T

d)
}

, equipped with the norm ‖u‖Hs
x

:= ‖u‖Hs
x
.

Given a linear operator R : L2
0(T

d) → L2
0(T

d) (where L2
0(T

d) := H0
0(T

d)), we define its 
Fourier coefficients with respect to the exponential basis {eij·x : j ∈ Zd \ {0}} of L2

0(T
d) as

R j′

j :=
1

(2π)d

∫

Td
R[eij′·x]e−ij·x dx, ∀j, j′ ∈ Zd \ {0}, (9.3)

and we denote by R the linear operator such that R[u] = R[u] , for any u ∈ L2
0(T

d).

We say that an operator R is block diagonal if R j′

j = 0 for any j, j′ ∈ Zd \ {0} with 

|j| �= |j′|.
Linearizing the equation (1.5) along a quasi-periodic solution u(ωt, x), ω = λω̄ for λ ∈ Cε 

one gets a linear wave equation of the form

∂tth −∆h + εP(ωt)[h] = 0 (9.4)

where the linear operator P(ωt) is given by

P(ϕ) := −a(ϕ)∆−R(ϕ), ϕ ∈ Tν

a(ϕ) =
∫

Td
|∇u(ϕ, x)|2 dx, R(ϕ)[h] = −2∆u(ϕ, x)

∫

Td
∆u(ϕ, y)h(y) dy, ϕ ∈ Tν .

 
(9.5)

Writing the equation (9.4) as a first order system one obtains
{
∂th = ψ

∂tψ = ∆h − εP(ωt)[h]. (9.6)

The following theorem holds.

Theorem 9.1. There exists a strictly positive integer q0 = q0(ν, d) possibly larger than 
q̄(ν, d) appearing in theorem 1.1 such that for any q � q0 there exists ε1 = ε1(q, ν, d) > 0, 
possibly smaller than ε0 of theorem 1.1 and Sq := S(q, ν, d), with 1/2 < Sq < q such that 
for any f ∈ Cq(Tν ×Td,R) satisfying the hyphothesis (1.3) then for any ε ∈ (0, ε1) there 
exists a Borel set Oε ⊂ Cε of asymptotically full Lebesgue measure, i.e.
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|Oε| → 1 as ε → 0, (9.7)

such that the following holds: for all λ ∈ Oε and ϕ ∈ Tν , there exists a bounded linear invert-
ible operator W∞(ϕ) = W∞(ϕ;λ) such that for any 12 � s � Sq

W∞(ϕ) : Hs
0(T

d) → Hs+ 1
2

0 (Td,R)× Hs− 1
2

0 (Td,R)

satisfying the following property: (h(t, ·),ψ(t, ·)) is a solution of (9.6) in 

Hs+ 1
2

0 (Td,R)× Hs− 1
2

0 (Td,R) if and only if

w(t, ·) = (w(t, ·), w(t, ·)) = W∞(λω̄t)−1[(h(t, ·),ψ(t, ·))]

is a solution in Hs
0(T

d) of the PDE with constant coefficients

∂tw = D∞w, D∞ := i

(
−D(1)

∞ 0

0 D(1)
∞

)
 (9.8)

where for any s � 1, D(1)
∞ : Hs

0(T
d) → Hs−1

0 (Td) is a linear, time-independent,  

L2-self-adjoint, block-diagonal operator.

From theorem 9.1 we deduce the linear stability of (1.5), i.e. the following result.

Corollary 9.2. For any λ ∈ Oε and any initial data (h(0),ψ(0)) ∈ Hs+ 1
2

0 (Td,R)× Hs− 1
2

0 (Td,R)  

with 1/2 � s � Sq , the solution t ∈ R �→ (h(t, ·),ψ(t, ·)) ∈ Hs+ 1
2

0 (Td,R)× Hs− 1
2

0 (Td,R) of 

the Cauchy problem



∂th = ψ

∂tψ = ∆h − εP(ωt)[h].
h(0, ·) = h(0)

ψ(0, ·) = ψ(0)

 (9.9)

is stable, namely

sup
t∈R

(
‖h(t, ·)‖

H
s+ 1

2
x

+ ‖ψ(t, ·)‖
H

s− 1
2

x

)
� Cq

(
‖h(0)‖

H
s+ 1

2
x

+ ‖ψ(0)‖
H

s− 1
2

x

)

for some constant Cq = C(q, ν, d) > 0.

The proof of this theorem is essentially the same as the one of theorem 1.1 in [42]. The only 
difference is that in the present case the frequency ω is constrained to the diophantine direc-
tion ω̄  in (1.2), namely ω = λω̄, λ ∈ Cε. Hence we only need to prove the measure estimates 
for the set Oε.

Note that in theorem 1.1 of [42] it is required that the coefficients of the perturbations are 
sufficiently smooth functions. In the present case, this hypothesis is satisfied by taking the 
forcing term f ∈ Cq with q large enough. Indeed, by theorem 1.1, the quasi-periodic solution 
u(ωt, x) is in HS and S = S(ν, d, q) is increasing w.r. to q. By recalling the definition (9.5), we 
then have that the coefficients of the operator P(ϕ) are smooth enough if f is smooth enough.

The proof of theorem 1.1 of [42] is based on a reduction procedure which conjugates the 
vector field
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L(ωt) :=
(

0 1
∆− εP(ωt) 0

)

of the equation  (9.6) to the constant coefficients block diagonal vector field D∞ in (9.8). 
Such a procedure is developed in sections 3 and 4 of [42]. Actually the linearized Kirchhoff 
equation (9.4) is a particular case of the wave equations considered in [42]. In section 3 of 
[42], the vector field L(ωt) is conjugated to another one which is an arbitrarily regularizing 
perturbation of a constant coefficients diagonal vector field. In order to perform this reduction, 
one needs the frequency ω to be diophantine. This is satified in our setup, since ω = λω̄ and 
ω̄  is a diophantine frequency vector (see (1.2)). Then, in section 4 of [42], it is developed a 
KAM reducibility scheme which completes the block-diagonalization procedure. Along such 
an iterative scheme, all the remainders arising at any step are smoothing operators. Therefore 
one can impose very weak second order Melnikov non resonance conditions with loss of space 
derivatives.

In the rest of this section, we prove the measure estimates (9.7).

9.1. Measure estimates of the set Oε

Let us denote by σ0(
√
−∆) the spectrum of the operator 

√
−∆ restricted to the functions with 

zero average, i.e.

σ0(
√
−∆) :=

{
|j| =

√
j21 + . . .+ j2d : j = ( j1, . . . , jd) ∈ Zd \ {0}

}
.

Moreover, given Io ⊆ I = [1/2, 3/2], γ > 0 and a Lipschitz function f : Io → R we define

|f |Lip(γ) := |f |sup + γ|f |lip,

|f |sup := sup
λ∈Io

|f (λ)|, |f |lip := sup
λ1,λ2∈Io
λ1 �=λ2

|f (λ1)− f (λ2)|
|λ1 − λ2|

the rest of this section is devoted to the proof of the following

Theorem 9.3. One has that limε→0 |Cε \ Oε| = 0.

First of all we need some notation. For any α ∈ σ0(
√
−∆) we set

nα := card{ j ∈ Zd \ {0} : |j| = α} � αd−1, (9.10)

and the eigenvalues of D(1)
∞  in (9.8) are Lipschitz functions µ(α)

k : Cε → R  for k = 1, . . . , nα 
of the form

µ
(α)
k (λ) = m(λ)α+ r

(α)
k (λ), |m − 1|Lip(γ) � ε, |r(α)k |Lip(γ) � ε α−1,

 
(9.11)

and r(α)k  are produced by the algorithm; see [42], section 5.
Then, for any (�,α,β) ∈ Zν × σ0(

√
−∆)× σ0(

√
−∆), (�,α,β) �= (0,α,α), 

k = 1, . . . , nα, j = 1, . . . , nβ

Rkj(�,α,β) :=
{
λ ∈ Cε : |λω̄ · �+ µ

(α)
k (λ)− µ

(β)
j (λ)| < 2γ

〈�〉ταdβd

}
 (9.12)

and for any (�,α,β) ∈ Zν × σ0(
√
−∆)× σ0(

√
−∆), k = 1, . . . , nα, j = 1, . . . , nβ
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Qkj(�,α,β) :=
{
λ ∈ Cε : |λω̄ · �+ µ

(α)
k (λ) + µ

(β)
j (λ)| < 2γ(α+ β)

〈�〉τ
}

, (9.13)

and we fix the constants d and τ as

d := 2d + 2, τ := ν + 4d. (9.14)

Then, setting

R(�,α,β) :=
nα⋃

k=1

nβ⋃
j=1

Rkj(�,α,β), ∀(�,α,β) ∈ Zν × σ0(
√
−∆)× σ0(

√
−∆), (�,α,β) �= (0,α,α),

 (9.15)

Q(�,α,β) :=
nα⋃

k=1

nβ⋃
j=1

Qkj(�,α,β), ∀(�,α,β) ∈ Zν × σ0(
√
−∆)× σ0(

√
−∆),

 

(9.16)

and arguing as in section 5 of [42] one can show that

Cε \ Oε ⊆
⋃

(�,α,β)∈Zν×σ0(
√

−∆)×σ0(
√

−∆)

(�,α,β) �=(0,α,α)

R(�,α,β)
⋃

(�,α,β)∈Zν×σ0(
√
−∆)×σ0(

√
−∆)

Q(�,α,β).
 (9.17)

The constant γ appearing in (9.12) and (9.13) can be linked to ε by setting

γ := εa, 0 < a < 1. (9.18)

Note that this is the same setting as in [42] where the sets Rkj(�,α,β), Qkj(�,α,β), R(�,α,β) 
and Q(�,α,β) were denoted as R̃kj(�,α,β), Q̃kj(�,α,β), R̃(�,α,β) and Q̃(�,α,β) respectively.

Lemma 9.4. For ε small enough, the following holds.

 (i)  If R(�,α,β) �= ∅, then α−1 + β−1 � |ω̄ · �|. Moreover for any α,β ∈ σ0(
√
−∆), α �= β, 

then R(0,α,β) = ∅.
 (ii)  If Q(�,α,β) �= ∅, then α+ β � |ω̄ · �|. As a consequence α,β � 〈�〉. Moreover for any 

α,β ∈ σ0(
√
−∆) then Q(0,α,β) = ∅.

Proof. We prove item (i). The proof of item (ii) is similar. Assume that R(�,α,β) �= ∅. Then 
there exist k ∈ {1, . . . , nα}, j ∈ {1, . . . , nβ} such that Rkj(�,α,β) �= ∅. For any λ ∈ Rkj(�,α,β), 
one has

|µ(α)
k (λ)− µ

(β)
j (λ)| < 2γ

〈�〉ταdβd
+

3
2
|ω̄ · �|

τ ,d>1
< γ(α−1 + β−1) +

3
2
|ω̄ · �|.

 

(9.19)

Furthermore, by (9.11), for ε small enough,

|µ(α)
k − µ

(β)
j | � |m(λ)||α− β| − |r(α)k | − |r(β)j |

�
1
2
|α− β| − C0ε

(
α−1 + β−1),

 
(9.20)

for some constant C0  >  0. By lemma A.1-(ii) in [42], one has that |α− β| � C(α−1 + β−1) 
for some constant C  >  0, hence (9.20) implies that for ε small enough one gets

|µ(α)
k − µ

(β)
j | � C1(α

−1 + β−1) (9.21)
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for some constant C1  >  0. Then (9.19) and (9.21) imply that for γ  small enough (or ε 
small enough, see (9.18)) one has α−1 + β−1 � |ω̄ · �|. The inequality (9.21) implies 
also that if α,β ∈ σ0(

√
−∆) with α �= β, then Rkj(0,α,β) = ∅ for any k ∈ {1, . . . , nα}, 

j ∈ {1, . . . , nβ}. ■ 

Lemma 9.5. For ε small enough, the following holds:

 (i)  For any (�,α,β) ∈ Zν × σ0(
√
−∆)× σ0(

√
−∆), (�,α,β) �= (0,α,α), if R(�,α,β) �= ∅ 

then |R(�,α,β)| � γαd+1−dβd+1−d〈�〉−τ .
 (ii)  For any (�,α,β) ∈ Zν × σ0(

√
−∆)× σ0(

√
−∆), if Q(�,α,β) �= ∅ then 

|Q(�,α,β)| � γαd−1βd−1〈�〉−τ .

Proof. Let us prove item (i). The proof of item (ii) follows by using similar arguments. Let 
(�,α,β) ∈ Zν × σ0(

√
−∆)× σ0(

√
−∆) with (�,α,β) �= (0,α,α). By (9.15), it is enough to 

estimate the measure of the set Rkj(�,α,β) for any k = 1, . . . , nα, j = 1, . . . , nβ . We define

φ(λ) := λω̄ · �+ λ
(α)
k (λ)− λ

(β)
j (λ). (9.22)

Hence

Rkj(�,α,β) =
{
λ ∈ Cε : |φ(λ)| < 2γ

〈�〉ταdβd

}
.

Using that | · |lip � γ−1| · |Lip(γ), one gets

|φ(λ1)− φ(λ2)| �
(
|ω̄ · �| − γ−1|m − 1|Lip(γ)|α− β| − γ−1|r(α)j |Lip(γ) − γ−1|r(β)k |Lip(γ)

)
|λ1 − λ2|

(9.11)
�

(
|ω · �| − Cεγ−1|α− β| − Cεγ−1α−1 − Cεγ−1β−1

)
|λ1 − λ2|.

 

(9.23)

Since by lemma A.1-(ii) in [42], |α− β| � C(α−1 + β−1), for some C  >  0, by (9.18), 
εγ−1 = ε1−a, by aplying lemma 9.4-(i), one gets that for ε small enough

|φ(λ1)− φ(λ2)| � C(α−1 + β−1)|λ1 − λ2|
α,β�1
� Cα−1β−1|λ1 − λ2|. (9.24)

The above estimate implies that
∣∣∣Rkj(�,α,β)

∣∣∣ � γ

αd−1βd−1〈�〉τ
.

Finally recalling (9.15) and (9.10), we get the claimed estimate for the measure of 
R(�,α,β). ■ 

Proof of theorem 9.3 concluded. By (9.17), by applying lemmata 9.4 and 9.5, and 
recalling the definitions of the constants γ, τ and d made in (9.18) and (9.14), one gets the 
estimate

|Cε \ Oε| �
∑

�∈Zν , j,j′∈Zd

εa

〈 j〉d−1−d〈 j′〉d−1−d〈�〉τ
+

∑
�∈Zν , j,j′∈Zd

|j|,|j′|�〈�〉

εa〈 j〉d−1〈 j′〉d−1

〈�〉τ
� εa (9.25)

since the above two series are convergen because of the choices of τ and d made in (9.14). The 
proof of theorem 9.3 is then concluded. ■ 
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Note that our proof is very similar to the analogous one in [42]; the only difference is 
that in lemma 9.4 we have to bound α−1 + β−1 � |ω̄ · �| rather than having the estimate 
|α− β| � 〈�〉 of lemma 5.1 in [42]. However this is still enough to get the final measure esti-
mate due to the Diophantine condition on ω̄ .
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