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Abstract. We analyze dissipative scale effects within a one-dimensional theory, developed in [L.
Anand et al. (2005) J. Mech. Phys. Solids 53], which describes plastic flow in a thin strip undergoing
simple shear. We give a variational characterization of the yield (shear) stress — the threshold for
the onset of plastic flow — and we use this characterization, together with results from [M. Amar
et al. (2011) J. Math. Anal. Appl. 397], to obtain an explicit relation between the yield stress and
the height of the strip. The relation we obtain confirms that thinner specimens are stronger, in the
sense that they display higher yield stress.
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1. Introduction. A number of experiments have shown that conventional plas-
ticity fails to capture the size-dependent behavior of metallic specimens undergoing
plastic flow in the size range below 100 microns, with smaller samples being, in gen-
eral, stronger (see [25] for a review).

Substantial theoretical work has been carried out to extend conventional plasticity
to the micron scale. It is acknowledged that size effects observed in metallic samples
are associated to the inhomogeneity of plastic flow [5], a fact that motivates a number
of strain-gradient plasticity theories, starting with Ref. [11].

In the so-called non-local or high-order theories, the flow rule that governs the
evolution of plastic strain is a partial differential equation which requires the speci-
fication of appropriate boundary conditions. The first of such theories was proposed
by Aifantis [1]; the vast majority of subsequent high-order theories were derived using
the virtual-power principle, by taking into account power expenditure by higher-order
stresses that are work-conjugate to the plastic-strain gradient [6, 15, 20, 21, 22].

Apparently, the theories developed by Gurtin and Anand [21, 22] are those that
have inspired most mathematical work. One of the distinctive aspects of [21] is that
the full plastic distortion (the sum of a symmetric plastic strain and a skew–symmetric
plastic spin) is accounted for. In particular, the issues of existence and uniqueness
of solutions for strain-gradient plasticity with plastic spin, as considered in Ref. [21],
has been addressed in Ref. [9] in the case of two-dimensional setting of anti-plane
shear, and in Refs. [12], [32], and [33] in the full three-dimensional setting. The model
for plastically-irrotational materials proposed in Ref. [22] was studied in Ref. [36].
Theoretical and numerical analysis of a related model with no plastic spin is available
in [35]. More recently, existence of weak solutions for a model with plastic spin
was established in [13] using a Korn’s type inequality for incompatible tensor fields
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(see [34] and references therein). Of particular importance for the present paper are
the existence theorems for strain-gradient plasticity based on the notion of energetic
solution, which have been proved both in the small–strain [19] and in the large–strain
[29] setting.

The flow rules proposed in Ref. [22] are of particular interest because they incor-
porate two length scales:

• an energetic scale L, which appears from letting the free-energy density de-
pend on derivatives of the plastic strain, Ep, through the Burgers tensor,
G = curlEp;

• a dissipative scale `, which arises from letting the gradient of plastic strain
rate, ∇Ėp, enter the dissipation-rate density.

The form of the free energy density is motivated by dislocation mechanics. In
particular, the choice of letting the free energy to depend on plastic strain gra-
dient through the Burgers tensor follows from the presumption that the so–called
geometrically-necessary dislocations (whose density is measured by G) play a major
role in determining size-dependent response, a presumption that finds its justification
in homogenization results from discrete-dislocation models [18, 28].

Because of the complicated nature of the non–local flow rule, it is not easy to
understand how its solutions are affected by the material scales. On the other hand,
such understanding is crucial in order to identify these scales by comparison with
experiments. Thus, parallel with the literature dealing with modeling, researchers
have also endeavored to investigate how the various scales may affect the nature of
solutions, not only for the Gurtin-Anand theory, but also for other strain-gradient
plasticity theories.

This task is usually accomplished by working out a simple analytical problem
that mimics some experimental setup. For example, scale dependence for the tor-
sion experiment was investigated in Ref. [27] (by numerical and asymptotic consid-
erations) in the framework of the Fleck & Willis theory [17] and in Ref. [10] (by
rigorous arguments) for energetic scale effects within the Gurtin-Anand theory [22].
Moreover, for the distortion–gradient plasticity (which accounts also for plastic spin),
specific finite-element schemes for the torsion problem have been recently proposed
in Ref. [8]. Problems involving micro-bending have been scrutinized in Ref. [26] and,
more recently, in Ref. [16] in the case of non-proportional plastic-strain histories.

With a similar goal in mind, a simplified flow rule, formulated in one spatial
dimension, was derived and analyzed in Ref. [4] to investigate the effects of both the
energetic and the dissipative scales, in both isotropic plasticity and crystal plasticity
under symmetric double slip (see e.g. [6]). Such flow rule, which mimics the traction
problem in simple shear symmetry, will be introduced in Section 2. In the same
section we will also make a comparison with conventional plasticity. This comparison
illustrates two well-known facts: 1) that the length-scale ` is expected to be a source
of additional strengthening; 2) that the natural way to quantify strengthening is to
consider increase of the Yield stress, τY , i.e., the value of the (shear) stress that
triggers plastic flow in an initially virgin sample.

The aim of this paper is to rigorously confirm these facts. We will show that
the onset of plastic flow, whence τY , is determined by the loss of stability (according
to the energetic formulation of rate-independent systems) of the virgin state. As
a consequence, we will explicitly determine the dependence of τY on `, proving in
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particular that τY is strictly increasing with `, that is to say, smaller samples are
stronger.

Results and proof are stated (in renormalized variables) in Section 3, which also
contains an outline of the arguments (details are given in Sections 4-5). In summary,
using the above-mentioned characterization of τY in terms of stability, we will ar-
gue that τY may also be characterized as the smallest value that the renormalized
dissipation

S0

h

ˆ +h

−h

√
φ2(y) + `2

(
dφ

dy
(y)

)2

dy

attains among all φ ∈ H1
0 ((−h,+h)) such that

´ +h

−h φ(y)dy = 1 (see Section 2 for the
definition of S0 and h, and Theorem 3.4 for the precise statement). This constrained
minimization problem had already been introduced in [4] and analyzed in [2], showing
that a minimum is attained in BV , which is smooth in the interior and satisfies the
corresponding Euler-Lagrange equation. We will then argue that these results permit
to explicitly characterize τY in terms of ` (see Theorem 3.5 and Figure 3.1).

2. Problem setup.

2.1. The traction problem. The one dimensional theory developed in Ref. [4]
describes plastic flow in a body having the shape of an infinite strip of width 2h,
namely,

Ωh =
{
x = (x, y, z) ∈ R3 : −h < y < h

}
, (2.1)

as sketched in Fig. 1. We restrict attention to the so–called traction problem, de-

Fig. 2.1. An infinite strip of height 2h, clamped on the bottom side and subject to a uniform
shear traction τ on the top side.

scribing an ideal experiment in which the bottom side of the strip is clamped and a
uniform shear traction τ along the direction x is prescribed on the upper side. We
work in the rate-independent setting of quasistatic evolution in plasticity and we limit
our attention to the case of proportional loading, that is to say, we assume that τ is
strictly increasing with respect to time. With this assumption, we may label each
instant by the corresponding value of the shear stress and adopt τ in place of time as
the independent variable.

Because of translational invariance in the x- and z-directions, it is natural to
assume that the two kinematic fields of interest, namely the displacement u and the
plastic strain Ep, are independent of x and z. Moreover, by symmetry considerations
(see Appendix A.4), it is natural to assume that u is parallel to the x-axis and that
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the only non-vanishing components of Ep are (Ep)12 = (Ep)21. Therefore, we make
the Ansatz that u and Ep have the following representation:

u = u(y, τ)e1, Ep = γp(y, τ)sym(e1 ⊗ e2), (2.2)

with {ei : i = 1, 2, 3} the canonical basis of R3. The stress tensor T, consistent with
(2.2) and in view of the balance equation divT = 0, is taken to be spatially constant
and having the representation

T(τ) = τ(e1 ⊗ e2 + e2 ⊗ e1).

2.2. A local flow rule: strengthening and hardening. If the material is
modeled in the framework of von Mises plasticity with kinematic hardening, the flow
rule governing the evolution of the shear strain γp may be written as{

τ − S0κγ
p = τdis,

τdis

S0
∈ Sign(γ̇p),

(2.3)

where S0 > 0 is the coarse-grain yield strength, κ is the kinematic-hardening coeffi-
cient, a superimposed dot denotes differentiation with respect to the loading param-
eter τ , and

Sign(x) =

 {+1} if x > 0,
[−1,+1] if x = 0,
{−1} if x < 0.

Note that (2.3) may be equivalently rewritten in its dual form:

|τ − S0κγ
p| ≤ S0 and (τ − S0κγ

p − τ̃)γ̇p ≥ 0 for all τ̃ ∈ [−S0, S0]. (2.4)

Note also that |τdis| ≤ S0 as there is no isotropic hardening. Granted that the body
is in its virgin state at the beginning of the experiment, namely,

γp(y, 0) = 0, (2.5)

the solution of (2.3) is easily worked out and, on introducing the positive-part operator
(·)+= max{·, 0}, can be written as

γp(y, τ) =
(τ/S0 − 1)

+

κ
.

This solution displays the typical features of a stress-strain diagram from classical
plasticity; in particular:

• the increase of S0 is associated to strengthening, that is, an increase of the
threshold for the onset of plastic flow, the Y ield shear stress:

τY = S0; (2.6)

• the increase of κ, with S0 fixed, is associated to hardening, that is, an increase
of the shear stress required to attain a given amount of plastic shear.
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On multiplying (2.3) by γ̇p, we obtain the free energy balance

1

2
S0κ

(
d

dτ
(γp)2

)
+ S0|γ̇p| = τ γ̇p, (2.7)

the free energy density being given by S0

2 κ(γp)2. The balance (2.7) can thus be
interpreted as a splitting of the internal power τ γ̇p expended on plastic flow into an
energetic part and a dissipative part, τdisγ̇p = S0|γ̇p|. Accordingly, we may say that,
in the present context1,

• strengthening is a dissipative effect, whereas

• hardening is an energetic effect.

It is worth noticing that the strengthening effect (also referred to as “elastic
gap”) associated to the dissipative length-scale emerges also in the analysis of non-
proportional plastic-straining histories carried out in [16].

2.3. A non-local flow rule: size-dependent strengthening and harden-
ing. Using the strain-gradient plasticity theory of Ref. [4] we derive in Appendix A a
non-local, rate-independent flow rule. In particular, we replace the first of (2.3) with:

τ − S0

(
κγp − L2γp

yy

)
= τdis − kdis

y , (2.8a)

where the subscript y denotes the partial derivative in the y direction, and the inclu-
sion in (2.3) with:

(τdis, `−1kdis)

S0
∈ Sign

(
γ̇p, `γ̇p

y

)
, (2.8b)

where the index y denotes partial differentiation with respect to y and

Sign(v) =

{ {
v
|v|

}
if |v| 6= 0,

{v ∈ R2 : |v| ≤ 1} if |v| = 0

(see Remark 3.3 for a discussion of the dual formulation). Problem (2.8) must be
complemented by both initial conditions, for which we again choose the virgin-state
condition (2.5),

γp|τ=0 = 0, (2.9a)

and boundary conditions, for which we choose microscopic hard conditions:

γp|y=−h = γp|y=+h = 0. (2.9b)

As explained in Appendix A, the partial differential equation (2.8a) is a constitutively-
augmented microforce balance. The balance is engendered by a version of the principle
of virtual powers that accounts for power expenditure on the time derivative of the
shear-strain gradient γp

y . In particular, taking the formal variation of the plastic free
energy

Ep(γp) =
S0

2

ˆ +h

−h

(
κ(γp)2 + L2

(
γp
y

)2)
dy (2.10)

1Note however that, as pointed out in [24] (see also [23, § 80]), it is not always possible to
discriminate between energetic and dissipative effects.
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and defining the plastic dissipation rate

Ψp(γp) = S0

ˆ +h

−h

√
(γ̇p)2 + `2(γ̇p

y )2dy, (2.11)

the following identity is arrived at:

d

dτ
Ep(γp) + Ψp(γp) =

ˆ +h

−h
τ γ̇pdy, (2.12)

which is again interpreted as a splitting of work expenditure (the right-hand side of
(2.12)) into an energetic part and a dissipative part. Given that L, resp. `, appear
in the energetic, resp. dissipative part of the energy balance (2.12), in line with the
discussion in §2.2

• one may expect that the extra energy brought into play by L enhances hard-
ening effects, and that the extra dissipation associated to ` is a source of
additional strengthening.

We have recently scrutinized the role of L in [10], rigorously confirming this
expectation in the case of torsion of thin wires. The role of ` has been investigated
both formally and numerically in [4]. In view of the discussion in §2.2 (cf. in particular
(2.6)) a natural way to rigorously quantify the role of ` is to determine how the yield
shear stress

τY := sup
{
τ ≥ 0 : γp ≡ 0 in (−h,+h)× [0, τ ]

}
, (2.13)

i.e. the value attained by τ at the onset of plastic flow, depends on `. Such a relation
can not be easily deduced a-priori and is the main point of this paper.

3. Main results.

3.1. Scaling. In order to single out the relevant parameters, we introduce di-
mensionless independent variables:

r :=
y

h
, θ :=

τ

S0
.

Consistent with this choice, we introduce the dimensionless parameters:

λ :=
`

h
, Λ :=

L

h
. (3.1)

The nonlocal flow rule (2.8) can now be reformulated in the domain I := (−1,+1) and
takes the form (henceforth, for typographical convenience, we drop the superscript p
from γp): {

θ − κγ + Λ2γrr = τ̄dis − k̄dis
r ,

(τ̄dis, λ−1k̄dis) ∈ Sign (γ̇, λγ̇r) ,
(3.2)

where the index r denotes partial differentiation with respect to r. Initial and micro-
scopically hard boundary conditions (2.9) now read as

γ(r, 0) = γ(−1, θ) = γ(+1, θ) = 0 (r, θ) ∈ I × [0,+∞) (3.3)
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and the renormalized plastic free energy, resp. dissipation-rate, are given by

E(γ) :=
κ

2

ˆ
I

(
γ2 + Λ2γ2

r

)
dr, Ψ(γ) :=

ˆ
I

√
γ2 + λ2γ2

rdr (3.4)

(cf. (2.10), resp. (2.11)). In renormalized variables, our aim becomes that of rig-
orously quantifying the dependence on the renormalized dissipative scale, λ, of the
renormalized yield shear stress (cf. (2.13))

τY
S0

= θY := sup
{
θ ≥ 0 : γ ≡ 0 in I × [0, θ]

}
, (3.5)

namely, the largest value attained by the renormalized shear stress θ prior to the onset
of plastic flow.

3.2. Energetic formulation. We assume hereafter that κ ≥ 0, Λ > 0, and
λ > 0. Being a rate-independent dynamical system, the flow rule (3.2)–(3.3) can be
formulated in many equivalent ways. The formulation that best suits our needs is
the so–called energetic formulation proposed in Ref. [31]. With a view towards for-
mulating (3.2)–(3.3) in the energetic format, we introduce the (renormalized) energy
functional :

E (θ, γ) := E(γ)− θ
ˆ
I

γdr. (3.6)

As usual, we write γ(θ) := γ(θ, ·). We can now give the definition of energetic solution.

Definition 3.1 (Energetic solution). Given Θ > 0, a function γ : [0,Θ] →
H1

0 (I) is an energetic solution to (3.2)–(3.3) if the function [0,Θ] 3θ 7→ ∂E
∂θ (θ, γ(θ)) =

−
´
I
γdr is in L1((0,Θ)) and if the following conditions are satisfied for all θ ∈ [0,Θ]:

E (θ, γ(θ)) ≤ E (θ, v) + Ψ(γ(θ)− v) for all v ∈ H1
0 (I), (3.7a)

E (θ, γ(θ)) + disΨ(γ; [0, θ]) = −
ˆ θ

0

ˆ
I

γ(ϑ)dr dϑ, (3.7b)

where disΨ(γ; [0, θ]) is the total variation of γ on [0, θ] with respect to the distance
d(γ1, γ2) = Ψ(γ1 − γ2), i.e.,

disΨ(γ; [0, θ]) := sup


N∑
j=1

Ψ(γ(θj)− γ(θj−1)) : N ∈ N, 0 = θ0 < · · · < θN = θ

 .

In the present setting (quadratic energy) the next proposition is established with-
out burden by invoking, for instance, Theorem 2.1 in Ref. [30]:

Proposition 3.2. There exists a unique solution γ of (3.2)–(3.3). Moreover,
θ 7→ γ(θ) is Lipschitz continuous as a function from [0,Θ] to H1

0 (I).

Remark 3.3. As is well known (see e.g. Section 2.1 in [30]), there are other,
equivalent ways to define a solution to (3.2)-(3.3). In particular, the dual formulation
(i.e., the strain-gradient counterpart of (2.4)) is given by

θ − κγ + Λ2γrr ∈ ∂Ψ(0) and 〈θ − κγ + Λ2γrr − σ, γ̇〉 ≥ 0 for all σ ∈ ∂Ψ(0),
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where 〈·, ·〉 denotes the duality pairing between H−1(I) and H1
0 (I) and ∂Ψ(0) = {σ ∈

H−1(Ω) : Ψ(u) ≥ 〈σ, u〉 ∀u ∈ H1
0 (I)}. A slight generalization of the arguments in [2,

proof of Theorem 6.1] shows that ∂Ψ(0) is characterized as

∂Ψ(0) =
{
τ̃ − k̃r : ‖(τ̃ , λk̃)‖∞ ≤ 1

}
.

3.3. Characterizations of τY . The first main result of this paper is the follow-
ing characterization of θY :

Theorem 3.4. Let γ be the unique energetic solution to (3.2)-(3.3) and let

θY =
τY
S0

= sup
{
θ ≥ 0 : γ ≡ 0 in I × [0, θ]

}
.

Then

θY = inf

{
Ψ(φ): φ ∈ H1

0 (I),

ˆ
I

φdr = 1

}
. (3.8)

In order to explain the relation between the two quantities, it is convenient to
briefly illustrate the main steps in the proof, whose details are given in §4. We begin
by observing that the energy–balance condition (3.7b) is identically satisfied for all
θ ∈ (0, θY ). Thus, what determines the onset of plastic flow is the loss of stability of
the trivial state γ ≡ 0. This leads us to consider the stability indicator :

m(θ) := inf
φ∈H1

0 (I)
Φθ(φ), where Φθ(φ) := E (θ, φ) + Ψ(φ). (3.9)

We will indeed argue that

θY = inf {θ ≥ 0 : m(θ) < 0}

(cf. Proposition 4.3). Next, we note that the plastic dissipation rate Ψ is (positively)
homogeneous of degree one in γ, whereas the plastic free energy E is quadratic. Then,
a simple scaling argument can be used to show that the reduced stability indicator

m̃(θ) := inf
φ∈H1

0 (I)
Φ̃θ(φ), where Φ̃θ(φ) := Ψ(φ)− θ

ˆ
I

φ dr (3.10)

is equivalent to the stability indicator :

m(τ) < 0⇔ m̃(τ) < 0

(cf. Proposition 4.4). The last step of our argument consists in observing that, again
by homogeneity, for negative values of m̃ we can restrict our attention to the subspace
of tests φ satisfying the normalization condition

´
I

φdr = 1: this leads to Theorem

3.4.
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3.4. The formula for τY . The second main result of this paper is the following
explicit formula for τY :

Theorem 3.5. The renormalized yield shear stress θY =
τY
S0

and the renormal-

ized dissipative scale λ =
`

h
are related by

λ =
2
√
θ2
Y − 1

π(θY −
√
θ2
Y − 1) + 2θY arctan 1√

θ2Y −1

. (3.11)

The proof is provided in Section 5 and relies on results from Ref. [2], guaranteeing
that the relaxation in BV (I) of the infimum problem in (3.8) admits a minimizer φY
which is smooth in I and satisfies the Euler-Lagrange equation

θY =
φY√

φY
2 + λ2

(
dφY

dr

)2 − λ2 d

dr

dφY

dr√
φY

2 + λ2
(

dφY

dr

)2 . (3.12)

By a suitable change of dependent variable, we convert (3.12) into a first-order dif-
ferential equation with two side conditions. The extra side condition selects the
eigenvalue θY of the E-L equation (3.12), yielding (3.11).

The graph of τY /S0, recovered from (3.11), is plotted in Fig. 3.1 (recall (3.1) and
(3.5)). Our result confirms that as the sample becomes smaller, i.e. λ = `/h increases,
the actual yield strength increases: hence smaller samples are stronger. Needless to
say, the results from our plot agree with the numerical calculations carried out in
Ref. [4] and reported in Figure 4 thereof.

0.1 0.2 0.3 0.4 0.5

1.1

1.2

1.3

1.4

λ = `
h

θY = τY
S0

Fig. 3.1. Solid line: renormalized effective yield strength τY /S0 versus renormalized dissipative
scale `/h, as from formula (3.11). Dashed line: the upper bound τY

S0
< 1+ `

h
derived in [4]. This plot

agrees with the result computed numerically in [4] and reported in Fig. 4 thereof. When comparing
the two figures, the reader should take into account that in the present paper the symbol h denotes
half the thickness of the strip, whereas in [4] the same symbol denotes the overall thickness.

Our explicit formula provides additional insight concerning the asymptotic be-
havior of the actual yield strength for small and large values of h. In particular, from
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(3.11) one finds that, for 0 < θY − 1� 1,

λ ∼
√

2

π

√
θY − 1,

which implies that, for 0 < λ � 1, the renormalized actual yield strength has the
following asymptotic behavior:

θY − 1 ∼ π2

2
λ2 for 0 < λ� 1.

We also note that, as λ = `/h→∞, a linear relation is recovered:

θY − λ ∼
π

4
for λ� 1.

Remark 3.6. It would be interesting to see if and how the dependence of τY
on ` is modified by a generalization of the plastic dissipation-rate density in (2.11)

which preserves 1-homogeneity, namely
(
(γ̇p)q + `q(γ̇p

y )q
)1/q

with q ≥ 1, as there are
mechanical arguments supporting it (see e.g. [7, 14]). It would also be interesting
to seek for quantitative relations between the onset of plastic flow and the dissipa-
tive length-scale under different symmetry assumptions (e.g., torsional symmetry) or,
better, in a generic three-dimensional framework.

4. Proof of Theorem 3.4. Existence and uniqueness of the minimum in (3.9)
is readily ascertained through the direct method of the calculus of variations, owing
to coercivity, lower semicontinuity, and convexity of Φθ in H1

0 (I):

Lemma 4.1. For any λ > 0 there exists a unique minimizer φλ of the infimum
problem in (3.9).

The first step is to show that if the trivial state is not stable at a certain value
of the renormalized shear stress θ during the loading process, then it is not stable for
whatever higher value:

Lemma 4.2. The function [0,Θ] 3θ 7→ m(θ) defined in (3.9) is non-increasing.

Proof. Let φθ be the unique minimizer of Φθ. First, we observe that

φθ≥ 0 a.e. in I for all θ ≥ 0. (4.1)

Indeed, obviously φ0 ≡ 0; for θ > 0, if φθ < 0 in a set J of positive measure, then
(by the definitions (3.6) and (3.4) of E , resp. Ψ) we would have Φθ(|φθ|) < Φθ(φθ), a
contradiction. Thus, given θ1 ≤ θ2, we have

m(θ2)
(3.9)
= Φθ2(φθ2)

≤ Φθ2(φθ1) (by def. of φθ2)

(3.6),(4.1)

≤ Φθ1(φθ1)
(3.9)
= m(θ1),

as desired.

The previous lemma is expedient to arrive to the following characterization of θY .

Proposition 4.3. Let γ be the unique energetic solution to (3.2)-(3.3) and let
θY and m as in (3.5), resp. (3.9). Then

θY = inf {θ ≥ 0 : m(θ) < 0} .
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Proof. Let us set θ̂ = inf {θ ≥ 0 : m(θ) < 0}. We notice that, since m(θ) is

nonincreasing, m(θ) = 0 in [0, θ̂). Hence, by direct substitution into (3.7), we see

that the trivial function θ 7→ 0 is an energetic solution on the interval [0, θ̂). By the

uniqueness of the energetic solution, and by (3.5), it follows that θY ≥ θ̂.
The reverse inequality follows from the monotonicity of θ 7→ m(θ): suppose indeed

that θ̂ < θY ; then, by Lemma 4.2 there exists θ̃ < θY such that m(θ̃) < 0; however,
θ̃ < θY implies that γ(θ̃) = 0; thus, by (3.7a) and (3.9), this means that m(θ̃) = 0,
whence a contradiction.

We now show that the reduced stability indicator defined in (3.10) can be used
to detect the onset of plastic flow. Indeed, we have the following equivalence:

Proposition 4.4.

θY = inf{θ ≥ 0 : m̃(θ) < 0}. (4.2)

Proof. In view of Proposition 4.3, it suffices to show that

m(θ) < 0 if and only if m̃(θ) < 0.

Since by definition Φ̃θ ≤ Φθ, m(θ) < 0 obviously implies m̃(θ) < 0. For the reverse

implication, let us assume m̃(θ) < 0. Then there exists φ̃ ∈ H1
0 (I) such that Φ̃θ(φ̃) <

0. On the other hand, by the 1-homogeneity of Φ̃θ,

lim
α→0+

Φθ(αφ̃)

α
= Φ̃θ(φ̃) < 0.

Thus Φθ(αφ̃) < 0 for α > 0 sufficiently small, whence m(θ) < 0.

With Proposition 4.4 at hand we are now ready to establish the variational char-
acterization we have been after.

Proof. [Proof of Theorem 3.4] Let

θ̂Y (λ) := inf

{
Ψ(φ): φ ∈ H1

0 (I),

ˆ
I

φdr = 1

}
. (4.3)

On recalling the definitions of Ψ and Φ̃θ given in (3.4), respectively (3.10), we see
that the inequality

θY ≤ θ̂Y (λ) (4.4)

is implied by the following chain of implications:

θ̂Y (λ) < θ ⇒ Ψ(φ̄) < θ for some φ̄ ∈ H1
0 (I) such that

ˆ
I

φ̄dr = 1

⇒ inf
φ∈H1

0 (I)

(
−
ˆ
I

θφdr + Ψ(φ)

)
< 0

(3.10)⇒ m̃(θ) < 0

(4.2)⇒ θY ≤ θ.
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Having established (4.4), it remains for us to prove the reverse inequality:

θY ≥ θ̂Y (λ). (4.5)

To this aim, let θ ∈ (0, θ̂Y (λ)). By the definition (4.3) of θ̂Y (λ), we have

θ

ˆ
I

φdr = θ < Ψ(φ) for all φ ∈ H1
0 (I) such that

ˆ
I

φdr = 1. (4.6)

Since both sides of the inequality in (4.6) are positively 1-homogeneous, (4.6) upgrades
to

θ

ˆ
I

φdr < Ψ(φ) for all φ ∈ H1
0 (I) such that

ˆ
I

φdr > 0. (4.7)

In turn, since Ψ is non-negative, (4.7) upgrades to

0 ≤ Ψ(φ)− θ
ˆ
I

φdr
(3.10)

= Φ̃θ(φ) for all φ ∈ H1
0 (I) (4.8)

which holds for all θ ∈ (0, θ̂Y (λ)). Summing up, we have the implication:

0 ≤ θ < θ̂Y (λ)
(4.8)⇒ m̃(θ) = inf

φ∈H1
0 (I)

Φ̃θ(φ) ≥ 0
(4.2)⇒ θ ≤ θY ,

whence (4.5), since θY ≥ 0 by definition.

5. Proof of Theorem 3.5. The infimum problem in (3.8) was addressed in
Ref. [2]. Consider the relaxation of Ψ,

Ψ̄(φ) := inf
{

lim inf
k→∞

Ψ(φk) : {φk} ⊆W 1,1
0 (I), φk → φ in L1(I)

}
, (5.1)

i.e. the largest lower semicontinous extension of Ψ. It is shown in Ref. [2] that the
relaxation Ψ̄ has the following representation for φ ∈ BV (I):2

Ψ̄(φ) =

ˆ
I

√
φ2 + λ2

(
dφ

dr

)2

dr + λ‖Dsφ‖(I) + λ (|φ(−1)|+ |φ(+1)|) . (5.2)

Notice that, as is customary in the BV setting, homogeneous boundary conditions
are now incorporated in the functional through the penalization term λ|φ|(∂I) =
λ|φ−0|(∂I), which measures the jump between the trace of φ and the prescribed null
value.

The following results were established in Ref. [2].

Theorem 5.1 (see Thm. 5.1 in Ref. [2]). Let Ψ̄ as in (5.1). There exists a
unique φY ∈ SBV (I) such that

´
I
φY dr = 1 and

Ψ̄(φY ) = min
{

Ψ̄(φ) : φ ∈ L1(I),

ˆ
I

φdr = 1
}
.

2Here ‖µ‖ denotes the total variation of a measure µ (see e.g. [3, Def. 1.4]) and dφ
dr

, resp. Dsφ,
denote the absolutely continuous, resp. singular, part of Dφ with respect to the Lebesgue measure
(see e.g. [3, Th. 1.28 and §3.9]). We also refer to [3] for definitions and basic properties of the spaces
BV (I) and SBV (I).
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Moreover, φY is even, strictly decreasing in [0, 1), and smooth in (−1, 1); furthermore,
it solves the Euler-Lagrange equation

Ψ̄(φY ) =
φY√

φY
2 + λ2

(
dφY

dr

)2 − λ2 d

dr

dφY

dr√
φY

2 + λ2
(

dφY

dr

)2 in I (5.3)

and it satisfies

lim
r→1−

φY (r)

φY (0)
=
θY − 1

θY
and lim

r→1−

dφY
dr

(r) = −∞. (5.4)

Remark 5.2. Notably, (5.4) shows that the solution φY ∈ SBV (I) of the relaxed
minimization problem does not satisfy the boundary conditions φ(−1) = φ(1) = 0;
generally speaking, this amounts to saying that, in order to minimize Ψ̄ with mass
constraint, paying a jump discontinuity at the boundary is cheaper than attaining the
boundary value zero.

We are now ready to prove Theorem 3.5.

Proof. [Proof of Theorem 3.5] In view of Theorem 3.4 and since H1
0 (I) is dense

in BV (I),

Ψ̄(φY ) = θY . (5.5)

We also notice that, since dφY /dr < 0 in [0, 1) and φY is positive with
´
I
φY (r)dr = 1,

θY
(5.5)
= Ψ̄(φY )

(5.2)

≥
ˆ
I

√
φY

2 + λ2
(dφY

dr

)2

dr >

ˆ
I

|φY |dr = 1. (5.6)

Now, consider the function

ζ(r) := −λ
dφY

dr√
φ2
Y + λ2

(
dφY

dr

)2
.

Since φY is smooth and positive in I, ζ is smooth as well. We note that

1− ζ2 = 1− λ2

(
dφY

dr

)2

φ2
Y + λ2

(
dφY

dr

)2 . =
(φY )

2

φ2
Y + λ2

(
dφY

dr

)2 .

Hence, since φY > 0,

φY√
φ2
Y + λ2

(
dφY

dr

)2
=
√

1− ζ2. (5.7)

By making also use of the Euler-Lagrange equation, we see that ζ satisfies the following
differential equation:

λ
dζ

dr

(5.3)
= Ψ̄(φY )− φY√

φ2
Y + λ2

(
dφY

dr

)2

(5.7),(5.5)
= θY −

√
1− ζ2. (5.8)
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It follows from (5.6) and (5.8) that dζ
dr > 0. Hence,

1

λ

(5.8)
=

ˆ 1

0

dζ
dr

θY −
√

1− ζ2
dr =

ˆ ζ(1−)

ζ(0)

1

θY −
√

1− ζ2
dζ.

In addition, since φY is even and because of (5.4), we have that

ζ(0) = 0 and lim
r→1−

ζ(r) = 1.

Therefore,

1

λ
=

ˆ 1

0

dζ

θY −
√

1− ζ2
. (5.9)

The integral on the right-hand side of (5.9) is well defined and can be computed
explicitly. As a result, we arrive at formula (3.11) for the renormalized actual yield
stress.

Appendix A. The nonlocal flow rule.
In this section we briefly recapitulate the steps leading to the flow rule (2.8), as

devised in Ref. [4], with a few changes from the original path. At variance with the
previous sections, we do not assume proportional loading. Accordingly, the indepen-
dent variables are now y ∈ (−h,+h) and t, which stands for time, and the index y
denotes partial differentiation with respect to y.

A.1. Principle of virtual powers. We start from the decomposition

uy = γe + γp (A.1)

of the shear strain uy into an elastic part γe and a plastic part γp. This decomposition
is accompanied by the prescription that, given any part P = (a, b) ⊂ (−h,+h), the
internal power expended within P has the form:

Wint(P ) =

ˆ
P

τ γ̇e + τpγ̇p + kpγ̇p
ydy. (A.2)

Thus, power expenditure by the macroscopic shear stress τ is accompanied by working
of the plastic microstress τp and gradient microstress kp. If body forces are left out of
the picture, the external power expended on P = (a, b) is localized on the boundary
∂P = {a, b} and has the form:

Wext(P ) = τ̂(b)u̇(b) + k̂p(b)γ̇p(b)− τ̂(a)u̇(a)− k̂p(a)γ̇p(a),

where τ̂ and kp are, respectively, the macroscopic and the microscopic shear tractions.
The application of the principle of virtual powers yields:

1) the identification between stress and traction, namely τ = τ̂ , along with the
macroscopic-force balance:

τy = 0; (A.3)

2) the identification of k̂p with kp, along with the microscopic force-balance:

τ = τp − kp
y .
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A.2. Constitutive prescriptions. Consistent with the choice (A.2) for the
internal power expenditure, it is assumed in Ref. [4] that the free-energy density ϕ
depends on the triplet (γe, γp, γp

y ) through a constitutive equation of the form:

ϕ = ϕ̂(γe, γp, γp
y ).

It is also assumed that the constitutive mapping delivering the free-energy density is
the sum:

ϕ̂(γe, γp, γp
y ) = ϕ̂e(γe) + ϕ̂p(γp, γp

y )

of an elastic-energy mapping ϕ̂e, which takes into account the elastic shear, and a
defect-energy mapping ϕ̂p, which depends on the plastic shear and on its gradient. In
particular, the elastic-energy mapping is given the form ϕ̂e(γe) = 1

2G(γe)2, with G > 0
the shear modulus. This assumption is accompanied by the standard constitutive
prescription τ = ∂ϕ̂e

∂γe , whence:

τ = Gγe. (A.4)

The microstresses are then split into an energetic part and a dissipative part by setting

τp = τdis + τ en, kp = kdis + ken,

where

τ en =
∂ϕ̂p

∂γp
, ken =

∂ϕ̂p

∂γp
y
,

so that the following reduced form of the dissipation inequality is arrived at:

0 ≤ τdisγ̇p + kdisγ̇p
y .

By analogy with the constitutive equations describing viscoplastic behavior in metals,
the following constitutive equations have been considered in Ref. [4]:

τdis = S

(
dp

d0

)m
γ̇p

dp
, kdis = S0`

2

(
dp

d0

)m γ̇p
y

dp
,

dp =

√
(γ̇p)2 + `2 (γ̇p

y )
2
, Ṡ = H(S)dp, S(0) = S0.

(A.5)

Here: S is the current yield strength, an internal variable whose value at time t = 0 is
equal to the initial yield strength S0 and whose time derivative is proportional to the
effective flow rate dp through a (isotropic) hardening/softening function H(S); d0 is
the reference flow rate; m > 0 is the rate-sensitivity parameter.

The constitutive prescription (2.8b) follows by setting H(S) = 0 (no isotropic
hardening) and by formally letting m → 0 in (A.5) (rate-independent limit). The
partial differential equation (2.8a) is recovered by choosing:

ϕ̂p(γp, γp
y ) =

1

2
S0

(
κ(γp)2 + L2(γp

y )2
)
.
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A.3. The traction problem. In the traction problem, the bottom side of the
strip is clamped, that is,

u(−h, t) = 0, (A.6)

and a time-dependent shear traction τ̂h(t) is prescribed on the upper side, that is,

τ(h, t) = τ̂h(t).

On recalling that the shear stress is spatially constant by (A.3), we see that the shear
stress τ(t) appearing in the flow rule (2.8) is a prescribed, spatially–constant field.
Thus, the flow rule (A.5) can be solved for the plastic shear γp without knowing the
displacement field. The latter is recovered by integrating (A.1) and (A.4), and by
taking (A.6) into account, that is to say,

u(y, t) =

ˆ y

−h

(
τ(t)

G
+ γp(s, t)

)
ds. (A.7)

A.4. Comparison with the Gurtin-Anand three-dimensional theory.
Under constitutive prescriptions analogous to those mentioned above, once augmented
with kinematic hardening the three-dimensional theory developed in [22] leads to the
following flow rule (see also [23, §90]):

{
T0 −Tback = Tp

dis − divKp
dis,

S−1
0

(
Tp

dis, `
−1Kp

dis

)
∈ Sign(Ėp, `∇Ėp),

(A.8a)

together with the standard force balance

divT = 0, (A.8b)

where

sym∇u = Ee + Ep, T = 2µEe + λ(trEe)I,

Tback = S0κEp − S0L
2

(
∆Ep − sym(∇divEp) +

1

3
(div divEp)I

)
,

Sign(V,V) =


{

(V,V)√
|V|2+|V|2

}
if |V|2+|V|2 6= 0{

(V,V) ∈ R3×3
Sym,0×(R3×3

Sym,0×R3) : |V|2+|V|2 ≤ 1
}

if |V|2+|V|2 = 0,

and T0 is the deviatoric part of T. Here R3×3
Sym,0 denotes the space of symmetric and

traceless 3× 3 matrices.

Let Ωh be as in (2.1) and let τ = τ(t) be prescribed. Formally, if (u,Ep) is a
solution to (A.8) in Ωh × (0,∞) with (Te2)|y=+h = τe1 and u|y=−h = 0, one can
check that:

(1) by translational invariance, (u,Ep) are independent of x and z;

(2) by odd reflection with respect to z = 0 and in view of (1), u ·e3 = e3 ·Epe1 =
e3 ·Epe2 = 0;

(3) since (−u,−Ep) is a solution to (A.8) with τ replaced by −τ , by odd reflection
with respect to x = 0 and in view of (1), u · e2 = ei ·Epei = 0 for i = 1, 2, 3.
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This motivates Ansatz (2.2) in Section 2.

One can also check that if γp is a solution to (2.8) and u is defined similarly
to (A.7), then (ue1, γ

psym(e1 ⊗ e2)) is a solution to (A.8). In fact, we could have
introduced (2.8) as well in this way rather than through the ad-hoc discussion in
Section A.1-A.3. We have opted for the latter in the hope of making the resulting
model more transparent.

Acknowledgements. We thank the reviewers for their useful comments and
suggestions. G.T. thanks Lallit Anand, Lorenzo Bardella, and Patrizio Neff for stim-
ulating discussions on strain-gradient plasticity.

REFERENCES

[1] E. C. Aifantis. On the Microstructural Origin of Certain Inelastic Models. J. Eng. Mater. –
T. ASME, 106:326–330, 1984.

[2] M. Amar, M. Chiricotto, L. Giacomelli, and G. Riey. Mass-constrained minimization of a
one-homogeneous functional arising in strain-gradient plasticity. J. Math. Anal. Appl.,
397:381–401, 2013.

[3] L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free discontinuity
problems. Clarendon Press, Oxford, 2000.

[4] L. Anand, M. E. Gurtin, S. P. Lele, and C. Gething. A one-dimensional theory of strain-gradient
plasticity: formulation, analysis, numerical results. J. Mech. Phys. Solids, 53:1789–1826,
2005.

[5] M. Ashby. The deformation of plastically non-homogeneous materials. Phil. Mag., 21:399–424,
1970.

[6] L. Bardella. A deformation theory of strain gradient crystal plasticity that accounts for geo-
metrically necessary dislocations. J. Mech. Phys. Solids, 54:128–160, 2006.

[7] L. Bardella and A. Giacomini. Influence of material parameters and crystallography on the size
effects describable by means of strain gradient plasticity. J. Mech. Phys. Solids, 56(9):2906–
2934, 2008.

[8] L. Bardella and A. Panteghini. Modelling the torsion of thin metal wires by distortion gradient
plasticity. J. Mech. Phys. Solids, 78:467–492, 2015.

[9] M. Bertsch, R. Dal Passo, L. Giacomelli, and G. Tomassetti. A nonlocal and fully nonlinear
degenerate parabolic system from strain-gradient plasticity. Discr. Cont. Dyn. Syst., 15:15–
43, 2011.

[10] M. Chiricotto, L. Giacomelli, and G. Tomassetti. Torsion in strain-gradient plasticity: Energetic
scale effects. SIAM J. Appl. Math., 72:1169–1191, 2012.

[11] O. W. Dillon and J. Kratochv́ıl. A strain gradient theory of plasticity. Int. J. Solids Struct.,
6:1513–1533, 1970.

[12] F. Ebobisse and P. Neff. Existence and uniqueness for rate-independent infinitesimal gradient
plasticity with isotropic hardening and plastic spin. Math. Mech. Solids, 15:691–703, 2010.

[13] F. Ebobisse, P. Neff, and D. Reddy. Existence results in dislocation based rate-independent
isotropic gradient plasticity with kinematical hardening and plastic spin: The case with
symmetric local backstress. arXiv preprint arXiv:1504.01973, 2015.

[14] A. Evans and J. Hutchinson. A critical assessment of theories of strain gradient plasticity. Acta
Materialia, 57(5):1675–1688, 2009.

[15] N. Fleck and J. Hutchinson. A reformulation of strain gradient plasticity. J. Mech. Phys.
Solids, 49:2245–2271, 2001.

[16] N. Fleck, J. Hutchinson, and J. Willis. Strain gradient plasticity under non-proportional load-
ing. P Roy Soc A-math Phy, 470:20140267, 2014.

[17] N. Fleck and J. Willis. A mathematical basis for strain-gradient plasticity theory-part I: scalar
plastic multiplier. J. Mech. Phys. Solids, 57:161–177, 2009.

[18] A. Garroni, G. Leoni, and M. Ponsiglione. Gradient theory for plasticity via homogenization
of discrete dislocations. J. Eur. Math. Soc., 12:1231–1266, 2010.

[19] A. Giacomini and L. Lussardi. Quasi-static evolution for a model in strain gradient plasticity.
SIAM J. Math. Anal., 40:1201–1245, 2008.

[20] P. Gudmundson. A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids,
52:1379–1406, 2004.

[21] M. E. Gurtin. A gradient theory of small-deformation isotropic plasticity that accounts for the



18 M. CHIRICOTTO, L. GIACOMELLI, G. TOMASSETTI

Burgers vector and for dissipation due to plastic spin. J. Mech. Phys. Solids, 52:2545–2568,
2004.

[22] M. E. Gurtin and L. Anand. A theory of strain-gradient plasticity for isotropic, plastically
irrotational materials. Part I: Small deformations. J. Mech. Phys. Solids, 53:1624–1649,
2005.

[23] M. E. Gurtin, E. Fried, and L. Anand. The Mechanics and Thermodynamics of Continua.
Cambridge University Press, 2010.

[24] M. E. Gurtin and B. D. Reddy. Alternative formulations of isotropic hardening for mises
materials, and associated variational inequalities. Cont. Mech. Thermodyn., 21:237–250,
2009.

[25] J. W. Hutchinson. Plasticity at the micron scale. Int. J. Solids Struct., 37:225–238, 2000.
[26] M. Idiart, V. Deshpande, N. Fleck, and J. Willis. Size effects in the bending of thin foils. Int.

J. Eng. Sci., 47:1251–1264, 2009.
[27] M. I. Idiart and N. A. Fleck. Size effects in the torsion of thin metal wires. Model. Simul.

Mater. Sc., 18:015009, 2010.
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inequality to incompatible tensor fields. J. Differential Equations, 258(4):1267–1302, 2015.

[35] P. Neff, A. Sydow, and C. Wieners. Numerical approximation of incremental infinitesimal
gradient plasticity. Int. J. Numer. Met. Eng., 77:414–436, 2009.

[36] B. D. Reddy, F. Ebobisse, and A. McBride. Well-posedness of a model of strain gradient
plasticity for plastically irrotational materials. Int. J. Plasticity, 24:55–73, 2008.


