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Abstract

All known methods for transverse confinement and guidance of light rely on changes

of the refractive index, that is, on scalar properties of electromagnetic radiation1–11.

Here we disclose a novel concept of dielectric waveguide, exploiting vectorial spin-orbit

interactions of light and the resulting geometric phases12–17. It relies on anisotropic

media whose optic axis lies orthogonal to the propagation direction and is spa-

tially modulated, so that refractive indices remain constant everywhere, yet a spin-

controlled cumulative phase distortion is imposed on the beam, balancing diffraction

for a specific polarization. Besides theoretical analysis and numerical simulations, we

present a proof-of-principle experimental demonstration of a geometric-phase optical

waveguide based on a discrete-element implementation. Our findings show that ge-

ometric phases may determine the optical behavior in three-dimensional structured

media extending well beyond a Rayleigh length, paving the way to a new class of

photonic devices. Analogous results apply to the whole electromagnetic spectrum.
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Waveguides are central to modern photonics and optical communications. Besides the

standard optical fibers –based on total internal reflection (TIR) and graded-index (GRIN)

refractive potential– and the hollow-metal-pipes for microwaves1, several more complex

structures have been investigated, ranging from photonic-bandgap systems2–5 to “slot”

waveguides6, plasmonic waveguides7, coupled-resonators8,9, grating-mediated10 and Kapitza-

effect waveguides11. Despite such variety, all light-guiding mechanisms investigated hitherto

rely on variations, sudden or gradual, of the refractive index or -generally- the dielectric

permittivity. Even when anisotropic materials are employed to realize waveguides, as for

example in liquid crystals18, light confinement is based on the transverse modulation of the

refractive index experienced by extraordinary waves through the nonuniform orientation

of the optic axis with respect to the wave-vector. A fundamental question is whether the

guided propagation of light can be achieved at all in structures without perturbations of

the refractive index. As we shall prove, this is indeed possible provided that the transverse

trapping is purely based on vectorial effects, that is, it relies on spin-orbit interactions be-

tween wave propagation and polarization states of light12,13: otherwise stated, an entirely

new mechanism for light confinement.

Spin-orbit photonic interactions are strictly related to geometric Berry phases14–17. In

the context of optics, the latter are phase retardations linked exclusively to the geometry

of the transformations imposed to light by the medium and independent of the optical

path length12. This concept has been already implemented in optical elements with various

architectures, including patterned dielectric gratings, liquid crystals and metasurfaces19–23.

These devices exploit the medium anisotropy to modulate the polarization state of light in

a space-varying manner across the plane transverse to propagation. This, in turn, gives rise

to a spatially inhomogeneous Pancharatnam-Berry (PB) phase16,24, resulting in a reshaped

optical wavefront. Hence, a PB optical element (PBOE) behaves as a phase mask, despite

exhibiting constant ordinary and extraordinary refractive indices and a transversely-uniform

optical path length, that is a flat geometry. The PB geometric phase should not be confused

with the Rytov-Vladimirskii-Berry geometric phase, or “spin-redirection” phase, which can

also affect light propagation by inducing an additional spin-dependent spatial shift in optical

media that present a transverse gradient of (isotropic) dielectric permittivity, and which is

at the core of the optical Magnus effect and the spin Hall effect of light25,26.

In this work we disclose the possibility of transversely confining electromagnetic waves
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(and in particular light), as in a waveguide, by exploiting PB phases to continuously com-

pensate diffraction in a bulk, that is in an extended continuous medium supporting beam

propagation over several Rayleigh distances. As we will show, at variance with PBOEs this

requires birefringent materials whose optic axis is modulated both in the transverse plane

and in the longitudinal coordinate along the propagation direction, a medium structured in

three-dimensions (3D).

We investigate light propagation along the axis z of an inhomogeneous uniaxial dielectric.

The optic axis û is assumed to be space-varying, but lying everywhere in the xy plane

transverse to propagation. Its point-wise orientation is described by the angle θ(x, y, z)

between û and the y axis in the laboratory frame (see Fig. 1a). We also assume that the

principal values ε‖ and ε⊥ of the (relative) permittivity tensor are uniform, corresponding

to constant refractive indices no =
√
ε⊥ and ne =

√
ε‖ for ordinary and extraordinary

eigenwaves, respectively.

Let us first recall that, in a homogeneous uniaxial with plane waves propagating with

wave-vector along z, the ordinary and extraordinary eigenfields have amplitudes ψo(z) =

eik0nozψo(0) and ψe(z) = eik0nezψe(0), respectively, with k0 = 2π/λ the vacuum wavenumber

and λ the wavelength. In other words, the two waves propagate independently of each

other and acquire a relative phase retardation δ(z) = k0∆nz versus propagation, where

∆n = ne−no is the birefringence. Without loss of generality, we consider a positive uniaxial

medium, that is ∆n > 0. If we now turn from the usual ordinary/extraordinary linear

polarization basis to the left/right (L/R) circular polarization (CP) basis, the same evolution

for LCP/RCP wave amplitudes is described by (see Methods for a derivation):

ψL(z) = ein̄k0z
[
cos

(
δ

2

)
ψL(0)− i sin

(
δ

2

)
ei2θψR(0)

]
ψR(z) = ein̄k0z

[
cos

(
δ

2

)
ψR(0)− i sin

(
δ

2

)
e−i2θψL(0)

]
, (1)

where n̄ = (no + ne)/2 is the average refractive index. Equations (1) point out that the

two forward-propagating circular waves evolve with a common phase n̄k0z and, in addition,

periodically exchange handedness (that is LCP becomes RCP and vice versa) acquiring an

additional phase factor ±2θ (+/− for initial RCP/LCP, respectively). This extra phase

clearly has a geometric nature and is an example of PB phase16,17,24. It should be also noted

that this phase is not arising from modulations of the ordinary and extraordinary refractive
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indices, which are constant in the medium, nor with net energy exchanges between the

ordinary and extraordinary linearly-polarized wave components, which remain constant in

amplitude all along. The two CP waves completely interchange after a propagation distance

zcoh/2 such that δ(zcoh/2) = π, then the process reverts and the optical field retrieves its

initial state in z = zcoh where δ(zcoh) = 2π (see Fig. 1b). Hence, the geometric phase in

such uniform medium oscillates but does not accumulate over distance. While in PBOEs

the propagation can be halted when δ(z) = π by properly arranging the medium length (or

its birefringence), so as to obtain a non vanishing PB phase at the output, in a system with

extended propagation length (e.g. a waveguide) the described geometric phase appears to

play no significant role.

A simple equalization approach to build-up a geometric phase along z consists of intro-

ducing a periodic modulation in order to counteract its recurring cancellation, analogous to

dispersion-compensation in fibers and quasi-phase-matching in nonlinear optics27,28. This

requires to periodically invert the sign of θ along z with the same spatial period as the

“natural” interchange described above, so that the PB phase will keep adding up (with

the same positive or negative sign depending on the input polarization) and accumulate

monotonically over distance (Fig. 1b). That is, we must have θ(z) = θ(z + Λ) where

Λ = zcoh = 2π/(∆nk0) = λ/∆n (the average value of θ(z), even if nonzero, plays no role).

The resulting PB phase can then be exploited to control light over an extended propagation

length. In particular, to achieve light confinement the phase retardation needs to be larger

on the beam axis than in the outer regions, as in TIR or GRIN optical fibers. Such a phase

modulation across the beam gives rise to a focusing effect able to counteract the natural

diffraction and leading to transverse confinement and guidance. By combining longitudi-

nal (z) and transverse (xy plane) modulations of θ, an overall 3D structure described by

θ(x, y, z) = σ(z)Γ(x, y) is obtained, with σ(z) = σ(z + Λ) a periodic function to yield a

monotonic growth of the geometric phase and Γ(x, y) a transverse profile which defines the

waveguide cross-section. A sample sketch of such a structure is in Fig. 1c, whereas Fig. 1d

shows the corresponding geometric phase accumulation in the plane-wave limit. We stress

that in this inhomogeneous anisotropic medium the optic axis û remains always orthogonal

to the propagation direction, so no changes to the ordinary or extraordinary refractive in-

dices may contribute to guiding. Moreover, it will be shown that, within the validity domain

of our approximations, no energy exchange between ordinary and extraordinary polarization
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components takes place, so that no variation of the average refractive index can contribute

as well.

We developed a full analytic theory of the afore described PB guiding mechanism in the

frame of the slowly-varying-envelope and small-anisotropy approximations (see Methods).

The main results, in a simpler geometry with one transverse coordinate x for the sake of

simplicity and assuming a sinusoidal z-modulation for θ, can be summarized in a dynamical

equation for the wave amplitude A corresponding to a given CP input:

i
∂A

∂z
= − 1

2n̄k0

∂2A

∂x2
+ V (x)A (2)

where V (x) ≈ ±(π/Λ)Γ(x) with +/− for input LCP/RCP, respectively. Higher-order small

corrections to V (x) have been omitted for simplicity (see Methods for the complete expres-

sion). Equation (2) is fully equivalent to a 1D Schrödinger equation for a particle oscillating

in a potential V (x) (with z playing the role of time) or to the standard (paraxial) Helmholtz

equation for light propagating in a GRIN medium with refractive index n(x) such that

V (x) = −k0[n2(x) − n̄2]/(2n̄). Depending on the sign of Γ(x), either LCP or RCP per-

ceive a trapping potential and get confined, while the orthogonal CP undergoes defocusing

and diffracts even faster than normal, confirming once again the spin-orbit nature of this

interaction. For the confined CP component the structure behaves as a standard GRIN

waveguide with index profile n(x) (the CP state refers to the input, as the circular polariza-

tion continuously evolves between left and right during propagation, see Fig. 2f). Examples

of the calculated effective potential and corresponding guided modes are given in Fig. 2a-c.

In order to check the validity of our theory we carried out finite-difference time-domain

(FDTD) numerical simulations of light propagation in the waveguide structure, solving the

full Maxwell equations in the space-variant birefringent medium. Figure 2d-f provides ex-

amples of the obtained results, in excellent agreement with the theoretical predictions.

We demonstrated this novel approach to guiding light with a proof-of-principle experi-

ment. Rather than using the continuous structure described above, we realized a simpler

“discrete-element” PB-waveguide consisting of equally spaced PBOEs alternating with a ho-

mogeneous isotropic dielectric (air); each PBOE is essentially equivalent to a thin slice of the

PB-waveguide and acts as a focusing element, that is, a geometric-phase lens (GPL)17,20,29,30.

In other words, we mimicked the operation of the PB-waveguide with a sequence of equally
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spaced converging lenses, exclusively using PB phases (Fig. 3a).

Our GPLs were thin films of a birefringent uniaxial, nematic liquid crystals, having a

transverse distribution of the optic axis given by θ = α(x2 + y2), with α a constant, see

Fig. 3b. Neglecting diffraction within the finite GPL thickness, the action of each lens

on a CP input beam is described by Eqs. (1). For δ = π, the polarization handedness is

inverted at the output and the outgoing wave acquires a geometric phase ±2θ(x, y), which

is equivalent to the phase of a thin lens having focal length f = ± π
2αλ

. Hence, the GPL acts

as a focusing element for one CP handedness but defocusing for the opposite one. Since the

circular polarization handedness is inverted at each GPL, in order to balance out diffraction

throughout the structure, we flipped the sign of α at each step, resulting in a longitudinal θ

oscillation as for the continuous PB waveguide case. The fundamental mode of our discrete

waveguide, the shape-preserving Gaussian beam that propagates with period equal to the

distance d between opposite lenses, has a beam waist w0 =
√
λ[(4f − d)d]1/2/(2niπ) centered

between subsequent GPLs, where ni is the refractive index of the isotropic medium between

elements.

For our experiments, we set up a sequence of five GPLs, rotating every other one by π

around the y axis so as to produce alternating signs of α; moreover, exploiting the electro-

optic response of nematic liquid crystals, the lenses were electrically tuned to δ = π (see

Methods for details). We characterized light propagation in the structure for both LCP

and RCP inputs and compared it with free-space propagation. As can be seen in Figs. 3c-

e, the experimental results are in very good agreement with the polarization-dependent

waveguiding predicted for the continuous case: only one input CP handedness was confined

in the PB-waveguide with a shape-preserving mode, whereas the opposite polarization was

radiated off almost immediately. The acquired data matched well the theory, as shown in

Fig. 3f.

In conclusion, we have shown, both theoretically and experimentally, that geometric

Pancharatnam-Berry phases can be used for transverse confinement of electromagnetic

waves, thus introducing an entirely new light-guiding principle that exploits spin-orbit op-

tical interactions and the vectorial nature of electromagnetic radiation. Besides its fun-

damental interest, the proposed approach is technologically relevant for future integrated

optics systems, including those involving metasurfaces22,23. The development of novel gen-

erations of PB guided-wave photonics and manipulation of light is envisioned in dielectrics
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and metamaterials for the whole spectrum, from terahertz to ultraviolet.

I. METHODS

A. Dynamics of circularly polarized waves through a uniform uniaxial medium

Plane-wave light propagation along z in a uniform uniaxial medium can be described by

a two-component Jones vector ψ(z) (in the bra-ket notation |ψ〉), representing the complex

amplitudes of two orthogonal polarizations which define the chosen basis of the representa-

tion. A 2×2 evolution Jones matrix U (z) then links the vector ψ(0) at the input plane z = 0

with the vector ψ(z) at any given distance z. In the xy laboratory basis, the Jones vector

is the same as the (complex) electric field vector ψxy = (Ex;Ey). A more convenient basis

is that of the ordinary/extraordinary linear polarizations, that is ψoe = (Eo;Ee). These two

bases are related by the rotation matrix Rxy(θ) = (cos θ, sin θ;− sin θ, cos θ), where θ is the

angle formed by the optic axis û with the y axis, that is ψoe = Rxy · ψxy. In this oe basis

the evolution matrix is diagonal, being given by the following expression:

Uoe(z) =

 eik0noz 0

0 eik0nez

 . (3)

Let us now introduce a third convenient basis to represent propagation, that is the LCP/RCP

circular polarization basis, hereafter denoted as LR. In this Letter, we adopt the nota-

tion ψL = (1;−i)/
√

2 (LCP) and ψR = (1; +i)/
√

2 (RCP) for the basis unit vectors,

corresponding to the source-point-of-view naming convention on CP states. The matrix

P = (1, 1;−i, i)/
√

2 can then be used to switch the Jones vector from the LR basis to

the xy one, while the rotation operator in the LR basis is diagonal and takes the form

RLR(θ) = (e−iθ, 0; 0, eiθ). The evolution matrix in the LR basis is then given by the follow-

ing expression:

ULR(z; θ) = R−1
LR(θ) · P−1 ·Uoe(z) · P ·RLR(θ). (4)

A straightforward calculation leads from Eq. (4) to Eq. (1). As mentioned in the main text,

the resulting polarization dynamics is a periodic oscillation with period zcoh = λ/∆n.

Let us consider the solution for a purely circular polarization at the input, e.g. for ψR(0) =
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1 and ψL(0) = 0. From Eq. (1) we get ψR(z) = ein̄k0z cos( δ
2
) and ψL(z) = −iein̄k0z sin( δ

2
)e2iθ.

From the latter expression we can calculate the phase difference between two states corre-

sponding to two different orientations for the optic axis, say θ1 and θ2, respectively. Following

Pancharatnam’s original concept24,31, the phase delay ∆φ(θ1, θ2) is

∆φ(θ1, θ2) = arg [〈ψ(θ1)|ψ(θ2)〉] = arg

[
cos2

(
δ

2

)
+ sin2

(
δ

2

)
e2i(θ2−θ1)

]
. (5)

Expression (5) results in the transverse phase delay plotted in Fig. 1b (dashed lines) in the

homogeneous limit. When the optic axis distribution is flipped at Λ/2, the phase delay can

be easily obtained from Eq. (4) (solid lines in Fig. 1b). When the optic axis distribution is

sinusoidally modulated along z, the accumulated ∆φ(θ1, θ2) can be numerically calculated

partitioning the medium in several layers, each of them short enough to make the variations

of θ negligible within each layer, as shown in Fig. 1b (solid lines with circles).

B. Spin-dependent photonic potential

In the paraxial limit (i.e., neglecting the longitudinal field components) and for small

birefringence (∆n� 1), the Maxwell equations for the electric field E = Exx̂+ Eyŷ in two

dimensions (i.e., with no field evolution across y) can be cast as

∂2

∂z2

 Ex

Ey

 = − ∂2

∂x2

 Ex

Ey

− k2
0

 εxx(x, z) εxy(x, z)

εyx(x, z) εyy(x, z)

 Ex

Ey

 . (6)

We wish to adopt now the slowly-varying-envelope approximation (SVEA) (also correspond-

ing to the paraxial wave approximation) so as to obtain a simpler first-order partial differ-

ential equation in the evolution coordinate z. SVEA is usually based on the presence of two

very different spatial scales for the evolution along z, that is a short scale of order λ and a

long scale given by the Rayleigh length zR = πn̄w2/λ, where w is the smallest transverse

spatial scale of the problem (the beam radius and/or the transverse spatial modulations of

the medium). In our case, however, we also have an intermediate scale Λ = zcoh = λ/∆n,

with λ � Λ � zR for reasonable values of ∆n and w. It is therefore not convenient to

apply the SVEA directly to Eq. (6), as the field components Ex and Ey undergo a relatively

rapid evolution on scale Λ because of birefringence. It is more convenient to switch first
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to the space-varying oe wave basis introduced in Section A, with a rotation by the angle

θ(x, z) around the z axis. This basis change diagonalizes the effect of birefringence and

hence allows one to adopt the SVEA in an optimal way, but at the same time it generates

the space-varying geometric phases which will affect the resulting slow-envelope dynamics.

In the rotated basis, Eq. (6) becomes

∂2ψoe
∂z2

− 2i
∂θ

∂z
S2 ·

∂ψoe
∂z

= −∂
2ψoe
∂x2

+ 2i
∂θ

∂x
S2 ·

∂ψoe
∂x

+ i

(
∂2θ

∂x2
+
∂2θ

∂z2

)
S2 ·ψoe

+

[(
∂θ

∂x

)2

+

(
∂θ

∂z

)2
]
ψoe − k2

0εD ·ψoe, (7)

where we introduced the Pauli matrix S2 = (0,−i; i, 0) and the diagonalized permittivity

tensor εD = (ε⊥, 0; 0, ε‖). We now set ψoe(x, z) = Uoe(z) · ψ(x, z), where Uoe(z) is the

evolution matrix in the oe basis for plane waves in a uniform medium, as given in Eq. (3),

and ψ(z) are slowly-varying amplitudes. Moreover, let us assume sinusoidal z-modulation

of the optic axis, as given by θ(x, z) = Γ(x) sin(2πz/Λ). We now multiply both sides of Eq.

(7) by U−1
oe from the left and take a z-average over a period Λ of all terms, assuming that the

amplitudes ψ(z) vary slow enough that they can be taken out of the averaging operation

(this obviously requires Λ � zR). The quadratic terms in θ(x, z) will then contribute

with a non-vanishing average, independent of the polarization evolution. In addition, the

sinusoidal terms linear in θ(x, z) combine with the oscillations in polarization described by

the z-evolved Pauli matrix S̃2(z) = U−1
oe (z) · S2 ·Uoe(z) = S2 cos (k0∆nz) + S1 sin (k0∆nz),

where S1 = (0, 1; 1, 0) is the first Pauli matrix, leading to other phase-matched constant

terms. We thus obtain the following dynamical equation for the slow amplitudes ψ(z):

∂2ψ

∂z2
+

(
2ik0N − i

2π

Λ
Γ(x)S2

)
· ∂ψ
∂z

= −∂
2ψ

∂x2
− 2k0

π

Λ
Γ(x)S2 ·N ·ψ + i

∂Γ

∂x
S1 ·

∂ψ

∂x

+
i

2

[
∂2Γ

∂x2
−
(

2π

Λ

)2

Γ(x)

]
S1 ·ψ +

1

2

[(
2π

Λ

)2

Γ2(x) +

(
∂Γ

∂x

)2
]
ψ, (8)

in which we introduced the refractive index matrix N =
√
εD = (no, 0; 0, ne). We now

divide all terms in Eq. (8) by 2n̄k0 and take the two formal limits λ/zR → 0 (SVEA) and

λ/Λ = ∆n → 0 (small anisotropy approximation), while keeping Λ and zR to finite values

(this step and the subsequent analyses of the relative magnitude of various terms are best

done after switching to dimensionless coordinates x/w and z/zR, but for the sake of brevity
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we keep here the dimensional ones). We thus obtain

i
∂ψ

∂z
= − 1

2n̄k0

∂2ψ

∂x2
− π

Λ
Γ(x)S2 ·ψ +

i

2n̄k0

∂Γ

∂x
S1 ·

∂ψ

∂x
+

i

4n̄k0

[
∂2Γ

∂x2
−
(

2π

Λ

)2

Γ(x)

]
S1 ·ψ

+
1

4n̄k0

[(
2π

Λ

)2

Γ2(x) +

(
∂Γ

∂x

)2
]
ψ. (9)

Analyzing the magnitude of the four terms containing the optic axis perturbation Γ(x), we

can see that the last three are of order Λ/zR relative to the first. Hence, as a zero-order

approximation in Λ/zR we can drop the last three terms, obtaining

i
∂ψ

∂z
= − 1

2n̄k0

∂2ψ

∂x2
− π

Λ
Γ(x)S2 ·ψ. (10)

In this equation the only nondiagonal matrix is S2. Its eigenvectors are obviously the circular

polarizations ψR and ψL (with reference to the input plane), with eigenvalues sz = ±1,

corresponding to the photon spin along z (in h̄ units). Hence, setting ψ(x, z) = ψPA(x, z),

with P = L or P = R for the two circular-polarized input waves, we obtain the following

final amplitude propagation equation:

i
∂A

∂z
= − 1

2n̄k0

∂2A

∂x2
− sz

π

Λ
Γ(x)A, (11)

where sz = +1 for input RCP and sz = −1 for input LCP.

We can then reconsider perturbatively the contribution of the three omitted terms in

Γ(x) which we had previously dropped. The second and third terms, which are linear in

Γ(x), include the matrix S1 which flips the CP handedness. Hence these two terms are off-

diagonal in the CP basis. The term which is quadratic in Γ(x) is instead scalar and hence

is diagonal in the CP basis (and in any other basis). Hence, the latter is the only relevant

contribution to first order in Λ/zR, while the other two will contribute to the eigenvalues

only to order (Λ/zR)2. In conclusion, up to first order in Λ/zR we can consider the following

final expression for the photonic potential

V (x) = −sz
π

Λ
Γ(x) +

1

4n̄k0

[(
2π

Λ

)2

Γ2(x) +

(
∂Γ

∂x

)2
]
. (12)
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The guided modes of the system can then be obtained by setting A(x, z) = eiβzA(x, 0),

with the effective propagation constant β acting as an eigenvalue. The complete vector

expression of the field in the oe basis is given by ψoe(x, z) = Uoe(z) ·ψPA(x, z) with P = L

or P = R. To obtain the fields in the fixed xy basis one needs to apply also the rotation

matrix R−1
xy (x, z). It should be noted that, when applied to a single input CP guided mode,

this predicted evolution will keep the relative amplitudes of the ordinary and extraordinary

waves constantly balanced everywhere in the medium. This justifies our statement that the

average refractive index is unperturbed, so that only geometrical phases contribute to the

wave confinement.

In the Supplementary Material a more formal theory based on the Bloch-Floquet method

is considered in order to analyze the possible additional effects we have neglected in the

z-averaging operation. To first order in Λ/zR, this more complete analysis returns the

same results reported here. The quadratic contribution in Γ appearing in Eq. (12) can be

neglected for maximum Γ values, that is Γ0, up to 360◦ when the transverse size w ≈ 5 µm,

as apparent in Fig. 2a-b. This term however becomes relevant for narrower distributions

of θ (Supplementary Fig. 1 shows how the trapping potential gets strongly distorted for

Γ0 = 360◦ when wD = 0.5 µm). Finally, the possible long-term role of the higher-order

contributions in Λ/zR, neglected here, will be investigated in future work.

C. FDTD simulations

For the FDTD numerical simulations we employed the open-source code MEEP32 to solve

the full Maxwell equations in two dimensions, with no approximations. In all simulations

we assumed a Gaussian shaped orientation of the optic axis across x in the form Γ(x) =

Γ0 exp (−x2/w2
D). The excitation was a continuous-wave source launched in x = z = 0 with

a width of 3 µm across x, turned on at t = 0 and infinitely narrow across z. The modulated

uniaxial medium was placed in z0 = 2 µm with modulation σ(z) = sin
[

2π∆n
λ

(z − z0)
]
. The

refractive indices no and ne were taken equal to 1.5 and 1.7, respectively. The simulations

confirm that an input RCP is confined in the anisotropic structure, whereas an LCP input

is expelled towards the edges (Supplementary Fig. 3). The polarization of the simulated

confined wave undergoes small variations in the transverse plane (Supplementary Fig. 2)

and is not perfectly periodic along z. Such small discrepancies between simulations and
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our analytic theory are clearly due to higher-order terms in λ/Λ and Λ/zR which have been

neglected in the analytic theory. For wD = 5 µm light confinement improves with the maxi-

mum rotation Γ0 (Supplementary Fig. 3); however, for Γ0 = 90◦ even in the defocusing case

a small amount of power is trapped on axis owing to the higher order terms appearing in Eq.

(12). Further simulations show how light trapping/repulsion both increase as the width wD

gets smaller, in agreement with theory (Supplementary Fig. 5). We also studied numerically

the effects of shifting σ(z) by changing z0, obtaining a perfect agreement with theory. In

fact, when z0 = zcoh/2 the two polarization states exchange their roles, that is, LCP at the

input gets trapped whereas a launched RCP undergoes defocusing (Supplementary Fig. 6);

when z0 = zcoh/4 the beam evolution does not depend on the input polarization, with power

equally shared by confined and radiated modes. These results demonstrate that the PB-

phase waveguide infringes translational symmetry along the propagation axis, at variance

with standard (TIR or GRIN) waveguides. Finally, we numerically ascertained the role of

small mismatches between the modulation period Λ and the length zcoh, an important issue

in actual implementations of the proposed waveguides. Keeping all the parameters fixed

except for Λ, the global behavior of the two polarization states, i.e., LCP defocused and

RCP guided, is robust against Λ variations up to 50%.

D. Fabrication of the geometric phase lenses

Geometric phase lenses and similar PBOEs can be realized with a variety of techniques

and materials19,21,33–35. Liquid crystals33 and liquid crystal polymers34 are the most suitable

for visible and near infrared illumination. Our GPLs were fabricated using polarization

holography in combination with photo-alignment of nematic liquid crystal36. Planar cells

were realized with two glass substrates held parallel at a separation of 6 µm, previously

coated with a convenient photoaligning surfactant36. Such substrates were exposed to colli-

mated ultraviolet light with an inhomogeneous distribution of the linear polarization state.

The polarization pattern was realized by coaxial superposition of two beams (473 nm diode-

pumped solid-state laser) with orthogonal circular polarizations and various phase-front

curvatures. The interference of such beams, rather than an intensity modulation, produces

a pattern of linear polarizations, with the angle of the polarization plane proportional to the

point-wise phase difference between the beams. After exposure of the coated glass slides, ne-
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matic liquid crystals (mixture E7 from Merck) were introduced in the cell by capillarity and

aligned with a correspondingly inhomogeneous orientation of the optic axis (molecular direc-

tor). The required half-wave phase retardation of the GPLs was finely adjusted by applying

a 10 kHz square-wave electric voltage (≈ 2.5 V peak-peak) as in other liquid-crystal-based

PBOEs37. Each GPL can also be optically “switched off” by applying the voltage giving

full-wave retardation (≈ 4.0 V). Five GPLs were fabricated, with focal lengths 15.17, 15.98,

14.83, 15.17 and 15.69 ± 0.01 cm, respectively, for light of wavelength 532 nm. The disper-

sion of the focal length values is due to the imperfect repeatability of the exposure conditions

and insufficient stability of the fabrication setup.

E. Beam characterization within the structure

In order to reconstruct the beam parameters inside the GPL structure, the propagating

beam at 532 nm was sampled by a CCD camera placed at various propagation distances

between the lenses. Moreover, to improve the measurement accuracy of the local beam

parameters, additional beam profiles were collected at given distances from each lens. This

was accomplished by either switching off the GPLs following the one under measurement or

by physically removing the remaining lenses from the sequence. The beam radii w(z) were

obtained through Gaussian fits of the acquired profile images and used to reconstruct the

modal parameters within and at the output of the waveguide. The obtained radius evolution

was then compared with the theoretical predictions from ABCD Gaussian propagation.

A more realistic description of the beam was obtained with a non-unitary beam-quality

factor M2 of the confined beams after each lens (M2
1 = 1.05 ± 0.01, M2

2 = 1.18 ± 0.02,

M2
3 = 1.19± 0.01, M2

4 = 1.15± 0.04, and M2
5 = 1.32± 0.04, uncertainties at 95% confidence

level), suitably modifying the propagation equations38 for the simulations. The gradual

increase of the M2 parameter after each step of the discrete structure can be ascribed to

degradation of the beam profile (as visible in Fig. 3g) due to the noisy patterns of the GPLs.
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FIG. 1. Geometric-phase waveguide concept. a, Reference system with orientation of the

optic axis u and ordinary/extraordinary (o/e) field directions in the laboratory frame xyz; the

angle θ between u and the axis y varies from point to point. b, Geometric phase acquired by a

plane wave, CP at the input, propagating along z in a transversely homogeneous medium with

θ = π/4 as a function of the birefringence retardation δ(z), relative to the case with θ = 0. The

geometric phase sign is fixed by the CP input handedness (blue and red lines). If θ is uniform

along z (dashed lines), the gometric phase reaches a maximum (in the example π/2) when δ = π

and then decreases to zero for δ = 2π. If the angle θ is suddenly inverted at δ = π (solid lines),

the phase grows monotonically. If θ is sinusoidally modulated along z (solid lines with circles), the

phase increases monotonically at a slightly lower rate than in the previous case. When launching a

light beam along z in a periodic uniaxial medium with |θ| larger on axis than in the outer regions,

the cumulative geometric phase leads to a guiding effect for an input LCP or RCP, depending

on the initial θ modulation sign. c, 3D illustration of a continuously modulated geometric-phase

waveguide: the orientation of the optic axis is longitudinally sinusoidal and transversely Gaussian.

We sketch nine sections within a modulation period, with the black rods representing the optic

axis distribution and the colors corresponding to θ; the guided light beam is represented as a red

arrow. d, Geometric phase accumulation across the beam profile versus propagation in the plane

wave limit (that is, without diffraction), corresponding to c (blue solid line) and in the limit of an

optic axis that is unmodulated along z (red dashed lines). Here the maximum θ is π/4.
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FIG. 2. Theory and simulations. a-b, Effective photonic potential V (x)2n̄/k0 versus x and

maximum θ angle Γ0 (we assumed a Gaussian distribution for the transverse orientation by set-

ting Γ = Γ0 exp (−x2/w2
D)) perceived by the defocused (a, LCP input) and the confined (b, RCP

input) waves, respectively. The terms proportional to Γ2 are accounted for (see Methods). c,

Corresponding fundamental guided mode; represented is the field amplitude versus x and Γ0. d-f,

FDTD simulations for Γ0 = 15◦ when the input beam is LCP (d) and RCP (e), respectively; the

color scale gives the local light intensity; the red lines give the beam radius evolution for a homo-

geneous medium, that is for ordinary diffraction. f, Evolution of the confined beam polarization

state within a modulation period. Here λ = 1 µm, no = 1.5, ne = 1.7, σ(z) is sinusoidal and the

transverse distribution has wD = 5 µm.
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FIG. 3. Experiment. a, Experimental setup: five equally-spaced electrically-tuned GPLs form

a discrete-element geometric-phase waveguide. A 532 nm continuous-wave Gaussian beam was

adjusted in transverse size with a telescope so as to match the fundamental mode of the waveguide,

circularly polarized with a quarter-wave plate (QWP) and then launched into the waveguide. Beam

profiles at various intermediate positions z along the propagation and at the output were acquired

by a movable CCD camera and used to reconstruct the mode parameters of the beam after each

GPL. b, Distribution of the optic axis and corresponding microscope image of a GPL between

crossed polarizers; dark fringes correspond to regions where the optic axis is aligned parallel to

one of the polarizers. c-e, Data-reconstructed evolution of the propagating beam for each of the

following cases: c, guided mode obtained for RCP input; d, divergent beam obtained for LCP

input; e, free-space diffracting beam for the same input parameters. The color scale gives the local

light intensity. Horizontal lines and L1-L5 labels indicate the GPL positions within the discrete

sequence (dashed lines mark removed GPLs). f, Beam radius versus z in the guided case. Dots are

the measurement data, the blue solid lines are the Gaussian-beam fits for those dots between two

subsequent GPLs, the blue shaded areas being the fit confidence regions at one standard deviation;

the black dashed line is the theoretical prediction based on the ABCD method, also accounting

for the imperfections of the Gaussian beam (as defined by the M2 parameter) and of the GPLs;

the dashed green line corresponds to the predicted beam evolution for an ideal Gaussian input,

with M2 = 1. Vertical dashed lines give the positions of the GPLs in the waveguide. g, Acquired

intensity beam profiles (I versus x, y) at the input plane of each GPL in the structure for the

guided case; the scale-bar corresponds to 400 µm.
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