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We derive the model equations introduced in the main text and present numerical (FDTD) sim-
ulations in support of the most relevant results. We also discuss a few additional features.

I. LIGHT PROPAGATION IN A PERIODIC SYSTEM ENCOMPASSING A ROTATION OF THE
OPTIC AXIS IN THE TRANSVERSE PLANE

We consider light propagation in inhomogeneous anisotropic dielectrics, in particular uniaxials; nonetheless, our
results can be readily generalized to biaxial crystals. We take a medium whose dielectric properties vary across the
transverse coordinate x owing exclusively to a rotation of the optic axis in the plane xy orthogonal to the propagation
coordinate z. We consider finite wavepackets with wavevector parallel to ẑ; hence, corresponding to electric fields
oscillating orthogonally and parallel to the optic axis, respectively, the two independent eigenvalues ε⊥ and ε‖ of the
relative permittivity tensor are constant in space. We define the birefringence ∆n =

√
ε‖−
√
ε⊥ = ne−no and assume

that the distribution of the optic axis is purely planar and transverse to ẑ, such that at each z the rotation can be
described by a standard 2D operator acting in xy:

Rxy(θ) =

(
cos θ sin θ
− sin θ cos θ

)
, (S1)

where the angle θ is defined with respect to the y axis of a Cartesian reference system in the laboratory frame, with
θ = 0 corresponding to a dielectric permittivity ε‖ for electric fields along y. We study forward propagating light
waves in the presence of a periodic modulation of θ along z. To this extent we set

θ(x, z) = σ(z)Γ(x) =

( ∞∑
p=−∞

σpe
i2πpz

Λ

)
Γ(x), (S2)

with σ(z) a function periodic with Λ and Γ(x) the transverse distribution of optic axis orientation, the latter being
uniform across y. Hereafter, we focus on the case of a purely sinusoidal modulation σp = σ1δ1,p +σ−1δ−1,p, with δp,p′
the Kronecker’s delta and σ−1 = σ∗1 in order for σ to be real valued. For the sake of simplicity, we refer to positive
uniaxial media with ∆n > 0: the generalization to negative birefringence is straightforward. Moreover, we deal with
the case Λ = λ/∆n in which resonant effects are expected to occur.

In the paraxial limit (neglecting longitudinal field components) and for small birefringence (∆n � 1), Maxwell
equations in two dimensions (i.e., no field evolution across y) can be cast as

∂2

∂z2

(
Ex
Ey

)
= − ∂2

∂x2

(
Ex
Ey

)
− k2

0

(
εxx(x, z) εxy(x, z)
εyx(x, z) εyy(x, z)

)(
Ex
Ey

)
, (S3)

where ψxy = (Ex;Ey) is the two-component Jones vector representing the electric field in the complex notation.
In order to investigate the propagation of an electromagnetic (optical) wave in such a system, we make use of the

transformation ψoe = Rxy · ψxy and write ψoe = (Eo;Ee), with Eo and Ee the pointwise ordinary and extraordi-
nary polarization components of the electric field, respectively. In the rotated reference system the two-dimensional
dielectric tensor is diagonal, specifically εD = (ε⊥, 0; 0, ε‖). Eq. (S3) then becomes

∂2ψoe
∂z2

− 2i
∂θ

∂z
S2 ·

∂ψoe
∂z

= −∂
2ψoe
∂x2

+ 2i
∂θ

∂x
S2 ·

∂ψoe
∂x

+ i

(
∂2θ

∂x2
+
∂2θ

∂z2

)
S2 ·ψoe

+

[(
∂θ

∂x

)2

+

(
∂θ

∂z

)2
]
ψoe − k2

0εD ·ψoe, (S4)

where we introduced the Pauli matrix S2 = (0,−i; i, 0). Equation (S4) shows that a scalar potential proportional
to (∂θ/∂x)2 + (∂θ/∂z)2 acts on both field components. Additionally, other terms (containing the matrix S2) couple
ordinary and extraordinary polarizations: due to the rotation of the optic axis, the ordinary and extraordinary
components are no longer independent, but can affect each other during propagation.

In the slowly varying envelope approximation (SVEA), we first set Eo = ψo(x, z)e
ik0noz and Ee = ψe(x, z)e

ik0nez

in Eq. (S4). Exploiting the system periodicity in z we then introduce the following further transformation:

ψj(x, z) = Aj(x, z)Bj(x, z) (j = e, o), (S5)
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where Aj(x, z) are the slow-varying envelopes for the two wave components and Bj(x, z) are periodic functions of z
accounting for the effect of the medium modulations with period Λ. It is convenient to write the latter ones in an
exponential form as follows:

Bj(x, z) = e
i

∫ ∑∞
p=−∞
p 6=0

β(j)
p (x,z)dz


= exp

 ∞∑
p=−∞
p 6=0

Λ

2πp
β(j)
p (x)e

i2πpz
Λ

 (S6)

where we set β
(j)
p (x, z) = β

(j)
p (x)e

i2πpz
Λ and the constant term p = 0 must be excluded from the sum. Inserting these

ansätze in Eq. (S4) and expanding in powers of Λ all terms one obtains a hierarchy of coupled equations for the

amplitudes Aj(x, z) and the coefficients β
(j)
p (x). Neglecting from these equations all terms with powers of the period

Λ equal to or larger than 1 and higher-order terms in λ/Λ (which is equal to ∆n at resonance), we obtain the following
coupled equations for the slow amplitudes:

i
∂Ao
∂z

= − 1

2n̄k0

∂2Ao
∂x2

+
1

2n̄k0

[
σ2(z)

(
dΓ

dx

)2

+ Γ2

(
dσ

dz

)2
]
Ao +

2π

Λ
σ−1Γ(x)Ae, (S7)

i
∂Ae
∂z

= − 1

2n̄k0

∂2Ae
∂x2

+
1

2n̄k0

[
σ2(z)

(
dΓ

dx

)2

+ Γ2

(
dσ

dz

)2
]
Ae +

2π

Λ
σ1Γ(x)A0, (S8)

where m(z) = 1
Λ

∫ Λ

0
m(z)dz and n̄ = (ne + no)/2.

After inspection of Eqs. (S7-S8), three salient terms stand out:

• a Kapitza-like potential, proportional to the squared transverse derivative of the distribution Γ of optic axis
orientation; its magnitude is modulated by the mean square of the periodic modulation σ(z);

• an effective transverse potential with profile proportional to Γ2; its magnitude is modulated by the mean square
of the longitudinal derivative of the periodic modulation σ(z);

• a phase-matched coupling between ordinary and extraordinary waves via the fundamental harmonics σ±1 of the
periodic modulation.

The equations (S7-S8) can be recast in a more compact form as

i
∂A

∂z
= LISO ·A+LANI ·A, (S9)

where A = (Ao; Ae) and we introduced the isotropic (matrix) operator

LISO =
1

2n̄k0

{
− ∂2

∂x2
+

[
σ2

(
dΓ

dx

)2

+ Γ2

(
dσ

dz

)2
]}

I, (S10)

and the anisotropic operator

LANI =
2π

Λ
Γ(x)

(
0 σ−1

σ1 0

)
. (S11)

The presence of LANI in Eq. (S9) accounts for the power exchange between ordinary and extraordinary components.
Let us now take σ(z) = sin( 2πz

Λ ), that is σ1 = −i/2 and σ−1 = i/2; then LANI = − π
ΛΓ(x)S2. The eigenvalues of

the Pauli matrix S2 are sz = ±1 with the two circular polarizations (1; ±i)/
√

2 for eigenvectors (plus and minus
correspond to RCP and LCP in our convention, respectively). Therefore, when the optic axis is modulated along z
with period equal to the beat length, the localized wave solutions are circularly polarized. By using the transformation

Aoe = P ·ALR =
1√
2

(
1 1
−i i

)(
AL
AR

)
, (S12)
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the system of equations separates into two independent scalar equations

i
∂AL
∂z

= − 1

2n̄k0

∂2AL
∂x2

+
1

4n̄k0

[(
dΓ

dx

)2

+
4π2

Λ2
Γ2(x)

]
AL +

π

Λ
Γ(x)AL, (S13)

i
∂AR
∂z

= − 1

2n̄k0

∂2AR
∂x2

+
1

4n̄k0

[(
dΓ

dx

)2

+
4π2

Λ2
Γ2(x)

]
AR −

π

Λ
Γ(x)AR, (S14)

where we used σ2(z) = 0.5 and (dσ/dz)2 = 2π2/Λ2. The guided eigenmodes are then defined by setting Ai(x, z) =
eiβ0zAi(x, 0), where β0 is the propagation constant. The problem is then transformed into a standard eigenvalue
problem, with the following equations:

−2k0n̄β0AL = −∂
2AL
∂x2

+

[
1

2

(
dΓ

dx

)2

+
2π2

Λ2
Γ2(x)

]
AL +

2k0n̄π

Λ
Γ(x)AL, (S15)

−2k0n̄β0AR = −∂
2AR
∂x2

+

[
1

2

(
dΓ

dx

)2

+
2π2

Λ2
Γ2(x)

]
AR −

2k0n̄π

Λ
Γ(x)AR, (S16)

Equations (S15) and (S16) are valid for left (LCP) and right (RCP) circularly polarized wavepackets at the input
interface, respectively. It is noteworthy that RCP and LCP interchange roles if the modulation σ(z) is shifted by half
a period, in agreement with the intuitive picture provided in the main text.

A. Polarization-dependent effective index well

In standard (1+1)D graded-index waveguides, a generic transverse-electric mode u satisfies −2k0n̄κu = −∂
2u
∂x2 −

k2
0∆n2u, with κ the propagation constant. Thus, from Eqs. (S15-S16) it is apparent that the two circular polarizations

perceive the effective photonic potential Veff = −k0∆n2
eff/(2n̄) with the index distributions ∆n2

eff(x) given by

∆n2
eff,LCP = −2n̄

k0
Veff,LCP = − 1

k2
0

[
1

2

(
dΓ

dx

)2

+
2π2

Λ2
Γ2(x)

]
+ n̄

λ

Λ
Γ(x), (S17)

∆n2
eff,RCP = −2n̄

k0
Veff,RCP = − 1

k2
0

[
1

2

(
dΓ

dx

)2

+
2π2

Λ2
Γ2(x)

]
− n̄ λ

Λ
Γ(x), (S18)

The polarization independent term between square brackets in Eqs. (S17-S18) is a Kapitza-like equivalent photonic
potential stemming from transverse and longitudinal modulation of the rotating optic axis. Since this photonic
potential is independent from k0 = 2π/λ, by itself it would support guided modes with wavelength-independent
profile [1].

The last terms on the RHS of Eqs. (S17-S18), with opposite signs as wave handedness reverses, are responsible for
the strong dependence of light evolution on input polarization: the periodic rotation of the optic axis along z allows
for an accumulation of the Berry phase during propagation, leading to the appearance of a potential proportional
to Γ. Moreover, since phase-matching requires Λ = λ/∆n, such potential is directly proportional to the medium
birefringence. A quantitative study on the relevance of each term in Eqs. (S17-S18) is reported in the following
section.

B. Bell-shaped orientation distribution of the optic axis

Hereafter we make explicit reference to optical frequencies. Nevertheless, since Maxwell equations are invariant
when dividing all the length scales by a given factor and multiplying the frequency by the same factor, our results
clearly hold valid regardless the electromagnetic band.

Supplementary Fig. 1 shows the effective index well −∆n2
eff (sign-inverted, so light is attracted by the dip) as

computed from Eqs. (S17-S18) when the transverse distribution of the orientation angle Γ(x) is bell-shaped and
centered in x = 0. We assumed Γ(x) = Γ0 exp (−x2/w2

D), with Γ0 and wD the maximum orientation angle and the
width of the distribution, respectively. Using this simple ansatz we can address the role of each term in the effective
index well, Eqs. (S17-S18). The term proportional to (dΓ/dx)2 is a Kapitza-like term: when acting alone it yields
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Supplementary Figure 1. a-d Transverse profile of the sign-inverted effective index distribution, proportional to the photonic
potential Veff,LCP/RCP versus maximum reorientation angle Γ0 for two different widths (a-b) wD = 0.5 µm and (c-d) wD = 15
µm of the transverse angular distribution. Input RCP waves are trapped in a, c and input LCP waves undergo defocusing in
b, d, respectively, in agreement with the chosen initial section. e-f Profiles of the fundamental guided (RCP) mode when (e)
wD = 0.5 µm and (f) wD = 15 µm. Here λ = 1 µm, no = 1.5 and ne = 1.7.

quasi-modes, as detailed in Ref. [2]. This contribution to the index landscape, proportional to w−2
D , increases as the

angle distribution becomes narrower. Supplementary Fig. 1 illustrates two examples for wD = 0.5 µm and wD = 15
µm, respectively: the Kapitza term becomes quite relevant for wD = 0.5 µm and large Γ0, with the appearance of
two local maxima, symmetrically placed with respect to the axis x = 0. The term proportional to Γ2(x) gives rise to
anti-guidance, i.e. light repulsion from the symmetry axis. The term is proportional to the square of the birefringence
∆n, thus dominates for large anisotropies.

Finally, the last term breaks the degeneracy between the two opposite circular polarizations. This term contributes
with opposite signs to the overall potential acting on RCP and LCP waves, respectively: in the absence of other
contributions, when the RCP (LCP) wave is confined, the LCP (RCP) is repelled from the region close to the
symmetry axis x = 0, i.e., it diffracts faster than in a homogeneous medium.

C. Finite-Difference-Time-Domain numerical simulations of the guiding case

In the numerical simulations we employed the open-source FDTD code named MEEP [3] to solve the full Maxwell
equations in two dimensions, assuming a Gaussian orientation of the optic axis across x, as above. The excitation
was a continuous-wave source of wavelength 1 µm turned on at t = 0, infinitely narrow across z and launched in
x = z = 0. The source had a Gaussian profile of width 3 µm across x and was point-like along z. The modulated
uniaxial medium was placed in z > z0 = 2 µm with modulation σ(z) = sin

[
2π∆n
λ (z − z0)

]
. The refractive indices no

and ne were taken equal to 1.5 and 1.7, respectively.
Supplementary Fig. 2 illustrates the propagation of an RCP wave input when wD = 5 µm and Γ0 = 15◦, cor-

responding to a guiding potential (see Fig. 2 in the main text). As predicted, the natural diffractive spreading is
compensated for by the effective waveguide resulting from Berry phase accumulation. At distances far enough from
the input, in the stationary regime, the wavepacket acquires a periodic spatial distribution of its polarization and a
nearly invariant profile. The polarization is generally elliptical; its trend can be examined by taking a single period
λ/∆n far enough from the input so that radiation (from imperfect coupling) is negligible. The polarization at the
input is RCP, then it starts decreasing ellipticity; at about a quarter period it becomes linear, then elliptical again
but with opposite handedness; at half period is nearly LCP, in excellent agreement with the theory. In the following
half-period the polarization evolves in a similar manner, going from LCP to RCP. The polarization rotation versus
propagation strictly resembles the behavior of a plane wave because it originates from the different phase velocities
of the two linear eigenfield carriers (with eik0noz and eik0nez, respectively).

Supplementary Fig. 3 compares the intensity evolution of propagating LCP and RCP wavepackets. In agreement
with theory, one input polarization is subject to trapping, the other to a repulsive potential expelling light from the
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Supplementary Figure 2. Numerical snapshots of (a) ey and (b) ex in the plane xz once the stationary regime is reached
in time; (c) corresponding average intensity map in xz; the red solid lines correspond to beam diffraction when Γ0 = 0, i.e.,
the homogeneous case. (d, g) Angular orientation of the polarization ellipse and e, h) field ellipticity (arctangent of the ratio
of minor to major axes) versus z in (d-e) x = 0 and (g-h) x = 3 µm, respectively . Polarization ellipses in (f) x = 0 and (i)
x = 3 µm plotted versus z in an interval 0 ≤ z∆n/λ ≤ 1 far away from the excitation point, corresponding to 97 µm≤ z ≤ 102
µm. Here wD = 5 µm, Γ0 = 15◦, RCP input.

Supplementary Figure 3. Average beam intensity in the plane xz when the input is (a) LCP or (b) RCP. The maximum
rotation Γ0 is 0, 15, 45 and 90◦, from left to right, respectively. Here z0 = 0 and wD = 5 µm.

region around x = 0. The strength of either potentials increases with the maximum rotation Γ0: in the trapping case
the waveguide eventually becomes multi-modal, as indicated by the appearance of breathing versus propagation; in the
repulsive case the beam divergence increases with Γ0. For Γ0 ≥ 90◦ the polarization of the confined beam continues
to oscillate along z, but in the presence of higher harmonics. In fact, in Eq. (S6) the functions βp(x, z) with p ≥ 1
must be accounted for and correspond to shorter periodicity in both beam profile and polarization. Simultaneously,
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a higher-order contribution proportional to Λ2(dΓ
dx

d2Γ
dx2 )2 appears in the overall photonic potential of the isotropic

operator LISO defined by Eq. (S10) [4]. Accordingly, even in the defocusing case a small portion of the wavepacket is

trapped on-axis around x = 0 for Γ0 = 90◦, as visible in Fig. 3. Owing to the additional modulating terms β
(j)
p (x),

further increases in Γ0 (not shown) infringe the validity of Eqs. (S15-S16), leading to the generation of three-peaks
for both input polarizations as well as appreciable changes of polarization state across x in the guided case.

Supplementary Figure 4. Evolution maps of (a) |Ey|2, (b) |Ex|2 and (c) overall average intensity in the propagation plane
xz. The maximum rotation Γ0 is equal to 0, 15 and 45◦ from left to right, respectively. The input wave is RCP. Here wD = 5
µm.

Supplementary Fig. 4 shows how power is distributed between the two components Ex and Ey when light is
guided: |Ex|2 and |Ey|2 distributions in the plane xz essentially coincide. The overall intensity is computed as
n̄/(2Z0)

(
|Ex|2 + |Ey|2

)
with Z0 the vacuum wave impedence, thus ignoring impedance variations for the two polar-

izations.

D. Dependence on the transverse size of the effective waveguide

Another important feature of the system is its dependence on the transverse extent of the orientation angle distri-
bution. Both circular polarizations are shown in Supplementary Fig. 5. In agreement with theory, the smaller wD the
stronger is the repulsion of the defocused component from the perturbed region. Light spatial localization increases
as wD reduces, with intensity oscillations becoming slower in space as the θ distribution gets wider and wider. In line
with Eqs. (S15-S16), light confinement undergoes the same trend as in standard waveguides based on total internal
reflection.

E. Dependence on the input point

Finally, we studied light propagation as the longitudinal modulation σ(z) was shifted, that is, as the phase Φ in
σ = sin

[
2π∆n
λ (z − z0) + Φ

]
was modified. Supplementary Fig. 6 shows the FDTD results: as predicted (Eqs. (S17-

S18)), when the phase is inverted (i.e., Φ = π) the two circular polarizations exchange roles, with RCP waves going
from trapping to anti-guiding and the opposite for LCP; when Φ = π/2, the intensity evolution remains the same
regardless the input ellipticity: this agrees with Supplementary Fig. 2 showing quasi-linear polarization at a quarter
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Supplementary Figure 5. Average intensity evolution in the propagation plane xz for (a) left- and (b) right-handed circularly
polarized wavepackets. Here Γ0 = 45◦ whereas the angular distribution width wD is 3, 5, 10 and 15 µm from left to right,
respectively.

Supplementary Figure 6. Wavepacket evolution in xz for input LCP (a) and RCP (b) when the longitudinal modulation
shift Φ is 0, π/2 and π, from left to right, respectively. Here Γ0 = 45◦ and wD = 5 µm.

period.
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(j)
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∂x
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∫ ∂β

(j)
−p
∂x

dz

)
(j = e, o) appears within square brackets and brings in the role of all the fast scales on

the slow scale.


