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Abstract— The availability of multiple images of the same scene
acquired with the same radar but with different polarizations,
both in transmission and reception, has the potential to enhance
the classification, detection and/or recognition capabilities of a
remote sensing system. A way to take advantage of the full-
polarimetric data is to extract, for each pixel of the considered
scene, the polarimetric covariance matrix, coherence matrix,
Muller matrix, and to exploit them in order to achieve a specific

objective.

A framework for detecting covariance symmetries within
polarimetric SAR images is here proposed. The considered
algorithm is based on the exploitation of special structures
assumed by the polarimetric coherence matrix under symmetrical
properties of the returns associated with the pixels under test.
The performance analysis of the technique is evaluated on

both simulated and real L-band SAR data, showing a good
classification level of the different areas within the image.

Index Terms— Polarimetric SAR image, radar image classifi-
cation, coherence and covariance scattering matrix.

I. INTRODUCTION

Polarimetric SAR imaging and the information obtainable

from this kind of sensor configuration are attracting great

interest from the research and end-user communities in recent

years. Benefits, provided by the availability of multiple images

of the same scene acquired with the same radar but with dif-

ferent polarizations, both in transmission and reception (HH,

HV, and VV), include enhancing the classification, detection

and/or recognition capabilities of the entire system. Among the

different techniques available in open literature [1], a possible

approach is to take advantage of the full-polarimetric data

extracting for each pixel of the considered scene the polari-

metric covariance matrix, coherence matrix, Muller matrix

and so on, [1], [2], [3], [4], and to use them in order to

achieve a specific objective. Usually, the quantity measured

by a polarimetric radar is the well known scattering matrix [3]

(also called Sinclair matrix [1, pag. 63]); however, it is very

useful to express the latter in a vectorized form and compute

some second order moment-based metrics, i.e. covariance and

coherence matrices, that can be utilized to have inference
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about the scattering mechanisms characterizing the objects in

the scene of interest. Moreover, a widely accepted processing

strategy to deal with polarimetric SAR images relies on the

coherent decomposition of the polarimetric scattering matrix.

In this context, the Pauli [5], Krogager [6], and Cameron

[7] decompositions play a central role. The aim of all these

decompositions is to represent the scattering matrix as a com-

bination of the scattering responses of independent elements

(for instance single/odd-bounce scattering and double/even-

bounce scattering), to associate a physical mechanism with

each component and to extract relevant characteristics from

polarimetric data sets.

An example of application of polarimetry can be found in

[8], where the coherence matrix is exploited for extracting

average parameters from experimental data. The algorithm

is based on a second order statistical model which does

not require any specification of the underlying multivariate

statistical distribution. In fact it makes the assumption that in

each cell there is always a dominant average scattering mech-

anism and, then, the parameters of this average component are

estimated and related to the physical structures of the observed

objects. Another example can be found in [9], where the use

of both amplitude and phase information of the HH, HV,

and VV images is introduced to distinguish among different

scattering behaviours. By doing so, it is possible to interpret

radar images and, in addition, to provide information aiding

surface characterization through modelling of the polarimetric

response of different types of terrain. In [10], the authors

propose a new model for vegetation scattering mechanisms of

mountainous forests, extending the classic radiative transfer

model and taking into account the sloping ground surface

under vegetation canopy. Finally, many other works in the last

few years use polarimetry: for oil spills detection [11], [12],

for ice thickness retrieval [13], and for feature detection within

a SAR image [14].

In this paper, we propose and analyse a framework for

detecting covariance symmetries within a polarimetric SAR

image, through the exploitation of special structures assumed

by the covariance (and consequently by the coherence) matrix

under symmetrical properties of the returns associated to the

pixels under analysis. Since our problem is formulated in terms

of a composite hypothesis test including nested instances, the

classic Generalized Maximum Likelihood (GML) approach

[15] does not prove useful. In fact, it always leads to the

selection of the hypothesis with the higher degree of un-

certainty and which incorporates the nested instances [15],

[16]. In order to circumvent this drawback, it is paramount
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to consider a modified version of the GML to accommodate

nested signal models. Specifically, it is necessary to add to

the GML (under each hypothesis) a penalty term related

to the number of parameters to estimate; this leads to the

so-called model order selection techniques [17], [18], [19]

[20] to classify each pixel on the base of the corresponding

coherence matrix structure. The knowledge of the symmetry

would then allow enhanced performance for applications like

knowledge-based GMTI (Ground Moving Target Indicator),

oil spill detection and land cover classification.

The remainder of the paper is organized as follows. In

Section II, the problem is introduced, while in Section III the

proposed framework for detecting covariance symmetries is

developed. The performance of the proposed technique applied

on simulated and real L-band SAR data is presented and

discussed in Section IV. Finally, in Section V, some concluding

remarks are given.

NOTATION

We adopt the notation of using boldface for vectors a

(lower case), and matrices A (upper case). The conjugate

and conjugate transpose operators are denoted by the symbols

(·)∗ and (·)† respectively, whereas the symbol (·)+ denotes

the pseudo-inverse. tr {·} and det(·) are respectively the trace

and the determinant of the square matrix argument. I and 0

denote respectively the identity matrix and the matrix with zero

entries (their size is determined from the context). diag (a)
indicates the diagonal matrix whose i-th diagonal element is

the i-th entry of a. The letter j represents the imaginary unit

(i.e. j =
√
−1). For any complex number x, |x| represents

the modulus of x, Re{x} is its real part, and Im{x} is its

imaginary part. Moreover, H++
n is the set of n × n positive

semi-definite (psd) Hermitian matrices, S++
n is the set of n×n

psd symmetric matrices, and P++
n is the set of n × n real

psd persymmetric matrices1. Finally, E [·] denotes statistical

expectation.

II. PARAMETERS DEFINITION AND DATACUBE

CONSTRUCTION

A multi-polarization SAR sensor, for each pixel of the

image under test, measures N = 3 complex returns, which are

collected from three different polarimetric channels (namely

HH, HV, and VV). The N returns associated with the same

pixel are organized in the specific order HH, HV, and VV to

form the vector X(l,m), l = 1, . . . , L and m = 1, . . . ,M (L
and M represent the vertical and horizontal size of the image,

respectively). Therefore, the sensor provides a 3-D data stack

1A real persymmetric matrix Cn is a matrix with the following property
Cn = JC

T
nJ , with J the n× n permutation matrix

J =
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X of size M ×L×N which is referred to as datacube in the

following, whose pictorial representation is given in Fig. 1.

Starting from the datacube X of the scene illuminated by

the radar, for each pixel under test, we extract a rectangular

neighbourhood A of size K = W1 ×W2 ≥ N . We denote by

R the matrix whose columns are the vectors of the polarimet-

ric returns from the pixels of X which fall in the region A. The

matrix R is modelled as a random matrix, whose columns are

assumed statistically independent and identically distributed

random vectors drawn from a complex circular zero-mean

Gaussian distribution with positive definite covariance matrix

C.

III. COVARIANCE SYMMETRIES DETECTION

The framework proposed in this paper uses the special

structures assumed by the covariance and, consequently, by the

corresponding coherence matrix over objects that scatter with

a specific symmetry property [1, pp. 69-72], [2]. In this section

we illustrate such structures arising when some important

scattering symmetric properties become predominant, and then

we introduce some algorithms that allow the detection of the

specific covariance symmetry.

We consider the polarimetric covariance matrix in the

presence of a reciprocal medium [1], [2] which is a 3 × 3
Hermitian matrix, i.e.

C =





chhhh chhhv chhvv
c∗hhhv chvhv chvvv
c∗hhvv c∗hvvv cvvvv



 , (1)

completely described by n = 9 real scalar values. In fact, the

diagonal entries of this matrix are the conventional backscat-

tering coefficients, which are real quantities, whereas the off-

diagonal elements are complex values.

Let us consider, now, the presence of a reflection symmetry

with respect to a vertical plane. It is usually observed over

horizontal natural environments and produces complete decor-

relations between the co-polarized and the cross-polarized

elements (the details regarding the proof of this covariance

structure can be found in [2]). Consequently, the covariance

matrix under reflection symmetry assumes the following spe-

cial form, which is fully described by n = 5 real scalar values,

namely

C =





chhhh 0 chhvv
0 chvhv 0

c∗hhvv 0 cvvvv



 . (2)

From a physical point of view, this result is valid for volume

scattering, surface scattering, or volume-surface interactions to

all scattering orders, or to the total scattering effects no matter

how dense is the medium, or how rough is the surface as long

as the scattering configuration has the reflection symmetry [2].

Let us consider, now, the presence of a rotation symmetry,

that is characterized by a covariance matrix invariant under

the rotation around an axis by any considered angle [2].

Consequently, the polarimetric covariance matrix assumes the

following special structure, completely described by n = 3
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real scalar values, i.e.

C =





chhhh chhhv chhvv
−chhhv chvhv chhhv
chhvv −chhhv chhhh



 , (3)

where chhhv is purely imaginary, chhvv is purely real, and

chvhv = (chhhh − chhvv)/2. For instance, a chiral medium

made by embedding helixes in an isotropic background can be

considered as having both reciprocity and rotation symmetry

[2].

Finally, the azimuth symmetry arises as the combination of

a rotation symmetry with a reflection symmetry in any plane

which contains the rotation symmetry axis. It can be observed

for dense volumetric environments [3] and the corresponding

polarimetric covariance matrix shares the form

C =





chhhh 0 chhvv
0 chvhv 0

chhvv 0 chhhh



 , (4)

where chvhv = (chhhh − chhvv)/2. Evidently (4) is entirely

described by n = 2 real scalar values.

With the above models for the polarimetric covariance

matrix structure, we focus on the problem of data classification

exploiting the scattering properties of the pixel under test and

of a set of neighborhood pixels. Specifically, we associate to

each pixel an “average” or “dominant” symmetry property

on the base of the specific structure assumed by its covari-

ance matrix. Moreover, to simplify the analytic tractability,

we move to a transformed matrix domain (as described in

Lemma 3.1) where some redundant information (contained

in the functionally dependent coefficients of the covariance)

translate into zeros of the corresponding transformed matrix.

Before proceeding further, it is necessary to define the multiple

hypotheses associated to the problem under consideration, i.e.














H1 : no symmetry;

H2 : reflection symmetry;

H3 : rotation symmetry;

H4 : azimuth symmetry.

(5)

Hence, in Lemma 3.1 we show how to compute the trans-

formed matrix from the covariance and determine its structure

under the hypotheses H1, . . . , H4.

Lemma 3.1: Let us denote by

U =





1 0 0
0 0 1
0 1 0



 ,

E =





1 0 0

0 1/
√
2 0

0 0 1



 ,

T =
1√
2





1 0 1
1 0 −1

0
√
2 0



 ,

V =





1 0 0
0 0 j
0 1 0



 ,

four transformation matrices, where U is orthogonal, whereas

V and T are unitary.

Then, under the reflection symmetry hypothesis

UCU † =





chhhh chhvv 0
c∗hhvv cvvvv 0
0 0 chvhv



 =

[

C1 0

0 c

]

, (6)

where C1 ∈ H++
2 and c is a positive real number.

Under the rotation symmetry hypothesis

V ETCT †EV † =




chhhh + chhvv 0 0
0 chvhv Im{chhhv}
0 Im{chhhv} chvhv





=

[

a 0

0 C2

]

,

(7)

where C2 ∈ P++
2 , and a is a positive real number.

Finally, under the azimuth symmetry hypothesis

ETCT †E =





chhhh + chhvv 0 0
0 chvhv 0
0 0 chvhv





=





a 0 0
0 b 0
0 0 b



 ,

(8)

where b is a positive real number.

Proof: The proof is omitted since it can be obtained

performing the matrix multiplications at the right hand side

of (6)-(8).

Let us consider the complex multivariate probability density

function (pdf) of the observable matrix R, i.e.

fR(R|C) =
1

π3K [det (C)]
K

exp
{

−tr
(

C−1RR†
)}

,

(9)

the Fisher-Neyman factorization theorem [15] implies that

S0 = RR† is a sufficient statistic for C.

Now, the maximum likelihood estimate of C can be ob-

tained as the optimal solution to the optimization problem

max
C

log
(

fR(R|C)
)

= −Kmin
C

[log det (C)

+tr
(

C−1S
)]

− 3K log π,
(10)

where S = 1
KS0.

The following proposition shows the form assumed by the

optimal value of problem (10), as well as the ML optimizer,

in the presence of the four different scattering symmetries

previously described.

Proposition 3.2: The optimal value of

min
C∈H

++

3

[

log det (C) + tr
(

C−1S
)]

(11)

and the corresponding optimal solution C̆ are respectively

given by:

1) No symmetry:

log det (S) + 3.

C̆ = S.
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2) Reflection symmetry:

log det
(

S̄1,1

)

+ log
(

S̄3,3

)

+ 3,

C̆ = U †

[

S̄1,1 0

0 S̄3,3

]

U ,

where S̄ = USU † =

[

S̄1,1 S̄1,3

S̄3,1 S̄3,3

]

.

3) Rotation symmetry:

log det

(

1

2

(

S̃2,2 + JS̃2,2J
)

)

+log
(

S̃1,1

)

+3+log 2,

C̆ = T †E−1V †

[

S̃1,1 0

0
1
2

(

S̃2,2 + JS̃2,2J
)

]

V E−1T ,

where S̃ = V ETST †EV † =

[

S̃1,1 S̃1,2

S̃2,1 S̃2,2

]

.

4) Azimuth symmetry:

log
(

Ŝ1,1

)

+ 2 log

(

Ŝ2,2 + Ŝ3,3

2

)

+ 3 + log 2,

C̆ = T †E−1diag

(

Ŝ1,1,
Ŝ2,2 + Ŝ3,3

2
,
Ŝ2,2 + Ŝ3,3

2

)

E−1T ,

where Ŝ = ETST †E and Ŝ1,1, Ŝ2,2, Ŝ3,3 are its

diagonal entries.

Proof: See Appendix A.

A. Model Order Selection

As previously discussed, we are focused on a composite

multiple hypotheses testing problem which includes both

nested and non-nested instances. The GML approach does

not appear useful for this study since the likelihood always

assumes the highest value under the H1 hypothesis. Hence, to

overcome this problem, we need to consider modified versions

of the GML to accommodate nested instances. Specifically a

penalty function that is dependent on the number of unknown

elements to estimate is added to the GML under each hy-

pothesis. This leads to the so-called model order selectors2

[17], [18], [19], [20], that allow us to estimate the correct

structure (the model order) from the available observables (R

in this case). Following the above guidelines, it is necessary

to evaluate a decision statistic under each hypothesis, and then

the order is chosen as the one which corresponds to the mini-

mum among the four statistics. Before proceeding further it is

worth underlying that model order selection approaches have

been already used in SAR remote sensing applications. In this

context we mention [21], [22], [23], [24] for interferometric

SAR, [25] with reference to double-scatterers detection in SAR

tomography.

The general order selection rules proposed in [17] and [18]

can be expressed through the corresponding decision statistics

2We recommend to the interested reader reference [18] for a methodological
framework toward the definition of some model order selectors (together
with the corresponding penalty terms) based on the Kullback-Leibler (KL)
information criterion and the Bayesian theory.

in the following compact form

−2 log
(

f
(

R|C̆(n)
))

+ n η(n,K), (12)

with C̆
(n)

the ML estimate of C comprising of n parameters.

The term n η(n,K) is called penalty coefficient and its role

can be intuitively explained observing that the first term in

(12) decreases with increasing n (for nested models), whereas

the second term increases. As a consequence, n η(n,K) in

(12) penalizes overfitting [18]. Different selection strategies

diversify due to the definition of this quantity. Specifically,

for

• AIC (Akaike Information Criterion): η(n,K) = 2;

• GIC (Generalized Information Criterion): η(n,K) = ρ+
1, with ρ an integer number greater than or equal to 2;

• BIC (Bayesian Information Criterion): η(n,K) =
log(K).

For the case at hand, substituting (10), obtained as described

in Proposition 3.2, in (12), it is not difficult to obtain the

following decision statistic under each hypothesis (notice that

for simplicity the dependency of η from n and K is omitted

in the following equations):

• H1 :

2K log det (S) + 6K + 6K log(π) + 9η;

• H2 :

2K log det
(

S̄1,1

)

+ 2K log(S̄3,3) + 6K

+ 6K log(π) + 5η;

• H3 :

2K log det

(

1

2

(

S̃2,2 + JS̃2,2J
)

)

+ 2K log
(

S̃1,1

)

+ 6K + 2K log 2 + 6K log(π) + 3η;

• H4 :

2K log
(

Ŝ1,1

)

+ 4K log

(

Ŝ2,2 + Ŝ3,3

2

)

+ 6K

+ 2K log(2) + 6K log(π) + 2η.

A remark is now necessary: for the BIC, there are two

particular assumptions on the Fisher information matrix F

of the estimation problem. They are referred to as regularity

conditions and their validity is shown in Appendix B.

The last decision criterion considered herein is referred to as

Exponentially Embedded Families (EEF) approach; its general

theoretical formulation is laid down in [20], i.e.

EEF(i) =

{

lGi
(R)− n(i)

[

log

(

lGi
(R)

n(i)

)

+ 1

]}

u

(

lGi
(R)

n(i)
− 1

)

,

(13)

with

lGi
(R) = 2 log

(

f(R; C̆
(n(i))

)

f(R;C(0))

)

, i = 1, . . . 4, (14)

n(i) the number of unknown parameters under the i-th hy-
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pothesis, and u(·) the Heaviside step function, i.e. u(·) = 1
if its argument is greater than 0, otherwise it is 0. In order

to proceed further, it is necessary to evaluate the functions

lGi
(·), i = 1, . . . , 4, in correspondence of the four hypotheses

previously defined, but before doing this, we need to introduce

a dummy hypothesis, H0, where there is no dependency on the

unknown parameters. Specifically, let us define the covariance

matrix under the H0 hypothesis, C(0) as the N -dimensional

identity matrix, i.e. C(0) = IN . With this choice, the functions

lGi
(·), i = 1, . . . , 4, become:

• H1 :

lG1
(R) = −2K log det (S)− 6K + 2tr (S0) ;

• H2 :

lG2
(R) = −2K log det

(

S̄1,1

)

− 2K log(S̄3,3)− 6K

+ 2tr (S0) ;

• H3 :

lG3
(R) = −2K log det

(

1

2

(

S̃2,2 + JS̃2,2J
)

)

− 2K log
(

S̃1,1

)

− 6K − 2K log(2) + 2tr (S0) ;

• H4 :

lG4
(R) = −2K log

(

Ŝ1,1

)

− 4K log

(

Ŝ2,2 + Ŝ3,3

2

)

− 6K − 2K log(2) + 2tr (S0) .

Finally, for both the AIC, BIC, and GIC, we select the hy-

pothesis which corresponds the to minimum decision statistic,

whereas for the EEF the one that corresponds to the maximum,

namely

ĥAIC = argmin
h

AIC(h), (15)

ĥBIC = argmin
h

BIC(h), (16)

ĥGIC = argmin
h

GIC(h), (17)

ĥEEF = argmax
h

EEF(h), (18)

where h = 1, . . . , 4 is the index identifying the specific

hypothesis. In other words, for each pixel under test, the

selected structure is the one associated to H = Hĥ. For the

sake of completeness and to help the reader to grasp all the

details on the proposed procedure, in Algorithm 1, we have

explicitly reported all the basic steps required to classify each

pixel of the image. It refers to the order selector EEF. However,

it is possible to consider other cases too, just substituting the

EEF with the AIC, the BIC or the GIC and computing the

minimum in place of the maximum, i.e. (15)-(17) instead of

(18).

IV. RESULTS

In this section, the performance of the proposed rules for

covariance symmetry detection is assessed. In particular, to

evaluate the effectiveness of the different techniques, both

simulated and real radar data are considered.

Algorithm 1 Covariance Symmetries Detection

Input: K = W×W , R (constructed as described in Section

III-A).

Output: Hĥ.

1: Compute the matrices S0, S, S̄, S̃, and Ŝ as defined in

Proposition 3.2.

2: Compute the quantities EEF(h), h = 1, . . . , 4, as de-

scribed in (13).

3: Choose the index ĥ associated with the maximum EEF as

given in (18).

4: Associate to the pixel under test the label Hĥ.

A. Analysis on Simulated Data

In this subsection the performance analysis on simulated

data for the order selectors introduced in Section III-A is

developed and discussed. In particular, the probability of

correct classification is estimated (resorting to Monte Carlo

simulations) as the ratio between the number of correct

classifications and the total number of trials MC which is

set to 104. For each simulation run K 3-dimensional zero-

mean complex circular Gaussian vectors are simulated. Hence,

they are colored in order to exhibit a covariance matrix

structure characterizing a specific hypothesis of the testing

problem. As to the theoretical covariance matrices defining the

four scenarios (no symmetry, reflection, rotation, and azimuth

symmetry) they are respectively given by

C1 =





1 0.2 + 0.3j 0.5− 0.3j
0.2− 0.3j 0.25 −0.2− 0.2j
0.5 + 0.3j −0.2 + 0.2j 0.8



 , (19)

C2 =





1 0 0.5− 0.3j
0 0.25 0

0.5 + 0.3j 0 0.4



 , (20)

C3 =





1 0.3j 0.2
−0.3j 0.4 0.3j
0.2 −0.3j 1



 , (21)

C4 =





1 0 0.5
0 0.25 0
0.5 0 1



 . (22)

In Fig. 2, the probability of correct classification (expressed

in percentage) is reported for each of the four analyzed

models, considering K = 25 data vectors. The sub-plots refer,

respectively, to the four considered covariance scenarios, and

the performance measures are related to five order selectors,

i.e. AIC, BIC, GIC with ρ = 2, GIC with ρ = 3, and EEF. The

results show that the EEF, the GIC and the BIC approaches

provide a better performance than that achievable using the

AIC. It is also worth observing that for small values of K all

the selectors exhibit a performance degradation due to the fact

that the sample covariance matrix achieves good estimation

performances only when K is sufficiently higher than N .

This estimation error becomes more impactful in cases where

symmetries lead to similar structures in the covariance matrix.

This situation arises with reference to the azimuth symmetry
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which shares a structure quite close to the rotation symmetry.

To study in details the behaviour of the proposed algorithm

in the presence of a better and better covariance estimate, in

Fig. 3 we report, for each selector, the probability of correct

classification as a function of the number of looks, K . Again,

the data are simulated as in Fig. 2, i.e. zero-mean complex

circular Gaussian vectors with covariance matrix given by C1,

C2, C3, and C4, respectively. Besides, 104 Monte Carlo runs

have been utilized.

From this analysis it is clear that the case of symmetry

absence is almost always correctly detected, independently of

the utilized selector. Moreover, the azimuth symmetry case

is the most challenging situation, in fact only the GIC is

able to ensure a probability of correct classification higher

than 90% for small values of K . Finally, the curves show

that the performances improve as K increases, due to the

better estimation of the covariance matrix thanks to the greater

number of available homogeneous data. This agrees with the

intuition that the more the available information about the

scene the better the algorithms performance.

To conclude the study on simulated data, and to demonstrate

a certain degree of robustness for the proposed algorithm with

respect to the design hypotheses, we consider a mismodeling

analysis where the data deviate from the Gaussian behavior;

specifically, we model each column of the matrix R, say

rk k = 1, . . . ,K , as a Spherically Invariant Random Vector

(SIRV) [26], [27], [28] which can be written in the form

rk =
√
τkgk, k = 1, . . . ,K,

where τk is a positive real random variable (usually known

as texture) and gk is an N -dimensional zero-mean complex

circular Gaussian vector, whose covariance matrix is set ac-

cording to the four considered symmetry hypotheses, i.e. C1,

C2, C3, and C4 respectively. In the simulations, we assume

that τ1, τ2, . . . , τK are statistically independent. Besides, they

follow the Gamma distribution

f (x) =
1

Γ (ν)

1

µν
xν−1e−x/µu (x) ,

where Γ (·) is the Eulerian Gamma function, µ and ν > 0 are

the scale and shape parameters, respectively (we set µ = 1/ν
in order to have a Gamma distribution with unit mean). The

adopted model for the textures implies that the amplitude pdfs

of rk, . . . , rK are K-distributed. The analysis is conducted for

different values of the shape parameter, i.e. ν = (1, 2, 5, 10),
and the results are reported in Figs. 4, 5, 6, and 7.

The curves clearly show that the GIC-, the BIC-, and EEF-

based detectors outperform the AIC. Moreover, the classifica-

tion in the fourth hypothesis still remains a challenge as the

structure of C4 is quite close to that of C3. Nevertheless,

this mismodeling analysis has highlighted that even in the

presence of data that do not comply with Gaussianity, the

proposed algorithm shares some robustness and is able to grant

satisfactory symmetry classification performances.

B. Analysis on Real UAV-SAR Data

In this subsection, the results on real SAR data are shown

and discussed. In particular, an L-band coherent polarimetric

dataset3 acquired using UAVSAR [29] on Southern California

Coast on the 20th of November 20144 is utilized. The latter

contains a scene acquired with three polarizations (HH, HV,

and VV) and whose polarimetric overlay is shown in Fig. 8.

For our analysis, the selected area of interest is a sub-image

of 2000× 2000 pixels (i.e., L = M = 2000) containing both

terrain and sea data. For comparison purposes, the span [1, p.

61] of such image (expressed in dB) is reported in Fig. 9(a),

whereas in Fig. 9(b) it is represented its H-A-α decomposition

[8] in RGB colors.

In Fig. 10, the detected symmetries for the reference image

are plotted, using the AIC, BIC, GIC (with ρ = 3), and EEF,

respectively, with K = 25, i.e. a 5 × 5 sliding window is

utilized. Specifically, for each pixel of the considered scene, a

specific colour is indicated, which is associated to the specific

hypothesis chosen by the test.

The results show that the AIC is not able to achieve

appreciable results in terms of classification of terrain data

with respect to the sea one. Moreover, the EEF turns out to

be the best order selector on this dataset, because it is able to

show the largest amount of details within the image.

Reflection symmetry (blue pixels) is predominant on the sea

area in Fig. 10, while the terrain area is classified as H1 or

H2, meaning that no symmetry (black pixels) or reflection

symmetry is detected; finally, the area separating sea and

terrain areas is mainly classified as azimuthal symmetry (green

pixels).

C. Analysis on Real AIR-SAR Data

To give an additional evidence of the effectiveness of the

proposed algorithm, in this subsection, a second real SAR

dataset is analyzed and the results are discussed. In particular,

an L-band coherent polarimetric dataset5 acquired in the 1988

from the JPL using an AIRSAR on the San Francisco Bay

[1], [8] is utilized. The image (900× 1024 pixels) contains a

mixed urban, vegetation and sea scene, whose span is reported

in Fig. 11(a). To give further information about the considered

area, in Fig. 11(b) the corresponding H-A-α decomposition is

depicted in RGB colors.

In Fig. 12, the detected symmetries are plotted using the

AIC, BIC, GIC (with ρ = 3), and EEF, respectively, with

K = 25, i.e. a 5 × 5 sliding window. As before, for each

pixel of the considered scene, a specific color corresponds to

a specific symmetry class.

The results confirm those obtained with the UAVSAR data:

the GIC, BIC and EEF outperform the AIC. In fact, the

different areas are clearly distinguished exploiting the BIC,

the GIC, and EEF, whereas for the AIC some ambiguities

arise with reference to the classification of the sea.

3The data can be downloaded at http://uavsar.jpl.nasa.gov.
4The specific acquisition is SSurge 15305 14170 007 141120 L090 CX 01
5The data can be downloaded at https://earth.esa.int/web/polsarpro/data-

sources/sample-datasets.
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However, comparing the BIC, GIC, and EEF assignment

results in Fig. 12 with the span image in Fig. 11, it can

be observed that the sea is classified as showing reflection

symmetries (blue color). Moreover, the vegetation areas are

classified as azimuth symmetric (green color), and the urban

scenes are associated to the absence of any symmetry (black

pixels). This is probably due to the strong heterogeneity of

the environment precluding the rising of a dominant scattering

symmetry. As a final remark, the number of pixels classified

with rotation symmetry is very small.

To provide a more quantitative analysis, in Table I, the

percentage of pixels classified as sharing the same symmetry

is given for each order selector. Considering the EEF, the

table highlights that the rotation symmetry is almost never

observed (only the 1% of the pixels). Otherwise stated, there

is a prevalence of the other symmetry classes: the percentage

of pixels classified as exhibiting a rotation symmetry is the

30% (the majority of the sea pixels), whereas 23% are azimuth

symmetric pixels mostly belonging to the vegetation areas. The

remaining pixels do not exhibit any symmetry and are mainly

located in the urban areas and in a particular sea zone where,

as illustrated in Fig. 11 (span), there are very strong returns.

TABLE I: Real L-band data (AIRSAR San Francisco Bay

JPL). Number of pixels (in percentage over the total) sharing

a specific symmetry.

AIC BIC GIC EEF

H1 74% 77% 50% 46%
H2 13% 12% 28% 30%
H3 2% 2% 1% 1%
H4 11% 9% 21% 23%

D. Quantitative Comparison Between H/α and Symmetric H/α
Classification

The scope of this subsection is to provide a quantitative

comparison between the classic H/α classification and the one

exploiting our algorithm as pre-processing stage (the block

diagram illustrating the latter approach is shown in Fig. 13).

Specifically, the covariance matrix estimate utilized to perform

the H/α decomposition is the one provided by the EEF selector

in place of the classic sample covariance matrix.

The H/α classification provides as output 9 classes which

are explicitly defined within [1], [8]. To have a quantitative

comparison, we compute the confusion matrix between the

two mentioned classifications assuming as “reference” class

the one assigned to each pixel by the H/α algorithm, while

the test outcome is the class assigned by the symmetrical H/α
approach.

From the confusion matrix, reported in Table II, it appears

that the main difference between the two classifiers is in

the selection of class 5. Specifically 31.23% of the pixels

which belonged to class 5 according to the H/α classifier are

associated to the class 2 by the symmetric H/α rule. This is

tantamount to classifying pixels as high entropy vegetation

scattering instead of medium entropy vegetation scattering.

From the visual point of view (see Figs. 14(a) and 14(b)), it

appears that the symmetric H/α rule provides more delineated

borders of the vegetated region corresponding to the green

rectangle located in the mid of the left part of Fig. 14.

Moreover, structures corresponding to buildings would result

more visible in the image produced by the symmetric H/α
classification (i.e. pixels classified as 1 which are represen-

tative of double-bounces mechanisms). As an example, the

reader could refer to the zones labelled with the letters A

and B within the images of Fig. 14, where, in the case of

symmetric H/α classifier, the de Young Museum (label A) and

the Alhoa Avenue (label B) are more visible with respect to

classic H/α classifier. In fact, with the symmetric algorithm

they are associated to class 1 pixels, which correspond to

returns from buildings.

E. Application for Oil Spill Symmetry Characterization

To further assess the performance of the proposed algo-

rithms and their capabilities to distinguish among different

areas within a scene, we apply them to a zone of the

GOMoil 07601 10052 101 100622 L090 CX 02 SAR image

which is composed of sea data containing also an oil spill.

The image has been acquired on 22nd of June 2010, during

the British Petroleum oil spill incident in the Gulf of Mexico

(known also as the Deepwater Horizon Oil Spill). As in the

previous analysis, this second image contains a scene acquired

with all the polarizations and the corresponding polarimetric

overlay is reported in Fig. 15. Again, the selected area of

interest is a sub-image of 2000× 2000 pixels, whose span is

displayed in Fig. 16(a) and its H-A-α decomposition in RGB

colors in Fig. 16(b). This choice is, of course, for testing our

techniques as well as to provide some suggestions on possible

applications of the algorithm in real operative contexts.

We represent in Fig. 17, the detected symmetries for the

reference image, computed using, respectively, the AIC, BIC,

GIC (with ρ = 3), and EEF, with K = 25.

The results show that both the AIC and the BIC achieve

quite good results in terms of classification of sea data with

respect to oil spills, since the sea pixels are classified as

reflection symmetry (blue pixels) whereas the oil spill shows

some azimuthal symmetry (green pixels) in the radar returns.

However, both the GIC and EEF outperform the AIC and

BIC, with a clear separation of the different regions within

the area under test. It is also interesting to observe a small

strip characterized by an azimuthal symmetry (green pixels)

in correspondence of a small ship transition over the sea (see

the ellipse in Fig. 17).

V. CONCLUSIONS

We have introduced and analysed a new framework for

detecting covariance symmetries within polarimetric SAR im-

ages. The proposed algorithm is based on the exploitation of

the special structures assumed by the polarimetric coherence

matrix whenever symmetrical properties of the returns associ-

ated to the pixels under analysis occur. Specifically, the core

of the technique is the utilization of model order selectors,

capitalizing the coherence matrix structures, to classify each

pixel of the considered scene.
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TABLE II: Real L-band data (AIRSAR San Francisco Bay JPL). Confusion Matrix (expressed in percentage) between the

classic H/α classification and the one exploiting our algorithm as pre-processing stage. The values in the table are expressed

in percentage.

Symmetric H/α
1 2 3 4 5 6 7 8 9

T
im

e
[s

]

1 99.49 0.51 0 0 0 0 0 0 0

2 10.03 89.97 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

4 4.10 8.41 0 87.48 0.01 0 0 0 0

5 0 31.23 0 3.76 58.10 6.91 0 0 0

6 0 0 0 0 1.78 98.22 0 0 0

7 0 0 0 0.43 0.01 0 99.56 0 0

8 0 0 0 0 5.74 0 0 94.26 0

9 0 0 0 0 0.01 0.85 0 0 99.14

The analysis of the new technique has been conducted on

both simulated and real SAR data. In particular, the former

has shown good capabilities to correctly classify the data in a

controlled environment. Moreover, the latter has demonstrated

the effectiveness of the approach and its flexibility to be

integrated in operative context and algorithms, such as oil spill

detections.

Future research work might concern the analysis of the new

technique on other available real radar datasets such as AgriSar

data [30], as well as its integration in more complex algorithms

to produce land cover classifications. Moreover, another pos-

sible future work, very suitable for spaceborne applications,

might concern the introduction of a fifth hypothesis (H5),

accounting for the presence of acquisition noise only. In this

case, if the algorithm decides for H5 no further processing is

possible since no real information on the scene is available.
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APPENDIX

A. Proof of Proposition 3.2

We show how the minimization problem (11) can be re-

cast in the presence of the considered symmetry properties,

exploiting the results given by Lemma 3.1. Specifically, in the

case of reflection symmetry, the minimization problem (11)

can be simplified as follows

min
C∈H

++

3

[

log det (C) + tr
(

C−1S
)]

= min
C1∈H

++

2

[

log det (C1) + tr
(

C−1
1 S̄1,1

)]

+min
c>0

[

log (c) +
S̄3,3

c

]

= log det
(

S̄1,1

)

+ log
(

S̄3,3

)

+ 3,

(23)

Moreover, for the case of rotation symmetry, the objective

function reduces to

log det (C) + tr
(

C−1S
)

= log det
(

V ETCT †EV †
)

− 2 log det (E)

+ tr

{

(

V ETCT †EV †
)−1 (

V ETST †EV †
)

}

= log det (C2) + log(a)− 2 log det (E)

+ tr
(

C−1
2 S̃2

)

+
S̃1,1

a

= log det (C2) + log(a) + log(2) + tr
(

C−1
2 S̃2

)

+
S̃1,1

a
.

Consequently, the minimization problem (11) can be ex-

pressed as follows
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min
C∈H

++

3

[

log det (C) + tr
(

C−1S
)]

= min
C2∈S

++

2
∩P

++

2

[

log det (C2) + tr
(

C−1
2 S̃2,2

)]

+ log(S̃1,1) + 1 + log(2)

= min
C2∈S

++

2
∩P

++

2

[

log det (C2)

+ tr

(

C−1
2

2

(

S̃2,2 + JS̃2,2J
)

)]

+ log(S̃1,1) + 1 + log(2)

= log det

[

1

2

(

S̃2,2 + JS̃2,2J
)

]

+ log(S̃1,1) + 3 + log(2),
(24)

where in the second equality the persymmetric and real

symmetric structure of C2 is used to claim

tr
(

C−1
2 S̃2,2

)

= tr
(

C−1
2 JS̃2,2J

)

,

and, hence

tr
(

C−1
2 S̃2,2

)

= tr

(

C−1
2

1

2

(

S̃2,2 + JS̃2,2J
)

)

. (25)

Finally, for the case of azimuth symmetry, the following

equalities hold

log det (C) + tr
(

C−1S
)

= log det
(

ETCT †E
)

− 2 log det (E)

+ tr

{

(

ETCT †E
)−1 (

ETST †E
)

}

= log(a) + 2 log(b) + log(2) +
Ŝ1,1

a

+
Ŝ2,2 + Ŝ3,3

b
,

(26)

and the minimization problem (11) can be rewritten as

min
C∈H

++

3

[

log det (C) + tr
(

C−1S
)]

= log(Ŝ1,1) + 2 log

(

Ŝ2,2 + Ŝ3,3

2

)

+ 3 + log(2).

(27)

B. Computation of F and Regularity Conditions

We verify, for the BIC rule, the regularity conditions that

must hold on the Fisher information matrix F :

1) Invertibility of the Fisher Information Matrix: The ML

estimator of the parameter vector (synthetically denoted by θ̂)

is unbiased and with finite variance. Hence by [31, Equation

(18)], applied with H = I ,

I = FF+,

must hold. This is true if and only if F is invertible.

2) Regularity Condition: F
K = O(1): By Slepian-Bangs

formula of [32, p. 927],

Fi,j = K tr

[

C−1(θ̂)
∂C(θ)

∂θi
C−1(θ̂)

∂C(θ)

∂θj

]

. (28)

Since, C(θ̂) tends to the true covariance as K → ∞,

whereas the terms Ai = ∂C(θ)/∂θi and Aj = ∂C(θ)/∂θj
do not depend on K

Fi,j

K
→ tr

[

C(θ)−1AiC(θ)−1Aj

]

= O(1). (29)
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Fig. 1: A pictorial representation to construct the datacube for polarimetric images.
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Fig. 2: Probability of correct classification (%) for a simulated scenario with K = 25 data and MC = 104 Monte Carlo trials.
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Fig. 3: Probability of correct classification (%) versus the number of data K , with MC = 104 Monte Carlo trials. The subplots

refer to the different selectors, whereas the curves are related to the four considered covariance scenarios, i.e. C1, C2, C3,

and C4.
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Fig. 4: Probability of correct classification (%) for the AIC selector versus the number of data K in a SIRV environment, with

MC = 104 Monte Carlo trials. The subplots refer to the different covariance scenarios, i.e. C1, C2, C3, and C4, whereas

the curves refer to the four considered values of ν.
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Fig. 5: Probability of correct classification (%) for the BIC selector versus the number of data K in a SIRV environment, with

MC = 104 Monte Carlo trials. The subplots refer to the different covariance scenarios, i.e. C1, C2, C3, and C4, whereas

the curves refer to the four considered values of ν.
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Fig. 6: Probability of correct classification (%) for the GIC (with ρ = 3) selector versus the number of data K in a SIRV

environment, with MC = 104 Monte Carlo trials. The subplots refer to the different covariance scenarios, i.e. C1, C2, C3,

and C4, whereas the curves refer to the four considered values of ν.



14 IEEE TRANS. ON GEOSCIENCE AND REMOTE SENSING

10 30 50 70 90 110 130 150 170 190
20

40

60

80

100
no symmetry

K

pr
ob

ab
ili

ty
 o

f c
or

re
ct

 c
la

ss
ifi

ca
tio

n 
(%

)

 

 

10 30 50 70 90 110 130 150 170 190
20

40

60

80

100
reflection symmetry

K

 

 

ν = 1
ν = 2
ν = 5
ν = 10 

10 30 50 70 90 110 130 150 170 190
20

40

60

80

100
rotation symmetry

K

 

 

ν = 1
ν = 2
ν = 5
ν = 10 

10 30 50 70 90 110 130 150 170 190
20

40

60

80

100
azimuth symmetry

K

 

 

ν = 1
ν = 2
ν = 5
ν = 10 

ν = 1
ν = 2
ν = 5
ν = 10 

Fig. 7: Probability of correct classification (%) for the EEF selector versus the number of data K in a SIRV environment, with

MC = 104 Monte Carlo trials. The subplots refer to the different covariance scenarios, i.e. C1, C2, C3, and C4, whereas

the curves refer to the four considered values of ν.

Fig. 8: Three polarization color overlay of the UAVSAR pass SSurge 15305 14170 007 141120 L090 CX 01.
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Fig. 9: Real L-band data UAVSAR pass SSurge 15305 14170 007 141120 L090 CX 01. (a) Span (b) RGB of the H-A-α
decomposition for the reference image of size 2000× 2000 pixels.
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Fig. 10: Real L-band data UAVSAR pass SSurge 15305 14170 007 141120 L090 CX 01. Detected symmetries within the

reference image, K = 25.
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Fig. 11: San Francisco Bay JPL (AIRSAR L-band 1988) data. (a) Span (in dB) (b) RGB of the H-A-α decomposition for the

reference image of size 900× 1024 pixels.
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Fig. 12: Real L-band data AIRSAR San Francisco Bay JPL. Detected symmetries within the reference image, K = 25.
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Fig. 13: Block scheme of the symmetric H-α classification.
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Fig. 14: Real L-band data (AIRSAR San Francisco Bay JPL). H-α classification.

Fig. 15: Three polarization color overlay of the SAR image GOMoil 07601 10052 101 100622 L090 CX 02.
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Fig. 16: Real L-band data SAR image GOMoil 07601 10052 101 100622 L090 CX 02. (a) Span (in dB) (b) RGB of the

H-A-α decomposition for the reference image of size 2000× 2000 pixels.
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Fig. 17: Real L-band data SAR image GOMoil 07601 10052 101 100622 L090 CX 02. Detected symmetries within the

reference image, K = 25.


