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Abstract— Phase modulation induced by target micro-motions
introduces side-bands in the radar spectral signature returns.
Time-frequency distributions facilitate the representation of such
modulations in a micro-Doppler signature that is useful in the
characterization and classification of targets. Reliable micro-
Doppler signature classification requires the use of robust fea-
tures that is capable of uniquely describing the micro-motion.
Moreover, future applications of micro-Doppler classification will
require meaningful representation of the observed target by using
a limited set of values. In this paper, the application of the pseudo-
Zernike moments for micro-Doppler classification is introduced.
Specifically, the proposed algorithm consists in the extraction of
the pseudo-Zernike moments from the Cadence Velocity Diagram
(CVD). The use of pseudo-Zernike moments allows invariant
features to be obtained that are able to discriminate the content
of two-dimensional matrices with a small number of coefficients.
The analysis has been conducted both on simulated and on
real radar data, demonstrating the effectiveness of the proposed
approach for classification purposes.

Index Terms— Radar Micro-Doppler Signature, Radar
Doppler Spectrum, Automatic Target Recognition, Micro-
Doppler Classification, Orthogonal Moments, Pseudo-Zernike
Moments.

I. INTRODUCTION

Moving targets illuminated by a radar system introduce
frequency modulations caused by the time-varying delay that
occurs between the target and the sensor. The main bulk
translation of the target, towards or away from the sensor,
induces a frequency shift of the echo as a result of the
well-known Doppler effect. However, the target may contain
parts which have additional movements with respect to the
target main motion. These movements can contribute with
frequency modulations around the main Doppler shift and
they are commonly referred to as micro-Doppler modulations.
It is important to underline that, in the open literature, an
unambiguous definition of micro-Doppler effect is not present
(see for instance [1], [2], [3], [5]); consequently, within this
paper we prefer to associate to the term micro-Doppler all
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the frequency modulations due to small displacement, rotation
or vibration of secondary parts of the object. The analysis
of radar micro-Doppler was introduced by Chen in [4] and
widely treated in [5], [6], demonstrating the potential of micro-
Doppler information for target classification and micro-motion
analysis. Over the last decade, the analysis of micro-Doppler
signatures has been investigated for different families of radar
systems [7], demonstrating the effectiveness of models and
potential of such information source.

Micro-Doppler can be regarded as a unique signature
of the target that provides additional information which is
complementary to existing methods for target recognition.
Specific applications include the recognition of space, air, and
ground targets. Recently, novel technologies and techniques
have opened a wider set of applications for micro-Doppler
signatures, such as passive radar and acoustic micro-Doppler
[8], [9]. For example, micro-Doppler signatures can be used
for human identification under different weather conditions.
In particular, specific components of micro-Doppler gait sig-
nature can be related to parts of the body for identification
purposes [10]. Furthermore, in [11] a novel technique for
human signatures decomposition into the responses of different
body parts has been proposed. Despite the quasi-complete
knowledge of the phenomenon and its representation [6], an
open problem related to the exploitation of micro-Doppler sig-
natures is the realization of a reliable, robust, and efficient pro-
cedure to classify targets on different observation conditions.
Different approaches have been applied to classify micro-
Doppler signatures, for example in [12] and [3] a template-
based approach with interesting results was introduced, while
in [13] and [14] a combination of information extracted from
the Cadence Velocity Diagram (CVD) of the received data
were used with the aim to remove acquisition dependence in
the micro-Doppler feature. In [15] a Mean Frequency Profile
(MFP) based approach has been presented achieving good
results with low complexity.

In this paper, we present a novel micro-Doppler signature
extraction method that is based on the use of pseudo-Zernike
moments [16]. The family of geometric moments represented
by Hu [17], Zernike [18], and pseudo-Zernike [16], have been
widely used in image processing for pattern recognition and
image reconstruction [19], [20], [21]. These moments can
provide potential useful properties such as position, scale, and
rotational invariance. Zernike moments, unlike Hu moments,
are obtained using a set of orthogonal polynomials, namely
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Zernike polynomials, that comprise independent moments.
This is an important property as independent moments allow
us to obtain more information considering the same number of
coefficients. Pseudo-Zernike moments, introduced by Bhatia in
[16], improve Zernike moments by reducing the noise sensitiv-
ity compared to Zernike moments and increasing the number
of moments available for a given order of the polynomial.
Consequently, the pseudo-Zernike moments were selected as
features to discriminate different micro-Doppler signatures, in
the novel approach described in this paper.

The use of the pseudo-Zernike moments allows the intro-
duction of important characteristics in the representation of
a micro-Doppler signature, in order to fit different require-
ments. In particular translational invariance allows the unique
identification of targets with different main Doppler shifts
but belonging to the same class. The scale invariance allows
us to provide features invariant with respect to variations
of the aspect angle, making the algorithm applicable in a
multistatic scenario without the requirement of a multistatic
training dataset. The scale invariance can be also exploited
to use a database acquired at a carrier frequency in an
Automatic Target Recognition (ATR) working with a slightly
different one. Another advantage of the scale invariance for
this specific problem is the capability of mitigating physical
differences between targets of the same class (e.g. two people
walking, a tall and a short one that would introduce different
micro-Doppler shift that might lead to wrong classification).
Moreover, in the proposed algorithm the pseudo-Zernike poly-
nomials are computed starting from the CVD, thus introducing
the advantage of robustness with respect to the initial phase of
the micro-motion and the opportunity to introduce the scene
invariance by removing the zero periodicity component before
computing the pseudo-Zernike moments.

The remainder of the paper is organized as follows. Sec-
tion II introduces the pseudo-Zernike moments theory, and
describes the novel feature extraction algorithm. The effec-
tiveness of the proposed approach is demonstrated in Section
III, where simulated data are used to justify the choice of the
pseudo-Zernike moments, and in Section IV where accurate
classification results on real Ku and X band data are presented.
Section V concludes the paper.

II. PSEUDO-ZERNIKE MOMENTS BASED FEATURES

In this section, a novel feature for radar micro-Doppler
classification is introduced. The approach is based on the
use of pseudo-Zernike moments [16], in order to obtain
reliable feature vectors with relatively small dimension and
low computational complexity. The novel feature benefits of
the specific properties of the pseudo-Zernike moments such as
invariance with respect to translation and rotation. Moreover,
the scale invariance can be included if required by the specific
applications.

In the next subsections, the theory defining the pseudo-
Zernike moments is introduced, followed by the novel feature
extraction algorithm.

A. Pseudo-Zernike Moments
Let f(x, y) be a non-negative real defined image, i.e.

f(x, y) ≥ 0. The moments of f(x, y) of order (or degree)
n+ l are defined as the projection of the function f(x, y) on
the monomials xnyl, by the integral [17]

Mn,l =

∫∫
R2

xnylf(x, y) dx dy. (1)

Notice that, the low order moments share important proper-
ties that allow us to characterize an image. More specifically,
the zero order moment defined as

M0,0 =

∫∫
R2

f(x, y) dx dy, (2)

and the first order moments, given by

M1,0 =

∫∫
R2

xf(x, y) dx dy (3)

and
M0,1 =

∫∫
R2

yf(x, y) dx dy, (4)

are useful to represent the position of the image centroid [18],
whose coordinates within the image can be computed as

Cx = M1,0/M0,0 and Cy = M0,1/M0,0. (5)

The moments described by (1)-(4) are not orthogonal be-
cause of the dependence on the family of monomials {xnyl},
which in general do not share orthogonality properties.

Zernike polynomials are a set of orthogonal functions, with
simple rotation properties [16], [18], that can be written in the
form

Vn,l (x, y) = Vn,l (ρ cos θ, ρ sin θ) = Rn,l (ρ) ejlθ, (6)

where j is the imaginary unit, x = ρ cos θ, y = ρ sin θ, l
is an integer, whereas Rn,l(ρ) is a polynomial (called radial
polynomial) in ρ of degree n, with n not smaller than l. These
functions form a complete basis and satisfy, on the unit circle
(i.e. for x2 + y2 ≤ 1), the orthogonality relation [16]∫∫
x2+y2≤1

V ∗n,l (x, y)Vm,k (x, y) dx dy =
π

n+ 1
δmnδkl, (7)

where the symbol (·)∗ indicates the complex conjugate oper-
ator, and δmn is the Kronecker delta function, i.e.

δmn =

{
1 if m = n
0 if m 6= n

.

As highlighted in [16], the radial polynomials, Rn,l(ρ),
exhibit the following explicit expressions

Rn,l(ρ) =

(n−|l|)/2∑
k=0

(−1)k
(n− k)!

k!
(
n+|l|

2 − k
)

!
(
n−|l|

2 − k
)

!
ρn−2k,

(8)
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where n ≥ 0 and l are integers such that n − |l| is even and
n ≥ |l|. Finally, the complex Zernike moments (obtained by
projecting f(x, y) on the Zernike polynomials) are defined as

ζn,l =
n+ 1

π

∫∫
x2+y2≤1

V ∗n,l (ρ(x, y), θ(x, y)) f(x, y) dx dy = ζ∗n,−l.

(9)
In a similar manner, in place of polynomials in x and y, as

given in (6), it is also possible to consider polynomials in x,
y, and ρ =

√
x2 + y2 [16]. In such a case, the polynomials

of order n can be written in the following form

Wn,l (x, y, ρ) = Wn,l (ρ cos θ, ρ sin θ, ρ) = Sn,l (ρ) ejlθ,
(10)

where n ≥ 0 and l are integers such that n ≥ |l|. For a more
clear understanding, in Fig. 1 are shown the pseudo-Zernike
polynomials, Wn,l (θ, ρ), with order from n = 0 to n = 3.

Fig. 1. Pseudo-Zernike polynomials for orders 0 to 3.

Exploiting expression (10), the pseudo-Zernike moments are
defined as

ψn,l =
n+ 1

π

2π∫
0

1∫
0

W ∗n,l (ρ, θ) f(ρ cos θ, ρ sin θ)ρdρdθ,

(11)
where the radial polynomials [16] are now expressed as

Sn,l(ρ) =

n−|l|∑
k=0

(−1)k
(2n+ 1− k)!

k! (n+ |l|+ 1− k)! (n− |l| − k)!
ρn−k.

(12)

Notice that, the number of linearly independent pseudo-
Zernike polynomials of degree ≤ n is (n+1)2, whereas for the
Zernike polynomials, it is only 1

2 (n+1)(n+2). Hence, having
fixed the degree of the polynomial, the number of pseudo-
Zernike moments (or coefficients) is much greater than that of
Zernike. This is an important property of the pseudo-Zernike
moments as at parity of order, much more information is
provided using the pseudo-Zernike moments. Indeed, to obtain
the same degree of information, an higher order of Zernike
moments, with respect to pseudo-Zernike, is required, which
reflects in an higher noise sensitivity. For each fixed order
Table I shows the corresponding Zernike and pseudo-Zernike
moments. Clearly the moments of a certain order contain all
the moments of the lowest orders.

An important characteristic of Zernike and pseudo-Zernike
moments is the simple rotational transformation property, as
a result of the fact that computing the moments only requires
a phase factor on the rotation of axes [16], [18]. The latter is
due to fact that the polynomials can be written in the forms
(6) and (10), respectively (the corresponding proof is available
in [16]). This property is important as the moments will be
rotationally invariant when their modulus is used.

B. Feature Extraction Algorithm

The proposed micro-Doppler feature extraction algorithm is
shown in Fig. 2. It involves a few steps that leads to low com-
putational complexity. The starting point is the signal s(n),

Fig. 2. Block scheme of the proposed feature extraction algorithm.

n = 0, . . . , N − 1, containing micro-Doppler components,
with N the number of signal samples. Its expression can be
modeled as the superposition of the returns from the different
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TABLE I
ZERNIKE AND PSEUDO-ZERNIKE MOMENTS FOR DIFFERENT POLYNOMIAL ORDERS.

ORDER ZERNIKE MOMENTS PSEUDO-ZERNIKE MOMENTS
1 ζ0,0; ζ1,1; ζ1,−1 ψ0,0; ψ1,0; ψ1,1; ψ1,−1

2
ζ0,0; ζ1,1; ζ1,−1; ζ2,0; ζ2,2 ψ0,0; ψ1,0; ψ1,1; ψ1,−1; ψ2,0; ψ2,1; ψ2,−1

ζ2,−2 ψ2,2; ψ2,−2

3
ζ0,0; ζ1,1; ζ1,−1; ζ2,0; ζ2,2 ψ0,0; ψ1,0; ψ1,1; ψ1,−1; ψ2,0; ψ2,1; ψ2,−1

ζ2,−2; ζ3,1; ζ3,−1; ζ3,3; ζ3,−3 ψ2,2; ψ2,−2; ψ3,0; ψ3,1; ψ3,−1; ψ3,2; ψ3,−2

ψ3,3; ψ3,−3

4

ζ0,0; ζ1,1; ζ1,−1; ζ2,0; ζ2,2 ψ0,0; ψ1,0; ψ1,1; ψ1,−1; ψ2,0; ψ2,1; ψ2,−1

ζ2,−2; ζ3,1; ζ3,−1; ζ3,3; ζ3,−3 ψ2,2; ψ2,−2; ψ3,0; ψ3,1; ψ3,−1; ψ3,2; ψ3,−2

ζ4,0; ζ4,2; ζ4,−2; ζ4,4; ζ4,−4 ψ3,3; ψ3,−3; ψ4,0; ψ4,1; ψ4,−1; ψ4,2; ψ4,−2

ψ4,3; ψ4,−3; ψ4,4; ψ4,−4

5

ζ0,0; ζ1,1; ζ1,−1; ζ2,0; ζ2,2 ψ0,0; ψ1,0; ψ1,1; ψ1,−1; ψ2,0; ψ2,1; ψ2,−1

ζ2,−2; ζ3,1; ζ3,−1; ζ3,3; ζ3,−3 ψ2,2; ψ2,−2; ψ3,0; ψ3,1; ψ3,−1; ψ3,2; ψ3,−2

ζ4,0; ζ4,2; ζ4,−2; ζ4,4; ζ4,−4 ψ3,3; ψ3,−3; ψ4,0; ψ4,1; ψ4,−1; ψ4,2; ψ4,−2

ζ5,0; ζ5,1; ζ5,−1; ζ5,3; ζ5,−3 ψ4,3; ψ4,−3; ψ4,4; ψ4,−4; ψ5,0; ψ5,1; ψ5,−1

ζ5,5; ζ5,−5 ψ5,2; ψ5,−2; ψ5,3; ψ5,−3; ψ5,4; ψ5,−4; ψ5,5

ψ5,−5

6

ζ0,0; ζ1,1; ζ1,−1; ζ2,0; ζ2,2 ψ0,0; ψ1,0; ψ1,1; ψ1,−1; ψ2,0; ψ2,1; ψ2,−1

ζ2,−2; ζ3,1; ζ3,−1; ζ3,3; ζ3,−3 ψ2,2; ψ2,−2; ψ3,0; ψ3,1; ψ3,−1; ψ3,2; ψ3,−2

ζ4,0; ζ4,2; ζ4,−2; ζ4,4; ζ4,−4 ψ3,3; ψ3,−3; ψ4,0; ψ4,1; ψ4,−1; ψ4,2; ψ4,−2

ζ5,0; ζ5,1; ζ5,−1; ζ5,3; ζ5,−3 ψ4,3; ψ4,−3; ψ4,4; ψ4,−4; ψ5,0; ψ5,1; ψ5,−1

ζ5,5; ζ5,−5; ζ6,0; ζ6,2; ζ6,−2 ψ5,2; ψ5,−2; ψ5,3; ψ5,−3; ψ5,4; ψ5,−4; ψ5,5

ζ6,4; ζ6,−4; ζ6,6, ζ6,−6 ψ5,−5; ψ6,0; ψ6,1; ψ6,−1; ψ6,2; ψ6,−2; ψ6,3

ψ6,−3; ψ6,4; ψ6,−4; ψ6,5; ψ6,−5; ψ6,6; ψ6,−6

...
...

...

components introducing micro-motion [14]

s(n) =

I∑
i=1

γi exp

{
−j 4π

λ
(vin+ αi cos(2πθin+ φi) + βi)

}
,

(13)
where I is the total number of scatterers, γi is the amplitude
related to the scatterer e.m. reflectivity, vi is the bulk motion
velocity, αi is the micro-motion spatial displacement, θi is the
micro-motion frequency, φi is the initial phase of the micro-
motion (e.g.: the initial position of a swinging arm) and βi is
the initial phase relative to the target range. The first step is to
convert s(n) into a zero mean and unit variance signal s̃(n).

The spectrogram of the signal s̃(n) is computed

χ(ν, k) =

∣∣∣∣∣
N−1∑
n=0

s̃(n)h∗(n− k)e−j2πνn/N

∣∣∣∣∣
2

, k = 0, . . . ,K−1,

(14)
where ν is the normalized frequency and h(·) is the smoothing
window. The choice of the spectrogram, rather than other
time-frequency distributions, is motivated by its robustness
with respect to interference terms present in the so-called
energy distributions [22]. An example of the spectrogram of
s(n) for a running human observed with a 16 GHz carrier
frequency radar [23], [24], [25] is shown in Fig. 3-a. The CVD,
introduced in [13], [26] to extract micro-Doppler features, is
defined as the Fourier Transform of the spectrogram along
each frequency bin. An example of the CVD obtained from
the spectrogram in Fig. 3-a is shown in Fig. 3-b. The CVD
provides a measure of how often the different velocities repeat
(i.e. cadence frequencies) [13]. Hence, from the CVD useful
information can be extracted such as the period of each com-
ponents and their maximum micro-Doppler shifts. Specifically,
all the components with a specific cadence are visible along
the cadence frequency axis, while their micro-Doppler shift

amplitude is visible along the normalized frequency axis. The
CVD is computed as second step of the proposed algorithm
indicated in Fig. 2

∆(ν, ε) =

∣∣∣∣∣
K−1∑
k=0

χ(ν, k)e−j2πkε/K

∣∣∣∣∣ , (15)

where ε is the cadence frequency.
The third step of the algorithm is the projection of the CVD

onto basis constituted by the pseudo-Zernike polynomials.
They depend on the CVD size only and can be pre-computed
through (12) and used to populate a look up table. As the
pseudo-Zernike polynomials are defined on the unit circle the
CVD dimension is scaled, before the coefficient is computed,
to avoid information loss. Applying (11) to ∆(ν, ε), the
pseudo-Zernike expansion is obtained as

ψn,l =
n+ 1

π

2π∫
0

1∫
0

W ∗n,l (ρ, θ) ∆(ρ cos θ, ρ sin θ)ρdρdθ.

(16)
The output of this stage is the set of (n+1)2 magnitudes of

the pseudo-Zernike coefficients; the modulus is used in order
to ensure rotational invariance of the coefficients. Hence, the
feature vector results to be

F = [|ψ0,0|, . . . , |ψN,−N |] . (17)

Finally, the feature vector, F , is normalized using the follow-
ing linear rescaling

F̃ =
F − µF

σF
, (18)
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Fig. 3. Spectrogram (a) and CVD (b) from the returns relative to a running man. The observation time is 4 s.

where µF and σF are the mean and standard deviation of the
feature vector. These values are then used to populate the
micro-Doppler feature to be used as input to a classifier.

The last step of the algorithm, clearly, consists in the clas-
sification procedure. In particular, the classification has been
performed using a K-Nearest Neighbour (KNN) classifier, to
assign each element to a class, for simulated data. Moreover,
on real radar data, the classification of extracted feature vectors
is performed using a Support Vector Machine (SVM) classifier
with a Radial Basis Function (RBF) kernel, employing a cross-
validation grid search for selection of cost function and kernel
parameters. The one-against-all approach [27] was used to
perform multi-class classification1.

III. EXPERIMENTAL RESULTS ON SIMULATED RADAR
DATA

To study the behaviour of the proposed classification algo-
rithm based on pseudo-Zernike moments, and to experimen-
tally validate the choice of this kind of approach, a dataset
of simulated observations is considered first. Specifically, the
returns from helicopter rotor blades have been simulated [6],
[28], [29]. However, more sophisticated and accurate models
can be found in [30]. The time domain signature of rotor
blades [6], is defined as

s(t) =

∣∣∣∣∣L̃ exp

{
−j 4π

λ
[R0 + z0 sinβ]

}NB−1∑
k=0

sinc (Φk(t)) exp {−jΦk(t)}

∣∣∣∣∣ ,
(19)

where L̃ is the scattering coefficient of the blade (for simplicity
we consider it equal to the dimensionless length of the blade
L [5]), λ is the radar operative wavelength, R0 is the distance
from the radar to the origin of the reference coordinates,
z0 is the z-coordinate of the scattering center, β is the

1The objective of the analysis on simulated data is to show the performance
of the pseudo-Zernike based features against the Zernike based ones, for this
reason a simple KNN classifier was preferred.

radar observed elevation angle, NB is the number of blades,
sinc(x) = sin(x)/x, and Φk(t) is the phase function given by

Φk(t) =
4π

λ

L

2
cosβ cos (Ωt+ φ0 + k2π/N) , k = 0, . . . , NB−1,

(20)
with Ω the angular rotation rate and φ0 the initial rotation
angle.

Notice that, the returns from helicopter rotor blades could
not perfectly match with the definition of micro-Doppler, be-
cause of the corresponding high Doppler shift. Consequently,
terms like macro-Doppler could sound better than micro-
Doppler for this case study. Nevertheless, we prefer to let to
the Scientific Community the choice of the more appropriate
terminology.

In particular, 4 classes have been provided, each comprises
of 100 observations of helicopter rotor blades returns simulated
using (19). Here, the parameters representing the simulated
classes for a total of 400 observations are reported:
• class 1. Helicopter with NB = 2 blades, L = 4 m main

blade length, and Ω = 10π rad/s angular rotation rate;
• class 2. Helicopter with NB = 2 blades, L = 6 m main

blade length, and Ω = 6π rad/s angular rotation rate;
• class 3. Helicopter with NB = 3 blades, L = 4 m main

blade length, and Ω = 10π rad/s angular rotation rate;
• class 4. Helicopter with NB = 3 blades, L = 6 m main

blade length, and Ω = 6π rad/s angular rotation rate.
The other parameters, needed to compute (19) that are used

to simulate the helicopter data, are range resolution Rr = 0.5
m, signal duration T = 1 s, number of time samples nt =
10240, radar operative frequency f0 = 5 GHz, blade wide
W = 1 m, one end (root) of blade L1 = 0.5 m, other end
(tip) of blade L2 = L+ L1 m, rotor center location (0, 0, 0),
and radar location (500, 0, 500).

To obtain the 100 observations for each class, once the
spectrogram is computed, additive zero-mean Gaussian noise
has been added to it. Specifically, the spectrograms have
been computed considering a number of points for the DFT
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computation NDFT = 256, a Hamming window of length
M = 128, and with 50% overlap (Notice that, for the
computation of the spectrogram the overlap and save method
was utilized [31]). Fig. 4 shows an example of a spectrogram
obtained for each class and with a Signal to Noise Power Ratio
(SNR) of 5 dB. As the figure shows, the 4 classes exhibit
a different time-frequency response, representing a good test
case for the proposed algorithm. Again, in Fig. 5, an example
of spectrogram for each class is given with a SNR = −5 dB.

The analyses have been conducted considering 70% of data
for training, while the other 30% are used for testing. In order
to statistically characterize the classifier and its performance, a
Monte Carlo approach has been applied, using different selec-
tions of the training and test sets of the data chosen randomly
for each class. To estimate the classifier performance, 50
different experimental cases have been performed, evaluating
the average correct classification (defined as the number of
correct classified observations over their total number). The
simulations have been performed comparing the proposed
algorithm based on pseudo-Zernike moments with the one that
uses the Zernike moments.

Fig. 6 reports the scatter plots related to the 8-th order
moments of index 9 versus index 24, for all the data of the
4 classes. Note that both the Zernike and pseudo-Zernike
moments have been considered. Following the rule given
in Table I, it is easy to see that the above mentioned 9-
th and 24-th moments are ζ3,3 and ζ6,−2 for Zernike, and
ψ2,−2 and ψ4,4 for pseudo-Zernike, respectively2. The scatter
plots demonstrate that for SNR = 0 dB, both Zernike and
pseudo-Zernike moments give a certain degree of separation
within the classes. However for SNR = −5 dB the Zernike
moments present a less evident separability between the ele-
ments of different classes. This behaviour is also confirmed
by the results illustrated in Fig. 7, where the average correct
classification is plotted versus the moments order both for
Zernike (dot-dashed curves) and pseudo-Zernike (solid curves)
moments based algorithms. It is clear that, as expected, an
increment in the SNR leads to higher performance; moreover,
higher moments orders ensure higher percentages of correct
classification, thanks to the availability of more coefficients.
Finally, the curves show the different performance between
Zernike and pseudo-Zernike moments based algorithms. For
instance, in the case of SNR = −5 dB the 7-th order
pseudo-Zernike moments-based algorithm reaches a correct
classification of 99.08%, while the Zernike one needs to be
of order 8 to ensure the same level of correct classification.
Thus, having fixed the moments order, the pseudo-Zernike
framework assures an higher level of correct classification
than the Zernike counterpart. Consequently, as conclusion to
this analysis, it can be claimed that the use of pseudo-Zernike
moments is preferred to that of Zernike, due to their higher
level of independent information at parity of order.

2Notice that, the moments as reported in scatter plots can assume both
positive or negative values because of the normalization (18) applied on the
feature vector. For simplicity, the authors refer to them again as the Zernike
or pseudo-Zernike moments.

IV. EXPERIMENTAL RESULTS ON REAL RADAR DATA

In this section the performance of the proposed classification
algorithm is assessed using real radar data. Two different
dataset are used namely (i) the former is a Ku band radar
dataset obtained in a real controlled scenario (Subsection IV-
A), and (ii) the latter is an X band radar dataset acquired
in a more realistic environment with the target area at more
than 4 km range from the radar (Subsection IV-B), both of
them with an unknown level of SCR (Signal to Clutter power
Ratio). Moreover, this second dataset represents a good test-
bench for the proposed feature due to its uncontrolled and
realistic nature.

A. Experimental Results on Ku Band Radar Data

To analyze the performance of the proposed algorithm, the
correct classification has been considered as a figure of merit.
The algorithm has been tested on real Ku band radar data,
with short range within radar and target (100− 1000 m) [23],
[24], [25]. The analysis has been conducted on an entire 4
s time observation window and on shorter time windows (2,
1 and 0.5 seconds), extracted from the beginning of the 4 s
sequence. In this way, it is possible to test the algorithm with
respect to the variation of the available observation time.

Attention has been focused on 5 different classes of data,
included in the same class the case of a target moving
toward and away from the radar location. A summary of the
classes and acquisitions is reported below for a total of 362
acquisitions:
• class 1. Person running toward/away from the radar (284

s - 71 samples);
• class 2. Person walking toward/away from the radar (396

s - 99 samples);
• class 3. Person crawling (72 s - 18 samples);
• class 4. Group of people running toward/away from the

radar (200 s - 50 samples);
• class 5. Group of people walking toward/away from the

radar (496 s - 124 samples).
As used previously, from all the available samples, 70%

are used for training, while the other 30% are used for
testing. In order to statistically characterize the classifier and
its performance, a Monte Carlo approach has been applied,
using different selections of the training and test sets of the
data chosen randomly for each class. To estimate the classifier
performance, 50 different experimental cases have been eval-
uated, reporting the mean and standard deviation (or degree of
reliability). The spectrogram is computed using NDFT = 512
points for the DFT computation, and a Hamming window of
length M = 256, with 50% overlap. Notice that, the choice of
the number of DFT points depends on the acquisition system
(i.e. Pulse Repetition Frequency - PRF) and the expected
time dynamic of the targets (e.g. humans, animals rather than
helicopters).

Fig. 8 shows the scatter plot representing the 5-th order
pseudo-Zernike moments ψ3,−2 vs ψ4,−3 for all the available
data. The figure shows how the objects form a quite well
defined cluster for each class, that, consequently, facilitates the
separation (or classification) of the different objects. The result
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Fig. 4. Examples of spectrogram (with SNR = 5 dB) for the 4 classes of returns from helicopter rotor blades. Figures on the top refer to class 1 and 2
respectively, whereas figures on the bottom to class 3 and 4.

shown in Fig. 8 is confirmed by the entire analysis performed
on the considered dataset. Fig. 9 shows the average correct
classification versus the pseudo-Zernike moments order for
different durations of the signal, and with the corresponding
degree of reliability. The average correct classification values
are also summarized in Table II.

Analyzing the result of Fig. 9 and Table II, it is clear that
performances increase with the pseudo-Zernike moments or-
der. In particular, it is sufficient to consider the pseudo-Zernike
moments of order 5 (36 coefficients) to achieve 95% correct
classification. Furthermore, as expected, as the acquisition time
of the considered signals reduces, the classification perfor-
mance experiences a reduction due to the reduced amount of
micro-Doppler information contained in the analyzed signal
(see Figs. 9-a to 9-d). Finally, for comparison purposes, the
20-components MFP based classifier suggested in [15] and the
Time-Frequency Distribution - Direction Features (TFD-DF)
technique proposed in [14] are considered. As the curves of
Fig. 9 show, the proposed classification algorithm can achieve
better performance than the MFP based, if a sufficiently high
moments order is chosen. The TFD-DF classifier outperforms
the pseudo-Zernike based one if a 0.5 s signal length is
considered; however, as the duration of the signals increases,
the proposed algorithm achieves an higher probability of
correct classification than the TFD-DF.

B. Experimental Results on X Band Radar Data

For a more complete analysis, the classification algorithm
proposed in Section II-B was also applied to X band radar
data of moving humans and animals. The dataset was gener-
ated during a single test using a Selex ES PicoSAR system
operating in DMTI (Dismount Moving Target Indicator) mode
(with a carrier frequency of 9.2 GHz and PRF of 2 kHz) [32].
The radar was used to target a fixed scene from a ground-based
platform, in this specific scenario the Signal to Clutter Ratio is
low due to the extension of the observed area. Humans and/or
horses were then introduced to the scene to act as targets. Data
were collected for targets performing each of the following 6
classes of motion:
• class 1. Horse with rider walking (fast);
• class 2. Horse with rider walking (medium);
• class 3. Horse and human both present;
• class 4. Human walking (fast);
• class 5. Human walking (medium);
• class 6. Human walking (slow).
The dataset consists of 7 observations for each micro-

Doppler signature class, where the duration of each observa-
tion is 2 s. Moreover, the analysis has been conducted on the
dataset obtained splitting the 2 s length signal in two different
signals of length 1 s; in this case, it was obtained a number
of 14 observations for each class. Finally, the last analysis
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Fig. 5. Examples of spectrogram (with SNR = −5 dB) for the 4 classes of returns from helicopter rotor blades. Figures on the top refer to class 1 and 2
respectively, whereas figures on the bottom to class 3 and 4.

TABLE II
AVERAGE CORRECT CLASSIFICATION (%) FOR DIFFERENT OBSERVATION TIME WINDOWS AND PSEUDO-ZERNIKE MOMENT ORDERS. THE ANALYSIS HAS

BEEN CONDUCTED ON REAL KU BAND RADAR DATA.

Pseudo-Zernike Moments Order
1 2 3 4 5 6 7 8 9 10

Ti
m

e
[s

] 4 62.8 81.8 88.8 93.5 95.2 95.3 95.3 95.7 95.9 95.8
2 59.7 82.4 87.4 90.8 91.8 93.3 94.6 94.8 95.7 95.8
1 57.6 80.4 82.7 85.7 86.8 88.4 90.6 91.0 90.8 90.8
0.5 54.3 75.9 79.9 80.9 81.7 83.1 86.2 86.2 85.7 86.1

has considered 0.5 s length signals, i.e. 28 observations for
each class. Notice that, the class number 3 (namely horse and
human both present) represents an exception to this analyses
because there are 28, 56, and 112 observations for duration of
the signal 2, 1, and 0.5 s, respectively.

TABLE III
SPECTROGRAM CONFIGURATIONS USED FOR THE ANALYSES ON X BAND

RADAR DATA.

configuration type NDFT M overlap
a 256 256 88%
b 256 256 72%
c 256 512 70%
d 256 256 50%

As already done both for simulated data and real Ku band
radar data, 70% of the available data has been used for

training, and the remainder 30% for testing. Again, a 50 trials
Monte Carlo approach3 has been used to statistically char-
acterize the proposed classification algorithm, evaluating the
average correct classification and the corresponding standard
deviation for each moments order and for several spectrogram
configurations. Specifically, the analysis has been performed
considering different settings for the spectrogram computation,
to evaluate the impact of the dependency of the algorithm
on the spectrogram from which the CVD and, consequently,
the pseudo-Zernike moments are computed. In Table III, 4
combinations of number of DFT points, NDFT , Hamming
window length, M , and signal’s overlap are summarized.

In Fig. 10, the average correct classification is given versus
the pseudo-Zernike moments order for different durations of

3Notice that the number of Monte Carlo trials is clearly limited by the
number of available real data.
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Fig. 6. Scatter plot of the 9-th vs 24-th moments of the 4 helicopter rotor blades classes, for different SNR values. Figures on the top refer to Zernike,
whereas figures on the bottom to pseudo-Zernike moments both of order 8.
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Fig. 7. Correct classification (%) versus moments order for simulated helicopter rotor blades data for different values of SNR. The solid lines represent the
average correct classification (over 50 runs) of the algorithm based on pseudo-Zernike moments, whereas the dot-dashed lines refer to the algorithm based
on Zernike moments.

the signal (also summarized in Tables IV and V), and with the
corresponding degree of reliability.

The curves of Fig. 10 and the values of Tables IV and
V show that for very low moments order the performances
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Fig. 9. Correct classification (%) versus pseudo-Zernike moments order. The solid line represents the average correct classification (over 50 runs) with
its corresponding degree of reliability, the dashed curve is related to the MFP-based classifier proposed in [15], whereas the dot-dashed curve refers to the
TFD-DF classifier given in [14]. Subplots refer to different signal lengths (i.e. 4, 2, 1 and 0.5 s, respectively).

are poor, but the latter strongly increase for higher pseudo-
Zernike moments order. In particular, for a signal of duration
2 s and with the spectrogram configuration (c) of Table III, the
maximum value of correct classification (90.4%) is attained

with the 5-th order of pseudo-Zernike moments. Thus, the
analysis conducted on Ku band radar data is confirmed in the
case of X band data, even if in this case the scenario utilized
to acquire data is more realistic: long range, lack of clutter
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Fig. 10. Correct classification (%) versus pseudo-Zernike moments order. The solid line represents the average correct classification (over 50 runs) with
its corresponding degree of reliability, the dashed curve is related to the MFP based classifier proposed in [15], whereas the dot-dashed curve refers to the
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are obtained from spectrograms a, b, and c of Table III, whereas the figures on the right refer to the spectrogram configuration d of Table III.

mitigation and longer wavelength are the main reasons of loss
in overall performances. Again, the classification algorithm
based on pseudo-Zernike moments has been compared with
the 20-components MFP based algorithm proposed in [15]
and with the Time-Frequency Distribution - Direction Features
(TFD-DF) technique proposed in [14]. The results confirm
the fact that the proposed algorithm can reach the same
performance or can outperform the MFP one. However, in
some cases the latter can achieve better performance than
the pseudo-Zernike based algorithm (see the first sub-plot on
the right of Fig. 10) if a different setting to compute the
spectrogram is considered. For this specific scenario the TFD-
DF algorithm is not able to provide good performance.

V. CONCLUSIONS

In this paper a novel approach for micro-Doppler feature
extraction has been presented. The proposed algorithm exploits
the properties of the pseudo-Zernike moments to extract robust
features with a limited number of values. The moments
are applied to the Cadence Velocity Diagram of the micro-
Doppler signature in order to minimize the feature acquisition
dependence. Moreover the invariant properties of the novel
feature, together with the opportunity to extract a desired
accuracy from the data, open to many ATR applications.

Simulated data have been used to motivate the selection
of the pseudo-Zernike moments rather than the Zernike ones,
besides showing good results also with uncontrolled SCR.
Moreover, the novel features have been tested on real micro-
Doppler data in Ku and X bands, producing high classifica-
tion accuracy. The proposed approach introduces interesting
elements of robustness with respect to unwanted dependen-
cies in micro-Doppler signatures, such as translational and
scale independence. These properties make the pseudo-Zernike
based micro-Doppler feature potentially applicable in different
scenarios, e.g. multistatic micro-Doppler ATR. Future work
will involve the development of a strategy for the selection of
the best order of the pseudo-Zernike moments to be used.
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TABLE IV
AVERAGE CORRECT CLASSIFICATION (%) FOR DIFFERENT OBSERVATION TIME WINDOWS AND PSEUDO-ZERNIKE MOMENT ORDERS. THE ANALYSIS HAS

BEEN CONDUCTED ON REAL X BAND RADAR DATA AND WITH THE SPECTROGRAM CONFIGURATIONS (A)-(C) OF TABLE III.

Pseudo-Zernike Moments Order
1 2 3 4 5 6 7 8 9 10

Ti
m

e
[s

] 0.5 58.9 65.4 72.3 77.5 80.8 84.4 85.8 85.5 85.1 84.0
1 49.1 68.1 78.1 78.7 82.0 83.6 84.7 85.8 85.6 84.9
2 59.8 76.2 88.8 87.8 90.4 90.0 87.2 86.0 83.8 83.1

TABLE V
AVERAGE CORRECT CLASSIFICATION (%) FOR DIFFERENT OBSERVATION TIME WINDOWS AND PSEUDO-ZERNIKE MOMENT ORDERS. THE ANALYSIS HAS

BEEN CONDUCTED ON REAL X BAND RADAR DATA AND WITH THE SPECTROGRAM CONFIGURATIONS (D) OF TABLE III.

Pseudo-Zernike Moments Order
1 2 3 4 5 6 7 8 9 10

Ti
m

e
[s

] 0.5 46.9 61.7 67.2 72.8 75.7 80.1 80.1 81.0 81.4 80.9
1 46.7 63.0 72.1 76.2 78.1 80.0 82.4 84.4 83.9 82.9
2 52.4 72.4 81.4 81.5 84.2 84.1 84.3 81.5 79.3 77.2
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