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A Geometric Approach to Covariance Matrix

Estimation and its Applications to Radar Problems
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Abstract—A new class of disturbance covariance matrix es-
timators for radar signal processing applications is introduced
following a geometric paradigm. Each estimator is associated
with a given unitary invariant norm and performs the sample
covariance matrix projection into a specific set of structured
covariance matrices. Regardless of the considered norm, an
efficient solution technique to handle the resulting constrained
optimization problem is developed. Specifically, it is shown that
the new family of distribution-free estimators shares a shrinkage-
type form; besides, the eigenvalues estimate just requires the
solution of a one-dimensional convex problem whose objective
function depends on the considered unitary norm. For the two
most common norm instances, i.e., Frobenius and spectral, very
efficient algorithms are developed to solve the aforementioned
one-dimensional optimization leading to almost closed form
covariance estimates. At the analysis stage, the performance of
the new estimators is assessed in terms of achievable Signal to
Interference plus Noise Ratio (SINR) both for a spatial and a
Doppler processing assuming different data statistical character-
izations. The results show that interesting SINR improvements
with respect to some counterparts available in the open literature
can be achieved especially in training starved regimes.

Index Terms—Adaptive Radar Signal Processing, Structured
Covariance Matrix Estimation, Unitary Invariant Matrix Norm,
Projection, Condition Number.

I. INTRODUCTION

Interference covariance matrix estimation is a longstanding

and basic problem in adaptive radar signal processing and nat-

urally arises in several areas such as target detection, direction

of arrival estimation, sidelobe cancelling, and secondary data

selection [1]–[4] (just to list a few). Conventional adaptive

architectures (such as Sample Matrix Inversion (SMI) Doppler

filter [1], Kelly’s receiver [4], and spatial beamformers [5])

resort to the Sample Covariance Matrix (SCM) of a secondary

data set collected from range gates spatially close to the

one under test to estimate the interference covariance. These

algorithms are often very prohibitive because they lean on

the assumption that the environment remains stationary and

homogeneous during the adaptation process. Precisely, they

provide satisfactory performance when the secondary vectors

share the same spectral properties of the interference in the test

cell, are statistical independent, and their number is higher

than twice the useful signal dimension [1]. These requisites

however may represent important limitations since in real
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environments the number of data where the disturbance is

homogeneous (often referred to as sample support) is very

limited. Besides, poor training data selection, in such adaptive

algorithms, can result in severe radar performance degradation

[6] and [7].

A viable means to thwart the lack of a sufficient number of

homogeneous secondary data is to capitalize some a-priori

information about the radar surrounding environment, namely

to realize a knowledge-based/cognitive processing [8] so as

to restrict the uncertainty region of the unknown parameters.

According to this processing paradigm, several approaches

have been pursued in the open literature assuming different

structural models as well as statistical distributions of the data.

In particular, both homogeneous and heterogeneous interfer-

ence environments are dealt with. As to the former scenario,

the training data are modeled as independent and identically

distributed (i.i.d.), zero-mean, circularly symmetric Gaussian

vectors. Whereas, the latter context mainly considers clutter

power variations within the sample support. Thus, assuming

homogeneity, in [9] the Maximum Likelihood (ML) covariance

matrix estimator is derived modeling the disturbance as the

sum of a coloured interference plus white disturbance; in [10],

the ML estimation of an unstructured covariance matrix with

a condition number upper bound requirement is considered;

in [11], using the same covariance structure as in [9], the ML

estimator is derived when a constraint on the condition number

is imposed too; in [12], a rank-constrained ML estimator

is developed; furthermore, relying on a Mean Square Error

(MSE) design criterion, in [13] and [14], some shrinkage

estimators are proposed. With reference to heterogeneous

scenarios, compound Gaussian statistical models (such as K-

distributed or Gamma amplitudes) are usually exploited to

account for clutter returns spikiness. In [15], assuming a clutter

dominated environment, a unified framework to regularize

the ML estimate in scaled Gaussian models (e.g., elliptical

distributions, compound-Gaussian processes and spherically

invariant random vectors) is developed in order to enhance

Tyler’s estimator in the presence of a small sample support

exploiting a-priori information on the covariance structure. In

[16], Tyler’s robust covariance M-estimator under group sym-

metry constraints, such as circulant, persymmetric, and proper

quaternion matrices, is considered. Precisely, it is provided

an iterative fixed point algorithm to compute the constrained

estimate. Finally, in [17], an iterative algorithm to estimate,

according to the ML approach, both the clutter subspace

and the covariance is proposed, assuming the disturbance

composed of a low rank compound Gaussian clutter plus a

white Gaussian noise contribution. Further technically sound,
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effective, and possibly shrinkage covariance estimators can be

found in [18]–[35].

These mentioned algorithms lean on specific assumptions

about the data statistical characterization and may suffer

performance loss in the presence of model mismatches due to

for instance quantization effects, constant modulus jamming

signals, phase noise [36]–[38]. To overcome this shortcoming

and endow robustness to the estimation process, some strate-

gies derived from geometric considerations on the metric space

of the covariance matrices have been also developed. In this

respect, in [39] and [40] techniques based on Riemannian p-

mean (e.g., Fréchet median and Karcher barycenter) evaluation

are developed to estimate suitably structured interference

covariance matrices showing that substantial ameliorations

over classical algorithms can be attained. In [39] and [41]

also an extension of the conventional Ordered Statistic (OS)

framework [42] is proposed relying on the Riemannian p-mean

computation of Toepliz or Toeplitz-Block-Toeplitz space-time

covariance matrices. Besides, in [43] and [44], covariance

estimates defined through geometric barycenters/medians (as-

sociated with specific distances in the space of Hermitian

matrices) of structured covariance estimates are exploited

both for training data selection and adaptive radar detection

highlighting significant gains with respect to the classic SCM.

Finally, in [45]–[50] other interesting geometric-inspired pro-

cedures are devised.

In this paper, leveraging on a geometric criterion, a novel class

of covariance estimators that do not consider any assumption

on the statistical characterization of the secondary data is

proposed and analyzed. Each estimator is associated with a

given unitary invariant norm and performs the SCM projection

into a specific set of structured covariance matrices. Precisely,

this set encompasses the matrices modeled as the sum of an

unknown positive semi-definite matrix (describing coloured

interference and clutter) plus a term proportional to the identity

matrix (related to white disturbance). Besides, a constraint

on the condition number is accounted for so as to control

the numerical stability of the resulting adaptive algorithms

[5]. Hence, the developed approach forces, as a byproduct,

a special structure on the covariance matrix which reduces

the degrees of freedom of the estimation problem. Otherwise

stated, the uncertainty region of the unknown parameters is

reduced allowing an estimation accuracy enhancement.

Regardless of the considered norm, an efficient solution

technique to handle the formulated constrained optimization

problem is developed. Precisely, each estimator exhibits

a shrinkage-type form and its evaluation requires the

SCM spectral decomposition as well as the solution of a

one-dimensional convex problem whose objective function

depends on the considered unitary norm.

At the analysis stage, the performance of the new class of

distribution-free estimators is evaluated in terms of achievable

Signal-to-Interference-plus-Noise Ratio (SINR) for different

sample support sizes, assuming both a spatial and a Doppler

processing scenario.

Summarizing, the main contributions of this paper are:

• the introduction of an original and innovative distribution-

free covariance estimation framework in order to pro-

vide a robust alternative to [11] when inference on the

disturbance statistical distribution is not possible. By

doing so, a reliable covariance estimate fulfilling practical

requirements is provided;

• the use and the development of interesting optimization

tricks to solve the formulated covariance matrix estima-

tion problems. Specifically, resorting to the properties

of the symmetric gauge functions [51], it is shown that

our new class of estimators exhibits the shrinkage form

regardless of the adopted unitary invariant norm; further-

more, very efficient procedures are developed to suitably

shrink the covariance eigenvalues. In this respect, it is

worth mentioning that for the spectral norm estimator an

almost closed form eigenvalue transformation is derived;

• the possibility to easily extend the provided framework to

encompass arbitrary unitary invariant constraints, such as

a constraint on the clutter rank, by means of the provided

theoretical results;

• the achievement of interesting performance gains over

some counterparts available in the open literature both

in terms of higher SINR values and computational com-

plexity (the spectral norm based estimator is substantially

available in closed form).

The remainder of this paper is organized as follows. Section

II is devoted to the description of the system model as well as

the formulation of the covariance matrix estimation problem.

In Section III, an efficient procedure to solve the resulting

constrained optimization is developed. In Section IV, the

performance of the proposed distribution-free estimators is

assessed. Finally, Section V concludes the paper and provides

some possible future research tracks1.

II. PROBLEM FORMULATION

In this section, the problem of estimating the covariance

matrix M ∈ HN of K secondary data r1, . . . , rK modeled

as N -dimensional, circularly symmetric, zero-mean random

vectors, is addressed. It is assumed that these vectors share

the same second order statistical characterization, i.e.,

E[rir
†
i ] = M , for i = 1, . . . ,K, (1)

but are drawn from an arbitrary and unknown joint probability

distribution (in particular, they are not necessarily i.i.d.).

1Notation - We adopt the notation of using boldface for vectors a (lower
case), and matrices A (upper case). The transpose and the conjugate transpose
operators are denoted by the symbols (·)T and (·)† respectively. tr {·} is the
trace of the square matrix argument. I and 0 denote respectively the identity
matrix and the matrix with zero entries (their size is determined from the
context). diag (a) indicates the diagonal matrix whose i-th diagonal element
is the i-th entry of a. RN , CN , CN,K , and HN are respectively the sets of
N -dimensional vectors of real numbers, of N -dimensional vectors of complex
numbers, of N ×K matrices of complex numbers, and of N ×N Hermitian
matrices. The curled inequality symbol � (and its strict form ≻) is used to
denote generalized matrix inequality: for any A ∈ HN , A � 0 means that
A is a positive semi-definite matrix (A ≻ 0 for positive definiteness). ‖ · ‖
denotes an arbitrary unitary invariant matrix norm operator, while the specific
spectral and Frobenius instances are indicated by ‖·‖2 and ‖·‖F , respectively.
The letter j represents the imaginary unit (i.e. j =

√
−1). For any complex

number x, |x| represents the modulus of x. Finally, E [·] denotes statistical
expectation and for any optimization problem P , v(P) represents its optimal
value.
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According to the previous assumptions, classic estimation

approaches such as the ML or the minimum MSE strategies

can be no longer pursued since they need the data statistical

distribution knowledge. Hence, in this work a new family

of covariance estimators based on geometric considerations

is introduced. Specifically, the idea is to estimate the data

covariance matrix performing the projection2, as induced by a

specific metric, of the SCM3

Ŝ =
1

K

K∑

i=1

rir
†
i , (2)

into the set 



M = R+ σ2
nI,

R � 0,
σ2
n ≥ σ2,

λmax(M )
λmin(M )

≤ κM ,

(3)

where σ2 > 0 is a lower bound to the white interference

power, R accounts for the colored interfering contribution, and

κM ≥ 1 is an upper bound to the covariance condition number.

This uncertainty set accounts for an interference covariance

structure that is commonly met in adaptive radar signal pro-

cessing applications and ensures a well conditioned estimate

necessary to compute the adaptive radar weight vector. In this

respect, notice that an important task, in digital processing

design, is the numerical stability of the outputs from the

implemented algorithms, with respect to the accuracy of the

input data. Thus, it is extremely relevant to guarantee a stable

computation with respect to the roundoff errors corrupting

the estimated covariance matrix. It is worth pointing out

that there is a fundamental tradeoff between the number of

bits available in the computer to accomplish matrix inversion

and the allowable eigenvalue spread (ruled by the condition

number) of the input covariance [53, pp. 312-313], [5, p. 132].

The effectiveness of this model has already been proved in

[11], where the training data are assumed i.i.d., zero-mean,

circularly symmetric Gaussian vectors and the ML estimate is

derived. Hence, as already highlighted, the main goal of this

work is the development of a distribution-free approach which

provides a robust alternative to [11]. A pictorial representation

of the geometric-based estimation process is reported in Fig. 1.

Following the above guidelines, the covariance matrix estimate

M̂ is obtained as solution to the following optimization

2Notice that, the projection operator is usually defined assuming the
reference set being convex and closed as well as the norm being induced by an
inner product. Nevertheless, with a slight abuse of notation, in this paper we
continue to define as projection the point xp minimizing the distance (based
on a specific metric) between a given point x and the reference set as long
as the point xp can be uniquely identified.

3Notice that a data covariance matrix different from the SCM can be
used. For instance, if compound Gaussian clutter is expected, the Normalized
Sample Covariance Matrix (NSCM) [52] could be employed.

Fig. 1. Projection of the SCM into a specific set through a unitary invariant
matrix norm.

problem

P





min
M

‖M − Ŝ||

s.t.
λmax(M)
λmin(M)

≤ κM

σ2
nI +R = M

R � 0

σ2
n ≥ σ2

, (4)

where ‖ · ‖ refers to an arbitrary but given unitary invariant

matrix norm [51] that induces a specific metric in the space

of the positive semi-definite matrices over which performing

the projection. Examples of norms that can be considered in

the estimation process are the Frobenius, the spectral, and

the Ky Fan norms. In this respect, observe that the first two

instances are the most common and widely used norms in the

space of Hermitian matrices corroborating the interest toward

the family of unitary invariant norms. Remarkably, different

estimators can be jointly exploited within a bank/battery of

adaptive receivers. More in detail, each detector may resort

to a specific norm and the presence of a prospective target is

established by means of a suitable fusion logic, such as binary

integration or m-of-n detection [54].

Before concluding this section, it is also worth pointing out

that the proposed estimators possess the consistency property

as long as the secondary data vectors are statistically indepen-

dent. Indeed,

‖M − M̂‖ ≤ ‖M − Ŝ‖+ ‖Ŝ − M̂‖ (5)

≤ 2‖M − Ŝ‖, (6)

where the first equation stems from the triangular inequality,

while the second inequality follows from the definition of M̂ ,

i.e., it is a minimizer. Now, provided that M̂ is a measurable

function of the secondary data4, it follows that

E[‖M − M̂‖2] ≤ 2E[‖M − Ŝ‖2] (7)

≤ 2α2E[‖M − Ŝ‖2F ] → 0, (8)

where the second inequality results from the finite dimension

of the space HN , α is a specific constant linking the considered

norm with the Frobenius one [51, Corollary 5.4.5], and finally

the convergence to zero comes from the consistency of the

sample covariance estimator. Based on Chebyshev’s inequality

4A sufficient condition for estimator measurability is reported in Appendix
A.
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[55], the estimation error converges to zero also in probability

which is often invoked as the classic definition of consistency.

III. DERIVATION OF THE STRUCTURED COVARIANCE

MATRIX ESTIMATORS BASED ON UNITARY INVARIANT

NORM PROJECTION

This section deals with the development of an efficient

procedure to solve Problem P almost in closed form regard-

less of the considered norm. Specifically, it is proved that

any sample covariance projector belongs to the class of the

shrinkage estimators5 and the eigenvalues estimate is obtained

solving a one-dimensional convex problem whose objective

function is tied up to the considered unitary norm. In general,

this optimization problem can be solved in polynomial-time

using convex solvers such as CVX [56]. In addition, for the

two most relevant norm instances, i.e., Frobenius and spectral,

very efficient algorithms are provided to tackle the associated

one-dimensional optimizations.

As first step toward the solution of P , it is shown in

Appendix B that it is equivalent to the solvable convex

problem

P1





min
X

‖X − S‖
s.t. X � I

λmax(X)
λmin(X)

≤ κM

, (9)

where S = Ŝ/σ2 and X = M/σ2.

Next, let us indicate with S = USΛSU
†
S the spectral

decomposition of the SCM normalized to σ2, where ΛS =
diag ([d1, d2, · · · , dN ]

T
), with d1 ≥ d2 ≥ · · · ≥ dN the

eigenvalues of S arranged in decreasing order, and US is

the unitary matrix whose columns contain the corresponding

eigenvectors. Hence, the following lemma holds true.

Lemma 3.1: An optimal solution to P1 is a

shrinkage estimator X⋆ = USΛ
⋆U

†
S where

Λ
⋆ = diag

(
[λ⋆

1, λ
⋆
2, · · · , λ⋆

N ]
T
)

is a solution to the

following optimization problem

P2





min
Λ

‖Λ−ΛS‖
s.t. Λ � I

λmax(Λ)

λmin(Λ)
≤ κM

, (10)

with Λ = diag
(
[λ1, λ2, · · · , λN ]

T
)

.

Proof: See Appendix C.

To proceed further, let us introduce the auxiliary variable

u > 0 and cast6 P2 as

P ′
2





min
Λ,u

‖Λ−ΛS‖
s.t. λi ≥ 1,

u ≤ λi ≤ κMu,
u ≥ 1

κM
,

i = 1, . . . , N. (11)

5A shrinkage covariance estimator M̂ is a matrix sharing the same

eigenvectors as the SCM Ŝ � 0, but transforming the eigenvalues, i.e.

M̂ = U ̂S
diag ([g1(d1, d2, . . . , dN ), g2(d1, d2, . . . , dN ), . . . ,

gN (d1, d2, . . . , dN )])U†
̂S
� 0.

6The technical details of this equivalence are reported in Appendix D.

This formulation paves the way for an efficient solution of

P2. Indeed, for any fixed u a closed form optimal matrix to

Problem (11) can be derived as shown in the following lemma.

Lemma 3.2: For any ū ≥ 1
κM

, an optimal solution Λ
⋆(ū)

to P ′
2(ū) (i.e., Problem (11) when the variable u is kept fixed

to ū), is

Λ
⋆(ū) = diag (λ⋆(ū)), (12)

where

λ⋆(u) = [λ1(u), λ2(u), . . . , λN (u)]
T ∈ R

N , (13)

with

λi(u) = min(κMu,max(di,max(1, u))), i = 1, . . . , N.

Proof: See Appendix E.

Leveraging on Lemmas 3.1 and 3.2 as well as denoting by

g(·) the gauge function associated with the considered unitary

invariant norm [51], the following fundamental result can be

shown.

Theorem 3.3: Let u⋆ be the lowest optimal solution to the

convex optimization problem

P3

{
min
u

g(h1(u), h2(u), . . . , hN(u))

s.t. u ≥ 1
κM

, (14)

where hi(u) = |λ⋆
i (u)− di|, i = 1, . . . , N . Then, an optimal

solution to P1 is

X⋆ = US diag (λ⋆(u⋆))U †
S . (15)

Proof: See Appendix F.

According to Theorem 3.3, a unique solution to P1 can

be constructed in almost closed form. Consequently, this

new class of estimators effectively performs specific unitary

invariant norm-based projections. It is also worth pointing

out that the functional dependence over the selected norm

is concentrated in the optimal value of the auxiliary u that

accounts for the corresponding gauge function. In Fig. 2, a

schematic illustration of the steps involved in the proposed

procedure for the computation of M̂ is reported. As already

highlighted, M̂ is a shrinkage estimator which regularizes

the SCM according to the specific unitary invariant norm and

explicitly accounting for a condition number constraint so as

to provide a well-conditioned structured estimate.

Fig. 2. Block scheme associated with the proposed estimation procedure.

Before continue further, it is worth observing that the func-

tions hi(u), i = 1, . . . , N , involved in P3 can be expressed
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in closed form (see Appendix G for details). This is a useful

result in general and more important it lays the ground for the

derivation of specialized procedures to handle P3 assuming

either the Frobenius or the spectral norm (see Subsections

III-A and III-B). Precisely, for any fixed i, if di > 1

hi(u) =





di − κMu if 1
κM

≤ u < di

κM

0 if di

κM
≤ u < di

u− di if u ≥ di

, (16)

otherwise di ≤ 1 and

hi(u) =

{
1− di if 1

κM
≤ u < 1

u− di if u ≥ 1
. (17)

A. Frobenius Norm

The gauge function associated with the Frobenius norm is

given by

g(h1(u), h2(u), . . . , hN (u)) =

√√√√
N∑

i=1

(hi(u))
2

and the problem to solve boils down to

P4

{
min
u

G1(u)

s.t. u ≥ 1
κM

, (18)

where G1(u) =
N∑

i=1

(hi(u))
2. To proceed further, let us

observe that the optimal solution to problem P4 is u⋆ =
max{1,d1}

κM
if d1 ≤ κM , otherwise, the optimal solution to P4

lies within the interval [1, d1]. In this last case, G1(u) is a

convex function with a continuous derivative function within

the interval of interest [1, d1] (see Appendix H for details).

Hence, denoting by N̄ the number of sample eigenvalues

di greater than 1, i.e. di > 1, i = 1, . . . , N̄ , and defining the

vector

v = [d1, d2, . . . , dN̄ , 1]
T ∈ R

N̄+1,

the following theorem holds true.

Theorem 3.4: Assuming d1 > κM > 1, the optimal

solution u⋆ to P4 is

1) u⋆ = 1, if
dG1(u)

du

∣∣∣
u=1

≥ 0;

2) u⋆ = d1, if
dG1(u)

du

∣∣∣
u=d1

≤ 0;

3) u⋆ = d1

κM
, if d1

κM
≤ dN ;

4) if 1), 2), and 3) are not satisfied, u⋆ is the optimal

solution if and only if

u⋆ =

β∑

i=1

κMdi +

N∑

i=α

di

N − α+ 1 + βκ2
M

, (19)

with α ∈ {1, 2, . . . , N̄ , N̄ + 1} the smallest index such

that vα < u⋆, and β ∈ {1, 2, . . . , N̄ , N̄ + 1} the largest

index such that
vβ
κM

> u⋆.

Proof: See Appendix I.

Theorem 3.4 provides the guidelines to find u⋆. Indeed, the

selection of the integers α and β such that

uα,β =

β∑

i=1

κMdi +

N∑

i=α

di

N − α+ 1 + βκ2
M

, (20)

with

vα < uα,β ≤ vα−1 and
vβ+1

κM
≤ uα,β <

vβ
κM

, (21)

is required. To this end, an efficient procedure is now de-

scribed. Precisely, the strategy consists in iteratively veri-

fying the conditions (20) and (21) once the values of α
and β have been efficiently fixed. In this respect, notice

that, if the intersection of the intervals (21) is empty, then

uα,β cannot be the optimal solution. On the contrary, the

intersection is given by one of the following sub-intervals]
vα, vα−1

]
,
]
vα,

vβ
κM

[
,
[
vβ+1

κM
, vα−1

]
,
[
vβ+1

κM
,

vβ
κM

[
, and the

optimal point must belong to one of them. According to this

line of reasoning, the procedure follows these simple steps:

1) Set β = 1, α = 2, and increase α until vα ≥ vβ
κM

.

2) Compute uα,β . If uα,β belongs to the current intersec-

tion, let u⋆ = uα,β and exit; otherwise go to step 3).
3) If

vβ+1

κM
< vα, increase α and go to step 2), otherwise

increase β and go to step 2).

It is worth pointing out that this algorithm provides the

optimal solution to problem P4 with a linear computational

complexity with the number of the eigenvalues of S greater

than 1.

B. Spectral Norm

In this case, the gauge function is

g(h1(u), h2(u), . . . , hN(u)) = max
i=1,...,N

{hi(u)}

and P3 can be specialized as

P̄3

{
min
u

G2(u)

s.t. u ≥ 1
κM

, (22)

with G2(u) = max
i

{hi(u)}. Notice also that, since G2(u)

is strictly increasing as u ≥ d1, the feasible set of P̄3 can

be restricted to 1
κM

≤ u ≤ max
(

1
κM

, d1

)
without loss of

generality.

The following proposition provides an efficient procedure

to solve P̄3.

Theorem 3.5: Let u⋆ the lowest optimal solution to P̄3.

Then

1) u⋆ = 1
κM

, if d1 ≤ 1.

2) u⋆ = max
{

d1+dN−1
κM

, 1
κM

}
, if 1 < d1 ≤ κM and dN ≤

1.

3) u⋆ = d1

κM
, if 1 < d1 ≤ κM and dN > 1. In this case,

the covariance estimate reduces to S.

4) If d1 > κM and dN ≤ 1, then

• u⋆ = max
{
η, 1

κM

}
, if η = d1+dN−1

κM
≤ 1;

• otherwise, u⋆ = d1+dN

1+κM
> 1.

5) If d1 > κM and dN > 1, then

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSP.2017.2757913

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



6

• u⋆ = d1+dN

1+κM
if dN ≤ d1

κM
;

• otherwise, u⋆ = d1

κM
. Besides, in this case, the

estimate coincides with S.

Proof: See Appendix J.

Based on Theorem 3.5, the optimal solution to P̄3 is sub-

stantially available in closed form. Indeed, just the comparison

between some linear functions of the highest and the lowest

sample covariance eigenvalues with some fixed thresholds is

required. It is also worth pointing out that, u⋆ is a continuous

function of d1, . . . , dN implying that X⋆ is a continuous

function of S.

IV. NUMERICAL RESULTS

This section is devoted to the analysis of the proposed

covariance estimators. The average SINR is adopted as per-

formance metric and some counterparts available in the open

literature are considered for comparison purposes. Two typical

radar signal processing scenarios are studied: the former fo-

cuses on spatial processing with wideband jammers impairing

the received data, the latter considers Doppler processing with

the interfering returns originated by clutter. More formally, the

average SINR (over MC i.i.d. realizations7 of K secondary

data) is given by

SINRav =
1

MC

MC∑

i=1

|ŵ†
is(x)|2(

ŵ
†
iMŵi

) , (23)

where s(x) is the N -dimensional target steering vector whose

expression depends on:

• the considered processing scenario (spatial/temporal);

• the radar configuration (array type, Pulse Repetition Time

(PRT), etc.);

• the target state x (angle of arrival θ/normalized Doppler

frequency ν).

Moreover, ŵi = M̂
−1

i s(x) is the adaptive estimate of the op-

timal weight vector, where M̂ i is the data-dependent estimate

of M at the i-th run.

In the following analysis, it is assumed σ2 = 0 dB and8

κM = λmax(M)/λmin(M ). Furthermore, for each case

study two different values of the actual white noise power

level σa are considered, i.e., σ2
a = 0 and σ2

a = 10 dB, so as

to account for both a matched and a mismatched scenario.

A. Spatial Processing

A radar system equipped with a uniform linear array of N =
8 elements (with a spacing between the antennas of d = λ0/2,

where λ0 is the radar operating wavelength) pointing in the

boresight direction is considered. The interference covariance

matrix is given by M = Ms + σ2
aI [9] where σ2

a is the

actual power level of the white disturbance term, whereas M s

7In the numerical results the number of Monte Carlo trials is set to MC =
500.

8Notice that the condition number predictor developed in [11] can be
employed to reliably estimate the covariance condition number. Additionally,
if the secondary data are modeled as i.i.d., zero-mean, circularly symmetric
Gaussian random vectors, the expected likelihood function cauld be also
considered [57].

is the covariance matrix associated to J (possibly wideband)

jammers. Specifically, ∀ (n,m) ∈ {1, . . . , N}2,

Ms (n,m) =

J∑

i=1

σ2
i sinc [0.5Bf(n−m)φi] e

j(n−m)φi , (24)

with Bf = B/f0 the fractional bandwidth, B the instanta-

neous bandwidth of the desired signal (coinciding with the

jammer’s bandwidth), f0 = c/λ0, c the speed of light, σ2
i

the power associated with the i-th jammer, and φi the jammer

phase angle with respect to the antenna phase center. Precisely,

φi = 2πd(sin θi)/λ0, with θi the angle off-boresight of the

jammer. Finally, according to the specified system model, the

steering vector (23) reduces to

s(θ) = [1, exp (jπ sin(θ)) , . . . , exp (jπ sin(θ)(N − 1))]T .

As case study, it is considered a wideband jammer with

a fractional bandwidth Bf1 = 0.3, a power σ2
1 = 30

dB, and a direction of arrival θ1 = 20 deg that impinges

on the radar receive array. In Fig. 3, the average SINR is

plotted versus the Direction Of Arrival (DOA) θ for both

the Frobenius Norm based Estimator (FNE) and the Spectral

Norm based Estimator (SNE). Therein, the secondary data are

modeled as i.i.d., zero-mean, circularly symmetric Gaussian

random vectors. For comparison purposes, the SINR behavior

associated with the Constrained ML estimator (CML) [11], the

Fast Maximum Likelihood estimator (FML) [9], the Oracle

Approximating Shrinkage estimator (OAS) [14], the Rank-

Constrained Maximum Likelihood estimator (RCML), with

the exact knowledge of the rank and the white noise level,

[12], and the classic SCM9 is displayed too. Besides, the SINR

upper bound s†M−1s is reported as benchmark. Figs. 3(a),

3(c), 3(e) assume a matched condition, i.e. σ2
a = σ2 = 0 dB,

with K = 4, K = 8, and K = 16 secondary data, respectively.

Figs. 3(b), 3(d), 3(f) account for a mismatched situation, i.e.

σ2
a = 10 dB and σ2 = 0 dB.

The results show that FNE and SNE substantially exhibit the

same performance in terms of average SINR regardless of the

considered DOA and scenario. In the matched cases the curves

of the new devised estimators almost overlap with those of

CML, FML, and RCML (the maximum gain of FNE and SNE

over CML, FML, and RCML is 0.08 dB) and significantly

dominate the OAS and SCM performances, although the new

estimators do not rely on statistical information about the data.

Besides, FNE and SNE outperform all the counterparts in the

mismatched scenario with gains (with respect to CML, FML,

RCML, OAS, and SCM) of: 0.93 dB, 1.26 dB, 1.26 dB, 13.13
dB and 5.65 dB for K = 4; 0.80 dB, 2.40 dB, 2.50 dB, 14.02
dB and 5.45 dB for K = 8; 0.45 dB, 1.60 dB, 3.45 dB, 7.69
dB, and 1.60 dB for K = 16. As expected, increasing the

sample support size, the gain reduces since all the curves tend

to approach the SINR upper bound due to the consistency of

the estimators.

In Fig. 4, the same spatial processing scenario as in Fig.

3 is analyzed, but for a different secondary data statistical

9Notice that, when K < N the pseudo inverse of the sample matrix is
utilized in place of its inverse [1].
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Fig. 3. Spatial processing in the presence of Gaussian secondary data for different numbers of training data. SINRav versus θ (blue curve +-marked FNE,
green dashed curve SNE, red ×-marked curve CML, cyan dashed curve FML, magenta dotted curve RCML, olive-green dot-dashed curve OAS, green
dot-dashed curve SCM, and the black curve ideal SINR bound). A wideband jammer with Bf1 = 0.3, σ2

1 = 30 dB and θ1 = 20 deg is present. Subplots

(a), (c), and (e) refer to the case σ2
a = 0 dB, whereas subplots (b), (d), and (f) to σ2

a = 10 dB.

distribution that is no longer Gaussian. Specifically,

ri = ni +
√
τixi i = 1, . . . ,K,

where ni ∼ CN (0, σ2
aI), xi ∼ CN (0,Ms), and τi ∼

Γ(1/µτ , µτ ) (µτ = 2), i = 1, . . . ,K , are statistically indepen-

dent random vectors/variables. Otherwise stated, a compound

Gaussian jamming is now accounted for. As in Fig. 3, the

average SINR versus θ is reported for three different sample

support sizes, i.e., K = 4, K = 8, and K = 16. Moreover, the
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subplots on the left refer to the matched scenario (σ2
a = σ2 = 0

dB) whereas the plot on the right address the mismatched case

(σ2
a = 10 dB and σ2 = 0 dB).

For comparison purposes, other than the FML, CML, OAS,

and SCM estimators, three additional strategies designed to

operate in compound Gaussian clutter are considered. Specif-

ically,

• the NSCM estimator [52];

M̂NSCM =
N

K

K∑

i=1

rir
†
i

r
†
iri

;

• the Fixed-Point Estimator (FPE) [58]–[60] M̂ FPE, that is

obtained iteratively solving a fixed point equation;

• the Low Rank clutter Estimator (LRE), [17], addressing a

mixed Gaussian/compound Gaussian disturbance model.

The covariance estimate can be computed as

M̂LRE =

(
1

K

K∑

k=1

τ̂k

)
Σ̂+ I,

where τ̂k is the estimated texture of the k-th clutter datum

and Σ̂ is the covariance estimate of the speckle obtained

through the iterative algorithm proposed in [17].

Inspection of Fig. 4 reveals that FNE and SNE are basically

equivalent and outperform in terms of average SINR all the

counterparts, included those specific for compound Gaussian

disturbance10. Precisely, in the matched condition, as already

observed in Fig. 3, FNE, SNE, FML, and CML are almost

coincident. Besides, compared to NSCM, FPE, LRE-6, LRE-

7, OAS and SCM, they provide SINR gains up to: 11 dB, 11
dB, 1.89 dB, 1.90 dB, 19.89 dB and 6.93 dB for K = 4; 6.27
dB, 6.27 dB, 4.74 dB, 7.50 dB, 21.97 dB and 5.38 dB for

K = 8; 4.77 dB, 2.01 dB, 6.65 dB, 9.20 dB, 13.79 dB, and

1.63 dB for K = 16. Without surprise, LRE-6 outperforms

LRE-7 reflecting the presence of a mismatch loss. Finally,

in the mismatched scenario, FNE and SNE also grant better

performance than FML and CML with gains of 1.35 dB and

0.94 dB for K = 4, 2.35 dB and 0.84 dB, for K = 8, 1.51 dB

and 0.42 dB, for K = 16, clearly highlighting the effectiveness

of the new devised strategies. As to the comparisons with

the other estimators, considerations similar to those for the

matched scenario holds true.

B. Doppler Processing

A radar system transmitting a coherent burst of N = 16
pulses is considered. In this case x refers to the normalized

Doppler frequency of the target, i.e. ν ∈ [−1/2, 1/2[ and the

steering vector in (23) reduces to

s(ν) = [1, exp (j2πν) , . . . , exp (j2πν(N − 1))]
T ∈ C

N .

As to the interference environment, it is assumed that the radar

operates in the presence of both ground and sea clutter in

10As to the LRE, the clutter covariance matrix rank is evaluated as the
number of the eigenvalues greater than tr (Ms)/105 ≥ 10−4. Hence, the
estimators exploiting the true rank, i.e., rank 6 (LRE-6) and rank 7 (LRE-7)
are displayed.

addition to white noise [61]. Therefore the overall disturbance

covariance matrix is

M = M t + σ2
aI, (25)

where, ∀ (n,m) ∈ {1, . . . , N}2,

M t(n,m) = CNRSρ
(n−m)2

S ej2π(n−m)fS + CNRGρ
|n−m|
G ,

(26)

with

• CNRS and CNRG the power of the sea and ground clutter,

respectively;

• ρS and ρG the one-lag correlation coefficients of the sea

and the ground clutter, respectively;

• fS the normalized Doppler frequency of the sea clutter.

In Fig. 5, the average SINR versus ν is reported for FNE, SNE,

FML, CML, RCML, OAS, and SCM estimators. The training

data are drawn from a complex circular Gaussian distribution

and the parameters in (26) are CNRS = 10 dB, CNRG = 25
dB, ρS = 0.8, ρG = 0.95, and fS = 0.2. Figs. 5(a), 5(c), and

5(e) refer to K = 8, K = 16, and K = 32, respectively and

assume σ2
a = 0 dB. The mismatched analysis, i.e., σ2

a = 10
dB, is instead reported in Figs. 5(b), 5(d), and 5(f).

The plots clearly illustrate the effectiveness of the new

devised estimators. Indeed, both in the matched and in mis-

matched scenario, FNE and SNE achieve higher SINR values

than the counterparts at each target Doppler frequency but for

the OAS estimator that exhibits comparable performance (no

one uniformly outperforms the others). Interestingly, unlike the

spatial-processing, in this case FNE and SNE also outperform

CML, FML, and RCML in the matched conditions. Precisely,

the SINR gains with respect to the CML, that is the major

competitor, are, for K = 8, 16, 32, respectively: 1.29 dB, 1.38
dB, and 0.52 dB in the matched case and 1.43 dB, 1.42 dB,

and 0.61 dB in mismatched situation. As expected, the gains

are lower and lower as K increases, due to the consistency of

all the involved estimators.

V. CONCLUSIONS

The disturbance covariance matrix estimation problem for

radar signal processing applications has been addressed ac-

cording to a geometric approach. Specifically, a new family

of distribution-free covariance estimators has been introduced

performing the SCM projection, according to a specific unitary

invariant norm, into a structured covariance set of practical

relevance.

To tackle the resulting constrained optimization problem

an efficient solution technique has been designed which

represents the main technical contribution of this paper. In

particular, it has been proved that each estimator exhibits a

shrinkage-type form with the eigenvalues estimate obtained

via the solution of a one-dimensional convex problem tuned

to the considered unitary norm. Furthermore, almost closed

form covariance estimates have been provided assuming either

Frobenius or spectral norms at the design stage. Remarkably,

the proposed estimators possess the consistency property as

long as the training vectors are statistically independent.
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a = 0 dB, K = 16

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90
 (degrees)

-40

-35

-30

-25

-20

-15

-10

-5

S
IN

R
av

 (
dB

)

FNE
SNE
CML
FML
SCM
OAS
NSCM
FPE
LRE, rank=7
LRE, rank=6
SINR bound

(f) σ2
a = 10 dB, K = 16

Fig. 4. Spatial processing in the presence of mixed Gaussian and compound Gaussian data. SINRav versus θ (blue curve +-marked FNE, green dashed
curve SNE, red ×-marked curve CML, cyan dashed curve FML, green dot-dashed curve SCM, magenta curve NSCM, cyan dot-dashed curve FPE, olive-green
dot-dashed curve OAS, orange dotted curve ⊲-marked LRE-7, yellow dotted curve ◦-marked LRE-6, and black curve ideal SINR bound). A wideband jammer
with Bf1 = 0.3, σ2

1 = 30 dB and θ1 = 20 deg is present. Subplots (a), (c), and (e) refer to the case σ2
a = 0 dB, whereas subplots (b), (d), and (f) to

σ2
a = 10 dB.

Some interesting case studies have been considered to il-

lustrate the effectiveness of the new proposed framework. The

results have shown that the new estimators may provide better

SINR values than some structured estimators available in the

open literature. Precisely, the lower the sample support the

higher the gain. Additionally, accounting for the computational

efforts as well as the SINR performance, the best estimator

appears that based on spectral norm.
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Fig. 5. Doppler processing in the presence of Gaussian data for different numbers of training data. SINRav versus normalized Doppler frequency (blue
curve +-marked FNE, green dashed curve SNE, red ×-marked curve CML, cyan dashed curve FML, magenta dotted curve RCML, olive-green dot-dashed
curve OAS, green dot-dashed curve SCM, and black curve ideal SINR bound). The analyzed environment comprises a bimodal clutter composed of sea and
ground clutter with CNRS = 10 dB, CNRG = 25, ρS = 0.8, ρG = 0.95, and fS = 0.2. Subplots (a), (c), and (e) refer to the case σ2

a = 0 dB, whereas
subplots (b), (d), and (f) to σ2

a = 10 dB.

As possible future research tracks, it might be worth an-

alyzing the performance of the new family of estimators

on real radar data as well as to account for other unitary

invariant constraints at the design stage such as an upper bound

on the clutter rank. Furthermore, it could be interesting to

investigate the definition of suitable criteria to select a specific

unitary invariant norm and the use of the new estimators

in conjunction with Generalized Inner Product (GIP) metric
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[62] to perform secondary data selection. Moreover, it could

be worth to extend the proposed framework to the diagonal

loading strategy as well as include in the approach of [17] this

covariance uncertainty set. Finally, additional research lines

might concern the investigation of procedures tuned to locally

stationary signals [63], [64].
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APPENDIX

A. Sufficient condition for estimator measurability

Proof: Let us show that the estimator M̂ is a continuous

(thus measurable) function of Ŝ provided that there exists a

strictly increasing and continuous function ḡ : [0,+∞[→ R

such that ḡ (‖ · ‖) is strictly convex, e.g. ‖ ·‖2. To this end, let

Ŝi ∈ HN , i = 1, 2 . . . be a sequence of positive semi-definite

matrices converging to Ŝ
⋆

as i → ∞ (e.g., Ŝi → Ŝ
⋆
) and M̂ i

the resulting sequence of covariance estimates. Now, the goal

is to show that M̂ i → M̂
⋆

with M̂
⋆

the estimate associated

with Ŝ
⋆
. Based on [65, Lemma IV.1], lim

i→∞
min

̂M∈M

‖Ŝi−M̂‖ =

min
̂M∈M

‖Ŝ⋆−M̂‖, where M is a compact set contained in (3)

that encompasses the optimal solutions associated with Ŝ
⋆

and

all the Ŝi. Now, let
(
Ŝi′ ,M̂ i′

)
be a sequence extracted from(

Ŝi,M̂ i

)
that converges to a point

(
Ŝ

⋆
,M̂

⋆

1

)
. Due to the

continuity of ‖ · ‖, ‖Ŝ⋆ − M̂
⋆

1‖ = lim
i′→∞

min
̂M∈M

‖Ŝi′ − M̂‖ =

min
̂M∈M

‖Ŝ⋆−M̂‖, namely M̂
⋆

1 = M̂
⋆

is the optimal solution.

Finally, if M̂ i does not converge to M̂
⋆

there exists at least

one extract sequence M̂ i′
1

such that M̂ i′
1
→ M̂

⋆

2 6= M̂
⋆
,

which is an absurd since the optimal solution is unique.

B. Proof of the equivalence between problems P and P1

Proof: Let M̄ be a feasible solution to P and
(
R̄, σ̄2

n

)

be such that
(
M̄ , R̄, σ̄2

n

)
satisfies the constraints in (3).

Since
(
M̄ , R̄+ (σ̄2

n − σ2)I, σ2
)

is also feasible to (3), P is

equivalent to

P ′





min
M

‖M − Ŝ‖

s.t.
λmax(M)
λmin(M )

≤ κM

σ2I +R = M

R � 0

. (27)

Next, observe that the set
{

σ2I +R = M

R � 0
,

can be recast as {
R = M − σ2I

M � σ2I
.

Hence, defining X = M
σ2 , P ′ boils down to

P1





min
X

‖X − S‖
s.t. X � I

λmax(X)
λmin(X)

≤ κM

, (28)

where S =
̂S
σ2 . Since

λmax(X)

λmin(X)
is a quasi-convex function

over the set X � I , P1 is a convex problem. Finally, notice

that Problem P1 is equivalent to

P ′
1





min
X

‖X − S‖
s.t. X � I

‖X − S‖ � ‖I − S‖
λmax(X)

λmin(X)
≤ κM

. (29)

Now, since the objective in P ′
1 is a continuous function and

the feasible set is a compact set, Weierstrass theorem ensures

the existence of a feasible point X⋆ to P ′
1 such that v(P1) =

v(P ′
1) = ‖X⋆ − S‖, which concludes the proof.

C. Proof of Lemma 3.1

Proof: Let X⋆
1 = U1Λ

⋆
1U

†
1 be the spectral de-

composition of an optimal solution to P1, where Λ
⋆
1 =

diag (λ⋆
1, λ

⋆
2, · · · , λ⋆

N ), with λ⋆
1 ≥ λ⋆

2 ≥ · · · ≥ λ⋆
N . Based

on [51, Theorem 7.4.51]

‖X⋆
1 − S‖ ≥ ‖Λ⋆

1 −ΛS‖. (30)

Besides,

‖Λ⋆
1 −ΛS‖ = ‖US(Λ

⋆
1 −ΛS)U

†
S‖ = ‖X⋆ − S‖, (31)

due to the unitary invariance of the norm. Hence, X⋆ =
USΛ

⋆
1U

†
S is an optimal solution to P1 since it is a feasible

point achieving the minimum value. Finally, P2 is obtained

replacing X with USΛU
†
S in P1.

D. Proof of the equivalence between P2 and P ′
2

Proof: Let us observe that the constraint set




Λ � I
λmax(Λ)

λmin(Λ)
≤ κM

Λ = diag
(
[λ1, . . . , λN ]T

) , (32)

is equivalent to
{

λi ≥ 1, i = 1, . . . , N
λi ≤ κMmin

h
{λh}, i = 1, . . . , N . (33)

Now, introducing an auxiliary variable u > 0, the set (33) can

be cast as 



λi ≥ 1, i = 1, . . . , N
u ≤ λi ≤ κMu, i = 1, . . . , N
u > 0

. (34)

Indeed, if λ̄ is a feasible point to (33),
(
λ̄,min

{
λ̄
})

is a

feasible point to (34). On the other hand, if
(
λ̄
1
, ū1
)

is a
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feasible point to (34),

0 <
λ̄1
i

min
h

{
λ̄1
h

} ≤ ū1κM

min
h

{
λ̄1
h

} ≤ ū1κM

ū1
= κM .

As a result, λ̄1 is a feasible point to (33). Finally, since (34)

is empty if u < 1
κM

, P ′
2 follows.

E. Proof of Lemma 3.2

Proof: Let g(·) be the gauge function associated with

the considered unitary invariant norm ‖ · ‖ (see [51, Theorem

7.4.24]). According to [51, Property 7.4.21],

‖Λ−ΛS‖ = g(|λ1 − d1|, |λ2 − d2|, . . . , |λN − dN |),
implying that P ′

2 can be cast as





min
λ

g(|λ1 − d1|, |λ2 − d2|, . . . , |λN − dN |)
s.t. λi ≥ 1, i = 1, . . . , N

u ≤ λi ≤ κMu, i = 1, . . . , N
u ≥ 1

κM

.

To proceed further, let us observe that g(·) is a monotone

norm on CN [51, Theorem 5.5.10]. As a consequence, given

two vectors x ∈ CN and y ∈ CN such that |xi| ≤ |yi|, i =
1, . . . , N , g(x) ≤ g(y). Additionally, for any fixed u = ū the

constraints on the variables λi, i = 1, . . . , N are not coupled.

Thus, an optimal solution to




min
λ

g(|λ1 − d1|, |λ2 − d2|, . . . , |λN − dN |)
s.t. λi ≥ 1, i = 1, . . . , N

ū ≤ λi ≤ κM ū, i = 1, . . . , N

can be found solving the following N scalar optimization

problems

P i
3(ū)





min
λi

|λi − di|
s.t. λi ≥ 1

u ≤ λi ≤ κM ū

, i = 1, . . . , N. (35)

The closed form solution to P i
3(ū) can be obtained analyz-

ing

P̃3

{
min
x

|x− y|
s.t. a ≤ x ≤ b

, (36)

where the variables x, y, a, b are given by

x = λi, y = di, a = max(1, ū), b = κM ū. (37)

Since |x− y| is a monotonically decreasing function if x ≤ y
and a monotonically increasing function if x ≥ y, it follows

that the optimal solution is xmin = y if a ≤ y ≤ b. If y ≤
a ≤ b xmin = a. Thus, xmin = max(y, a) as long as y ≤
b. Moreover, xmin = b if y ≥ b implying that the optimal

solution to P̃3 can be written in closed form as

xmin = min(b,max(y, a)). (38)

Replacing (37) in (38), the optimal solution to P i
3(ū) is

λ⋆
i (ū) = min(κM ū,max(di,max(1, ū))).

F. Proof of Theorem 3.3

Proof: Let Λ
⋆(ū) be an optimal solution to problem

P ′
2(ū) as provided by Lemma 3.2. Hence, a minimizer of P2

is Λ
⋆ = Λ

⋆(u⋆
1) with u⋆

1 an optimal solution to the one-

dimensional problem

P ′
3

{
min
u

‖Λ⋆(u)−ΛS‖
s.t. u ≥ 1

κM

. (39)

Based on [51, Property 7.4.21] P ′
3 can be reformulated as

P3

{
min
u

g (|λ⋆
1(u)− d1|, . . . , |λ⋆

N (u)− dN |)
s.t. u ≥ 1

κM

, (40)

where g(·) is the gauge function associated with the considered

unitary invariant norm and λ⋆
i (u), i = 1, . . . , N , are the entries

of the vectorial function λ⋆(u) given in (13). Now, notice that,

g (|λ⋆
1(u)− d1|, . . . , |λ⋆

N (u)− dN |) is a continuous function

since obtained as the composition of continuous functions.

Besides, due to [66, p. 88], the objective function in P3 is

convex. Hence, an optimal solution to P1 just requires the

solution of the convex optimization problem P3. Additionally,

the set of the optimal solutions to P3 defines a closed convex

interval bounded below ensuring the existence of the lowest

optimal solution u⋆.

G. Proof of the results in equations (16) and (17)

Proof: To prove equations (16) and (17), for any fixed i,
let us introduce the following notation

α1 = max(1, u), β1 = max(di, α1).

Hence, λi(u) = min(κMu, β1). Now, assuming di > 1:

• if 1
κM

≤ u < di

κM
, then u < di and β1 = di. Moreover,

uκM < di, implying that λi(u) = uκM as well as

hi(u) = |uκM − di| = di − uκM ;

• if di

κM
≤ u < di, as in the previous item β1 = di. Now,

uκM ≥ di, and thus λi(u) = di, i.e., hi(u) = 0;

• if u ≥ di, then α1 = u and β1 = u; thus, λi(u) = u and

hi(u) = u− di.

Instead, when di ≤ 1:

• if 1
κM

≤ u < 1, then α1 = 1 and β1 = 1; hence, λi(u) =
1 and hi(u) = 1− di;

• if u ≥ 1, then β1 = u; thus, λi(u) = u and hi(u) =
u− di.

H. Proof of the claims concerning G1(u)

Proof: Let us start assuming d1 ≤ 1. This implies that

di ≤ 1, i = 1, . . . , N and

(hi(u))
2 =

{
(1− di)

2 if 1
κM

≤ u < 1

(u− di)
2 if u ≥ 1

. (41)

Consequently, for i = 1, . . . , N , each G1(u) is a constant

function over u ∈
[

1
κM

, 1
[

and it is monotonically increasing

in u ∈ [1,+∞]. Thus, u⋆ = 1
κM

.

Consider now 1 < d1 ≤ κM . Let Ip = {i : di > 1} be the

set of indexes corresponding to the eigenvalues greater than
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1. Since d1

κM
≤ 1 < dpmax

, where pmax ∈ Ip is the index

associated with the lowest eigenvalue greater than 1,
∑

i∈I

(hi(u))
2 (42)

is monotonically decreasing over 1
κM

≤ u ≤ d1

κM
. Moreover,

(42) is constant over d1

κM
≤ u ≤ dpmax

and monotonically

increases for u ≥ dpmax
. Furthermore, if di ≤ 1, (hi(u))

2

is a constant function over 1
κM

≤ u < 1 and monotonically

increases over u ≥ 1. Hence, u⋆ = d1

κM
.

Finally, if d1 > κM G1(u) is a strictly decreasing function

over 1
κM

≤ u < 1, whereas it is a strictly increasing function

within d1 ≤ u < +∞. Hence, any minimum belongs to the

interval [1, d1].

Let us now focus on the differentiability of G1(u). If di ≤ 1,

the derivative of (hi(u))
2 is

d(hi(u))
2

du
=

{
0 if 1

κM
≤ u < 1

2(u− di) if u > 1
. (43)

Hence,
d(hi(u))

2

du is continuous over u ≥ 1 where in u = 1 the

right derivative is considered. If di > 1,

d(hi(u))
2

du
=





2(uκ2
M − diκM ) if 1

κM
≤ u < di

κM

0 if di

κM
< u < di

2(u− di) if u > di

.

(44)

Hence, in each of the sub-intervals
[

1
κM

, di

κM

[
,
]

di

κM
, di

[
, and

]di,+∞[, d(hi(u))
2

du is continuous; moreover, in correspon-

dence of the points u = di

κM
and u = di, the right and

left derivatives coincide implying that the overall derivative

is continuous over u ≥ 1
κM

. Since 1
κM

≤ 1, the function

dG1(u)
du =

N∑

i=1

d(hi(u))
2

du
, is continuous over u ∈ [1, d1].

As to the convexity of G1(u), it easily follows from the

convexity of each term.

I. Proof of Theorem 3.4

Proof: The proof is organized in four different parts

accordingly to the provided claims.

1) As already proved, G1(u) is a convex and differentiable

function within the interval u ∈ [1, d1]. Recalling that

a differentiable function is convex if and only if its

derivative is an increasing function, it can be claimed

that
dG1(u)

du is increasing within u ∈ [1, d1]. Since
dG1(u)

du

∣∣∣
u=1

≥ 0, then

dG1(u)

du
≥ 0, u ∈ [1, d1],

namely G1(u) is an increasing function in u ∈ [1, d1].
Hence, the minimum to P4 is attained in u⋆ = 1.

2) Assume that

dG1(u)

du

∣∣∣
u=1

< 0 and
dG1(u)

du

∣∣∣
u=d1

≤ 0. (45)

Since, G1(u) is a convex and differentiable function

within the interval u ∈ [1, d1],

dG1(u)

du
≤ 0, u ∈ [1, d1],

therefore G1(u) is decreasing in [1, d1] and u⋆
1 = d1

is the optimal solution as long as11 d1 > dN . Indeed,

if there exists u⋆ < d1, G1(u) would be constant over

[u⋆, u⋆
1] but this is not possible since d1 > dN .

3) If d1

κM
≤ dN , G1(u) is strictly decreasing up to d1

κM
and

increasing after this point implying that u⋆ = d1

κM
.

4) Finally, if d1

κM
> dN , the optimal solution is unique.

Indeed, if G1(u) is constant over an interval its second

order derivative is null in this set. Now, observe that

G1(u) is composed of convex functions whose second

order derivative exists except for a finite number of

points. Additionally, in any regular interval there is at

least one of such functions that is strictly convex due to

the assumption d1

κM
> dN , and hence the initial claim is

contradicted. Now, owing to

dG1(u)

du

∣∣∣
u=1

< 0 and
dG1(u)

du

∣∣∣
u=d1

> 0,

the optimal point belongs to ]1, d1[. Since G1(u) is a

convex and differentiable function, u⋆ is the optimal

point if and only if

dG1(u)

du

∣∣∣
u=u⋆

= 0. (46)

Let us now fully characterize condition (46). To this end,

let α ∈ {1, 2, . . . , N̄ , N̄ +1} be the smallest index such

that vα < u⋆ (α ≥ 2 since u⋆ < d1 = v1; moreover

α ≤ N̄ + 1 because u⋆ > 1 = vN̄+1). Besides, let

β ∈ {1, 2, . . . , N̄ , N̄ +1} be the largest index such that
vβ
κM

> u⋆ (β ≥ 1 because12 u⋆ < d1

κM
and β ≤ N̄

since u⋆ > 1 > 1
κM

=
vN̄+1

κM
). Notice that, α > β,

otherwise vα ≥ vβ >
vβ
κM

> u⋆, which contradicts u⋆ >
vα. Therefore, it will exist a suitable neighborhood Bu⋆

of u⋆, contained within the interval [vα,
vβ
κM

], such that

G1(u) can be expressed as

G1(u) =

β∑

i=1

(di − κMu)
2
+

N∑

i=α

(u− di)
2
, ∀u ∈ Bu⋆ .

(47)

Computing the derivative of (47) with respect to u, and

imposing the optimality condition (46), the minimizer

u⋆ is given by

u⋆ =

β∑

i=1

κMdi +

N∑

i=α

di

N − α+ 1 + βκ2
M

. (48)

11Without loss of generality, it is assumed that vi 6= vj and vi 6= κMvj
for all i 6= j with 1 ≤ i, j ≤ N̄ + 1.

12 dG1(u)
du

∣∣∣
u=

d1
κM

> 0 since each term composing G1(u) is an increasing

function over u ≥ d1
κM

and at least the term associated with dN has a strictly

positive derivative.
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On the other hand, let ū a value such that

ū =

β̄∑

i=1

κMdi +

N∑

i=ᾱ

di

N − ᾱ+ 1 + β̄κ2
M

, (49)

with ᾱ ∈ {1, 2, . . . , N̄ , N̄+1} the smallest indexes such

that vᾱ < ū and β̄ ∈ {1, 2, . . . , N̄ , N̄ + 1} the largest

indexes such that
vβ̄
κM

> ū. This means that it exists

a neighborhood Bū of ū contained within the interval[
vᾱ,

vβ̄
κM

]
, such that ∀u ∈ Bū, G1(u) is given by

G1(u) =

β̄∑

i=1

(di − κMu)
2
+

N∑

i=ᾱ

(u− di)
2
. (50)

Now, computing the derivative of (50), condition (49)

implies that
dG1(u)

du

∣∣∣
u=ū

= 0, i.e., ū = u⋆.

J. Proof of Theorem 3.5

Proof: The proof is organized in five different parts

accordingly to the provided claims.

1) If di ≤ 1, i = 1, . . . , N , the functions hi(u), i =
1, . . . , N , in (17) are monotonically increasing over

u ≥ 1
κM

. Hence, G2(u) is monotonically increasing

implying that u⋆ = 1
κM

.

2) Let Iq = {i : di ≤ 1} and Ip = {i : di > 1}; by

assumption, 1 < d1 ≤ κM and Iq 6= ∅. Now, observe

that

G2(u) = max
i=1,...,N

{hi(u)} = max {hq(u), hp(u)} ,

where

hq(u) = max
i∈Iq

{hi(u)} , hp(u) = max
i∈Ip

{hi(u)} .

To proceed further, notice that

hp(u) =

{
h1(u) if 1

κM
≤ u ≤ 1

hpmax
(u) if 1 ≤ u ≤ d1

where pmax = max{j ∈ Ip}. In fact,

max {d1 − κMu, 0} ≥ max {dj − κMu, 0} , j ∈ Ip,
implying that

hp(u) = h1(u) over

[
1

κM
, 1

]
⊆
[

1

κM
, dpmax

]
;

moreover, ∀j ∈ Ip,
dj

κM
< 1 and

max {u− dpmax
, 0} ≥ max {u− dj , 0} ,

thus hp(u) = hpmax
(u) over u ≥ 1. Finally, since

hq(u) = hN (u) if u ≥ 1
κM

,

G2(u) =

{
max {hN (u), h1(u)} if 1

κM
≤ u ≤ 1

max {hN (u), hpmax
(u)} if 1 ≤ u ≤ d1

.

To proceed further, observe that

max {hN (u), hpmax
(u)} = hN (u) u ≥ 1,

since u − dN ≥ max {u− dpmax
, 0}, u ≥ 1. Now, let

η = d1+dN−1
κM

be the point such that 1−dN = d1−ηκM ,

where η ≤ d1

κM
≤ 1 since dN ≤ 1. If η ≤ 1

κM
, G2(u) =

hN (u), u ≥ 1
κM

, implying that u⋆ = 1
κM

. Otherwise,

G2(u) =

{
h1(u) if 1

κM
≤ u ≤ η

hN (u) if u ≥ η

and u⋆ = η since G2(u) is a strictly decreasing function

up to η and it monotonically increases if u ≥ η. Thus,

u⋆ = max
{
η, 1

κM

}
.

3) Assume 1 < d1 ≤ κM and dN > 1. Since, di > 1,

i = 1, . . . , N , G2(u) = h1(u) as 1
κM

≤ u ≤ dN ;

hence, G2(u), is a strictly decreasing function over
1

κM
≤ u ≤ d1

κM
and G2(

d1

κM
) = 0 since d1

κM
≤ 1 < dN .

As a consequence u⋆ = d1

κM
and X⋆ = S.

4) Consider d1 > κM and dN ≤ 1. In this case,

G2(u)=

{
max {hN (u), h1(u)} if 1

κM
≤ u ≤ 1

max {hN (u), h1(u), hpmax
(u)} if 1 ≤ u ≤ d1

(51)

where, as in item 2), pmax is the index of the lowest

eigenvalue higher than 1. To proceed further, let η =
d1+dN−1

κM
; if η ≤ 1,

hN (u) ≥ 1− dN ≥ h1(u), max

{
η,

1

κM

}
≤ u ≤ d1.

(52)

Furthermore

h1(u) ≥ hpmax
(u), 1 ≤ u ≤ dpmax

, (53)

hN(u) ≥ hpmax
(u), dpmax

≤ u ≤ d1. (54)

Hence, based on (52), (53), and (54)

max{hN (u), h1(u), hpmax
(u)} = hN (u), 1 ≤ u ≤ d1,

implying that u⋆ = max
{

1
κM

, η
}

.

Now, assume η > 1 and let η1 = d1+dN

1+κM
, where 1 ≤

η1 ≤ d1

κM
. According to (51), G2(u) = h1(u), if 1

κM
≤

u ≤ 1. Additionally,

h1(u) ≥ hN(u), 1 ≤ u ≤ η1,

h1(u) ≤ hN(u), η1 ≤ u ≤ d1. (55)

Besides,

• if
dpmax

κM
≤ 1

hpmax
(u) ≤ hN (u), 1 ≤ u ≤ d1;

• otherwise,
dpmax

κM
> 1 and

hpmax
(u) ≤ h1(u), 1 ≤ u ≤ dpmax

κM
,

hpmax
(u) ≤ hN(u),

dpmax

κM
≤ u ≤ d1. (56)

Summarizing,

G2(u) =

{
h1(u) if 1

κM
≤ u ≤ 1

max {hN (u), h1(u)} if 1 ≤ u ≤ d1
.

(57)

As a consequence, G2(u) is a strictly decreasing func-
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tion over 1
κM

≤ u ≤ η1 and monotonically increases

over η1 ≤ u ≤ d1. Thus, u⋆ = η1.

5) Let d1 > κM and dN > 1.

• If dN ≤ d1

κM
, let η1 = d1+dN

1+κM
≤ d1

κM
. Hence,

G2(u) = h1(u), if 1
κM

≤ u ≤ η1. In fact, within

this interval, ∀i ∈ {1, . . . , N}
d1 − uκM ≥ max {di − uκM , 0} ,
d1 − uκM ≥ max {u− dN , 0} ≥ max {u− di, 0} .
Moreover, η1 ≥ dN , since d1+dN

1+κM
− dN =

κM

(
d1/κM−dN

(1+κM )

)
≥ 0 and consequently G2(u) =

hN (u) if η1 ≤ u ≤ d1. As a result, u⋆ = d1+dN

1+κM
;

• otherwise, dN > d1

κM
and following the same line

of reasoning as in item 3) it follows that u⋆ = d1

κM

as well as X⋆ = S.
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