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Abstract

We consider the monomer-dimer partition function on arbitrary finite planar graphs and
arbitrary monomer and dimer weights, with the restriction that the only non-zero monomer
weights are those on the boundary. We prove a Pfaffian formula for the corresponding partition
function. As a consequence of this result, multipoint boundary monomer correlation functions
at close packing are shown to satisfy fermionic statistics. Our proof is based on the celebrated
Kasteleyn theorem, combined with a theorem on Pfaffians proved by one of the authors, and
a careful labeling and directing procedure of the vertices and edges of the graph.
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1 Introduction

The monomer-dimer problem is one of the important classical structures in statistical mechanics
and computer science. It starts with a graph g, which is a collection of points, called vertices,
and lines, called edges, between specified pairs of points. A dimer is an object that occupies
a single edge and its endpoints, and a monomer is an object that occupies a single vertex. A
monomer-dimer covering of g (hereafter refered to as an MD covering) is a collection of monomers
and dimers (that is to say vertices and edges) such that every vertex is covered by exactly one
of these objects, that is by either a monomer or a dimer. Note that, in any MD covering, the
number of vertices in g is equal to the number of monomers plus twice the number of dimers.
The present work is devoted to planar graphs (which are those that can be drawn in R2 without
edge crossings).

The classical problem associated with MD overings is their enumeration at fixed number
of monomers. The object of this work is to find formulas for the generating function of this
enumeration problem:

Ξ(z) :=
∑

MD coverings

znumber of monomers. (1.1)

Clearly, Ξ(z) is a polynomial in z, and z is called the monomer fugacity. This polynomial has
all its zeros on the imaginary axis [HL70, HL72]. In addition, the summation in (1.1) can be
generalized by assigning weights to edges and/or vertices.

In the pure dimer case, where z = 0, Ξ has been shown by Temperley and Fisher (for the square
lattice) [TF61] and by Kasteleyn (for general planar graphs) [Ka63] to be expressible as a Pfaffian
(which is convenient since Pfaffians can be computed as square roots of determinants). However,
when monomers are allowed to appear, such a Pfaffian formula is thought to be impossible (at
least a Pfaffian formula for the full MD problem on any planar graphs): indeed it has been
shown [Je87] that the enumeration of MD coverings of generic planar graphs is “computationally
intractable”, whereas Pfaffians can be computed in polynomial time. More precisely, [Je87] proves
that the enumeration of MD coverings of generic planar graphs is “#P complete”, which implies
that it is believed not to be computable in polynomial time.

However, by introducing restrictions on the location of monomers, such a result can be proven
in some cases. Namely, in [TW03, Wu06], the authors derive a Pfaffian formula, based on the
“Temperley bijection” [Te74], for the partition function of a system with a single monomer located
on the boundary of a finite square lattice, and in [WTI11], on a cylinder of odd width (which
is a nonbipartite lattice). In [PR08], the MD problem is studied on the square lattice on the
half-plane with the restriction that the monomers are fixed on points of the boundary. They
derive a Pfaffian formula for this case, and use it to compute the scaling limit of the multipoint
boundary monomer correlations. Finally, in [AF14], it is shown that if the monomers are fixed
at any position in a square lattice, then the partition function can also be written as a product
of two Pfaffians.

In the present work, we prove a Pfaffian formula for the boundary MD partition function on
an arbitrary planar graph (in which the monomers are restricted to the boundary of the graph,
but are not necessarily fixed at prescribed locations) with arbitrary dimer and monomer weights.

It was later brought to our attention by an anonymous referee that it is known that the
boundary MD partition function can be given by a Pfaffian formula, which one can obtain by
considering a bijection between the boundary MD coverings of a graph and the pure dimer
coverings of a larger graph, whose partition function is known, by Kasteleyn’s theorem [Ka63],
to be expressible as a Pfaffian. This construction is detailed in appendix E. To our knowledge,
this result has, so far, not been published, even though it appears to be closely related to the
discussion in [Ku94, section 4].

Oblivious to the existence of this bijection method, the approach we have adopted in this
paper is a different one. Instead of mapping the boundary MD coverings to pure dimer coverings
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of a larger graph, we compute, for each fixed monomer positions, the pure dimer partition function
on the subgraph obtained by removing the vertices covered by monomers, which, by Kasteleyn’s
theorem, is expressible as a Pfaffian, and combine all the Pfaffians thus obtained into a single
Pfaffian using a theorem proved by one of the authors in 1968 [Li68]. The formula we obtained
in this way is slightly different from that obtained by the bijection method, and we have found
that, by using this formula, the monomer correlations functions at close packing can easily be
shown to satisfy a fermionic Wick rule.

In short, the aim of this paper is, first, to leave a written trace of the fact that the boundary
MD partition function can be expressed as a Pfaffian, and, second, to present a Pfaffian formula,
which is not a trivial rewriting of the formula one obtains by the bijection method, and may be
easier to use than the latter formula in some cases, for instance in the proof of the Wick rule.

Finally, it should be mentioned that, by drawing inspiration from the bijection method de-
tailed by our anonymous referee, we found a significant simplification of our proof, and we are,
therefore, very grateful.

Remarks:

• The asymptotic behavior of monomer pair correlations on the square lattice have been
computed explicitly [FS63, Ha66, FH69] for monomers on a row, column or diagonal (note
that, as mentioned in [AP84], [Ha66] contains small mistakes). In addition, the general
bulk monomer pair correlations have been shown [AP84] to be expressible in terms of two
critical Ising correlation functions.

• An alternative approach for the boundary MD problem on an N ×M rectangle (by which
we mean N vertices times M vertices) with monomers allowed only on the upper and lower
sides would be to use the transfer matrix technique [Li67]. In that case, the boundary MD
partition function is written as xM · VM−1x1 where V is the (N ×N) transfer matrix and
x1 and xM are vectors determined by the boundary condition at the boundaries y = 1 and
y = M respectively. Since the monomers are only allowed on these two boundaries, the
matrix V is the transfer matrix for pure dimer coverings, which can be diagonalized as in
[Li67]. The partition function can then be computed by setting the vectors x1 and xM
appropriately.

• The boundary monomer correlations at close-packing are critical, in that if the graph is
“regular enough” (e.g., if it is a finite portion of a lattice) they decay polynomially at large
distances, like 1/(distance), asymptotically as the size of the graph tends to infinity. See
[PR08] for a proof of this fact on the square lattice on the half-plane. A similar analysis has
been worked out in the 2D nearest neighbor Ising model for the boundary free energy, in
the presence of a boundary magnetic field, and for the boundary spin-spin correlations,
see [MW67, Section 8] and [MW73, Chapters VI and VII]. If the graph is a discrete,
regular approximation of a finite domain of R2, the scaling limit of the boundary monomer
correlations at close-packing is expected to exist and to be conformally invariant under
conformal mappings of the domain, in analogy with other observables of the critical 2D Ising
model and of the close-packed dimer model [Ke00, Ke01, Sm01, Sm10, CHI15, Du11, Du15].
In particular, they are expected to coincide with those of complex chiral free fermions
[PR08]. It is unclear whether this scaling limit is stable under perturbations violating
planarity (e.g., under the addition of small dimer weights along extra edges crossings). Our
Pfaffian formula offers a starting point for a perturbative multiscale analysis of the problem,
in the spirit of [PS, Sp00, GGM12, GMT15, GMT15b].

• An alternative approach for the boundary MD problem on generic planar graphs is via the
random current representation developed by Aizenman [Ai82]. It has been recently observed
[AD] that this representation, adapted to planar lattices, implies, for purely geometrical
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reasons, the validity of the fermionic Wick rule for boundary spin correlations in the nearest
neighbor Ising model (which has already been proved by J. Groeneveld, R.J. Boel and
P.W. Kasteleyn [GBK78]), and might imply the same for boundary monomer correlations
in the dimer model. Their method also suggests a stochastic geometric perspective on the
emergence of planarity at the critical points of non-planar 2D models, in the sense of the
previous item. Note that our Pfaffian formula (see theorem 1.1) goes beyond the Wick rule,
see the remark at the end of section 2.2.

• It may be worth noting that the MD partition function can be computed exactly in some
cases, e.g. on the complete graph [ACM14].

We will now state our main result more precisely, for which we need some notation. Let G
denote the set of finite planar graphs with edge-weights and vertex-weights, embedded in R2,
that have an even number of vertices, and contain no double edges or self-contractions (that is
the endpoints of an edge are distinct, and no two edges share the same endpoints). Note that
these graphs are not necessarily connected. The evenness condition is not restrictive, in that
a graph with an odd number of vertices can always be reduced to an even one, by adding an
isolated (disconnected) vertex.

Given g ∈ G, its boundary graph ∂g is defined as the sub-graph of g containing the edges
and vertices that can be connected to infinity without crossing any edge of g (here we say that
an edge can be connected to infinity without crossing any other edge, if a point at the center of
the edge can be). The set of vertices of g is denoted by V(g) and its set of edges by E(g). The
edge linking two vertices v1 and v2 will be denoted by {v1, v2} ≡ {v2, v1}. The weight of a vertex
v ∈ V(g) (i.e. the fugacity of a monomer located at v) is denoted by `v and the weight of an edge
{v1, v2} ∈ E(g) (i.e. the fugacity of a dimer located at {v1, v2}) is denoted by d{v1,v2} ≡ dv1,v2 .
The number of vertices in g in denoted by |g|. In the following we will often consider directed
graphs, which are obtained by assigning a direction to every edge: if the edge {v1, v2} is directed
from v1 to v2, we write v1 � v2.

The set of MD coverings of g is denoted by Ω(g) and the set of pure dimer coverings by
Ω0(g). Given an MD covering σ ∈ Ω(g), we denote the set of vertices covered by monomers by
M(σ) ⊂ V(g) and the set of edges covered by dimers by D(σ) ⊂ E(g). The boundary MD
partition function of a graph g is defined as the partition function of MD coverings of g in
which the monomers are restricted to vertices of ∂g:

Ξ∂(`,d) :=
∑

σ∈Ω(g)
M(σ)⊂V(∂g)

∏
v∈M(σ)

`v
∏

e∈D(σ)

de. (1.2)

Note that restricting the monomers of σ to be on boundary vertices can be enforced by setting
all other `v’s to 0.

The Pfaffian of a 2n× 2n-dimensional antisymmetric matrix (Ai,j) is defined as

pf(A) :=
1

2nn!

∑
π∈S2n

(−1)π
n∏
i=1

Aπ(2i−1),π(2i) (1.3)

where S2n denotes the set of permutations of {1, · · · , 2n} and (−1)π is the signature of π ∈ S2n.

Theorem 1.1 (Main result). For every g ∈ G, the edges of g can be directed and its vertices
labeled (v1, · · · , v|g|) in such a way that, by defining

ai,j(d) :=


+dvi,vj if {vi, vj} ∈ E(g) and vi � vj
−dvi,vj if {vi, vj} ∈ E(g) and vi ≺ vj
0 otherwise

(1.4)
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and, for i < j,
Ai,j(`,d) := ai,j(d)− (−1)i+j`i`j (1.5)

and Aj,i(`,d) := −Ai,j(`,d), the boundary MD partition function on g is given by

Ξ∂(`,d) = pf(A(`,d)). (1.6)

Remarks:

• By setting some weights `v to 0, the location of the monomers can be further restricted. In
particular, the partition function (and correlation functions) with fixed monomers can be
expressed using the Pfaffian formula (1.6), as has been done for the special cases studied in
[TW03, PR08].

• Similarly, by setting edge weights to 0, dimers can be excluded from any part of the graph.

• It may be worth noting that the weights de and `v may be complex.

• Our result provides a polynomial-time algorithm for computing boundary MD partition
functions on generic planar graphs. See appendix B for examples.

• Based on theorem 1.1, we have derived an algorithm (see appendix C) that allows us to
compute the full MD partition function (as opposed to the boundary MD partition function)
on an arbitrary graph (which is not necessarily planar), which is more efficient than the
naive enumeration algorithm. For instance, if g is an L×M rectangle on the square lattice,
our algorithm requires O((LM)32(LM)/2) operations, while the naive algorithm requires
O((LM)32LM ). In the rectangular case, a transfer matrix approach would be even faster,
completing the computation in O((LM)32L) operations [Ko06], but our algorithm does not
require the graph to be treatable via a transfer matrix approach.

• In addition, we have developed an alternative algorithm (see appendix D) to express the
full MD partition function on Hamiltonian planar graphs as a derivative of the product of
just two Pfaffians. From a computational point of view, this approach is even slower than
the previous one, but it is nonetheless conceptually interesting. Note that this algorithm
can be adapted to non-planar graphs as well.

• Finally, we have also computed upper and lower bounds for the full partition function, see
theorems 2.8 and D.2.

• As a side remark, note that Monte Carlo methods methods can be even faster, i.e., poly-
nomial in the size of the system [KRS96], but they provide correct results only with high
probability rather than with certainty.

• A result similar to theorem 1.1 has recently been established [Ay15] for another model,
called the monopole-dimer model, for which the partition function can be written as a
determinant.

If we derive Ξ∂(`,d) with respect to ` and then set ` to zero, we obtain the multipoint
monomer correlations at close packing:

Mn(i1, · · · , i2n) :=
1

Ξ∂(0,d)

∂2nΞ∂(`,d)

∂`i1 · · · ∂`i2n

∣∣∣∣
`1=···=`|g|=0

. (1.7)

An important corollary of theorem 1.1 is that Mn(i1, · · · , i2n) satisfies the fermionic Wick rule.
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Corollary 1.2 (Fermionic Wick rule). In the same setting as theorem 1.1,

Mn(i1, · · · , i2n) = pf(Mi1,...,i2n), (1.8)

where Mi1,...,i2n is the 2n×2n antisymmetric matrix whose (j, j′)-th entry with j < j′ is M1(ij , ij′).

Remark: Away from close packing (i.e. omitting `1 = · · · = `|g| = 0 in (1.7)), the Wick rule
does not hold. This can be checked immediately by considering a graph consisting of a square
with an extra edge on the diagonal.

As stated in theorem 1.1, the edges and vertices of g must be directed and labeled in a special
way. In particular, the direction of the edges must satisfied a so called Kasteleyn condition, and
the labeling must satisfy a positivity condition. The positivity condition ensures that the terms
that appear in the Pfaffian add up constructively and reproduce the MD partition function. The
Kasteleyn condition is used to prove the positivity of a graph: if such a condition holds, then it
suffices to look at a single dimer covering of g to prove its positivity.

The main ingredient of the proof of our result is to show that, having directed and labeled
the graph in an appropriate way, every sub-graph constructed from g by removing the vertices
which support monomers satisfies both the Kasteleyn and positivity conditions. Proving that the
sub-graph satisfies the Kasteleyn condition is easy (provided the monomers live on the boundary
of the graph), but proving its positivity is more of a challenge. The basic idea is to construct
an auxiliary graph in which the boundary MD coverings of g are mapped to dimer coverings by
a map that preserves positivity. We can then show that the auxiliary graph is positive, which
implies the positivity of the sub-graphs of g.

The structure of the paper is the following.

• In section 2, we define and discuss some of the ingredients of the proof of the Pfaffian
formula. Namely, we define the Kasteleyn and positivity conditions and state a theorem on
Pfaffians, based on a result of [Li68], which is at the basis of the Pfaffian formula for the
boundary MD partition function. Moreover, we prove corollary 1.2.

• In section 3, we prove theorem 1.1 for a class of graphs called enclosed graphs.

• In section 4, we show how to add edges and vertices to a graph in a way that does not
change the partition function and reduces it to an enclosed graph.

• In appendix A, we state some useful properties of Kasteleyn graphs, and prove some of the
statements of section 2.

• In appendix B, we give several examples of the Pfaffian formula.

• In appendices C and D we present two algorithms to compute the full monomer-dimer
partition function on arbitrary planar graphs.

• In appendix E, we discuss the bijection method.

2 Preliminaries

In this section, we present the key results that will allow us to prove the Pfaffian formula for the
boundary MD partition function.
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2.1 Kasteleyn’s theorem

In this section, we discuss a method introduced by P. Kasteleyn [Ka63] to write the partition
function of dimers on planar graphs as a Pfaffian. In order to construct the matrix A whose
Pfaffian yields the partition function of dimers, the graph g must first be oriented and its vertices
labeled in a way that satisfies two conditions: the Kasteleyn and positivity conditions described
below.

2.1.1 The Kasteleyn condition

Before discussing the Kasteleyn condition, we first define a counterclockwise circuit c =
(v1, · · · , v|c|) with |c| ≥ 3 as an ordered sequence of vertices vi ∈ V(g) that are such that

• vi 6= vj for all i 6= j,

• for all 1 ≤ i ≤ |c|, {vi, vi+1} ∈ E(g), where v|c|+1 ≡ v1,

• the path v1 → · · · → v|c| → v1 winds in the counterclockwise direction.

Note that the notion of counterclockwise circuit does not require the graph to be directed. The
“counterclockwise” adjective will be omitted in the following. Moreover, we will (obviously)
identify circuits obtained from each other by a cyclic permutation.

The boundary of a graph g is the set of vertices and edges that are accessible from infinity.
A graph is said to have a boundary circuit if its boundary forms a circuit. Note that all finite
graphs have a boundary, but not always a boundary circuit (e.g. two vertices connected by an
edge). In this paper we will first be concerned with graphs that have a boundary circuit, and in
section 4.1 we will show how to reduce general graphs to graphs with a boundary circuit.

Given an edge {vi, vi+1} for 1 ≤ i ≤ |c|, the edge is said to be forwards if vi � vi+1 and
backwards if vi ≺ vi+1; and similarly for {v|c|, v1}. A circuit c is said to be oddly-directed if it
contains an odd number of backwards edges and evenly-directed if it contains an even number
of backwards edges. In addition a circuit is said to be good if it is oddly-directed and encloses an
even number of vertices, or it is evenly-directed and encloses an odd number of vertices.

Furthermore, given ν ≥ 1 and two circuits c1 and c2 that have a string of vertices in common
appearing in the reverse order, that is

c1 = (v1, · · · , vν+1, vν+2, · · · , v|c1|), c2 = (vν+1, · · · , v1, v
′
ν+2, · · · , v′|c2|) (2.1)

with vi 6= vj for all i 6= j and vi 6= v′j for all i, j. The edges {vi, vi+1} with i ≤ ν are the edges
that c1 and c2 share. We define the merger of c1 and c2 as the circuit

c1∆c2 := (vν+1, · · · , v|c1|, v1, v
′
ν+2, · · · , v′|c2|). (2.2)

See figure 2.1 for an example. A circuit c is said to be minimal if it is not a merger, that is
if for any pair of circuits c1 and c2 as in (2.1), c 6= c1∆c2. A circuit c1 is said to be maximal
if it cannot be merged with any other circuit, that is if there is no c2 as in (2.1). Note that a
minimal circuit may have vertices and edges (and even circuits) in its interior, see figure 2.2 for
an example. Vice versa, a circuit without vertices in its interior is minimal. Minimal circuits
with no interior vertices are called mesh cycles in [Ka63].

Definition 2.1. A directed graph g ∈ G is said to be Kasteleyn if every minimal circuit of g is
good, or if there are no minimal circuits in g.

The adjective “minimal” can be dropped from definition 2.1, as shown in the following lemma,
which we will prove in appendix A.
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Figure 2.1: A merger. The circuit c1 consists of the vertices rendered as red (color online) upward-
pointing triangles and green circles, and the edges connecting them. The circuit c2 consists of the
vertices rendered as blue downward-pointing triangles and green circles, and the edges connecting
them. The merger c1∆c2 consists of the vertices rendered as red upward-pointing triangles and
blue downward-pointing triangles, and the edges connecting them. The vertices that are rendered
as superimposed upward- and downward-pointing triangles, half red and half blue, should be
interpreted as both red upward-pointing triangles and blue downward-pointing triangles.

Figure 2.2: In this example, there are two minimal circuits. The first minimal circuit consists of
the vertices rendered as red (color online) left-pointing triangles, and the edges connecting them.
The second minimal circuit consists of the vertices rendered as blue right-pointing triangles, and
the edges connecting them. The vertex that is rendered as superimposed left- and right-pointing
triangles, half red and half blue, should be interpreted as both a red left-pointing triangle and a
blue right-pointing triangle.

Lemma 2.2. Every circuit of a Kasteleyn graph is good.

Remark: Note that, although our definition is slightly different from that used originally by
Kasteleyn in [Ka63], it can easily be recognized to be equivalent. In fact, the assumption of
[Ka63, item (A) on p.290], in light of [Ka63, item (D) on p.290], is equivalent, in our language,
to the fact that all even circuits are good (here, “even” refers to the number of vertices in the
circuit, and is unrelated to the notion of “evenly-directed” defined above). Moreover, [Ka63, item
(C) on p.290] guarantees that both even and odd circuits are good.

An important result of [Ka63] is that every finite planar graph can be directed in such a way
that it is Kasteleyn. A simple directing procedure alternative to that proposed in [Ka63] can be
found in [LL93]. We will actually need a slightly generalized version of this directing procedure,
which applies to graphs that are partially directed.

Proposition 2.3. Let g ∈ G be a graph some of whose edges may be directed. If every circuit
that is thus directed is good, then the undirected edges of g can be directed in such a way that the
resulting graph is Kasteleyn.

For a proof and an algorithmic construction, see appendix A.
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2.1.2 The positivity condition

We now discuss the positivity condition. The condition depends crucially on how the vertices of
the graph are labeled. It may appear to be merely a question of nomenclature, but it is more
than that: the labeling determines the order of the rows in the Pfaffian and thereby affects its
overall sign. We define the notion in precise terms: a labeling ω of the vertices of g is a bijection
from V(g) to {1, · · · , |g|}.

Given a vertex labeling ω, a pure dimer covering σ ∈ Ω0(g), which we write as

σ = {(v1, v2), · · · , (v|g|−1, v|g|)}

with v2i−1 � v2i, is said to be positive if the permutation π
(ω)
σ ∈ S|g| defined by π

(ω)
σ (i) = ω(vi)

has a positive signature. Note that the sign of σ remains unchanged if (v2i−1, v2i) and (v2j−1, v2j)
are exchanged.

Definition 2.4. Given a vertex labeling ω, a directed graph g is said to be positive if all of its
dimer coverings are positive, or if it has no dimer coverings.

The following proposition is the basis of Kasteleyn’s theorem [Ka63].

Proposition 2.5 (Uniform positivity). Given a vertex labeling ω, a Kasteleyn graph g that admits
a dimer covering is positive if and only if one of its dimer coverings is positive.

Note that, in light of this proposition, every non-positive labeling can be made positive by
switching two labels.

We are finally in the position of stating Kasteleyn’s theorem. Given a positive Kasteleyn
graph g ∈ G, let, for i, j = 1, · · · , |g| with i < j,

ai,j(d) :=


+dvi,vj if {vi, vj} ∈ E(g) and vi � vj
−dvi,vj if {vi, vj} ∈ E(g) and vi ≺ vj
0 otherwise

(2.3)

in which vi is a shorthand for ω−1(i). Proposition 2.5 implies that the terms in the Pfaffian
pf(a(d)) (see (1.3)) add up constructively, which in turn implies the following

Theorem 2.6 (Kasteleyn’s theorem). Given a positive Kasteleyn graph g ∈ G, the partition
function Ξ(0,d) of pure dimer coverings of g is given by

Ξ(0,d) = pf(a(d)). (2.4)

Note that, as commented above, every planar graph can be directed and labeled so as to make
it Kasteleyn and positive. We remark that there are several directing procedures and labelings
that ensure the Kasteleyn and positivity conditions. In the following, we are interested in proving
that the sub-graphs obtained by erasing some vertices on the boundary (those at the monomer
locations) are also Kasteleyn and positive. The subtle property to prove is the positivity of all
such sub-graphs, which is false in general. The goal of this paper is to find one good labeling of
the full graph, guaranteeing positivity of all these sub-graphs.

2.2 A theorem on Pfaffians

The basic strategy to prove our main result is to combine Kasteleyn’s theorem with a general
theorem about Pfaffians [Li68], proved by one of us, which appears at first glance to compute the
full MD partition function but fails to do so because of sign problems. Our goal will be to show
that these sign problems can be dealt with, if one restricts the monomer locations to be on the
boundary of a planar graph, by making a careful choice of the direction and labeling of g.
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2.2.1 Statement of the theorem on Pfaffians

We first state the theorem on Pfaffians, which is a slight generalization of that proved in [Li68].

Theorem 2.7 (Lieb). Given an even positive integer N , an antisymmetric N ×N matrix a, and
a collection of weights ` = (`i)i=1,··· ,N , let

Ai,j(`) := ai,j − (−1)i+j`i`j (2.5)

for i < j and Ai,j(`) = −Aj,i(`) for i > j, we have

pf(A(`)) =

N/2∑
k=0

∑
I⊂{1,··· ,N}
|I|=2k

pf([a]I)
∏
i∈I

`i (2.6)

in which [a]I denotes the matrix obtained from a by removing the i-th line and column for every
i in I, and if I = {1, · · · , N}, then pf([a]{1,··· ,N}) ≡ 1.

In [Li68], the theorem was proved in the case in which the `i are equal, but the proof is
immediately generalizable to arbitrary `. The only change needed in the proof of [Li68] is to
change equation [Li68, (21)] from

1

Z
trace

(
N∏
i=1

(λ+ Ci)

)
to

1

Z
trace

(
N∏
i=1

(`i + Ci)

)
. (2.7)

The rest of the proof is identical.

If we let all the `i’s equal z, then pf(A(`)) in (2.6) is the polynomial in z whose 2k-coefficient
is the sum of all sub-Pfaffians of order 2k. If ai,j is defined as in (2.3), this seems to count all MD
coverings with 2k monomers: indeed, by Kasteleyn’s theorem, pf([a]I) appears to be the partition
function of dimer coverings of the graph [g]I obtained from g by removing the vertices whose
labels are in I, or equivalently of MD coverings with monomers on the vertices whose labels are
in I. This is not the case, however, since [g]I is not necessarily a positive Kasteleyn graph.

In the rest of this paper, we will provide an algorithm to direct and label g in such a way that
when the vertices in I are restricted to the boundary, which is imposed by setting all other `i’s to
zero, [g]I is a positive Kasteleyn graph. In that case, pf(A(`,d)) is the boundary MD partition
function with A(`,d) defined in (1.5).

2.2.2 Lower bound on the monomer-dimer partition function

When pf(A(`,d)) does not equal the MD partition function, it is so either because the terms in
a sub-Pfaffian [a(d)]I do not add up constructively, or because the sign of pf([a(d)]I) is wrong.
Nevertheless, the following theorem holds.

Theorem 2.8 (Lower bound for the terms in the MD partition function). For every g ∈ G, if
de ≥ 0 for all e ∈ E(g), then defining

ai,j(d) :=


+dvi,vj if {vi, vj} ∈ E(g) and vi � vj
−dvi,vj if {vi, vj} ∈ E(g) and vi ≺ vj
0 otherwise

(2.8)

in which vi is a shorthand for ω−1(i) and, for i < j,

Ai,j(`,d) := ai,j(d)− (−1)i+j`i`j , (2.9)

and Aj,i(`,d) := −Ai,j(`,d), the Pfaffian pf(A(`,d)) is a polynomial in the monomer weights `,
each of whose coefficients are smaller or equal in absolute value to the corresponding term in the
MD partition function Ξ(`,d). In other words, the coefficient of `i1 · · · `ik is a lower bound for
the number of dimer coverings with monomers at i1, · · · , ik.

10



Remark: An upper bound for the MD partition function is provided in theorem D.2.

2.2.3 Proof of corollary 1.2

Corollary 1.2 follows easily from theorems 1.1 and 2.7. Indeed, by (1.6) and (2.6),

Mn(i1, · · · , i2n) =
pf([a(d)]I)

pf(a(d))
(2.10)

with I := {i1, · · · , i2n}. We then make use of the following result: given an invertible 2N × 2N
antisymmetric matrix X and a set s ⊂ {1, · · · , 2N} of even cardinality, denoting the sub-matrix
of X−1 obtained by keeping only the lines and columns indexed by elements of s by {X−1}s, we
have

pf([X]s)

pf(X)
= (−1)|s|/2pf{X−1}s, (2.11)

which can easily be proved by block-diagonalizing X via a special unitary transformation, in such

a way that each block is a 2× 2 matrix of the form

(
0 αi
−αi 0

)
. It follows from (2.11) that

Mn(i1, · · · , i2n) = (−1)npf({a−1(d)}I)

=
1

2nn!

∑
π∈S2n

(−1)π
n∏
j=1

(−a−1(d))iπ(2j−1),iπ(2j) ,
(2.12)

which concludes the proof, by noting that

(−a−1(d))i,j = M1(i, j). (2.13)

Remark: We have shown that theorem 1.1 implies corollary 1.2. It turns out that the converse is
also true assuming (2.13) holds (with the sign that appears in (2.13)). More precisely, corollary 1.2
and (2.13) imply theorem 1.1. Indeed, (2.13) and corollary 1.2 imply

Ξ∂(`,d) = Ξ∂(0,d)
∑

I⊂{1,··· ,|g|}

pf({−a−1}I)
∏
j∈I

`j

which, by (2.4), (2.11) and theorem 2.7, yields (1.6). As a consequence, if one were to prove
the Wick rule for boundary monomers (possibly by extending the analysis of [GBK78] to the
monomer-dimer problem) then the Pfaffian formula (1.6) could be recovered by directing and
labeling the graph g in such a way that (2.13) holds, which can be achieved by ensuring that
[g]{v,v′} is positive and Kasteleyn for every v, v′ ∈ V(∂g) (in the present paper, we prove the
Pfaffian formula (1.6) without first proving the Wick rule, and ensuring that [g]I is Kasteleyn
and positive for every I ⊂ V(∂g), which does not seem to be harder than proving it for sets of
cardinality 2). In other words, the Pfaffian formula (1.6) that counts MD coverings with any
number of monomers on the boundary can be seen as a consequence of a similar Pfaffian formula
for the MD coverings with 2 monomers on the boundary and the Wick rule.

3 Proof of the main result for enclosed graphs

We first consider a class of graphs, called the set of enclosed graphs, that have a boundary circuit,
and will subsequently show how to reduce any graph to such a case.

The family of enclosed graphs Gen ⊂ G is defined in the following way. Enclosed graphs
are connected and consist of an interior graph ǧ ∈ G (which may be empty) enclosed within a

11



Figure 3.1: An enclosed graph.

boundary circuit of vertices ∂g containing an even number |∂g| of vertices. Since enclosed graphs
are connected, ∂g must be connected to each connected component of ǧ by at least one edge. In
addition, vertices of ∂g may be connected to each other by internal edges. See figure 3.1 for an
example. Note that since |g| is even, |ǧ| is even as well.

In the following, we will need to generalize the notion of positivity of a dimer covering to
boundary monomer-dimer coverings (hereafter abbreviated as “bMD coverings”). A bMD cov-
ering of a graph g is said to be positive if and only if the corresponding dimer covering of the
graph obtained by removing the vertices occupied by monomers is positive.

We will now describe how to direct and label an enclosed graph in such a way that its
boundary MD partition function can be written as a Pfaffian as in theorem 1.1. See figure 3.2
for an example.

Directing and labeling an enclosed graph
We first label the vertices of ∂g following the edges of ∂g sequentially in the counterclockwise

direction. The resulting labeling is denoted by ω. The location of the vertex labeled as 1 is
unimportant.

We then direct the edges of ∂g: ω−1(i) � ω−1(i + 1) and ω−1(1) � ω−1(|∂g|). This implies
that ∂g is good. The remaining edges of g can be directed by proposition 2.3. We arbitrarily
choose one of the directions constructed in its proof, see appendix A.

Finally, we label the remaining vertices in such a way that the resulting labeled graph is
positive, by considering a random labeling, checking its sign, and exchanging two labels if it
is negative, thus ensuring its positivity. The sign of the labeling can be computed either by
constructing a dimer covering (or, more in general, a boundary monomer-dimer covering) and
computing its sign, or by setting all weights `i = di = 1 and computing the sign of the right side
of the Pfaffian formula (1.6).

If the monomers of an MD covering are fixed on vertices of ∂g, the possible dimer positions
are the possible (pure) dimer coverings of the sub-graph of g obtained by removing the vertices
that have a monomer. We will now prove that such a sub-graph is Kasteleyn and positive which
implies that the dimer partition function on it satisfies the Pfaffian formula (2.4) which can be
substituted in (2.6) to obtain (1.6). This result is contained in the following lemma, from which
theorem 1.1, restricted to the case of enclosed graphs, follows.

Given a family of monomersM⊂ V(∂g) of even cardinality, we define [g]M as the sub-graph
of g obtained by removing the vertices in M.

12
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Figure 3.2: Two stages of the directing and labeling of the graph in figure 3.1. The first represents
g after having labeled the vertices of ∂g. The second shows a bMD of g with monomers at 2, 5, 7,
8, and an associated labeling. The labels are chosen in such a way that this covering is positive:
(16, 1), (15, 3), (4, 10), (6, 9), (11, 12), (13, 14).

Lemma 3.1. For every g ∈ Gen, directed and labeled as above, for all M ⊂ V(∂g) of even
cardinality |M|, the sub-graph [g]M whose vertices are labeled by ω is Kasteleyn and positive.

Proof: We first notice that [g]M is Kasteleyn because, since the monomers are on ∂g, the
minimal circuits of [g]M are minimal circuits of g. In order to prove its positivity, we will first
construct an auxiliary graph γ which is Kasteleyn and positive, and exhibit a mapping λγ from
dimer coverings of [g]M to dimer coverings of γ, which preserves the sign of the covering, from
which we conclude that [g]M is positive.

We construct γ from g in the following way (see figure 3.3 for an example). We add an extra
circuit of vertices ε outside of g, which consists of |∂g| vertices. The edges and vertices of γ that
are also edges or vertices of g are directed and labeled in the same way as in g. We then label the
vertices of ε sequentially in the counterclockwise direction from |g|+ 1 to |g|+ |∂g| (the location
of the first vertex is unimportant) and denote the resulting labeling by ωγ . We direct the edges
of ε in such a way that v � v′ if and only if ωγ(v) < ωγ(v′), and add the following directed edges:

• (ω−1
γ (2j − 1), ω−1

γ (|g|+ 2j − 1)) and (ω−1
γ (2j − 1), ω−1

γ (|g|+ 2j − 2)) for 2 ≤ j ≤ |∂g|/2

• (ω−1
γ (|g|+ 2j), ω−1

γ (2j)) and (ω−1
γ (|g|+ 2j − 1), ω−1

γ (2j)) for 1 ≤ j ≤ |∂g|/2

• (ω−1
γ (1), ω−1

γ (|g|+ 1)) and (ω−1
γ (|g|+ |∂g|), ω−1

γ (1)).

One readily checks that γ, thus directed, is Kasteleyn.

We now construct an injective mapping λγ from the set of bMD coverings of g to the set of
dimer coverings of γ. Given a bMD covering σ of g, we construct λγ(σ) in the following way
(see figure 3.4 for an example). We first add every dimer of σ to λγ(σ). For 1 ≤ j ≤ |∂g|, let
pj := card{i < j | i ∈M}. For every j ∈M,

• if j + pj is odd, then we add {ω−1
γ (j), ω−1

γ (|g|+ j)} to λγ(σ)

• if j + pj is even, then we add {ω−1
γ (j), ω−1

γ (|g|+ j − 1)} to λγ(σ).

In addition, for every j ∈ {1, · · · , |∂g|} \M,

• if j + pj is even, then we add {ω−1
γ (|g|+ j), ω−1

γ (|g|+ j − 1)} to λγ(σ).
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Figure 3.3: The auxiliary graph associated to the graph in figure 3.1. The extra edges are rendered
as thick blue (color online) lines.

One readily checks that none of the dimers added in this way overlap, and that no vertices are left
uncovered (in order to carry out the proof of this fact, it is convenient to consider the procedure
described above from an algorithmic point of view, that is, considering each j ∈ {1, · · · , |∂g|}
successively, checking whether j ∈M or not and the parity of j+pj , and adding a dimer following
the rules above; it is then straightforward to prove the property by induction on j).

We will now prove that λγ preserves the sign of σ. To do so, we first note that the two
following edges are not occupied by a dimer of λγ(σ):

• (ω−1
γ (|g|+ |∂g|), ω−1

γ (1)) (since if 1 ∈M, then {ω−1
γ (1), ω−1

γ (|g|+ 1)} is a dimer of λγ(σ)),

• (ω−1
γ (|g|+ 1), ω−1

γ (|g|+ |∂g|)) (by construction).

This means that every every edge {v, v′} with v ∈ V(ε) and v′ ∈ V(∂g) that is occupied by a
dimer of λγ(σ) is directed as v � v′ if and only if ωγ(v′) is even, and that every edge {v, v′} with
v, v′ ∈ V(ε) that is occupied by a dimer and is directed v � v′ satisfies ωγ(v′) = ωγ(v) + 1.

We write the dimer covering λγ(σ) as a sequence of labels

(j1, j2, · · · , j|g|+|ε|−1, j|g|+|ε|)

in which

• {ωγ(j2i−1), ωγ(j2i)} is occupied by a dimer of λγ(σ) and is oriented ωγ(j2i−1) � ωγ(j2i),

• j1, · · · , j|g|−|M| ∈ V(g) \M

• min{j2i−1, j2i} < min{j2i′−1, j2i′} if and only if i < i′.

The sign of λγ(σ) is the signature of the permutation that orders the indices ji. We first focus
on

(j1, · · · , j|g|−|M|)
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Figure 3.4: The dimer covering associated to the bMD in figure 3.2.

that is, on the indices corresponding to dimers of g. This sequence can be ordered by a per-
mutation of signature s where s is the sign of σ. We denote the resulting ordered sequence
by

(j′1, · · · , j′|g|−|M|).

We now focus on
(j|g|−|M|+1, · · · , j|g|+|M|)

that is, on the indices corresponding to dimers covering edges between ε and ∂g. We first reorder
these j’s in such a way that j2i−1 ∈ {1, · · · , |∂g|} and j2i > |g| by a permutation whose signature
is (−1)card{i∈M | i even} (because of the way the edges were directed above). After this, it follows
from the construction of λγ(σ) that j2i < j2i′ for all i < i′, and from the definition of ji,
j2i−1 < j2i′−1 for all i < i′. By a positive-signature permutation, we can therefore reorder the
sequence to

(j′|g|−|M|+1, · · · , j
′
|g|+|M|)

where |∂g| ≥ j′|g|−|M|+1 > · · · > j′|g| and |g| < j′|g|+1 < · · · < j′|g|+|M|. Furthermore,

(j′|g|+1, · · · , j
′
|g|+|M|, j|g|+|M|+1, · · · , j|g|+|ε|)

can be ordered by a positive signature permutation (since j2i = j2i−1 + 1 for i > (|g|+ |M|)/2).
Finally,

(j′1, · · · , j′|g|−|M|, j
′
|g|−|M|+1, · · · , j

′
|g|)

can be ordered by a permutation whose signature is (−1)card{i∈M | i odd}. By composing all of
these permutations, we find that the sign of λγ(σ) is

s(−1)card{i∈M | i odd}(−1)card{i∈M | i even} = s(−1)|M| = s.

Therefore, the sign of σ and the sign of λγ(σ) are equal.
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Figure 4.1: A graph with no boundary circuit. In the leftmost figure, the edges and vertices of the
boundary graph are drawn thicker and blue, and the dotted line represents the path shadowing
the boundary from the outside, which we think of as starting and ending at 1. The corresponding
string with repetitions is (1, 2, 3, 4, 5, 4, 6, 4, 7, 4, 3, 8, 9, 10, 11, 12, 3, 2, 13). After having erased the
repetitions, we obtain the new string (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13). All the adjacent pairs
but {5, 6}, {6, 7}, {7, 8} and {12, 13} are edges of g. In the rightmost figure, these four extra
edges are added to the graph and drawn thicker and red.

We can now conclude the proof of the lemma. By construction, one of the bMD coverings
of g, which we denote by Σ, is positive, which implies that λγ(Σ) is positive, and therefore,
by proposition 2.5, that γ is positive. For every dimer covering σ of [g]M, λγ(σ) is, therefore,
positive, which implies that σ is positive, and concludes the proof of the lemma.

4 Reducing generic planar graphs to enclosed graphs

In this section, we discuss how a generic planar graph can be reduced to an enclosed graph. In
particular, we will show how to add 0-weight edges to a graph to construct a boundary circuit,
and how to add 0-weight edges and vertices to a graph that has an odd number of vertices in its
boundary circuit to turn it into an enclosed graph, for which theorem 1.1 was proved in section 3.

4.1 Boundary circuit

In this section, we give an algorithm to construct a boundary circuit for any planar graph g
by adding 0-weight edges. The construction is such that all the vertices of the boundary ∂g
of g are in the boundary circuit. The boundary MD partition function on the graph with the
boundary circuit is, therefore, equal to that on g, and the Pfaffian associated to the graph with
the boundary circuit is equal to that associated to g.

First of all, if g is disconnected, then we add 0-weight edges to it to connect its connected
components to each other.

Then, consider a closed path shadowing the boundary of g from the outside, and denote
by (v1, · · · , vn) the string (possibly with repetitions) listing the vertices of the boundary in the
order encountered along the path. We identify vn+1 ≡ v1. Then consider the ordered sub-set
(vi1 , · · · , vik) of (v1, · · · , vn) obtained by erasing the repetitions. If a pair {vij , vij+1}, j = 1, . . . , k,
is not an edge of g, then we add a 0-weight edge from vij to vij+1 . By construction, (vi1 , · · · , vik)
is the boundary circuit of the resulting graph. See figure 4.1 for an example.

Once the boundary circuit has been constructed, if the boundary circuit contains an even
number of vertices, then the resulting graph is an enclosed graph and can be directed and labeled
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7−→

Figure 4.2: Replacing an edge of the boundary circuit in order to make it contain an even number
of edges. The weight of the thick blue (color online) edge is set to 1. Note that since the blue edge
must be occupied in every boundary MD covering, the weights of the other two extra edges and
the weight of the extra vertex on the boundary circuit do not affect the boundary MD partition
function.

as in section 3. If the boundary circuit contains an odd number of vertices then the graph can
be further reduced to an enclosed graph as explained in the following section.

4.2 Making a boundary circuit even

In this section, we show how to add edges and vertices to a graph with a boundary circuit that
contains an odd number of vertices to an enclosed graph, in such a way that the boundary MD
partition function is unchanged. The procedure is simple: pick an edge of the boundary circuit,
and replace the edge according to figure 4.2.

It is easy to check that, if the extra edge is given weight 1, then the resulting graph has the
same boundary MD partition function. In addition, the resulting graph is an enclosed graph,
and can be directed and labeled as in section 3, and it is straightforward to check that the
Pfaffian computed from the graph with the extra edges and vertices is equal to that without.
This concludes the proof of theorem 1.1.
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A Properties of Kasteleyn graphs

In this appendix, we prove a few useful lemmas about Kasteleyn graphs. The key result is the
following.

Lemma A.1. Given two circuits c1 and c2 as in (2.1), if c1 and c2 are good then their merger
c = c1∆c2 is as well.

Proof: We write c1 and c2 as in (2.1):

c1 = (v1, · · · , vν+1, vν+2, · · · , v|c1|), c2 = (vν+1, · · · , v1, v
′
ν+2, · · · , v′|c2|)

and
c = (vν+1, · · · , v|c1|, v1, v

′
ν+2, · · · , v′|c2|).

We first prove that

• if ν is odd, then

– if c1 and c2 are either both oddly-directed or both evenly-directed then c is oddly-
directed,

– otherwise c is evenly-directed.

• if ν is even, then

– if c1 and c2 are either both oddly-directed or both evenly-directed then c is evenly-
directed,

– otherwise c is oddly-directed.

Indeed, a circuit c1 is oddly-directed if and only if the numbers of backwards edges in
(v1, · · · , vν+1) and in (vν+1, · · · , v|c1|, v1) have different parity (by which we mean evenness or
oddness), and c2 is oddly-directed if and only if the numbers of backwards edges in (vν+1, · · · , v1)
and in (v1, v

′
ν+2, · · · , v′|c2|, vν+1) have different parity. Therefore, if ν is even, using the fact that

the numbers of backwards edges in (v1, · · · , vν+1) and in (vν+1, · · · , v1) have the same parity, it
follows that c1∆c2 is oddly-directed if and only if c1 is oddly-directed and c2 is evenly-directed
or vice-versa. If ν is odd, the numbers of backwards edges in (v1, · · · , vν+1) and in (vν+1, · · · , v1)
have different parity, so that c1∆c2 is oddly-directed if and only if c1 and c2 are either both
oddly-directed or both evenly-directed.

The proof of the lemma is then concluded by noticing that if ν is odd then the number of
vertices that are encircled by either c1 or c2 has the same parity as the number of vertices encircled
by c, whereas the parity is different if ν is even.

Lemma A.1 has a number of useful consequences, which are discussed in the following.

Proof of lemma 2.2: Given a circuit c of a Kasteleyn graph g, we prove that it is good by
induction on the number of edges it encloses. If it is a minimal circuit (in particular if it encloses
no edge), then it is good by assumption. If not, then there exist c1 and c2 such that c = c1∆c2,
from which we conclude by the inductive hypothesis and lemma A.1.

Lemma A.2. Given a Kasteleyn graph g, the graph obtained by removing any edge of g is
Kasteleyn.

Proof: The lemma follows from lemma 2.2 and the fact that minimal circuits of the graph
obtained by removing the edge are circuits of g.
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We will now prove proposition 2.3 and, in the process, provide an algorithm to direct a planar
graph g in such a way that the resulting directed graph is Kasteleyn.

Proof of proposition 2.3: First of all, we notice that we can safely assume that g has a
boundary circuit: if it did not, then we construct an auxiliary graph γ by adding edges to g,
as detailed in section 4.1. Once γ has been directed, the extra edges can be removed, and the
Kasteleyn nature of the resulting directed graph then follows from lemma A.2.

Assuming g has a boundary circuit, we prove the proposition by induction on the number of
internal edges of the graph.

We first direct the edges of ∂g in such a way that it is good (if those edges are already directed
then ∂g is good by assumption).

We first consider the case in which ∂g is not a minimal circuit, in which case there exist c1

and c2 such that c1∆c2 = c. We split g into the graph g1 consisting of c1 and its interior and g2

consisting of c2 and its interior. We direct the common edges between g1 and g2 (or equivalently
between c1 and c2) in such a way that c1 is good (there may be many ways of doing so, any
one will do). By the inductive hypothesis, this implies that g1 can be directed appropriately. By
lemma A.1, c2 is good, which implies that g2 can be directed as well.

We now turn to the case in which ∂g is a minimal circuit (which includes the case in which
it has no interior edges).

If ∂g encloses no circuit (that is if among the edges ∂g encloses, if any, none form a circuit),
then none of the edges enclosed in ∂g belong to a minimal circuit of g (since that circuit would
have to contain an edge of ∂g). Therefore the edges enclosed in ∂g can be directed in any way
without affecting the Kasteleyn nature of g.

If ∂g encloses at least one circuit, let c1, · · · , cn be the maximal circuits enclosed by ∂g. The
edges that are outside all of the ci’s do not belong to any minimal circuit and can therefore be
directed in any way. Let gi be the sub-graph of g consisting of ci and its interior. The sub-graph
gi can be directed by the inductive hypothesis.

B Examples

In this appendix we provide some examples of Pfaffian formulas to illustrate the discussion.

B.1 A graph with no interior vertices

In this section, we compute the Pfaffian corresponding to figure B.1. We direct and label the
graph as per the discussion in section 3 (see figure B.1). We set the edge weights de = 1 and
assume the monomer weights `i are all equal to

√
x. The antisymmetric matrix A(`,d) is

A(x) =



0 1 + x −x x −x x −x 1 + x
0 1 + x −x x −x 1 + x −x

0 1 + x 1− x x 1− x x
0 1 + x −x x −x

0 1 + x −x x
0 1 + x −x

0 1 + x
0


which is completed by antisymmetry. The MD partition function is therefore

Ξ(x) = pf(A(x)) = x4 + 11x3 + 33x2 + 28x+ 3. (B.1)
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Figure B.1: A graph with no interior vertices, and its direction and labeling.
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Figure B.2: The L-shape graph.

B.2 Another graph with no interior: the L-shape

In this section we compute the MD partition function for another simple graph: the L-shape,
represented in figure B.2. We direct and label the graph as per the discussion in section 3 (see
figure B.2) and find (setting dv = 1 and `i =

√
x as before)

A(x) =



0 1 + x −x x −x x −x 1 + x
0 1 + x −x 1 + x −x x −x

0 1 + x −x x −x x
0 1 + x −x x −x

0 1 + x −x 1 + x
0 1 + x −x

0 1 + x
0


which is completed by antisymmetry. The MD partition function is therefore

Ξ(x) = pf(A(x)) = x4 + 10x3 + 28x2 + 24x+ 4 (B.2)

B.3 A square graph

In this section, we compute the Pfaffian corresponding to the graph in figure B.3. We set de = 1
and `i =

√
x. Since the expression of the matrix A is rather long, we split it into lines and only
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Figure B.3: A square graph, and its direction and labeling.

write the i < j terms.

A1,·(x) = 1 + x,−x, x,−x, x,−x, x,−x, x,−x, 1 + x, 0, 0, 0, 0
A2,·(x) = 1 + x,−x, x,−x, x,−x, x,−x, x,−x, 1, 0, 0, 0
A3,·(x) = 1 + x,−x, x,−x, x,−x, x,−x, x, 0, 0, 1, 0
A4,·(x) = 1 + x,−x, x,−x, x,−x, x,−x, 0, 0, 0, 0
A5,·(x) = 1 + x,−x, x,−x, x,−x, x, 0, 0, 1, 0
A6,·(x) = 1 + x,−x, x,−x, x,−x, 0, 0, 0,−1
A7,·(x) = 1 + x,−x, x,−x, x, 0, 0, 0, 0
A8,·(x) = 1 + x,−x, x,−x, 0, 0, 0,−1
A9,·(x) = 1 + x,−x, x, 0,−1, 0, 0
A10,·(x) = 1 + x,−x, 0, 0, 0, 0
A11,·(x) = 1 + x, 0,−1, 0, 0
A12,·(x) = −1, 0, 0, 0
A13,·(x) = 1,−1, 0
A14,·(x) = 0, 1
A15,·(x) = 1.

The MD partition function is therefore

Ξ(x) = pf(A(x)) = 2x6 + 40x5 + 256x4 + 680x3 + 776x2 + 336x+ 36. (B.3)

B.4 An enclosed graph

In this section, we compute the Pfaffian corresponding to the graph in figure 3.1, directed and
labeled as in figure 3.2. We set de = 1 and `i =

√
x. Since the expression of the matrix A is

rather long, we split it into lines and only write the i < j terms.

A1,·(x) = 1 + x,−x, x,−x, x,−x, 1 + x, 0, 0, 0, 0, 1, 0, 0,−1
A2,·(x) = 1 + x,−x, x,−x, x,−x, 0, 0, 0, 0, 0, 0, 0, 0
A3,·(x) = 1 + x,−x, x,−x, x, 0, 0, 0, 0, 0, 0,−1, 0
A4,·(x) = 1 + x, 1− x, x,−1− x, 0, 1, 0, 1, 0,−1, 0, 0
A5,·(x) = 1 + x,−x, x, 0, 0, 0, 0, 0, 0, 0, 0
A6,·(x) = 1 + x,−x, 1, 0, 0, 0, 0, 0, 0, 0
A7,·(x) = 1 + x, 1, 0,−1, 0, 0, 0, 0, 0
A8,·(x) = 0,−1,−1, 0,−1, 0, 0, 0
A9,·(x) = 0, 1, 1, 0, 0, 0, 0
A10,·(x) = 0, 0, 0, 0, 0, 0
A11,·(x) = 1, 0, 0, 0, 0
A12,·(x) = 0, 0, 0, 0
A13,·(x) = 1, 0, 0
A14,·(x) = 1,−1
A15,·(x) = 0.
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Figure B.4: Directing and labeling the graph in figure 4.1.

The MD partition function is therefore

Ξ(x) = pf(A(x)) = 22x2 + 40x+ 4. (B.4)

B.5 A graph with no boundary circuit

In this section, we compute the Pfaffian corresponding to the graph in figure 4.1, directed and
labeled as in figure B.4. We set de = 1 and `i =

√
x. Since the expression of the matrix A is

rather long, we split it into lines and only write the i < j terms.

A1,·(x) = 1 + x,−x, x,−x, x,−x, x,−x, x,−x, x,−1− x, 1, 0, 0
A2,·(x) = 1 + x,−x, x,−x, x,−x, x,−x, x,−x, 1 + x, 1, 0, 0
A3,·(x) = 1 + x,−x, x,−x, 1 + x,−x, x, 1− x, 1 + x,−x, 0, 1, 0
A4,·(x) = 1 + x, 1− x, 1 + x,−x, x,−x, x,−x, x, 0, 0, 0
A5,·(x) = x,−x, x,−x, x,−x, x,−x, 0, 0, 0
A6,·(x) = x,−x, x,−x, x,−x, x, 0, 0, 0
A7,·(x) = x,−x, x,−x, x,−x, 0, 0, 0
A8,·(x) = 1 + x,−x, x,−x, x, 0, 0, 0
A9,·(x) = 1 + x,−x, x,−x, 0, 1, 0
A10,·(x) = 1 + x,−x, x, 0, 1, 0
A11,·(x) = 1 + x,−x, 0, 0,−1
A12,·(x) = x, 0, 0, 0
A13,·(x) = 1, 0, 0
A14,·(x) = 0, 0
A15,·(x) = 1.

The MD partition function is therefore

Ξ(x) = pf(A(x)) = 3x6 + 47x5 + 222x4 + 389x3 + 234x2 + 27x (B.5)

C An algorithm for the full monomer-dimer partition function

In this appendix, we discuss an algorithm to compute the full MD partition function on an
arbitrary graph (which is not necessarily planar).

The main idea is to isolate a skeleton s from the graph, which is a sub-graph of g obtained
by removing edges from g in such a way that s is planar and contains no internal vertices. The
boundary MD partition function of s is the partition function of MD coverings of g that does
not have any dimers outside the skeleton. In order to count the coverings that do have dimers
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Figure C.1: A 10× 7 rectangle and its skeleton, colored grey.

Figure C.2: The skeleton and its only sub-graph for the 3× 2 rectangle.

outside the skeleton, we add the following terms to the partition function. For every collection
σ of dimers that occupy edges that are outside the skeleton, we construct a sub-graph [s]σ of s
by removing the vertices covered by a dimer in σ. The boundary MD partition function of this
sub-graph can be computed using theorem 1.1. The full MD partition function is then obtained
by summing the boundary MD partition functions of every such [s]σ.

If g is an L×M sub-rectangle of Z2 with, say, L even, then the skeleton can be constructed
as in figure (C.1). By this algorithm, the MD partition function can be computed by summing

2
1
2

(L−2)(M−2) Pfaffians.
For example, if L = 4, M = 3 then, aside from the skeleton, there is a single sub-graph to

be considered, see figure C.2. The MD partition function is therefore the sum of two Pfaffians,
which we have computed in the case de = 1, `v =

√
x:

Ξ(x) = x6 + 17x5 + 102x4 + 267x3 + 302x2 + 123x+ 11. (C.1)

If L = 6, M = 6, then the MD partition function is obtained by summing 256 Pfaffians:

Ξ(x) = x18 + 60x17 + 1 622x16 + 26 172x15 + 281 514x14 + 2 135 356x13

+11 785 382x12 + 48 145 820x11 + 146 702 793x10 + 333 518 324x9

+562 203 148x8 + 693 650 988x7 + 613 605 045x6 + 377 446 076x5

+154 396 898x4 + 39 277 112x3 + 5 580 152x2 + 363 536x+ 6 728 .

(C.2)

Both (C.1) and (C.2) are in agreement with the results published in [Kr06, Table 6.7, column
N = 12] and [Kr06, Table 6.3] respectively.

D Another algorithm for the full monomer-dimer partition func-
tion

If a graph g ∈ G is Hamiltonian, i.e. if there exists a circuit, called a Hamiltonian cycle, that
goes through every vertex of g exactly once, then we will now show how to write the full MD
partition function on g as a product of two Pfaffians. The condition that g is Hamiltonian, is not
restrictive, since 0-weight edges and vertices can be added to g to make it so.

Given a Hamiltonian cycle c, let gi denote the graph obtained from g by removing every edge
outside c (that is the edges that are neither part of the Hamilton cycle, nor enclosed by it), and
ḡe the graph obtained from g by removing every edge enclosed by c. We then consider a new
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embedding of ḡe, denoted by ge, that is such that every vertex of ge is on the boundary (this is
achieved by turning it inside out, that is, by setting the infinity-face of ge from the outside to the
inside of the Hamilton cycle in ḡe).

The monomer dimer-partition function of g can then be computed in the following way. We
first set the weights of the edges and vertices of ge and gi:

• given a vertex v ∈ V(g), we denote the weight of v in gi by λv, and set the weight of v in
ge to the same value λv,

• for every edge e ∈ E(c) that is part of the Hamilton cycle c, we denote the weight of e in gi
by δe and set the weight of e in ge to the same value δe,

• for every edge e ∈ E(g) \ E(c) that is not part of the Hamilton cycle c, e is either an edge
of gi or an edge of ge; in either case, its weight is denoted by δe.

Let Ξi and Ξe be the boundary MD partition functions on gi and ge respectively. The function
ΞiΞe is a polynomial of order 2 in λv and δe. The terms in ΞiΞe that correspond to an MD
covering of g are those in which the corresponding coverings of gi and ge satisfy the following
conditions:

• an edge e ∈ E(c) is occupied by a dimer in gi if and only if it is occupied in ge as well,

• an edge e = {v, v′} ∈ E(g) \ E(c) is occupied by a dimer in gi if and only if v and v′ are
occupied by monomers in ge, and vice-versa,

• a vertex v ∈ V(g) that is not covered by a dimer on E(g) \ E(c), is occupied by a monomer
in gi if and only if it is occupied in ge as well.

Therefore

Ξ(`,d) =

 ∏
v∈V(g)

(
1 +

`v
2

∂2

∂λ2
v

) ∏
e∈E(c)

(
1 +

de
2

∂2

∂δ2
e

) ·

·

 ∏
e={v,v′}∈E(g)\E(c)

(
1 + de

∂3

∂δe∂λv∂λv′

)Ξi(λ, δ)Ξe(λ, δ)

∣∣∣∣∣∣
λ=0, δ=0

.

(D.1)

By theorem 1.1, this implies the following theorem.

Theorem D.1 (Pfaffian formula for the full MD partition function). Given a Hamiltonian graph
g ∈ G, there exist two antisymmetric |g| × |g| matrices Ai(λ, δ) and Ae(λ, δ) such that

Ξ(`,d) =

 ∏
v∈V(g)

(
1 +

`v
2

∂2

∂λ2
v

) ∏
e∈E(c)

(
1 +

de
2

∂2

∂δ2
e

) ·

·

 ∏
e={v,v′}∈E(g)\E(c)

(
1 + de

∂3

∂δe∂λv∂λv′

)pf(Ai(λ, δ))pf(Ae(λ, δ))

∣∣∣∣∣∣
λ=0, δ=0

.

(D.2)

The matrices Ai and Ae are constructed by directing and labeling gi and ge as in theorem 1.1.

Remark: It is important to note that this does not contradict the intractability result of M. Jer-
rum [Je87]: indeed, (D.2) cannot, in general, be computed in polynomial-time. Indeed, since the
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entries of Ai and Ae are polynomials of |g|+|E(g)| variables, and computing their Pfaffian requires
O(|g|3) multiplications of such elements, the computation of Ξ via (D.2) requires O(|g|32|g|+|E(g)|)
operations. This result extends to the Pfaffian formula in theorem 1.1, but, there, if the weights
`v and de are given numerical values, or set to be equal among each other, the computation of
the Pfaffian in (1.6) can be performed in polynomial-time. Because of the presence of derivatives
in (D.2), a similar operation cannot be done to compute (D.2) in polynomial-time.

From theorem D.1, one can easily prove the following upper bound on the full MD partition
function, which complements the lower bound in theorem 2.8:

Theorem D.2 (Upper bound for the terms in the MD partition function). Given a Hamiltonian
graph g ∈ G, there exist two antisymmetric |g| × |g| matrices Ai(λ, δ) and Ae(λ, δ) such that, if
de ≥ 0 and `v > 0 for all (v, e) ∈ V(g)× E(g), the product

pf(Ai(λ, δ))pf(Ae(λ, δ))
∣∣∣
λv=
√
`v

δe=
√
de if e∈E(c)

δe=
√
de
√
`v`v′

−1
if e={v,v′}6∈E(c)

(D.3)

is a Laurent polynomial in
√
`v, each of whose coefficients are larger or equal to the corresponding

term in the MD partition function Ξ(`,d).

E The bijection method

In this appendix, we show how to obtain an alternative Pfaffian formula for the boundary MD
partition function via the bijection method. This construction was pointed out to us by an
anonymous referee. It is related to the discussion in [Ku94, section 4].

E.1 Description of the method

The main idea is to use the auxiliary graph γ introduced in the proof of lemma 3.1, and show that
the boundary MD partition function on g is equal to half of the pure dimer partition function on
γ, provided the edges of γ are weighted appropriately. We set the weights of the edges of γ in
the following way:

• every edge of γ that is also an edge of g has the same weight as in g,

• every edge of ε (see the proof of lemma 3.1 for the definition of ε) is assigned weight 1,

• an edge between a vertex v ∈ V(∂g) and a vertex v′ ∈ V(ε) is assigned the weight `v.

We define a map Λγ which maps a pure dimer covering of γ to a bMD covering of g. Given a
dimer covering Σ of γ, we construct Λγ(Σ) by putting monomers on the vertices of ∂g that are
occupied by a dimer of Σ whose other end-vertex is in ε, and by putting dimers on the edges of
g that are occupied by a dimer in Σ. Obviously, the weight of Σ is equal to the weight of Λγ(Σ).

Note that the map λγ defined in the proof of lemma 3.1 satisfies Λγ(λγ(σ)) = σ for every
bMD covering σ of g. Furthermore, we define another map λ̄γ from the bMD coverings of g to the
dimer coverings of γ, similarly to λγ , but with pj replaced by pj + 1 (see the proof of lemma 3.1).
This map also satisfies Λγ(λ̄γ(σ)) = σ for every bMD covering σ of g. In addition, one easily
checks that λγ(σ) 6= λ̄γ(σ).

We wish to prove that for every bMD covering σ of g, there are exactly two distinct pure
dimer coverings Σ1 and Σ2 of γ that satisfy Λγ(Σi) = σ. This is obvious if σ has no monomers,
so we will assume that σ has at least one monomer, located on the vertex labeled as 1. Let σ
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Figure E.1: The square graph and the associated auxiliary graph γ.

be such a covering. The coverings λγ(σ) and λ̄γ(σ) satisfy the required condition. One can then
easily show, by induction, that having fixed a dimer on {ω−1

γ (1), ω−1
γ (|g|+ 1)} as in λγ(σ), λγ(σ)

is the only dimer covering of γ that satisfies Λγ(λγ(σ)) = σ. A similar argument can be made for
λ̄γ(σ). This implies that λγ(σ) and λ̄γ(σ) are the only dimer coverings of γ satisfying Λ(Σi) = σ.

In conclusion, the bMD partition function on g is equal to half of the pure dimer partition
function on γ. By Kasteleyn’s theorem, the bMD partition function can, therefore, be written as
a Pfaffian.

E.2 Example

Let us look at a simple example and see how the Pfaffian formula one obtains from the bijection
method differs from that presented in theorem 1.1.

Consider the square graph (see figure E.1). Using the bijection method, we find that the bMD
partition function on the square graph at dimer fugacity 1 and monomer fugacity z is

Ξ∂ =
1

2
pf



0 1 0 1 z 0 0 −z
−1 0 1 0 −z −z 0 0
0 −1 0 1 0 z z 0
−1 0 −1 0 0 0 −z −z
−z z 0 0 0 1 0 1
0 z −z 0 −1 0 1 0
0 0 −z z 0 −1 0 1
z 0 0 z −1 0 −1 0


. (E.1)

Using theorem 1.1, we find

Ξ∂ = pf


0 1 + z2 −z2 1 + z2

−1− z2 0 1 + z2 −z2

z2 −1− z2 0 1 + z2

−1− z2 z2 −1− z2 0

 . (E.2)

Obviously, both formulas yield the same result:

Ξ∂ = z4 + 4z2 + 2. (E.3)
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arXiv:1406.7710, 2015.

[GBK78] J. Groeneveld, R. Boel, P. Kasteleyn - Correlation-function identities for general
planar Ising systems, Physica A, Vol. 93, n. 1-2, p. 138-154, 1978.

[Ha66] R.E. Hartwig - Monomer Pair Correlations, Journal of Mathematical Physics, Vol. 7,
n. 2, p. 286-299, 1966.

[HL70] O.J. Heilmann, E.H. Lieb - Monomers and dimers, Physical Review Letters, Vol. 24,
n. 25, p. 1412-1414, 1970.

[HL72] O.J. Heilmann, E.H. Lieb - Theory of monomer-dimer systems, Communications in
Mathematical Physics, Vol. 25, n. 3, p. 190-232, 1972. Errata Vol. 27, p. 166.

28



[Je87] M. Jerrum - Two-dimensional monomer-dimer systems are computationally in-
tractable, Journal of Statistical Physics, Vol. 48, n. 1-2, 1987.

[Ka63] P.W. Kasteleyn - Dimer statistics and phase transitions, Journal of Mathematical
Physics, Vol. 4, n. 2, p. 287-293, 1963.

[KRS96] C. Kenyon, D. Randall, A. Sinclair - Approximating the number of monomer-dimer
coverings of a lattice, Journal of Statistical Physics, Vol. 83, n. 3-4, 1996.

[Ke00] R. Kenyon - Conformal invariance of domino tiling, The Annals of Probability,
Vol. 28, n. 2, p. 759-795, 2000.

[Ke01] R. Kenyon - Dominos and the Gaussian free field, The Annals of Probability, Vol. 29,
n. 3, p. 1128-1137, 2001.

[Ko06] Y. Kong - Monomer-dimer model in two-dimensional rectangular lattices with fixed
dimer density, Physical Review E, Vol. 74, n. 061102, 2006.

[Kr06] W. Krauth - Statistical mechanics: Algorithms and computations, Oxford Masters Se-
ries in Statistical, Computational, and Theoretical Physics, Oxford University Press,
2006.

[Ku94] G. Kuperberg - Symmetries of plane partitions and the permanent-determinant
method, Journal of Combinatorial Theory, Series A, Vol. 68, n. 1, p. 115-151, 1994.

[Li67] E.H. Lieb - Solution of the dimer problem by the transfer matrix method, Journal of
Mathematical Physics, Vol. 8, n. 12, p. 2339-2341, 1967.

[Li68] E.H. Lieb - A theorem on Pfaffians, Journal of Combinatorial Theory, Vol. 5, p. 313-
319, 1968.

[LL93] E.H. Lieb, M. Loss - Fluxes, Laplacians, and Kasteleyn’s Theorem, Duke Mathemat-
ical Journal, Vol. 71, n. 2, p. 337-363, 1993.

[PS] H. Pinson, T. Spencer - Universality and the two-dimensional Ising model, unpub-
lished.

[MW67] B.M. McCoy, T.T. Wu - Theory of Toeplitz Determinants and the Spin Correlations
of the Two-Dimensional Ising Model. IV, Physical Review, Vol. 162, n. 2, p. 436-475,
1967.

[MW73] B.M. McCoy, T.T. Wu - The Two-Dimensional Ising Model, Harvard University
Press, 1973.

[PR08] V.B. Priezzhev, P. Ruelle - Boundary monomers in the dimer model, Physical Review
E, Vol. 77, n. 061126, 2008.

[Sm01] S. Smirnov - Critical percolation in the plane: conformal invariance, Cardy’s formula,
scaling limits, Comptes Rendus de l’Académie des Sciences - Series I - Mathematics,
Vol. 333, n. 3, p. 239-244, 2001.

[Sm10] S. Smirnov - Conformal invariance in random cluster models. I. Holomorphic
fermions in the Ising model, Annals of Mathematics, Vol. 172, n. 2, p. 1435-1467,
2010.

[Sp00] T. Spencer - A mathematical approach to universality in two dimensions, Physica A,
Vol. 279, p. 250-259, 2000.

29



[TF61] H.N.V. Temperley, M.E. Fisher - Dimer problem in statistical mechanics - an exact
result, Philosophical Magazine, Vol. 6, n. 68, p. 1061-1063, 1961.

[Te74] H.N.V. Temperley - Enumeration of graphs on a large periodic Lattice, Combinatorics:
the proceedings of the British Combinatorical Conference, 1973, London Mathemat-
ical Society lecture note series Vol. 13, Cambridge University Press, 1974.

[TW03] W. Tzeng, F.Y. Wu - Dimers on a simple-quartic net with a vacancy, Journal of
Statistical Physics, Vol. 110, n. 3-6, p. 671-689, 2003.

[Wu06] F.Y. Wu - Pfaffian solution of a dimer-monomer problem: single monomer on the
boundary, Physical Review E, Vol. 74, n. 020104, Erratum: n. 039907(E), 2006.

[WTI11] F.Y. Wu, W. Tzeng, N.S. Izmailian - Exact solution of a monomer-dimer problem:
A single boundary monomer on a nonbipartite lattice, Physical Review E, Vol. 83,
n. 011106, 2011.

30


