
Algorithmica manuscript No.
(will be inserted by the editor)

Feasibility Analysis of Sporadic Real-Time
Multiprocessor Task Systems

Vincenzo Bonifaci · Alberto
Marchetti-Spaccamela

the date of receipt and acceptance should be inserted later

Abstract We give the first algorithm for testing the feasibility of a system
of sporadic real-time tasks on a set of identical processors, solving an open
problem in the area of multiprocessor real-time scheduling [S. Baruah and
K. Pruhs, Journal of Scheduling, 2009]. We also investigate the related no-
tion of schedulability and a notion that we call online feasibility. Finally, we
show that discrete-time schedules are as powerful as continuous-time sched-
ules, which answers another open question in the above mentioned survey.

Keywords Sporadic task system · Multiprocessor · Real-time scheduling ·
Feasibility test · Schedulability test

1 Introduction

As embedded microprocessors become more and more common, so does the
need to design systems that are guaranteed to meet deadlines in applications
that are safety critical, where missing a deadline might have severe conse-
quences. In such a real-time system, several tasks may need to be executed on
a multiprocessor platform and a scheduling policy needs to decide which tasks
should be active in which intervals, so as to guarantee that all deadlines are
met.

The sporadic task model is a model of recurrent processes in hard real-time
systems that has received great attention in the last years; see for example

A preliminary version of this work appeared in Proceedings of the 18th European Symposium
on Algorithms, Lecture Notes in Computer Science, Springer, Berlin, 2010, pp. 230–241.

V. Bonifaci
Max-Planck Institut für Informatik, Saarbrücken, Germany
E-mail: bonifaci@mpi-inf.mpg.de

A. Marchetti-Spaccamela
Sapienza Università di Roma, Rome, Italy
E-mail: alberto@dis.uniroma1.it

2 Vincenzo Bonifaci, Alberto Marchetti-Spaccamela

[2,7] and references therein. A sporadic task τi = (Ci, Di, Pi) is characterized
by a worst-case execution time Ci, a relative deadline Di, and a minimum
interarrival separation Pi. Such a sporadic task generates a potentially infinite
sequence of jobs: each job arrives at an unpredictable time, after the minimum
separation Pi from the last job of the same task has elapsed; it has an execution
requirement less than or equal to Ci and a deadline that occurs Di time units
after its arrival time. A sporadic task system T is a collection of such sporadic
tasks. Since the actual interarrival times can vary, there are infinitely many
job sequences that can be generated by T.

We are interested in designing algorithms that tell us when a given sporadic
task system can be feasibly scheduled on a set of m identical processors, where
we allow any job to be interrupted and resumed later on another processor at
no penalty. The problem can be formulated in several ways:

– Feasibility : is it possible to feasibly schedule on m processors any job se-
quence that can be generated by T?

– Online feasibility : is there an online algorithm that can feasibly schedule
on m processors any job sequence that can be generated by T?

– Schedulability : does the given online algorithm Alg feasibly schedule on m
processors any job sequence that can be generated by T?

The questions are formalized in Section 2. Here we only remark that in general
they may have different answers.

Previous work. Most of the previous work in the context of sporadic real-time
feasibility testing has focused on the case of a single processor [6]. The seminal
paper by Liu and Layland [16] gave a best possible fixed-priority algorithm
for the case where deadlines equal periods (a fixed-priority algorithm assigns
a distinct priority to each task and then – at each time instant – schedules
the available job from the task with highest priority). It is also known that
the Earliest Deadline First (EDF) algorithm, that schedules at any time the
job with the earliest absolute deadline, is optimal in the sense that for any
sequence of jobs it produces a valid schedule whenever a valid schedule exists
[10]. Because EDF is an online algorithm, this implies that the three questions
of feasibility, of online feasibility and of schedulability with respect to EDF are
equivalent in the single processor case. It was known for some time that EDF-
schedulability could be tested in exponential time and more precisely that
the problem is in coNP [8]. The above results triggered a significant research
effort within the scheduling community and many results have been proposed
for specific algorithms and/or special cases; nonetheless, we remark that the
precise complexity of the feasibility problem for a single processor remained
open for a long time and that only recently it has been proved coNP-complete
[12].

The case of multiple processors is far from being as well understood as the
single processor case. For starters, EDF is no longer optimal – it is not hard to
construct feasible task systems for which EDF fails, as soon as m ≥ 2. Another
important difference with the single processor case is that here clairvoyance

Feasibility Analysis of Sporadic Real-Time Multiprocessor Task Systems 3

does help the scheduling algorithm: there exists a task system that is feasible,
but for which no online algorithm can produce a feasible schedule on every job
sequence [13]. Thus, the notions of feasibility and online feasibility are distinct.

On the positive side, some results are known for special cases of the feasi-
bility problem; however we remark that no test – of whatsoever complexity –
is known that correctly decides the feasibility or the online feasibility of a task
system. This holds even for constrained-deadline systems, in which deadlines
do not exceed periods. The question of designing such a test has been listed
as one of the main algorithmic problems in real-time scheduling [7].

Regarding schedulability, many schedulability tests are known for specific
algorithms (see [2] and references therein), but, to the best of our knowledge,
the only general test available is a test that requires exponential space [3].

Our results. We study the three above problems in the context of sporadic
multiprocessor systems, and we provide new results for each of them.

For the feasibility problem, we give the first correct test, thus answering
[7, Open Problem 3]. The test has high complexity, but it has the interesting
consequence that a job sequence that witnesses the infeasibility of a task sys-
tem T has without loss of generality length at most doubly exponential in the
bitsize of T.

We then give the first correct test for the online feasibility problem. The
test has exponential time complexity and is constructive: if a system is deemed
online feasible, then an optimal online algorithm for it can be constructed (in
the same time bound). Moreover, this optimal algorithm is without loss of
generality memoryless: its decisions depend only on the current (finite) state
and not on the entire history up to the decision point (see Section 2 for a
formal definition).

For the schedulability problem, we provide a general schedulability test
showing that the schedulability of a system by any memoryless algorithm can
be tested in polynomial space. This improves the result of Baker and Cirinei
[3], that provided an exponential space test for essentially the same class of
algorithms.

All the above results, that are derived for constrained-deadline systems
where Di ≤ Pi for all i, can be extended to the arbitrary-deadline case in
which deadlines may exceed periods, at the expense of increasing some of the
complexity bounds. The extension is discussed in Section 4.

We finally consider the issue of discrete time schedules versus continuous
time schedules. The above results are derived with the assumption that the
time line is divided into indivisible time slots and preemptions can occur only
at integral points, that is, the schedule has to be discrete. In a continuous
schedule, time is not divided into discrete quanta and preemptions may occur
at any time instant. We show that in a sporadic task system a discrete schedule
exists whenever a continuous schedule does, thus showing that the discrete
time assumption is without loss of generality. Such an equivalence was known
for the single processor setting [8]; however, the proof relied on the optimality
of the EDF algorithm and thus did not extend to multiprocessor systems. In

4 Vincenzo Bonifaci, Alberto Marchetti-Spaccamela

fact, this problem was also cited among the relevant open problems in real-time
scheduling [7, Open Problem 5].

Our main conceptual contribution is to show how the feasibility problem,
the online feasibility problem and the schedulability problem can be cast as the
problem of deciding the winner in certain games of infinite duration played on
a finite graph. We then use tools from the theory of games to decide who has a
winning strategy. In particular, in the case of the feasibility problem we have a
game of imperfect information where one of the players does not see the moves
of the opponent, a so-called blindfold game [18]. This can be reformulated as
a one-player (i.e., solitaire) game on an exponentially larger graph and then
solved via a reachability algorithm. However, a technical complication is that
in our model a job sequence and a schedule can both have infinite length,
which when the system is feasible makes the construction of a feasible schedule
challenging. We solve this complication by an application of König’s Infinity
Lemma from graph theory [11, p. 200]. This is the technical ingredient that,
roughly speaking, allows us to reduce the job sequences from infinite length
to finite length and ultimately to obtain the equivalence between continuous
and discrete schedules.

The power of our new approach is its generality: it can be applied to all
three problems, and at the same time it yields proofs that are not technically
too complicated. We hope that this approach might be useful to answer similar
questions for other real-time scheduling problems.

Organization. The remainder of the paper is structured as follows. In Section 2
we formally define the model and set up some useful notation. In Section 3 we
describe and analyze our algorithms for feasibility and schedulability analysis.
Section 4 discusses the extension of the results to the case where deadlines may
exceed periods. The equivalence between continuous and discrete schedules is
treated in Section 5, and we finish with some concluding remarks in Section
6.

2 Definitions

Let N = {0, 1, 2, . . .} and [n] = {1, 2, . . . , n}. Given a set X, with
(
X
k

)
we

denote the set of all k-subsets of X.
Consider a task system T with n tasks, and m processors; without loss of

generality, m ≤ n. Each task i is described by three parameters: a worst-case
execution time Ci, a relative deadline Di, and a minimum interarrival time Pi.
We assume these parameters to be positive integers and that Di ≤ Pi for all
i (the latter assumption is dropped in Section 4). Without loss of generality,
Ci ≤ Di for all i, otherwise the system is clearly infeasible.

Let C := ×n
i=1([Ci] ∪ {0}), D := ×n

i=1([Di] ∪ {0}), P := ×n
i=1([Pi] ∪ {0}),

0 := (0)ni=1. A job sequence is a function σ : N → C. The interpretation is
that σ(t) = (σi(t))

n
i=1 iff, for each i with σi(t) > 0, a new job from task i is

released at time t with execution time σi(t), and no new job from task i is

Feasibility Analysis of Sporadic Real-Time Multiprocessor Task Systems 5

released if σi(t) = 0. A legal job sequence has the additional property that for
any distinct t, t′ ∈ N and any i, if σi(t) > 0 and σi(t

′) > 0, then |t− t′| ≥ Pi.
A job sequence is finite if σ(t′) = 0 for all t′ greater or equal to some t ∈ N;
in this case, we say that the sequence has length t.

Let S := ∪mk=0

(
[n]
k

)
. A schedule is a function S : N → S; we interpret S(t)

as the set of those k tasks (0 ≤ k ≤ m) that are being processed from time
t to time t + 1 1. We allow that S(t) contains a task i even when there is no
pending job from i at time t; in that case there is no effect (this is formalized
below).

A backlog configuration is an element of B := C × D × P. At time t, a
backlog configuration2 (ci, di, pi)

n
i=1 ∈ B will denote the following:

– ci ∈ [Ci] ∪ {0} is the remaining execution time of the unique pending job
from task i, if any; if there is no pending job from task i, then ci = 0;

– di ∈ [Di]∪{0} is the remaining time to deadline of the unique pending job
from task i, if any; if there is no pending job from task i, or the deadline
has already passed, then di = 0;

– pi ∈ [Pi] ∪ {0} is the minimum remaining time to the next activation of
task i, that is, the minimum pi such that a new job from task i could be
legally released at time t+ pi.

A configuration (ci, di, pi)
n
i=1 ∈ B is a failure configuration if for some task i,

ci > 0 and di = 0.

Remark 1 The set B is finite, and its size is 2O(s), where s is the input size of
T (number of bits in its binary encoding).

Given a legal job sequence σ and a schedule S, we define in the natu-
ral way an infinite sequence of backlog configurations 〈σ, S〉 := b0b1 The
initial configuration is b0 := (0, 0, 0)ni=1, and given a backlog configuration
bt = (ci, di, pi)

n
i=1, its successor configuration bt+1 = (c′i, d

′
i, p
′
i)

n
i=1 is obtained

as follows:

– if σi(t) > 0, then c′i = σi(t)− xi, where xi is 1 if i ∈ S(t), and 0 otherwise;
moreover, d′i = Di − 1 and p′i = Pi − 1;

– if σi(t) = 0, then c′i = max(ci − xi, 0), where xi is defined as above; more-
over, d′i = max(di − 1, 0) and p′i = max(pi − 1, 0).

We can now define a schedule S to be feasible for σ if no failure configuration
appears in 〈σ, S〉. Finally, a task system T is feasible when every legal job
sequence admits a feasible schedule. Stated otherwise, a task system is not
feasible when there is a legal job sequence for which no schedule is feasible.
We call such a job sequence a witness of infeasibility.

A deterministic online algorithm Alg is a sequence of functions:

Algt : Ct+1 → S, t = 0, 1, 2, . . .

1 Since Di ≤ Pi, there can be at most one pending job from task i. The case where Di

can be larger than Pi is considered in Section 4.
2 For notational convenience, here we have reordered the variables so as to have n-tuples

of triples, instead of triples of n-tuples.

6 Vincenzo Bonifaci, Alberto Marchetti-Spaccamela

By applying an algorithm Alg to a job sequence σ, one obtains the schedule S
defined by S(t) = Algt(σ(0), . . . , σ(t)). Then Alg feasibly schedules σ whenever
S does. A memoryless algorithm is a single function Malg : B×C→ S; it is
a special case of an online algorithm in which the scheduling decisions at time
t are based only on the current backlog configuration and on the tasks that
have been activated at time t.

Finally, a task system T is online feasible if there is a deterministic online
algorithm Alg such that every legal job sequence from T is feasibly scheduled
by Alg. We then say that Alg is optimal for T, and that T is schedulable by
Alg. Online feasibility implies feasibility, but the converse fails: there is a task
system that is feasible, but that does not admit any optimal online algorithm
[13].

König’s Infinity Lemma. A ray is an infinite graph (V,E) of the form

V = {x0, x1, x2, ...}, E = {(x0, x1), (x1, x2), (x2, x3), . . .}.

Lemma 1 Let Q0, Q1, . . . be an infinite sequence of disjoint nonempty finite
sets of nodes, and let G be a graph on their union. Assume that every node q
in a set Qt with n ≥ 1 has a predecessor q′ in Qt−1, so that (q′, q) is an arc
of G. Then G contains a ray q0, q1, . . . with qt ∈ Qt for all t.

Proof See for example [11, Lemma 8.1.2] (the result is stated there in terms of
undirected graphs, but the proof works equally well for the directed case.) ut

3 Algorithms for feasibility and schedulability analysis

3.1 Feasibility

We first model the process of scheduling a task system as a game between two
players over infinitely many rounds. At round t = 0, 1, 2, . . ., the first player
(the “adversary”) selects a certain set of tasks to be activated. Then the second
player (acting as the scheduler) selects a set of tasks to be processed, and so
on. The game is won by the first player if a failure configuration is eventually
reached.

In order to capture the definition of feasibility correctly, the game must
proceed so that the adversary has no information at all on the moves of the
scheduler; in other words, the job sequence must be constructed obliviously
from the schedule. This is because if the task system is infeasible, then a single
witness job sequence must fail all possible schedules simultaneously. Models of
such games, where the first player has no information on the moves of the
opponent, have been studied in the literature under the name of blindfold
games [18]. One approach to solving these games is to construct a larger one-
player game, in which each state encodes all positions that are compatible
with at least one sequence of moves for the second player.

Feasibility Analysis of Sporadic Real-Time Multiprocessor Task Systems 7

We now proceed to give the details of the construction. The guiding intu-
ition is that the scheduling process can be summarized by looking only at a
finite set of counters, including the “time to deadline” counters, the “time to
next earliest arrival” counters, as well as the internal state of the scheduler
(an element of the set C), which specifies the remaining execution times of
the jobs. The actual internal scheduler state is unknown to the adversary, but
since it is finite, it will be possible to consider it implicitly by enumeration.

Given a task system T, we build a bipartite graph G+(T) = (V1, V2, A).
Nodes in V1 (V2) will correspond to decision points for the adversary (sched-
uler). A node in V1 or V2 will encode mainly two kinds of information: (1) the
counters that determine time to deadlines and next earliest arrival dates; and
(2) the set of all plausible remaining execution times of the scheduler.

Let B+ := D×P× 2C. Each of V1 and V2 is a copy of B+, so each node
of V1 is identified by a distinct element from B+, and similarly for V2. We
now specify the arcs of G+(T). Consider an arbitrary node v1 ∈ V1 and let
((di, pi)

n
i=1, Q) be its identifier, where Q ∈ 2C. Its successors in G+(T) are all

nodes v2 = ((d′i, p
′
i)

n
i=1, Q

′) ∈ V2 for which there is a tuple (ki)
n
i=1 ∈ C such

that:

1. pi = 0 for all i ∈ supp(k), where supp(k) = {i : ki > 0} (this ensures that
each task in k can be activated);

2. p′i = Pi, and d′i = Di for all i ∈ supp(k) (activated jobs cannot be reacti-
vated before Pi time units);

3. p′i = pi and d′i = di for all i /∈ supp(k) (counters of other tasks are not
affected);

4. each (c′i)
n
i=1 ∈ Q′ is obtained from some (ci)

n
i=1 ∈ Q in the following way:

c′i = ki for all i ∈ supp(k), and c′i = ci for all i /∈ supp(k) (in every possible
scheduler state, the remaining execution time of each activated job is set
to the one prescribed by k);

5. Q′ contains all (c′i)
n
i=1 that satisfy Condition 4.

Now consider an arbitrary node v2 ∈ V2, say v2 = ((di, pi)
n
i=1, Q). The only

successor of v2 will be the unique node v1 = ((d′i, p
′
i)

n
i=1, Q

′) ∈ V1 such that:

1. d′i = max(di − 1, 0), p′i = max(pi − 1, 0) for all i ∈ [n] (this models a
“clock-tick”);

2. for each (c′i)
n
i=1 ∈ Q′, there are an element (ci)

n
i=1 ∈ Q and some S ∈ S

such that c′i = max(ci − 1, 0) for all i ∈ S and c′i = ci for all i /∈ S (each
new possible state of the scheduler is obtained from some old state after
the processing of at most m tasks);

3. for each (c′i)
n
i=1 ∈ Q′, one has, for all i, c′i = 0 whenever d′i = 0 (this ensures

that the resulting scheduler state is valid);
4. Q′ contains all (c′i)

n
i=1 that satisfy Condition 2 and Condition 3.

That is, the only successor to v2 is obtained by applying all possible decisions
by the scheduler and then takingQ′ to be the set of all possible (valid) resulting
scheduler states. Notice that because we only keep the valid states (Condition
3), the set Q′ might be empty. In this case we say that the node v1 is a failure

8 Vincenzo Bonifaci, Alberto Marchetti-Spaccamela

state; it corresponds to some deadline having been violated. Also notice that
any legal job sequence σ induces an alternating walk in the bipartite graph
G+(T) whose (2t+ 1)-th arc corresponds to σ(t).

Finally, the initial state is the node v0 ∈ V1 for which di = pi = 0 for all
i, and for which the only possible scheduler state is 0. (See Figure 1 on page
9 for a partial illustration of the construction in the case of the task system
T = ((1, 2, 2), (2, 2, 2)), for m = 1.) Note that, given two nodes of G+(T), it
is easy to check their adjacency, in time polynomial in |B+|.

Definition 1 For a legal job sequence σ, the set of possible valid scheduler
states at time t is the set of all (ci)

n
i=1 ∈ C for which there exists a schedule

S such that (i) 〈σ, S〉 = b0b1b2 . . . with no configuration b0, b1, . . . , bt being a
failure configuration, and (ii) the first component of bt is (ci)

n
i=1. We denote

this set by valid(σ, t).

The proofs of the following two lemmas are given as sketches in the sense
that we omit a complete formal analysis; this is done only in order to avoid
unnecessarily tedious statements, which in turn can be recovered fairly easily
by referring back to the definitions.

Lemma 2 Let t ≥ 0 and let ((di, pi)
n
i=1, Q) ∈ V1 be the node reached by

following for 2t steps the walk induced by σ in the graph G+(T). Then Q =
valid(σ, t).

Proof (sketch) By induction on t. When t = 0 the claim is true because the
only possible scheduler state is the 0 state. For larger t it follows from how
we defined the successor relation in G+(T) (see in particular the definition of
Q′). ut

Lemma 3 Task system T is infeasible if and only if, in the graph G+(T),
some failure state is reachable from the initial state.

Proof (sketch) If there is a path from the initial state to some failure state,
by Lemma 2 we obtain a legal job sequence σ that witnesses that for some
t, valid(σ, t) = ∅, that is, there is no valid scheduler state for σ at time t; so
there cannot be any feasible schedule for σ.

Conversely, if no failure state is reachable from the initial state, for any legal
job sequence σ one has valid(σ, t) 6= ∅ for all t by Lemma 2. This immediately
implies that no finite job sequence can be a witness of infeasibility. We also
need to exclude witnesses of infinite length. To do this, we apply König’s
Infinity Lemma (Lemma 1). Consider the infinite walk induced by σ in G+(T)
and the corresponding infinite sequence of nonempty sets of possible valid
scheduler states Q0, Q1, . . ., where Qt := valid(σ, t). Each scheduler state q ∈
Qt (t ≥ 1) has been derived by some scheduler state in q′ ∈ Qt−1 and so
q and q′ can be thought of as neighbors in an infinite graph on the disjoint
union of Q0, Q1, . . . (see Figure 2). Then König’s Lemma implies that there is
a sequence q0q1 . . . (with qt ∈ Qt) such that for all t ≥ 1, qt is a neighbor of
qt−1. This sequence defines a feasible schedule for σ. ut

Feasibility Analysis of Sporadic Real-Time Multiprocessor Task Systems 9

d1: 0, t1: 0,
d2: 0, t2: 0

c1: 0, c2: 0

I

v0

d1: 0, t1: 0,
d2: 0, t2: 0

c1: 0, c2: 0

II

d1: 2, t1: 2,
d2: 0, t2: 0

c1: 1, c2: 0

II

...

d1: 1, t1: 1,
d2: 1, t2: 1

c1: 0, c2: 2
c1: 1, c2: 1
c1: 1, c2: 2

I

d1: 2, t1: 2,
d2: 2, t2: 2

c1: 1, c2: 2

II

d1: 1, t1: 1,
d2: 1, t2: 1

c1: 0, c2: 2
c1: 1, c2: 1
c1: 1, c2: 2

II

d1: 0, t1: 0,
d2: 0, t2: 0

∅

I

d1: 0, t1: 0,
d2: 2, t2: 2

c1: 0, c2: 2

II

...

Fig. 1 A subgraph of the graph G+(T) for the task system T = ((1, 2, 2), (2, 2, 2)) and
m = 1. Nodes labeled with “I” are in V1, nodes labeled with “II” are in V2.

10 Vincenzo Bonifaci, Alberto Marchetti-Spaccamela

Q0

v0

Q1 Q2 Q3

valid scheduler state

Walk in G+(T) (nodes in V1)

Fig. 2 Illustration of how König’s Lemma applies to the proof of Lemma 3. A prefix of an
infinite ray is shown in solid lines.

Algorithm 1 Algorithm for the feasibility problem
for all failure states vf ∈ V1 do

if Reach(v0, vf , 2|B+|) then
return infeasible

end if
end for
return feasible

Algorithm 2 Reach(x, y, k)
if k = 0 then

return true if x = y, false if x 6= y
end if
if k = 1 then

return true if (x, y) ∈ A, false otherwise
end if
for all z ∈ V1 ∪ V2 do

if Reach(x, z, bk/2c) and Reach(z, y, dk/2e) then
return true

end if
end for
return false

Theorem 1 The feasibility problem for a sporadic constrained-deadline task

system T can be solved in time 22
O(s)

, where s is the input size of T. Moreover,

if T is infeasible, there is a witness job sequence of length at most 22
O(s)

.

Proof The graph has 2|B+| = 22
O(s)

nodes, so the first part follows from
Lemma 3 and the existence of linear-time algorithms for the reachability prob-
lem. The second part follows similarly from the fact that the witness sequence
σ can be defined by taking σ(t) as the set of task activations corresponding to
the (2t + 1)-th arc on the path from the initial state to the reachable failure
state. ut

We can in fact improve exponentially the amount of memory needed for
the computation. The idea is to compute the state graph as needed, instead

Feasibility Analysis of Sporadic Real-Time Multiprocessor Task Systems 11

of storing it explicitly (Algorithm 1). We enumerate all failure nodes; for each
failure node vf , we check whether there exists a path from v0 to vf in G+(T)
by calling the subroutine Reach (Algorithm 2). This subroutine checks recur-
sively whether there is a path from x to y of length at most k by trying all
possible midpoints z. Some readers might recognize that Reach is nothing but
Savitch’s reachability algorithm [19]. This yields the following improvement.

Theorem 2 The feasibility problem for a sporadic constrained-deadline task
system T can be solved in space 2O(s), where s is the input size of T.

Proof Any activation of Algorithm 2 needs O(log |B+|) = 2O(s) space, and the
depth of the recursion is at most O(log |B+|) = 2O(s). ut

3.2 Online feasibility

An issue with the notion of feasibility as studied in the previous section is
that, when the task system turns out to be feasible, one is still left clueless as
to how the system should be scheduled. The definition of online feasibility (see
Section 2) addresses this issue. One might doubt whether the notion of online
feasibility is really different from the notion of feasibility, but in fact recent
work has shown that in a multiprocessor sporadic task system the two notions
are not equivalent [13]. In other words, there is a particular task system T∗

that is feasible, but that does not admit any optimal online algorithm; this
also explains why the use of a nonconstructive result like König’s Lemma was
unavoidable in the previous section. In any event, it could be argued from
a system design point of view that one should focus on the notion of online
feasibility, rather than on the notion of feasibility. In this section we discuss
an algorithm for testing online feasibility.

The idea is again to interpret the process as a game between the environ-
ment and the scheduler, with the difference that now the adversary can observe
the current state of the scheduler (the remaining execution times). In other
words, the game is no longer a blindfold game but a perfect-information game.
We construct a graph G(T) = (V1, V2, A) where V1 = B and V2 = B×C. The
nodes in V1 are decision points for the adversary (with different outgoing arcs
corresponding to different tasks being activated) and the nodes in V2 are deci-
sion points for the scheduler (different outgoing arcs corresponding to different
sets of tasks being scheduled). There is an arc (v1, v2) ∈ A if v2 = (v1, k) for
some tuple k = (ki)

n
i=1 ∈ C of jobs that can legally be released when the back-

log configuration is v1; notice the crucial fact that whether some tuple k can
legally be released can be decided on the basis of the backlog configuration v1
alone. There is an arc (v2, v

′
1) if v2 = (v1, k) and v′1 is a backlog configuration

that can be obtained from v1 after scheduling some subset of tasks; again this
depends only on v1 and k.

The details of the adjacency relation are as follows. Consider an arbitrary
node v1 ∈ V1 with v1 = (ci, di, pi)

n
i=1. Its successors in G(T) are all nodes

v2 = ((c′i, d
′
i, p
′
i)

n
i=1, (ki)

n
i=1) ∈ V2 with (ki)

n
i=1 ∈ C such that:

12 Vincenzo Bonifaci, Alberto Marchetti-Spaccamela

1. pi = 0 for all i ∈ supp(k), where supp(k) = {i : ki > 0} (this ensures that
each task in k can be activated);

2. p′i = Pi, and d′i = Di for all i ∈ supp(k) (activated jobs cannot be reacti-
vated before Pi time units);

3. p′i = pi and d′i = di for all i /∈ supp(k) (counters of other tasks are not
affected);

4. c′i = ki for all i ∈ supp(k), and c′i = ci for all i /∈ supp(k) (the remaining
execution time of each activated job is set to the one prescribed by k);

Now consider an arbitrary node v2 ∈ V2, say v2 = ((ci, di, pi)
n
i=1, (ki)

n
i=1). Its

successors in G(T) are all nodes v1 = ((c′i, d
′
i, p
′
i)

n
i=1) ∈ V1 for which there is

some S ∈ S such that:

1. d′i = max(di − 1, 0), p′i = max(pi − 1, 0) for all i ∈ [n] (this models a
“clock-tick”);

2. c′i = max(ci−1, 0) for all i ∈ S and c′i = ci for all i /∈ S (the new remaining
execution times are obtained from the old remaining execution times by
processing at most m tasks).

The game is now played with the adversary starting first in state b0 =
(0, 0, 0)ni=1. The two players take turns alternately and move from state to state
by picking an outgoing arc from each state. The adversary wins if it can reach
a state in V1 corresponding to a failure configuration. The scheduler wins if it
can prolong play indefinitely while never incurring in a failure configuration.

Lemma 4 The first player has a winning strategy in the above game on G(T)
if and only if T is not online feasible. Moreover, if T is online feasible, then it
admits an optimal memoryless deterministic online algorithm.

Proof (sketch) If the first player has a winning strategy s, then for any online
algorithm Alg, the walk in G(T) obtained when player 1 plays according to s
and player 2 plays according to Alg, ends up in a failure configuration. But
then the job sequence corresponding to this walk in the graph (given by the
odd-numbered arcs in the walk) defines a legal job sequence that is not feasibly
scheduled by Alg.

If, on the other hand, the first player does not have a winning strategy, from
the theory of two-player perfect-information games it is known (see for example
[14,17]) that the second player has a winning strategy and that this can be
assumed to be, without loss of generality, a deterministic strategy that depends
only on the current state in V2 (a so-called memoryless, or positional, strategy).
Hence, for each node in V2 it is possible to remove all but one outgoing arc so
that in the remaining graph no failure configuration is reachable from b0. The
set of remaining arcs that leave V2 implicitly defines a function from V2 = B×C
to S, that is, a memoryless online algorithm, which feasibly schedules every
legal job sequence of T. ut

Theorem 3 The online feasibility problem for a sporadic constrained-deadline
task system T can be solved in time 2O(s), where s is the input size of T. If T
is online feasible, an optimal memoryless deterministic online algorithm for T

can be constructed within the same time bound.

Feasibility Analysis of Sporadic Real-Time Multiprocessor Task Systems 13

Proof We first construct G(T) in time polynomial in |B × (B ×C)| = 2O(s).
We then apply the following inductive algorithm to compute the set of nodes
W ⊆ V1 ∪ V2 from which player 1 can force a win; its correctness has been
proved before (see for example [14, Proposition 2.18]). Define the set Wi as
the set of nodes from which player 1 can force a win in at most i moves, so
W = ∪i≥0Wi. The set W0 is simply the set of all failure configurations. The
set Wi+1 is computed from Wi as follows:

Wi+1 = Wi ∪ {v1 ∈ V1 : (v1, w) ∈ A for some w ∈Wi}
∪ {v2 ∈ V2 : w ∈Wi for all (v2, w) ∈ A}.

At any iteration either Wi+1 = Wi (and then W = Wi) or Wi+1 \Wi contains
at least one node. Since there are 2O(s) nodes, this means that W = Wk for
some k = 2O(s). Because every iteration can be carried out in time 2O(s), it
follows that the set W can be computed within time (2O(s))2 = 2O(s). By
Lemma 4, T is online feasible if and only if b0 /∈W .

The second part of the claim follows from the second part of Lemma 4
and from the fact that a memoryless winning strategy for player 2 (that is,
an optimal memoryless scheduler) can be obtained by selecting, for each node
v2 ∈ V2 \W , any outgoing arc that does not have an endpoint in W . ut

3.3 Schedulability

In this section we show that the problem of deciding whether a sporadic task
system is schedulable by some prescribed scheduling algorithm can be solved
in polynomial space for all memoryless algorithms. This includes all commonly
studied algorithms such as Earliest Deadline First, Least Laxity First, Fixed
Priority, etc.; a non-memoryless algorithm would take into consideration the
entire history and so its running time would degrade with the length of the
job sequence, making it completely impractical. As we have seen in Lemma 4,
an optimal memoryless algorithm always exists whenever the system is online
feasible.

In the case of the schedulability problem, we observe that the construction
of Section 3.1 can be applied in a simplified form, because for every node of
the graph there is now at most one possible valid scheduler state, which can
be determined by querying the scheduling algorithm. This implies that the
size of the graph reduces to 2|B| = 2O(s). By applying the same approach as
in Section 3.1, we obtain the following.

Theorem 4 The schedulability problem for a sporadic constrained-deadline
task system T can be solved in time 2O(s2) and space O(s2), where s is the
input size of T. Alternatively, it can be solved in time and space 2O(s).

Proof Any activation of Algorithm 2 needs O(log |B|) = O(s) space, and the
depth of the recursion is at most O(log |B|) = O(s), so in total a space of O(s2)

14 Vincenzo Bonifaci, Alberto Marchetti-Spaccamela

is enough. The running time can be found by the recurrence T (k) = 2O(s) · 2 ·
T (k/2) +O(1) which gives T (k) = 2O(s log k) and finally T (2|B|) = 2O(s2).

The alternative complexity bound follows by using any linear-time reach-
ability algorithm. ut

Another consequence of the above construction is that if a given memory-
less algorithm Alg is not optimal for a task system, then there is a job sequence
on which Alg fails that has length 2O(s).

4 Extension to the arbitrary-deadline model

In this section we drop the requirement that Di ≤ Pi for all tasks i ∈ [n]. The
techniques we used in the previous sections can still be applied; however, the
definition of backlog configuration needs to be revised, and as a consequence
some of the complexity bounds are increased. We limit ourselves to a discussion
of the differences.

When Di > Pi, it may happen that several jobs j1, . . . , jK , generated from
the same task i, are simultaneously awaiting completion. Our assumption,
which is standard in this model [2], is that these jobs can only be processed
serially (serial processing); more precisely, execution of jk′ cannot begin before
the completion of jk, whenever jk′ is released after jk.

We notice that the definition of backlog configuration given in Section 2 is
insufficient to capture the current state of the system. In particular, a single
“remaining time to deadline” counter for each task is insufficient, because
different jobs from the same task will have different absolute deadlines. Our
first observation is a bound on the number of counters.

Proposition 1 If at any time during the scheduling process there are more
than dDi/Pie pending jobs from task i, then some deadline has been missed.

Proof If at time t there are dDi/Pie+ 1 pending jobs from task i, since these
jobs can be released at most once per Pi time units, the oldest job in the set
has been released at least Pi · (dDi/Pie+1) > Di time units before t. But then
the deadline of that job has been missed. ut

Let Ki := dDi/Pie + 1. Observe that Ki ≤ Di + 1, since Pi is integral and
positive. We define

D̃ = ×n
i=1([Di] ∪ {0})Ki .

Remark 2 The size of D̃ is 22
O(s)

, where s is the input size of T.

The next observation concerns the “remaining execution time” counters. In
principle, one would need Ki counters for the jobs of task i. However, because
of the assumption that jobs from the same task need to be processed serially,
it is enough to keep a single “remaining execution time” counter (the one for

Feasibility Analysis of Sporadic Real-Time Multiprocessor Task Systems 15

the oldest job) together with a count of the number of pending jobs. Thus, we
define

C̃ = ×n
i=1([Ci] ∪ {0})× ([Ki] ∪ {0}).

Lastly, the “minimum remaining time to next activation” counters need
not be modified, so we set P̃ = P. The set of backlog configurations is now

B̃ := C̃× D̃× P̃.

The notions of failure configuration, schedule, feasibility, etc. can now be de-
fined as we did in Section 2. For the notion of schedule as a function S : N→ S,
observe that we use once again the fact that jobs from the same task are pro-
cessed serially, so it suffices to specify which m tasks have to be processed at
any point in time.

The feasibility problem is solved in the same way as in Section 3.1, except
that the graph is now based on the set

B̃+ := D̃× P̃× 2C̃.

Since the set D̃ × P̃ completely captures the state of the environment, and

the set 2C̃ completely captures the state of all possible schedulers, it should
be clear that by proceeding as in Section 3.1 and using B̃+ in place of B+ it
is possible to define a graph for which Lemma 2 and Lemma 3 hold.

Remark 3 The size of both B̃ and B̃+ is dominated by the size of D̃, and so

it is 22
O(s)

.

Analogously, the online feasibility problem and the schedulability problem are
solved as before, except that the set B̃ is used to construct the graph. After
updating the bounds in Theorems 1–4 to reflect the size of the new sets B̃ and
B̃+, we obtain the following.

Theorem 5 The feasibility problem, the online feasibility problem and the
schedulability problem for a sporadic arbitrary-deadline task system T can all

be solved in time 22
O(s)

, where s is the input size of T. The feasibility problem
and the schedulability problem can also be solved in space 2O(s). Finally, if T

is infeasible, there is a witness job sequence of length at most 22
O(s)

.

Notice that we do not know whether the online feasibility problem can be
solved in space 2O(s) in this setting.

5 Continuous versus discrete schedules

In this section we show that, under our assumption of integer arrival times for
the jobs, the feasibility of a sporadic task system does not depend on whether
one is considering discrete or continuous schedules.

Let J be the (possibly infinite) set of jobs generated by a job sequence σ.
In this section we do not need to keep track of which tasks generate the jobs,

16 Vincenzo Bonifaci, Alberto Marchetti-Spaccamela

so it will be convenient to use a somewhat different notation. Let rj , cj , dj ∈ N
denote respectively the release date, execution time and absolute deadline of
a job j; so job j has to receive cj units of processing in the interval [rj , dj]. A
continuous schedule for J on m processors is a function w : J ×N→ R+ such
that:

1. w(j, t) ≤ 1 for all j ∈ J and t ∈ N;
2.
∑

j∈J w(j, t) ≤ m for all t ∈ N.

Quantity w(j, t) is to be interpreted as the total amount of processing dedi-
cated to job j during interval [t, t + 1]. Thus, the first condition forbids the
parallel execution of a job on more than one processor; the second condition
limits the total volume processed in the interval by the m processors. The
continuous schedule w is feasible for σ if it additionally satisfies

3.
∑

rj≤t<dj
w(j, t) ≥ cj for all j ∈ J .

Finally, a task system T is feasible with respect to continuous schedules if
any legal job sequence σ from T has a feasible continuous schedule. For the
sake of clarity we call a system that is feasible in the sense defined in Section
2 feasible with respect to discrete schedules.

Lemma 5 A finite job set J has a discrete schedule whenever it has a con-
tinuous schedule. This holds even when there are chain precedence constraints
on J .

Proof Consider first the case without precedence constraints. We setup an
instance of a maximum flow problem whose solutions correspond to continuous
schedules for σ, and whose integral solutions correspond to discrete schedules
for σ; see also a similar construction in [4,5,8,15]. We build a network N
consisting of four types of nodes:

1. a source node a;
2. for every t = 0, 1, . . . ,maxj∈J dj , a node xt;
3. for every job j in σ, a node qj ;
4. a sink node z.

The arcs of the network are as follows:

1. from a to each Type 2 node, an arc with capacity m (m is the number of
processors);

2. from each Type 2 node xt to each Type 3 node qj such that rj ≤ t < dj ,
an arc with capacity 1;

3. from each Type 3 node qj to z, an arc with capacity cj .

Let K be the sum of the capacities of Type 3 edges.
Assume that a feasible continuous schedule w exists for σ. We now define a

flow by setting the flow on each arc (a, xt) to be
∑

j∈J w(j, t); the flow on each
arc (xt, qj) to w(j, t); and the flow on each arc (qt, z) to cj . Now conditions
(1) and (2) in the definition of continuous schedule for w ensure that the

Feasibility Analysis of Sporadic Real-Time Multiprocessor Task Systems 17

capacity constraints are satisfied. Condition (3) ensures that the amount of
flow entering any Type 3 node qj is at least∑

rj≤t<dj

w(j, t) ≥ cj .

Notice that some Type 3 node might have more flow entering the node than
leaving it; but in that case we can still obtain a feasible flow of the same value
by decreasing the incoming flow, and the capacities will not be violated.

Since all the capacities are integral we know there must be an integral
flow attaining the same value as the optimal fractional flow; that is, value K.
From this we can extract a discrete schedule by setting w(j, t) equal to the
flow on arc (xt, qj); this value must be either 0 or 1 by integrality. The total
flow collected at each node qj is exactly cj . In this manner we have obtained
a feasible discrete schedule for σ.

To extend the result to the case of chain precedence constraints on J , the
construction above needs only a slight modification (a similar modification has
been considered by Baptiste et al. [4] in a different context). Assume that job
j precedes job j′ and that, in the continuous schedule for σ, the completion
time of j is after t, but the starting time of j′ is before t+1. In this case j and
j′ are “competing” for the same time slot [t, t + 1), so instead of connecting
qj or qj′ to xt directly, we create a new node vjj′ and three arcs (xt, vjj′),
(vjj′ , qj), (vjj′ , qj′) of unit capacity. In all other cases, that is, for time slots
[t, t+ 1) such that all of the following hold:

- t is greater or equal to the starting time of j in the continuous schedule
(rounded down to an integer);

- t is strictly less than the completion time of j in the continuous schedule;
- j is not competing with another job in [t, t+ 1);

we connect xt to qj by a unit capacity arc. The rest of the construction is
similar to the previous one. It is straightforward to check that the existence of
a continuous schedule for σ implies the existence of a feasible flow in the new
network, so that, as before, the existence of an optimal integral flow implies
the existence of a discrete schedule. ut

Theorem 6 A sporadic arbitrary-deadline task system T is feasible with re-
spect to continuous schedules iff it is feasible with respect to discrete schedules.

Proof If a task system is feasible with respect to discrete schedules, it is obvi-
ously also feasible with respect to continuous schedules: a discrete schedule is
just a special case of a continuous schedule where w(j, t) ∈ {0, 1}. So assume
that a task system T is feasible with respect to continuous schedules, but not
with respect to discrete schedules. Then there must be a witness job sequence
σ that cannot be scheduled by any discrete schedule, but can be scheduled
by some continuous schedule. By Theorem 5, we can assume that σ has some

finite length L = 22
O(s)

. So σ generates a finite collection of jobs J . But any
feasible continuous schedule for a finite collection of jobs can be converted into

18 Vincenzo Bonifaci, Alberto Marchetti-Spaccamela

a feasible discrete schedule (Lemma 5). This holds even when chain precedence
constraints are present, so that jobs generated by the same task are processed
serially, as the model requires (recall the discussion in Section 4). The exis-
tence of a discrete schedule now contradicts the initial assumption that no
such schedule existed. ut

6 Concluding remarks

We have given upper bounds on the complexity of testing the feasibility, the
online feasibility, and the schedulability of a sporadic task system on a set of
identical processors. It is known that these three problems are at least coNP-
hard [12]; however, no sharper hardness result is known. A natural question
is to characterize more precisely the complexity of these problems, either by
improving on the algorithms given here, or by showing that these problems
are hard for some complexity class above coNP.

Given the apparent high complexity of feasibility testing, another natural
direction is to investigate approximate feasibility tests, that trade off accuracy
(in terms of the additional resources needed, such as processor speed) for
computational efficiency [1,9]. In particular, the challenge here is to obtain
tests that are more accurate, but still efficient, in the multiprocessor setting.

Acknowledgements We thank Sanjoy Baruah and Sebastian Stiller for useful discussions,
and Nicole Megow for bringing reference [4] to our attention.

References

1. K. Albers and F. Slomka. An event stream driven approximation for the analysis of real-
time systems. In Proceedings of the 16th Euromicro Conference on Real-Time Systems,
pages 187–195. IEEE, 2004.

2. T. P. Baker and S. K. Baruah. Schedulability analysis of multiprocessor sporadic task
systems. In S. H. Son, I. Lee, and J. Y.-T. Leung, editors, Handbook of Real-Time and
Embedded Systems, chapter 3. CRC Press, 2007.

3. T. P. Baker and M. Cirinei. Brute-force determination of multiprocessor schedulability
for sets of sporadic hard-deadline tasks. In E. Tovar, P. Tsigas, and H. Fouchal, editors,
Proceedings of the 11th Conference on Principles of Distributed Systems, volume 4878
of Lecture Notes in Computer Science, pages 62–75. Springer, 2007.

4. P. Baptiste, J. Carlier, A. Kononov, M. Queyranne, S. Sevastyanov, and M. Sviridenko.
Integrality property in preemptive parallel machine scheduling. In A. E. Frid, A. Moro-
zov, A. Rybalchenko, and K. W. Wagner, editors, Proceedings of the 4th International
Computer Science Symposium in Russia, volume 5675 of Lecture Notes in Computer
Science, pages 38–46. Springer, 2009.

5. S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate progress:
A notion of fairness in resource allocation. Algorithmica, 15(6):600–625, 1996.

6. S. K. Baruah and J. Goossens. Scheduling real-time tasks: Algorithms and complexity.
In J. Y.-T. Leung, editor, Handbook of Scheduling: Algorithms, Models, and Perfor-
mance Analysis, chapter 28. CRC Press, 2003.

7. S. K. Baruah and K. Pruhs. Open problems in real-time scheduling. Journal of Schedul-
ing, 13(6):577–582, 2009.

Feasibility Analysis of Sporadic Real-Time Multiprocessor Task Systems 19

8. S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and complexity concerning
the preemptive scheduling of periodic, real-time tasks on one processor. Real-Time
Systems, 2(4):301–324, 1990.

9. V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller. A constant-approximate feasibility
test for multiprocessor real-time scheduling. In D. Halperin and K. Mehlhorn, editors,
Proceedings of the 16th European Symposium on Algorithms, volume 5193 of Lecture
Notes in Computer Science, pages 210–221. Springer, 2008.

10. M. L. Dertouzos. Control robotics: The procedural control of physical processes. In
Proceedings of the International Federation for Information Processing Congress, pages
807–813. North-Holland, 1974.

11. R. Diestel. Graph theory. Springer, Heidelberg, 3rd edition, 2005.
12. F. Eisenbrand and T. Rothvoß. EDF-schedulability of synchronous periodic task systems

is coNP-hard. In M. Charikar, editor, Proceedings of the 21st Symposium on Discrete
Algorithms, pages 1029–1034. SIAM, 2010.

13. N. Fisher, J. Goossens, and S. K. Baruah. Optimal online multiprocessor scheduling of
sporadic real-time tasks is impossible. Real-Time Systems, 45(1):26–71, 2010.

14. E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games:
A Guide to Current Research, volume 2500 of Lecture Notes in Computer Science.
Springer, 2002.

15. W. A. Horn. Some simple scheduling algorithms. Naval Research Logistics Quarterly,
21:177–185, 1974.

16. C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM, 20(1):46–61, 1973.

17. R. McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied
Logic, 65(2):149–184, 1993.

18. J. H. Reif. The complexity of two-player games of incomplete information. Journal of
Computer and System Sciences, 29(2):274–301, 1984.

19. W. J. Savitch. Relationships between nondeterministic and deterministic tape complex-
ities. Journal of Computer and Systems Sciences, 4(2):177–192, 1970.

