Elsevier Editorial System(tm) for Theoretical Computer Science
 Manuscript Draft

Manuscript Number:
Title: Fan-Planarity: Properties and Complexity
Article Type: Regular Paper (10-40 pages)
Section/Category: A - Algorithms, automata, complexity and games

Keywords: Graph Planarity; Graph Drawing; Edge Crossings; Edge Density
Corresponding Author: Prof. Walter Didimo,

Corresponding Author's Institution: University of Perugia

First Author: Carla Binucci
Order of Authors: Carla Binucci; Emilio Di Giacomo; Walter Didimo; Fabrizio Montecchiani; Maurizio Patrignani; Antonios Symvonis; Ioannis G Tollis

Fan-Planarity: Properties and Complexity ${ }^{*}$

Carla Binucci ${ }^{\text {a }}$, Emilio Di Giacomo ${ }^{\text {a }}$, Walter Didimo ${ }^{\text {a,* }}$, Fabrizio Montecchiani ${ }^{\text {a }}$, Maurizio Patrignani ${ }^{\text {b }}$, Antonios Symvonis ${ }^{\text {c }}$, Ioannis G. Tollis ${ }^{\text {d }}$
${ }^{a}$ Dipartimento di Ingegneria, Università degli Studi di Perugia, Italy
${ }^{b}$ Dipartimento di Ingegneria, Università Roma Tre, Italy
${ }^{c}$ Department of Mathematics, National Technical University of Athens, Greece
${ }^{d}$ University of Crete and Institute of Computer Science-FORTH, Greece

Abstract

In a fan-planar drawing of a graph an edge can cross only edges with a common endvertex. Fan-planar drawings have been recently introduced by Kaufmann and Ueckerdt [35], who proved that every n-vertex fan-planar drawing has at most $5 n-10$ edges, and that this bound is tight for $n \geq 20$. We extend their result from both the combinatorial and the algorithmic point of view. We prove tight bounds on the density of constrained versions of fan-planar drawings and study the relationship between fan-planarity and k-planarity. Also, we prove that testing fan-planarity in the variable embedding setting is NP-complete.

Keywords: Graph Planarity, Graph Drawing, Edge Crossings, Edge Density

1. Introduction

There is a growing interest in the study of non-planar drawings of graphs with forbidden crossing configurations. The idea is to relax the planarity constraint by allowing edge crossings that do not affect too much the drawing readability. Among the most popular types of non-planar drawings studied so far we recall:

- k-planar drawings, where an edge can have at most k crossings (see, e.g., [5, 8, $9,15,22,24,28,33,34,36,37,40]$);
- k-quasi-planar drawings, which do not contain k mutually crossing edges (see, e.g., $[1,3,4,21,30,41]$);

[^0]- RAC (Right Angle Crossing) drawings, where edges can cross only at right angles (see, e.g., [25] and [26] for a survey);
- $A C E_{\alpha}$ drawings [2] and $A C L_{\alpha}$ drawings [6,20,27], which are generalizations of RAC drawings; namely, in an ACE_{α} drawing edges can cross only at an angle that is exactly $\alpha(\alpha \in(0, \pi / 2])$; in an ACL_{α} drawing edges can cross only at angles that are at least α (see also [26]);
- fan-crossing free drawings, where an edge cannot cross two other edges having a common end-vertex [16].

Given a desired type T of non-planar drawing with forbidden crossing configurations, a classical combinatorial problem is to establish bounds on the maximum number of edges that a drawing of type T can have; this problem is usually dubbed a Turántype problem, and several tight bounds have been proved for the types of drawings mentioned above, both for straight-line and for polyline edges (see, e.g., $[1,2,4,15$, $16,24,25,27,30,37,41]$). From the algorithmic point of view, the complexity of testing whether a graph G admits a drawing of type T is one of the most interesting. Also for this problem several results have been shown, both in the variable and in the fixed embedding setting (see, e.g., $[8,18,19,32,33,36]$).

In this paper we investigate fan-planar drawings of graphs, in which an edge cannot cross two independent edges, i.e., an edge can cross several edges provided that they have a common end-vertex. Fan-planar drawings have been recently introduced by Kaufmann and Ueckerdt [35]; they proved that every n-vertex graph without loops and multiple edges that admits a fan-planar drawing has at most $5 n-10$ edges, and that this bound is tight for $n \geq 20$. Fan-planar drawings are on the opposite side of fan-crossing free drawings mentioned above. Besides its intrinsic theoretical interest, we observe that fan-planarity can be also used in many cases for creating drawings with few edge crossings per edge in a confluent drawing style (see, e.g., [23, 29]). For example, Figure 1(a) shows a fan-planar drawing Γ with 12 crossings; Figure 1(b) shows a new drawing with just 3 crossings obtained from Γ by bundling crossing "fans". Another example is shown in Figures 1(c) and 1(d).

We prove both combinatorial properties and complexity results related to fan-planar drawings of graphs. The main contributions of our work are as follows:

- We study the density of constrained versions of fan-planar drawings, namely outer fan-planar drawings, where all vertices must lie on the external boundary of the drawing, and 2-layer fan-planar drawings, where vertices are placed on two distinct horizontal lines and edges are vertically monotone lines. We prove tight bounds for the edge density of these drawings. Namely, we show that n vertex outer fan-planar drawings have at most $3 n-5$ edges (a tight bound for $n \geq 5$), and that n-vertex 2-layer fan-planar drawings have at most $2 n-4$ edges (a tight bound for $n \geq 3$). We remark that outer and 2-layer non-planar drawings have been previously studied in the 1-planarity setting [8, 24, 33] and in the RAC planarity setting [18, 19].

(a)

(c)

(b)

(d)

Figure 1: (a) A fan-planar drawing of a graph G with 12 crossings; (b) A confluent drawing of G with 3 crossings. (c) A fan-planar drawing with 16 crossings of another graph G; (d) A confluent drawing of G with 8 crossings.

- Since general fan-planar drawable graphs have at most $5 n-10$ edges and the same bound holds for 2-planar drawable graphs [37], we investigate the relationship between these two graph classes (observe that 1-planar graphs are always fan-planar by definition). More in general, we study the relationship between k-planarity and fan-planarity, proving that in fact for any $k \geq 2$ there exist fanplanar drawable graphs that are not k-planar, and vice versa.
- Finally, we show that testing whether a graph admits a fan-planar drawing in the variable embedding setting is NP-complete.

The rest of the paper is structured as follows: In Section 2 we give some preliminary definitions. Section 3 describes the tight bounds on the edge density of outer and 2-layer fan-planar drawable graphs. The relationship between k-planarity and fanplanarity is shown in Section 4, while Section 5 proves the NP-completeness of the fan-planarity testing problem. A final discussion that analyzes further work on fanplanarity and that presents some open research directions is given in Section 6.

2. Preliminary definitions and results

A drawing Γ of a graph G maps each vertex to a distinct point of the plane and each edge to a simple Jordan arc between the points corresponding to the end-vertices
of the edge. For a subgraph G^{\prime} of G, we denote by $\Gamma\left[G^{\prime}\right]$ the restriction of Γ to G^{\prime}. Throughout the paper we consider only simple graphs, i.e., graphs with neither multiple edges nor self-loops; also, we only consider simple drawings, i.e., drawings such that the arcs representing two edges have at most one point in common, which is either a common end-vertex or a common interior point where the two arcs properly cross.

For each vertex v of G, the set of edges incident to v is called the fan of v. Clearly, each edge (u, v) of G belongs to the fan of u and to the fan of v at the same time. Two edges that do not share a vertex are called independent edges; two independent edges always belong to distinct fans. A fan-planar drawing Γ of G, is a drawing of G such that: (a) no edge is crossed by two independent edges; (b) there are not two adjacent edges $(u, v),(u, w)$ that cross an edge e from different "sides" while moving from u to v and from u to w. The forbidden configurations (a) and (b) are depicted in Figure 2(a) and Figure 2(b), respectively. Figures 2(c) and 2(d) show two allowed configurations of a fan-planar drawing. A fan-planar graph is a graph that admits a fan-planar drawing.

Figure 2: (a)-(b) Forbidden configurations in a fan-planar drawing: (c)-(d) Allowed configurations in a fanplanar drawing.

The next property immediately follows from the definition of fan-planar drawings.
Property 1. A fan-planar drawing does not contain 3-mutually crossing edges.
Let Γ be a non-planar drawing of G; the planar enhancement Γ^{\prime} of Γ is the drawing obtained from Γ by replacing each crossing point with a dummy vertex. The boundary of each face f^{\prime} of Γ^{\prime} consists of a sequence of real and dummy vertices; the connected region f of the plane that corresponds to f^{\prime} in Γ consists of a sequence of vertices and crossing points. For simplicity we call f a face of Γ. The outer face of Γ is the face corresponding to the outer face of Γ^{\prime}. A fan-planar drawing of G with all vertices on the outer face is called an outer fan-planar drawing of G. Observe that the configuration in Figure 2(b) cannot occur in a drawing with all vertices on the outer face; hence, a drawing is outer fan-planar if and only if all vertices are on the outer face and it does not contain an edge crossed by two independent edges. An outer fan-planar graph is a graph that admits an outer fan-planar drawing. An outer fan-planar graph G is maximal if no edge can be added to G without loosing the property that G remains outer fanplanar. An outer fan-planar graph G with n vertices is maximally dense if it has the maximum number of edges among all outer fan-planar graphs with n vertices. If G is
maximally dense then it is also maximal, but not vice versa. We remark that maximally dense graphs are sometimes called "optimal" in the literature (see, e.g., [14, 17, 39]). The following property holds.

Lemma 1. Let $G=(V, E)$ be a maximal outer fan-planar graph and let Γ be an outer fan-planar drawing of G. The outer face of Γ does not contain crossing points, i.e., it consists of $|V|$ uncrossed edges.

Proof. Suppose by contradiction that the outer face of Γ contains a crossing point c formed by two edges e_{1} and e_{2}. Let u be the first vertex of G encountered while moving from c counterclockwise along the boundary of the outer face of Γ and let v be the first vertex of G encountered while moving from c clockwise along the boundary of the outer face of Γ. First observe that Γ does not have an edge (u, v), because if such an edge existed then one of the following two cases would apply:

- (u, v) is in the outer face of Γ : this would either contradict the hypothesis that c is on the boundary of the outer face of Γ, or it contradicts the hypothesis that all vertices of G are on the outer face of Γ.
- (u, v) crosses e_{1}, or e_{2}, or both: if it crosses only one of the two edges, then there would be some vertex of G that is not on the outer face of Γ, a contradiction; if (u, v) crosses both e_{1} and e_{2} then there would be a forbidden crossing configuration, because e_{1} and e_{2} are independent edges.

Hence, one can add to the outer face of Γ a simple curve connecting u and v without crossing any other edge of Γ, so that u and v remain on the outer face and so that c is no longer on the outer face (hence the new drawing is still an outer fan-planar drawing); this operation does not create multiple edges and adds one more edge to G, thus contradicting the hypothesis that G is maximal outer fan-planar.

Given an outer fan-planar drawing Γ of a maximal outer fan-planar graph G, the edges of G on the external boundary of Γ will be also called the outer edges of Γ.

A 2-layer fan-planar drawing is a fan-planar drawing such that: (i) each vertex is drawn on one of two distinct horizontal lines, called layers; (ii) each edge connects vertices of different layers and it is drawn as a vertical monotone curve. By definition, a 2-layer fan-planar drawing is also an outer fan-planar drawing. A 2-layer fan-planar graph is a graph that admits a 2-layer fan planar drawing.

3. Density of Outer and 2-layer Fan-planar Graphs

We first prove that an n-vertex outer fan-planar graph G has at most $3 n-5$ edges. Then we describe how to construct outer fan-planar graphs with n vertices and $3 n-5$ edges. Let G be a graph and let Γ be a drawing of G. The crossing graph of Γ, denoted as $\mathrm{CR}(\Gamma)$, is a graph having a vertex for each edge of G and an edge between any two vertices whose corresponding edges cross in Γ. A cycle of $\mathrm{CR}(\Gamma)$ of odd length will be called an odd cycle of $\mathrm{CR}(\Gamma)$; similarly, an even cycle of $\mathrm{CR}(\Gamma)$ is a cycle of even length. We start by proving some interesting combinatorial properties of G related to the cycles of the crossing graph of outer-fan planar drawings of G.

Lemma 2. Let $G=(V, E)$ be a maximal outer fan-planar graph with $n=|V|$ vertices and $m=|E|$ edges. Let Γ be an outer fan-planar drawing of G. If $\mathrm{CR}(\Gamma)$ does not have odd cycles then $m \leq 3 n-6$.

Proof. If $\mathrm{CR}(\Gamma)$ does not contain odd cycles, then it is bipartite and its vertices can be partitioned into two independent sets W_{1} and W_{2}. Since by Lemma 1 the outer edges of Γ are not crossed, they correspond to n isolated vertices in $\operatorname{CR}(\Gamma)$. We can arbitrarily assign all these vertices to the same set, say W_{1}. Denote by E_{i} the set of edges of G corresponding to the vertices of $W_{i}(i \in\{1,2\})$. Clearly, E_{1} and E_{2} partition the set E. Since no two edges of E_{i} cross in Γ, then the two subgraphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ are outerplanar graphs, where $\left|E_{1}\right| \leq 2 n-3$ and $\left|E_{2}\right| \leq 2 n-3-n$. Thus, $m=|E|=\left|E_{1}\right|+\left|E_{2}\right| \leq 3 n-6$.

The next lemma shows that the length of any odd cycle of $\operatorname{CR}(\Gamma)$ is at most 5 .
Lemma 3. Let G be a maximally dense outer fan-planar graph with n vertices and let Γ be an outer fan-planar drawing of $G . \mathrm{CR}(\Gamma)$ does not contain odd cycles of length greater than 5.

Proof. Let C be an odd cycle of length ℓ in $\mathrm{CR}(\Gamma)$. Let $E(C)=\left\{e_{0}=\left(u_{0}, v_{0}\right), \ldots\right.$, $\left.e_{\ell-1}=\left(u_{\ell-1}, v_{\ell-1}\right)\right\}$ be the set of ℓ edges of G corresponding to the vertices of C, such that e_{i} crosses e_{i+1} for $i=0, \ldots, l-1$, where indices are taken modulo ℓ. Recall that all vertices of G are on the outer face of Γ, which implies that the end-vertices of the edges in $E(C)$ are encountered in the following order when walking clockwise on the boundary of the outer face of $\Gamma: u_{i}$ precedes v_{i-1} and v_{i} precedes u_{i+2} (see, e.g., Figure 3(a)). Furthermore, vertices v_{i} and u_{i+2} must coincide, for $i=0, \ldots, \ell-1$. Indeed, if v_{i} and u_{i+2} are distinct, for some $i=0, \ldots, \ell-1$, then edge e_{i+1} is crossed by two independent edges (i.e., e_{i} and e_{i+2}), which contradicts the hypothesis that Γ is fan-planar. See also Figure 3(a). Thus, we have that u_{i} precedes u_{i+1} while walking clockwise on the boundary of the outer face of Γ, for $i=0, \ldots, \ell-1$, as shown in Figure 3(b). Moreover, it can be seen that the edges in $E(C)$ are not crossed by any edge not in $E(C)$, as otherwise the drawing would not be fan-planar.

Now, suppose by contradiction that ℓ is odd and greater than 5 (refer to Figure 3(b) for an illustration). Consider a vertex u_{i}, for some $i=0, \ldots, \ell-1$, and denote by \bar{V} the set of vertices encountered between u_{i+3} and u_{i-3} while walking clockwise on the boundary of the outer face of Γ (including u_{i+3} and u_{i-3}). Vertex u_{i} cannot be adjacent to any vertex in \bar{V}. Namely, if an edge $e=\left(u_{i}, u_{j}\right)$ existed, for some $u_{j} \in \bar{V}$, then it would be crossed by the two independent edges e_{i-1} and e_{j-1}. Thus, removing e_{i-1} from Γ, one can suitably connect u_{i} to all the vertices in \bar{V}, still obtaining a fan-planar drawing Γ^{*} with n vertices. Since the size of \bar{V} is $\ell-5$, and since by hypothesis $\ell \geq 7$, we have that Γ^{*} has at least two edges more than Γ, which contradicts the hypothesis that G is maximally dense.

The following corollary is a consequence of Lemma 3 and Property 1.
Corollary 1. Let G be a maximally dense outer fan-planar graph. Any odd cycle in the crossing graph of a fan-planar drawing of G has exactly length 5 .

(a)

(b)

Figure 3: Illustration for the proof of Lemma 3. (a) An edge set $E(C)$ with $\ell=7$. If v_{3} and u_{5} do not coincide, e_{4} (dashed) is crossed by the two independent edges e_{3} and e_{5} (in bold). (b) $E(C)$ with $\ell=7$, where v_{i} coincides with u_{i+2}, for $i=0, \ldots, 7$.

The next lemma claims that odd cycles in the crossing graph correspond to K_{5}.
Lemma 4. Let G be a maximally dense outer fan-planar graph and let Γ be an outer fan-planar drawing of G. If $\mathrm{CR}(\Gamma)$ contains a cycle C of length 5 , then the subgraph of G induced by the end-vertices of the edges corresponding to the vertices of C is K_{5} and the edges of the K_{5} that do not correspond to the vertices of $\mathrm{CR}(\Gamma)$ are not crossed in Γ.

Proof. Let $E(C)=\left\{e_{0}=\left(u_{0}, v_{0}\right), \ldots, e_{4}=\left(u_{4}, v_{4}\right)\right\}$ be the set of 5 edges of G corresponding to the vertices of C, such that e_{i} crosses e_{i+1} for $i=0, \ldots, 4$, where indices are taken modulo 5 .

With the same argument used in the proof of Lemma 3, vertices v_{i} and u_{i+2} must coincide, for $i=0, \ldots, 4$. It follows that u_{i} precedes u_{i+1} walking clockwise on the boundary of the outer face of Γ, and that u_{i} is connected to u_{i+2}, for $i=0, \ldots, 4$. Moreover, u_{i} and u_{i+1} are connected by an edge, for $i=0, \ldots, 4$. Indeed, if there is no vertex of G between u_{i} and u_{i+1} walking clockwise on the boundary of the outer face of Γ, for some $i=0, \ldots, 4$, then the edge $\left(u_{i}, u_{i+1}\right)$ can be added to Γ without creating any crossing and so that all vertices remain on the outer face. If there is a vertex of G between u_{i} and u_{i+1} walking clockwise on the boundary of the outer face of Γ then it is easy to see that this vertex cannot be adjacent to any vertex u_{j} distinct from u_{i} and u_{i+1}, because this would cause a forbidden crossing (two independent edges crossed by an edge); it follows that edge (u_{i}, u_{i+1}) can be still added without creating crossing and so that all vertices of G remain on the outer face. Hence, the subgraph induced by $u_{0}, u_{1}, \ldots, u_{4}$ is K_{5} and every edge $\left(u_{i}, u_{i+1}\right)$ is not crossed in Γ.

We now prove the upper bound on the density of outer fan-planar graphs. Clearly, it is sufficient to restrict to maximally dense outer fan-planar graphs.

Lemma 5. Let G be a maximally dense outer fan-planar graph with n vertices and m edges. Then $m \leq 3 n-5$ edges.

Proof. Let Γ be an outer fan-planar drawing of G. We first claim that G is biconnected. Suppose by contradiction that G is not biconnected, and let C_{1} and C_{2} be two distinct biconnected components of G that share a cut-vertex v. Let u be the first vertex of G encountered while moving from v clockwise on the external boundary of $\Gamma\left[C_{1}\right]$, and let w be the first vertex encountered while moving from v counterclockwise on the external boundary of $\Gamma\left[C_{2}\right]$. One can suitably add edge (u, w) in Γ, still getting an outer fan-planar drawing, which contradicts the hypothesis that G is maximally dense.

Now, by Corollary $1, \mathrm{CR}(\Gamma)$ can only have either even cycles or cycles of length 5 . Also, by Lemma 4, every cycle of length 5 in $\operatorname{CR}(\Gamma)$ corresponds to a subset of edges whose end-vertices induce K_{5}. We prove the statement by induction on the number h of K_{5} subgraphs in G.
Base Case. If $h=0$ then, by Lemma 2, G has at most $3 n-6$ edges.
Inductive Case. Suppose by induction that the claim is true for $h \geq 0$, and suppose G contains $h+1$ subgraphs that are K_{5}. Let G^{*} be one of these $h+1$ subgraphs. Let $e=(u, v)$ be an edge on the outer face of $\Gamma\left[G^{*}\right]$ that is not on the outer face of Γ. Vertices u and v are a separation pair of G, as otherwise either (i) edge (u, v) is crossed by some edge of Γ, or (ii) one between u or v is not on the outer face of Γ. However, Case (i) is ruled out by Lemma 4 and case (ii) by the outer fan-planarity of Γ. Hence, we can split G into two biconnected subgraphs that share only edge e, one of them containing G^{*}. Let $G_{1}, G_{2}, \ldots, G_{k}(k \leq 5)$ be the biconnected subgraphs of G distinct from G^{*} such that each G_{i} shares exactly one edge with G^{*}. Each G_{i} ($i=1,2, \ldots, k$) contains at most h subgraphs that are K_{5}, and therefore it has at most $3 n_{i}-5$ edges by induction, where n_{i} denotes the number of vertices of G_{i}. On the other hand, G^{*} has $3 n^{*}-5=10$ edges, where $n^{*}=5$ is the number of vertices of G^{*}. It follows that $m \leq 3\left(n^{*}+n_{1}+\cdots+n_{k}\right)-5(k+1)-k(k \leq 5)$. Since $n^{*}+n_{1}+\cdots+n_{k} \leq n+2 k$ we have $m \leq 3(n+2 k)-5(k+1)-k=3 n-5$.

The existence of an infinite family of outer fan-planar graphs that match the $3 n-5$ bound is proved in the next lemma. Refer to Figure 4 for an illustration.

Figure 4: Illustration for the proof of Lemma 6. (a) X_{1} and X_{2} before being merged. (b) Merging X_{1} and X_{2} into G_{2}. (c) G_{i} and X_{i+1}, the bold edges are used for merging.

Lemma 6. For any integer $h \geq 1$ there exists an outer fan-planar graph G with $n=$ $3 h+2$ vertices and $m=3 n-5$ edges.

Proof. Consider h graphs X_{1}, \ldots, X_{h}, such that each X_{i} is a K_{5} graph, for $i=$ $1, \ldots, h$. We now describe how to construct G. The idea is to "glue" X_{1}, \ldots, X_{h} together in such a way that they share single edges one to another. The proof is by induction on the number of merged graphs. Denote by G_{i} the graph obtained after merging X_{1}, \ldots, X_{i}, for $1<i \leq h$. We prove by induction that G_{i} respects the following invariants: (I1) it is an outer fan-planar graph; (I2) it has $n_{i}=3 i+2$ vertices and $m_{i}=3 n_{i}-5$ edges. In the base case $i=2$, we merge $G_{1}=X_{1}$ and X_{2} as follows. Pick an edge e on the outer face of X_{1} and an edge e^{\prime} on the outer face of X_{2}. Merge X_{1} and X_{2} by identifying e with e^{\prime}, see also Figs. 4(a) and 4(b). The new graph G_{2} is clearly an outer fan-planar graph with $n_{2}=5+5-2=8$ vertices and $m_{2}=10+10-1=19$ edges. Thus, the two invariants hold. In the inductive case, suppose we constructed G_{i} for $2<i<h$ and we want to attach X_{i+1} (see also Figure $4(\mathrm{c})$). Pick any edge e on the outer face of G_{i} and any edge e^{\prime} on the outer face of X_{i+1}. Merge the two graphs in the same way as done in the base case. It is immediate to see that (I1) holds. Also, $n_{i+1}=n_{i}+3$ and $m_{i+1}=m_{i}+9$. Since by induction $m_{i}=3 n_{i}-5$, then $m_{i+1}=3 n_{i}-5+9=3 n_{i+1}-5$.

Lemmas 5 and 6 imply the following theorem.
Theorem 1. An outer fan-planar graph with n vertices has at most $3 n-5$ edges, and this bound is tight for $n \geq 5$.

An obvious consequence of Theorem 1 and of the definition of outer fan-planar graphs that are maximally dense is the following fact.

Corollary 2. Every maximally dense outer fan-planar graph with $n=3 h+2$ vertices $(h \geq 1)$ has $3 n-5$ edges.

Concerning 2-layer fan planar graphs, we already observed that a 2-layer fan planar graph G is an outer fan-planar graph. Also, since all vertices on the same layer form an independent set, G is bipartite.

Theorem 2. A 2-layer fan-planar graph with n vertices has at most $2 n-4$ edges, and this bound is tight for $n \geq 3$.

Proof. Let G be a maximally dense 2-layer fan-planar graph with n vertices and m edges, and let Γ be a 2-layer fan-planar drawing of G. Denote by $V_{1}=\left\{v_{1}, \ldots, v_{n_{1}}\right\}$ and $V_{2}=\left\{v_{n_{1}+1}, \ldots, v_{n}\right\}$ the two independent sets of vertices of G. Without loss of generality, suppose that in Γv_{i} precedes v_{i+1} along the layer of V_{1} (for $i=1, \ldots, n_{1}-$ 1), and v_{j} follows v_{j+1} along the layer of V_{2} (for $j=n_{1}+1, \ldots, n-1$). See Figure 5(a). Construct from G a super-graph G^{*}, by adding an edge $\left(v_{i}, v_{i+1}\right)$, for $i=1, \ldots, n_{1}-1$, and an edge $\left(v_{j}, v_{j+1}\right)$, for $j=n_{1}+1, \ldots, n$ (see Figure 5(b)). Graph G^{*} is still outer fan-planar. Moreover, since G does not contain a K_{5} subgraph (because it is bipartite), also G^{*} does not contain a K_{5} subgraph, as otherwise

Figure 5: Illustration for the proof of Theorem 2.
at least three vertices of the same layer in G should form a 3-cycle in G^{*} (which does not happen by construction). Thus, by Lemma 3 and Property 1, the crossing graph of any outer fan-planar drawing of G^{*} contains only even cycles. Hence, denoted as m^{*} the number of edges of G^{*}, by Lemma 2 we have $m^{*} \leq 3 n-6$, and therefore $m=m^{*}-(n-2) \leq 2 n-4$. A family of 2-layer fan-planar graphs with $2 n-4$ edges is the family of the bipartite complete graphs $K_{2, n-2}$ (see Figure 5(c)).

4. Fan-planar and \boldsymbol{k}-planar Graphs

A k-planar drawing is a drawing where each edge is crossed at most k times, and a k-planar graph is a graph that admits a k-planar drawing. Clearly, every 1-planar graph is also a fan-planar graph. Also, both the maximum number of edges of fanplanar graphs [35] and the maximum number of edges of 2-planar graphs [37] have been shown to be $5 n-10$. Thus it is natural to ask what is the relationship between fan-planar and 2-planar graphs. More in general, we prove that there are fan-planar graphs that are not k-planar, for any $k \geq 1$, and that there are k-planar graphs (for $k>1$) that are not fan-planar. The existence of fan-planar graphs that are not k planar is proved with a counting argument on the minimum number of crossings of graph drawings. The crossing number $\operatorname{cr}(G)$ of G is the smallest number of crossings required in any drawing of G. We give the following.

Theorem 3. For any integer $k \geq 1$ there is a graph that is fan-planar but not k-planar.
Proof. Consider the complete 3-partite graph $K_{1,3, h}$. This graph is fan-planar for every $h \geq 1$ (see Figure 6(a)). It is known [7,38] that $\operatorname{cr}\left(K_{1,3, h}\right)=2\left\lfloor\frac{h}{2}\right\rfloor\left\lfloor\frac{h-1}{2}\right\rfloor+$ $\left\lceil\frac{h}{2}\right\rceil$. For $h=4 k+2$, we have $\operatorname{cr}\left(K_{1,3,4 k+2}\right)=2\left\lfloor\frac{4 k+2}{2}\right\rfloor\left\lfloor\frac{4 k+1}{2}\right\rfloor+\left\lceil\frac{4 k+2}{2}\right\rceil=$ $4 k(2 k+1)+2 k+1=8 k^{2}+6 k+1$. Thus, in every drawing of $K_{1,3,4 k+2}$ there are at least $8 k^{2}+6 k+1$ crossings. On the other hand, in a k-planar drawing there can be at most $\frac{k m}{2}$ crossings, where m is the number of edges in the drawing. Since $K_{1,3,4 k+2}$ has $16 k+11$ edges, to be k-planar it should admit a drawing with at most $\frac{k m}{2}=\frac{k(16 k+11)}{2}=8 k^{2}+\frac{11}{2} k$ crossings. Since $6 k+1>\frac{11}{2} k$ for every $k \geq 1$, $K_{1,3,4 k+2}$ is not k-planar.

To prove that for any $k>1$ there are k-planar graphs that are not fan-planar (Theorem 4), we first give a technical result (Lemma 7), which will be also reused in Section 5. Let Γ be a fan-planar drawing of a graph. We may regard crossed edges of Γ

Figure 6: (a) A fan-planar drawing of $K_{1,3, h}$. (b) A fan-planar drawing of the K_{7} graph. (c) The fragments of the fan-planar drawing in (b) are the thicker lines.
as composed by fragments, where a fragment is the portion of the edge that is between two consecutive crossings or between one of the two end-vertices of the edge and the first crossing encountered while moving along the edge towards the other end-vertex. An edge that is not crossed does not have any fragment. Figure 6(b) shows a fan-planar drawing of the K_{7} graph and Figure 6(c) shows the fragments of the drawing in Figure $6(\mathrm{~b})$. We consider two fragments adjacent if they share a common crossing or a common end-vertex. The next lemma provides an interesting and useful property.

Lemma 7. In any fan-planar drawing of the K_{7} graph, any pair of vertices is joined by a sequence of adjacent fragments.

Proof. Consider a fan-planar drawing Γ of the K_{7} graph and consider any vertex v_{i} of it $(i=1,2, \ldots, 7)$. Vertex v_{i} must be incident to some fragment in Γ. Indeed, if vertex v_{i} had no incident fragment, all the edges incident to v_{i} were uncrossed in Γ, and removing v_{i} and all its incident edges from Γ would yield a fan-planar drawing of the K_{6} graph where all vertices are on the same face (this would clearly imply the existence of an outer fan-planar drawing of K_{6}). This is however impossible by Lemma 5 (K_{6} has 6 vertices and 15 edges, i.e., more than $3 \cdot 6-5$ edges). Since a fragment is originated by a crossed edge and since two crossing edges are not adjacent, we have that vertex v_{i} is linked by a sequence of fragments to at least other three distinct vertices. Therefore, the vertices of K_{7} are linked by sequences of fragments in groups of at least four. Being seven vertices in total, this implies that all vertices of K_{7} are linked together by sequences of fragments.

Theorem 4. For any integer $k>1$ there is a graph that is k-planar but not fan-planar.
Proof. Since 2-planar graphs are also k-planar graphs, for $k>1$, it is sufficient to prove that there is a 2-planar graph that is not fan-planar. Let G^{\prime} be a graph consisting of a cycle $C=\left(v_{1}, v_{2}, \ldots, v_{10}\right)$ and of the edges $\left(v_{1}, v_{4}\right),\left(v_{5}, v_{10}\right),\left(v_{6}, v_{9}\right)$ (see Figure 7(a)). Let $G^{\prime \prime}$ be the graph obtained from G^{\prime} by replacing each edge (v_{i}, v_{j}) $(1 \leq i, j \leq 10)$ with a copy of K_{7}, whose vertices are denoted as $u_{1}, u_{2}, \ldots, u_{7}$, so that $v_{i}=u_{1}$ and $v_{j}=u_{7}$ (see Figure 7(b)). The copy of K_{7} that replaces $\left(v_{i}, v_{j}\right)$ is denoted as $K_{7}^{i, j}$. Let G be the graph obtained from $G^{\prime \prime}$ by adding the four edges $\left(v_{1}, v_{7}\right),\left(v_{2}, v_{6}\right),\left(v_{3}, v_{9}\right)$, and $\left(v_{4}, v_{8}\right)$ (see Figure 7(c)). Graph G is 2-planar. Namely, planarly embed G^{\prime} as shown in Figure 7(a). Construct a drawing Γ of G by replacing

(a)

(b)

(c)

Figure 7: (a)-(c) Illustration for the proof of Theorem 4: (a) graph G^{\prime}; (b) graph $G^{\prime \prime}$; (c) graph G.
each edge of G^{\prime} with a drawing of $K_{7}^{i, j}$ like the one in Figure 6(b) (see Figure 7(b)), and draw the edges $\left(v_{1}, v_{7}\right),\left(v_{2}, v_{6}\right),\left(v_{3}, v_{9}\right),\left(v_{4}, v_{8}\right)$ inside C as in Figure 7(c). Drawing Γ is 2-planar.

We now prove that G is not fan-planar. Suppose by contradiction that G has a fanplanar drawing Γ. By Lemma 7, for each $K_{7}^{i, j}(1 \leq i, j \leq 10)$ there is a sequence of fragments leading from $v_{i}=u_{1}$ to $v_{j}=u_{7}$; we call it the spine of $K_{7}^{i, j}$. Delete from Γ all fragments except those in the spine of each $K_{7}^{i, j}$; delete also all non-crossed edges and isolated vertices. The remaining drawing Γ^{\prime} is a planar drawing, because each spine cannot be crossed by any other fragment or edge, otherwise the drawing is no longer fan-planar. We denote by C^{\prime} the cycle of spines corresponding to C, by S the set of spines of $K_{7}^{1,4}, K_{7}^{5,10}$, and $K_{7}^{6,9}$, and by F the set of edges $\left(v_{1}, v_{7}\right),\left(v_{2}, v_{6}\right)$, $\left(v_{3}, v_{9}\right)$, and $\left(v_{4}, v_{8}\right)$. Since Γ^{\prime} is planar each spine in S is either inside C^{\prime} or outside C^{\prime} in Γ^{\prime}, and therefore in Γ. Furthermore, since the edges of F cannot cross the spine of any $K_{7}^{i, j}(1 \leq i, j \leq 10)$ in Γ, each of them must be either inside or outside C^{\prime} in Γ. Given two elements of $S \cup F$ we say that they are on the same side of C^{\prime} if they are both inside or both outside C^{\prime} in Γ, otherwise we say that they are on opposite sides of C^{\prime}. Since there cannot be a crossing between an element of F and one of S, each of the two edges $\left(v_{2}, v_{6}\right)$ and $\left(v_{3}, v_{9}\right)$ must be on the opposite side of C^{\prime} with respect to $K_{7}^{1,4}$. Analogously, each of the two edges $\left(v_{1}, v_{7}\right)$ and $\left(v_{4}, v_{8}\right)$ must be on the opposite side of C^{\prime} with respect to $K_{7}^{6,9}$. Finally, $K_{7}^{5,10}$ must be on the opposite side of C^{\prime} with respect to $\left(v_{1}, v_{7}\right),\left(v_{2}, v_{6}\right),\left(v_{3}, v_{9}\right)$, and $\left(v_{4}, v_{8}\right)$. It follows that the spines of S and the edges of F must be on opposite sides of C^{\prime}, which implies that each edge in F is crossed by two independent edges (see Figure 7(c)), a contradiction.

5. Complexity of the Fan-planarity Testing Problem

We exploit the results of Sections 3 and 4 to prove that testing whether a graph is fan-planar in the variable embedding setting is NP-complete. We call this problem the fan-planarity testing. We use a reduction from the 1-planarity testing, which is NP-complete in the variable embedding setting [32, 36]. The 1-planarity testing asks whether a given graph admits a 1-planar drawing. We prove the following.

Theorem 5. Fan-planarity testing is NP-complete.

Proof. Similarly to the result of Garey and Johnson on the NP-completeness of the crossing number problem [31], a non-deterministic algorithm to test whether a graph admits a fan-planar drawing with k crossings considers all possible k pairs of edges that cross (and the order of the crossings along the edges), discards the configurations where an edge crosses more than one fan, replaces crossings with dummy vertices, and tests the obtained graph for planarity. Hence the problem belongs to NP.

We now prove the hardness. Given an instance $G=(V, E)$ of the 1-planarity testing we build an instance $G_{f}=\left(V_{f}, E_{f}\right)$ of the fan-planarity testing by replacing each edge $(u, v) \in E$ with two K_{7} graphs with vertices $u=u_{1}, u_{2}, \ldots, u_{7}$ and $v=$ $v_{1}, v_{2}, \ldots, v_{7}$, called attachment gadgets and joined by a spanning edge $\left(u_{7}, v_{7}\right)$ (see Figure 8 for an illustration). $G_{f}=\left(V_{f}, E_{f}\right)$ can be constructed in polynomial time, having $\left|V_{f}\right|=|V|+|E| \times 12$ vertices and $\left|E_{f}\right|=|E| \times 43$ edges, where $|E| \times 42$ of them belong to the attachment gadgets and the remaining $|E|$ are spanning edges that join different attachment gadgets. We show that G is 1-planar if and only if G_{f} is fan-planar. If G admits a 1-planar drawing, replace each edge (u, v) of G with two fan-planar drawings of K_{7} like those depicted in Figure 6(b) and with edge (u_{7}, v_{7}), in such a way that the possible crossing of (u, v) occurs on $\left(u_{7}, v_{7}\right)$. The obtained drawing of G_{f} is fan-planar since each attachment gadget has a fan-planar drawing and each spanning edge has at most one crossing. Conversely, suppose G_{f} admits a fan-planar drawing Γ_{f}. By Lemma 7, for any attachment gadget of G_{f} attached to vertex u, there is at least a sequence of fragments leading from $u=u_{1}$ to u_{7}. As in the proof of Theorem 4, call such a sequence of fragments the spine of the attachment gadget. Delete from Γ_{f} all fragments except those in the spines. Delete from Γ_{f} all uncrossed edges except the spanning edges. Remove also isolated vertices. A drawing Γ of G is obtained, where the drawing of edge (u, v) is given by the spine from $u=u_{1}$ to u_{7}, the spanning edge $\left(u_{7}, v_{7}\right)$, and the spine from v_{7} to $v_{1}=v$. Observe that, $u \neq v$, as otherwise there would be a self-loop in G. We claim that Γ is a 1-planar drawing of G. Indeed, fragments in the spines can not be crossed by any other fragment or spanning edge of Γ_{f}. It follows that spanning edges can cross only among themselves in Γ_{f}. However, they can cross only once, as they are a matching of G_{f} and Γ_{f} is fan-planar. Hence, Γ is a 1-planar drawing, but not necessarily simple; indeed, it may happen that two crossing edges (u, v) and (w, z) in Γ share an end-vertex, say $u=w$ (this happens when in Γ_{f} there are two crossing spanning edges of two K_{7} attached to u). The crossing between (u, v) and (u, z) in Γ can be easily removed by rerouting the edges (see Figure 8(c)).

6. Conclusions and Open Problems

We extended the study of fan-planar drawings started by Kaufmann and Ueckerdt [35]. We showed tight bounds on the density of constrained versions of fan-planar drawings and clarified the relationship between fan-planarity and k-planarity. Also, we proved that the fan-planarity testing in the variable embedding setting is NP-complete. A related work by Bekos et al. [10] proves that the fan-planarity testing problem is NPhard also if the circular ordering of the edges around each vertex is given and cannot be changed, i.e., if the graph is given with a so-called rotation system; on the positive side,

(a)

(b)

(c)

Figure 8: Illustration of the reduction used in Theorem 5. (a) An instance G of 1-planarity testing; (b) The reduced instance G_{f} of fan-planarity testing. (c) Two adjacent edges of G that cross one to another in Γ; the crossing can be removed by rerouting the two edges as shown by the dashed lines.
they prove that it is polynomial-time solvable to recognize graphs that are maximal outer fan-planar, i.e., graphs that admit an outer fan-planar drawing and that cannot be augmented with any edge without loosing this property (see also [11] for a technical report). Instead, the complexity of recognizing outer fan-planar drawable graphs in the general case remains an open problem.

Several other interesting research directions can be explored, including the following:
Research Direction 1. From the combinatorial point of view, it would be interesting to establish lower bounds on the number of edges of maximal fan-planar graphs, also in the outer and in the 2-layer constrained versions. Results on this kind of question have been established for example for maximal 1-planar and 2-planar graphs [9, 15].

Research Direction 2. On the algorithmic side, it is still unknown the complexity of recognizing outer fan-planar or 2-layer fan-planar graphs that are not necessarily maximal. In this research line, efficient recognition algorithms have been provided for example for outer 1-planar graphs [8, 33] and for 2-layer RAC graphs [19]. It is also still unknown the complexity of recognizing maximal or maximally dense fan-planar graphs.

Research Direction 3. From an application-oriented perspective, it would be interesting to develop algorithms that are able to combine fan-planarity and bundling techniques to create confluent drawings with few crossings (similarly to the examples of Figures 1(b) and 1(c)).

Acknowledgments

This work started at the Bertinoro Workshop on Graph Drawing 2014. We thank Michael Kaufmann and Torsten Ueckerdt for suggesting the study of fan-planar graphs during the workshop. We also thank all the participants of the workshop for the useful discussions on this topic. The research contained in this paper is supported in part by the MIUR project AMANDA "Algorithmics for MAssive and Networked DAta", prot. 2012C4E3KT_001.

References

[1] E. Ackerman. On the maximum number of edges in topological graphs with no four pairwise crossing edges. Discrete \& Computational Geometry, 41(3):365-375, 2009.
[2] E. Ackerman, R. Fulek, and C. D. Tóth. Graphs that admit polyline drawings with few crossing angles. SIAM Journal on Discrete Mathematics, 26(1):305-320, 2012.
[3] E. Ackerman and G. Tardos. On the maximum number of edges in quasi-planar graphs. Journal of Combinatorial Theory, Series A, 114(3):563-571, 2007.
[4] P. K. Agarwal, B. Aronov, J. Pach, R. Pollack, and M. Sharir. Quasi-planar graphs have a linear number of edges. Combinatorica, 17(1):1-9, 1997.
[5] M. J. Alam, F. J. Brandenburg, and S. G. Kobourov. Straight-line grid drawings of 3connected 1-planar graphs. In $G D$, volume 8242 of $L N C S$, pages 83-94, 2013.
[6] P. Angelini, G. Di Battista, W. Didimo, F. Frati, S.-H. Hong, M. Kaufmann, G. Liotta, and A. Lubiw. Large angle crossing drawings of planar graphs in subquadratic area. In $E G C$, volume 7579 of $L N C S$, pages 200-209, 2011.
[7] K. Asano. The crossing number of $K_{1,3, n}$ and $K_{2,3, n}$. Journal of Graph Theory, 10(1):18, 1986.
[8] C. Auer, C. Bachmaier, F. J. Brandenburg, A. Gleißner, K. Hanauer, D. Neuwirth, and J. Reislhuber. Recognizing outer 1-planar graphs in linear time. In GD, volume 8242 of LNCS, pages 107-118, 2013.
[9] C. Auer, F.-J. Brandenburg, A. Gleißner, and K. Hanauer. On sparse maximal 2-planar graphs. In GD, volume 7704 of $L N C S$, pages 555-556, 2012.
[10] M. A. Bekos, S. Cornelsen, L. Grilli, S. Hong, and M. Kaufmann. On the recognition of fan-planar and maximal outer-fan-planar graphs. In GD, LNCS, page to appear, 2014.
[11] M. A. Bekos, S. Cornelsen, L. Grilli, S. Hong, and M. Kaufmann. On the recognition of fan-planar and maximal outer-fan-planar graphs. CoRR, abs/1409.0461, 2014.
[12] C. Binucci, E. Di Giacomo, W. Didimo, F. Montecchiani, M. Patrignani, and I. G. Tollis. Fan-planar graphs: Combinatorial properties and complexity results. In $G D$, LNCS, page to appear, 2014.
[13] C. Binucci, E. Di Giacomo, W. Didimo, F. Montecchiani, M. Patrignani, and I. G. Tollis. Properties and complexity of fan-planarity. CoRR, abs/1406.5299, 2014.
[14] R. Bodendiek, H. Schumacher, and K. Wagner. Über 1-optimale Graphen. Mathematische Nachrichten, 117:323-339, 1984.
[15] F.-J. Brandenburg, D. Eppstein, A. Gleißner, M. T. Goodrich, K. Hanauer, and J. Reislhuber. On the density of maximal 1-planar graphs. In $G D$, volume 7704 of $L N C S$, pages 327-338, 2012.
[16] O. Cheong, S. Har-Peled, H. Kim, and H.-S. Kim. On the number of edges of fan-crossing free graphs. In ISAAC, volume 8283 of $L N C S$, pages 163-173, 2013.
[17] J. Czap and D. Hudák. 1-planarity of complete multipartite graphs. Discrete Applied Mathematics, 160(4-5):505-512, 2012.
[18] H. R. Dehkordi and P. Eades. Every outer-1-plane graph has a right angle crossing drawing. International Journal on Computational Geometry and Applications, 22(6):543-558, 2012.
[19] E. Di Giacomo, W. Didimo, P. Eades, and G. Liotta. 2-layer right angle crossing drawings. Algorithmica, 68(4):954-997, 2014.
[20] E. Di Giacomo, W. Didimo, G. Liotta, and H. Meijer. Area, curve complexity, and crossing resolution of non-planar graph drawings. Theory of Computing Systems, 49(3):565-575, 2011.
[21] E. Di Giacomo, W. Didimo, G. Liotta, and F. Montecchiani. h-quasi planar drawings of bounded treewidth graphs in linear area. In $W G$, volume 7551 of $L N C S$, pages 91-102, 2012.
[22] E. Di Giacomo, W. Didimo, G. Liotta, and F. Montecchiani. Area requirement of graph drawings with few crossings per edge. Computational Geometry, 46(8):909-916, 2013.
[23] M. Dickerson, D. Eppstein, M. T. Goodrich, and J. Y. Meng. Confluent drawings: Visualizing non-planar diagrams in a planar way. Journal of Graph Algorithms and Applications, 9(1):31-52, 2005.
[24] W. Didimo. Density of straight-line 1-planar graph drawings. Information Processing Letters, 113(7):236-240, 2013.
[25] W. Didimo, P. Eades, and G. Liotta. Drawing graphs with right angle crossings. Theoretical Computer Science, 412(39):5156-5166, 2011.
[26] W. Didimo and G. Liotta. The crossing angle resolution in graph drawing. In J. Pach, editor, Thirty Essays on Geometric Graph Theory. Springer, 2012.
[27] V. Dujmović, J. Gudmundsson, P. Morin, and T. Wolle. Notes on large angle crossing graphs. Chicago Journal on Theoretical Computer Science, 2011, 2011.
[28] P. Eades and G. Liotta. Right angle crossing graphs and 1-planarity. Discrete Applied Mathematics, 161(7-8):961-969, 2013.
[29] D. Eppstein, M. T. Goodrich, and J. Y. Meng. Confluent layered drawings. Algorithmica, 47(4):439-452, 2007.
[30] J. Fox, J. Pach, and A. Suk. The number of edges in k-quasi-planar graphs. SIAM Journal on Discrete Mathematics, 27(1):550-561, 2013.
[31] M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM Journal on Algebraic and Discrete Methods, 4(3):312-316, 1983.
[32] A. Grigoriev and H. L. Bodlaender. Algorithms for graphs embeddable with few crossings per edge. Algorithmica, 49(1):1-11, 2007.
[33] S.-H. Hong, P. Eades, N. Katoh, G. Liotta, P. Schweitzer, and Y. Suzuki. A linear-time algorithm for testing outer-1-planarity. In GD, volume 8242 of $L N C S$, pages 71-82, 2013.

1
2
3
4
5 6
[34] S.-H. Hong, P. Eades, G. Liotta, and S.-H. Poon. Fáry's theorem for 1-planar graphs. In COCOON, volume 7434 of LNCS, pages 335-346, 2012.
[35] M. Kaufmann and T. Ueckerdt. The density of fan-planar graphs. CoRR, abs/1403.6184, 2014.
[36] V. P. Korzhik and B. Mohar. Minimal obstructions for 1-immersions and hardness of 1planarity testing. Journal of Graph Theory, 72(1):30-71, 2013.
[37] J. Pach and G. Tóth. Graphs drawn with few crossings per edge. Combinatorica, 17(3):427-439, 1997.
[38] M. Schaefer. The graph crossing number and its variants: A survey. Electronic Journal of Combinatorics, 20(2), 2013.
[39] Y. Suzuki. Optimal 1-planar graphs which triangulate other surfaces. Discrete Mathematics, 310(1):6-11, 2010.
[40] Y. Suzuki. Re-embeddings of maximum 1-planar graphs. SIAM Journal on Discrete Mathematics, 24(4):1527-1540, 2010.
[41] P. Valtr. On geometric graphs with no k pairwise parallel edges. Discrete \& Computational Geometry, 19(3):461-469, 1998.

[^0]: ${ }^{2}$ Research supported in part by the MIUR project AMANDA "Algorithmics for MAssive and Networked DAta", prot. 2012C4E3KT_001. This work started at the Bertinoro Workshop on Graph Drawing 2014. An extended abstract of this paper has been presented at the $22^{n d}$ International Symposium on Graph Drawing, GD 2014 [12] (see also [13] for a technical report.)

 * Corresponding author

 Email addresses: carla.binucci@unipg.it (Carla Binucci),
 emilio.digiacomo@unipg.it (Emilio Di Giacomo), walter.didimo@unipg.it (Walter Didimo), fabrizio.montecchiani@unipg.it (Fabrizio Montecchiani),
 patrigna@dia.uniroma3.it (Maurizio Patrignani), symvonis@math.ntua.gr (Antonios Symvonis), tollis@ics.forth.gr (Ioannis G. Tollis)

