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Abstract

In a fan-planar drawing of a graph an edge can cross only edges with a common end-
vertex. Fan-planar drawings have been recently introduced by Kaufmann and Ueck-
erdt [35], who proved that every n-vertex fan-planar drawing has at most 5n − 10
edges, and that this bound is tight for n ≥ 20. We extend their result from both the
combinatorial and the algorithmic point of view. We prove tight bounds on the den-
sity of constrained versions of fan-planar drawings and study the relationship between
fan-planarity and k-planarity. Also, we prove that testing fan-planarity in the variable
embedding setting is NP-complete.

Keywords: Graph Planarity, Graph Drawing, Edge Crossings, Edge Density

1. Introduction

There is a growing interest in the study of non-planar drawings of graphs with for-
bidden crossing configurations. The idea is to relax the planarity constraint by allowing
edge crossings that do not affect too much the drawing readability. Among the most
popular types of non-planar drawings studied so far we recall:

• k-planar drawings, where an edge can have at most k crossings (see, e.g., [5, 8,
9, 15, 22, 24, 28, 33, 34, 36, 37, 40]);

• k-quasi-planar drawings, which do not contain k mutually crossing edges (see,
e.g., [1, 3, 4, 21, 30, 41]);
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• RAC (Right Angle Crossing) drawings, where edges can cross only at right angles
(see, e.g., [25] and [26] for a survey);

• ACEα drawings [2] and ACLα drawings [6, 20, 27], which are generalizations of
RAC drawings; namely, in an ACEα drawing edges can cross only at an angle
that is exactly α (α ∈ (0, π/2]); in an ACLα drawing edges can cross only at
angles that are at least α (see also [26]);

• fan-crossing free drawings, where an edge cannot cross two other edges having
a common end-vertex [16].

Given a desired type T of non-planar drawing with forbidden crossing configura-
tions, a classical combinatorial problem is to establish bounds on the maximum number
of edges that a drawing of type T can have; this problem is usually dubbed a Turán-
type problem, and several tight bounds have been proved for the types of drawings
mentioned above, both for straight-line and for polyline edges (see, e.g., [1, 2, 4, 15,
16, 24, 25, 27, 30, 37, 41]). From the algorithmic point of view, the complexity of
testing whether a graph G admits a drawing of type T is one of the most interesting.
Also for this problem several results have been shown, both in the variable and in the
fixed embedding setting (see, e.g., [8, 18, 19, 32, 33, 36]).

In this paper we investigate fan-planar drawings of graphs, in which an edge cannot
cross two independent edges, i.e., an edge can cross several edges provided that they
have a common end-vertex. Fan-planar drawings have been recently introduced by
Kaufmann and Ueckerdt [35]; they proved that every n-vertex graph without loops and
multiple edges that admits a fan-planar drawing has at most 5n−10 edges, and that this
bound is tight for n ≥ 20. Fan-planar drawings are on the opposite side of fan-crossing
free drawings mentioned above. Besides its intrinsic theoretical interest, we observe
that fan-planarity can be also used in many cases for creating drawings with few edge
crossings per edge in a confluent drawing style (see, e.g., [23, 29]). For example,
Figure 1(a) shows a fan-planar drawing Γ with 12 crossings; Figure 1(b) shows a new
drawing with just 3 crossings obtained from Γ by bundling crossing “fans”. Another
example is shown in Figures 1(c) and 1(d).

We prove both combinatorial properties and complexity results related to fan-planar
drawings of graphs. The main contributions of our work are as follows:

• We study the density of constrained versions of fan-planar drawings, namely
outer fan-planar drawings, where all vertices must lie on the external boundary
of the drawing, and 2-layer fan-planar drawings, where vertices are placed on
two distinct horizontal lines and edges are vertically monotone lines. We prove
tight bounds for the edge density of these drawings. Namely, we show that n-
vertex outer fan-planar drawings have at most 3n − 5 edges (a tight bound for
n ≥ 5), and that n-vertex 2-layer fan-planar drawings have at most 2n− 4 edges
(a tight bound for n ≥ 3). We remark that outer and 2-layer non-planar drawings
have been previously studied in the 1-planarity setting [8, 24, 33] and in the RAC
planarity setting [18, 19].
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(a) (b)

(c) (d)

Figure 1: (a) A fan-planar drawing of a graph G with 12 crossings; (b) A confluent drawing of G with 3
crossings. (c) A fan-planar drawing with 16 crossings of another graph G; (d) A confluent drawing of G
with 8 crossings.

• Since general fan-planar drawable graphs have at most 5n − 10 edges and the
same bound holds for 2-planar drawable graphs [37], we investigate the relation-
ship between these two graph classes (observe that 1-planar graphs are always
fan-planar by definition). More in general, we study the relationship between
k-planarity and fan-planarity, proving that in fact for any k ≥ 2 there exist fan-
planar drawable graphs that are not k-planar, and vice versa.

• Finally, we show that testing whether a graph admits a fan-planar drawing in the
variable embedding setting is NP-complete.

The rest of the paper is structured as follows: In Section 2 we give some preliminary
definitions. Section 3 describes the tight bounds on the edge density of outer and
2-layer fan-planar drawable graphs. The relationship between k-planarity and fan-
planarity is shown in Section 4, while Section 5 proves the NP-completeness of the
fan-planarity testing problem. A final discussion that analyzes further work on fan-
planarity and that presents some open research directions is given in Section 6.

2. Preliminary definitions and results

A drawing Γ of a graph G maps each vertex to a distinct point of the plane and
each edge to a simple Jordan arc between the points corresponding to the end-vertices

3
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of the edge. For a subgraph G′ of G, we denote by Γ[G′] the restriction of Γ to G′.
Throughout the paper we consider only simple graphs, i.e., graphs with neither multiple
edges nor self-loops; also, we only consider simple drawings, i.e., drawings such that
the arcs representing two edges have at most one point in common, which is either a
common end-vertex or a common interior point where the two arcs properly cross.

For each vertex v of G, the set of edges incident to v is called the fan of v. Clearly,
each edge (u, v) of G belongs to the fan of u and to the fan of v at the same time.
Two edges that do not share a vertex are called independent edges; two independent
edges always belong to distinct fans. A fan-planar drawing Γ of G, is a drawing of
G such that: (a) no edge is crossed by two independent edges; (b) there are not two
adjacent edges (u, v), (u,w) that cross an edge e from different “sides” while moving
from u to v and from u to w. The forbidden configurations (a) and (b) are depicted
in Figure 2(a) and Figure 2(b), respectively. Figures 2(c) and 2(d) show two allowed
configurations of a fan-planar drawing. A fan-planar graph is a graph that admits a
fan-planar drawing.

(a)

u

v

w
e

(b) (c) (d)

Figure 2: (a)-(b) Forbidden configurations in a fan-planar drawing: (c)-(d) Allowed configurations in a fan-
planar drawing.

The next property immediately follows from the definition of fan-planar drawings.

Property 1. A fan-planar drawing does not contain 3-mutually crossing edges.

Let Γ be a non-planar drawing ofG; the planar enhancement Γ′ of Γ is the drawing
obtained from Γ by replacing each crossing point with a dummy vertex. The boundary
of each face f ′ of Γ′ consists of a sequence of real and dummy vertices; the connected
region f of the plane that corresponds to f ′ in Γ consists of a sequence of vertices and
crossing points. For simplicity we call f a face of Γ. The outer face of Γ is the face
corresponding to the outer face of Γ′. A fan-planar drawing ofGwith all vertices on the
outer face is called an outer fan-planar drawing of G. Observe that the configuration
in Figure 2(b) cannot occur in a drawing with all vertices on the outer face; hence, a
drawing is outer fan-planar if and only if all vertices are on the outer face and it does
not contain an edge crossed by two independent edges. An outer fan-planar graph is a
graph that admits an outer fan-planar drawing. An outer fan-planar graphG is maximal
if no edge can be added to G without loosing the property that G remains outer fan-
planar. An outer fan-planar graph G with n vertices is maximally dense if it has the
maximum number of edges among all outer fan-planar graphs with n vertices. If G is
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maximally dense then it is also maximal, but not vice versa. We remark that maximally
dense graphs are sometimes called “optimal” in the literature (see, e.g., [14, 17, 39]).
The following property holds.

Lemma 1. LetG = (V,E) be a maximal outer fan-planar graph and let Γ be an outer
fan-planar drawing of G. The outer face of Γ does not contain crossing points, i.e., it
consists of |V | uncrossed edges.

PROOF. Suppose by contradiction that the outer face of Γ contains a crossing point
c formed by two edges e1 and e2. Let u be the first vertex of G encountered while
moving from c counterclockwise along the boundary of the outer face of Γ and let v be
the first vertex of G encountered while moving from c clockwise along the boundary
of the outer face of Γ. First observe that Γ does not have an edge (u, v), because if
such an edge existed then one of the following two cases would apply:

• (u, v) is in the outer face of Γ: this would either contradict the hypothesis that c
is on the boundary of the outer face of Γ, or it contradicts the hypothesis that all
vertices of G are on the outer face of Γ.

• (u, v) crosses e1, or e2, or both: if it crosses only one of the two edges, then
there would be some vertex of G that is not on the outer face of Γ, a contradic-
tion; if (u, v) crosses both e1 and e2 then there would be a forbidden crossing
configuration, because e1 and e2 are independent edges.

Hence, one can add to the outer face of Γ a simple curve connecting u and v without
crossing any other edge of Γ, so that u and v remain on the outer face and so that
c is no longer on the outer face (hence the new drawing is still an outer fan-planar
drawing); this operation does not create multiple edges and adds one more edge to G,
thus contradicting the hypothesis that G is maximal outer fan-planar. 2

Given an outer fan-planar drawing Γ of a maximal outer fan-planar graph G, the
edges of G on the external boundary of Γ will be also called the outer edges of Γ.

A 2-layer fan-planar drawing is a fan-planar drawing such that: (i) each vertex is
drawn on one of two distinct horizontal lines, called layers; (ii) each edge connects
vertices of different layers and it is drawn as a vertical monotone curve. By definition,
a 2-layer fan-planar drawing is also an outer fan-planar drawing. A 2-layer fan-planar
graph is a graph that admits a 2-layer fan planar drawing.

3. Density of Outer and 2-layer Fan-planar Graphs

We first prove that an n-vertex outer fan-planar graph G has at most 3n− 5 edges.
Then we describe how to construct outer fan-planar graphs with n vertices and 3n− 5
edges. Let G be a graph and let Γ be a drawing of G. The crossing graph of Γ, denoted
as CR(Γ), is a graph having a vertex for each edge of G and an edge between any two
vertices whose corresponding edges cross in Γ. A cycle of CR(Γ) of odd length will
be called an odd cycle of CR(Γ); similarly, an even cycle of CR(Γ) is a cycle of even
length. We start by proving some interesting combinatorial properties of G related to
the cycles of the crossing graph of outer-fan planar drawings of G.

5
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Lemma 2. Let G = (V,E) be a maximal outer fan-planar graph with n = |V | ver-
tices and m = |E| edges. Let Γ be an outer fan-planar drawing of G. If CR(Γ) does
not have odd cycles then m ≤ 3n− 6.

PROOF. If CR(Γ) does not contain odd cycles, then it is bipartite and its vertices can be
partitioned into two independent setsW1 andW2. Since by Lemma 1 the outer edges of
Γ are not crossed, they correspond to n isolated vertices in CR(Γ). We can arbitrarily
assign all these vertices to the same set, say W1. Denote by Ei the set of edges of G
corresponding to the vertices of Wi (i ∈ {1, 2}). Clearly, E1 and E2 partition the set
E. Since no two edges of Ei cross in Γ, then the two subgraphs G1 = (V,E1) and
G2 = (V,E2) are outerplanar graphs, where |E1| ≤ 2n − 3 and |E2| ≤ 2n − 3 − n.
Thus, m = |E| = |E1|+ |E2| ≤ 3n− 6. 2

The next lemma shows that the length of any odd cycle of CR(Γ) is at most 5.

Lemma 3. Let G be a maximally dense outer fan-planar graph with n vertices and let
Γ be an outer fan-planar drawing of G. CR(Γ) does not contain odd cycles of length
greater than 5.

PROOF. LetC be an odd cycle of length ` in CR(Γ). LetE(C) = {e0 = (u0, v0), . . . ,
e`−1 = (u`−1, v`−1)} be the set of ` edges of G corresponding to the vertices of C,
such that ei crosses ei+1 for i = 0, . . . , l−1, where indices are taken modulo `. Recall
that all vertices of G are on the outer face of Γ, which implies that the end-vertices of
the edges in E(C) are encountered in the following order when walking clockwise on
the boundary of the outer face of Γ: ui precedes vi−1 and vi precedes ui+2 (see, e.g.,
Figure 3(a)). Furthermore, vertices vi and ui+2 must coincide, for i = 0, . . . , ` − 1.
Indeed, if vi and ui+2 are distinct, for some i = 0, . . . , `− 1, then edge ei+1 is crossed
by two independent edges (i.e., ei and ei+2), which contradicts the hypothesis that Γ is
fan-planar. See also Figure 3(a). Thus, we have that ui precedes ui+1 while walking
clockwise on the boundary of the outer face of Γ, for i = 0, . . . , ` − 1, as shown in
Figure 3(b). Moreover, it can be seen that the edges in E(C) are not crossed by any
edge not in E(C), as otherwise the drawing would not be fan-planar.

Now, suppose by contradiction that ` is odd and greater than 5 (refer to Figure 3(b)
for an illustration). Consider a vertex ui, for some i = 0, . . . , ` − 1, and denote by V
the set of vertices encountered between ui+3 and ui−3 while walking clockwise on the
boundary of the outer face of Γ (including ui+3 and ui−3). Vertex ui cannot be adjacent
to any vertex in V . Namely, if an edge e = (ui, uj) existed, for some uj ∈ V , then it
would be crossed by the two independent edges ei−1 and ej−1. Thus, removing ei−1
from Γ, one can suitably connect ui to all the vertices in V , still obtaining a fan-planar
drawing Γ∗ with n vertices. Since the size of V is `−5, and since by hypothesis ` ≥ 7,
we have that Γ∗ has at least two edges more than Γ, which contradicts the hypothesis
that G is maximally dense. 2

The following corollary is a consequence of Lemma 3 and Property 1.

Corollary 1. Let G be a maximally dense outer fan-planar graph. Any odd cycle in
the crossing graph of a fan-planar drawing of G has exactly length 5.
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u0

u1 u2

u3

u4

u5

u6

e0

e2

e3

e4

e1

e5

e6

v6 v0

v1

v2

v3

v4

v5

(a)

u0

u1 u2

u3

u4

u5

u6

e0

e2

e3

e4

e1

e5

e6

(b)

Figure 3: Illustration for the proof of Lemma 3. (a) An edge set E(C) with ` = 7. If v3 and u5 do not
coincide, e4 (dashed) is crossed by the two independent edges e3 and e5 (in bold). (b) E(C) with ` = 7,
where vi coincides with ui+2, for i = 0, . . . , 7.

The next lemma claims that odd cycles in the crossing graph correspond to K5.

Lemma 4. Let G be a maximally dense outer fan-planar graph and let Γ be an outer
fan-planar drawing of G. If CR(Γ) contains a cycle C of length 5, then the subgraph
of G induced by the end-vertices of the edges corresponding to the vertices of C is
K5 and the edges of the K5 that do not correspond to the vertices of CR(Γ) are not
crossed in Γ.

PROOF. Let E(C) = {e0 = (u0, v0), . . . , e4 = (u4, v4)} be the set of 5 edges of G
corresponding to the vertices of C, such that ei crosses ei+1 for i = 0, . . . , 4, where
indices are taken modulo 5.

With the same argument used in the proof of Lemma 3, vertices vi and ui+2 must
coincide, for i = 0, . . . , 4. It follows that ui precedes ui+1 walking clockwise on
the boundary of the outer face of Γ, and that ui is connected to ui+2, for i = 0, . . . , 4.
Moreover, ui and ui+1 are connected by an edge, for i = 0, . . . , 4. Indeed, if there is no
vertex of G between ui and ui+1 walking clockwise on the boundary of the outer face
of Γ, for some i = 0, . . . , 4, then the edge (ui, ui+1) can be added to Γ without creating
any crossing and so that all vertices remain on the outer face. If there is a vertex of G
between ui and ui+1 walking clockwise on the boundary of the outer face of Γ then it
is easy to see that this vertex cannot be adjacent to any vertex uj distinct from ui and
ui+1, because this would cause a forbidden crossing (two independent edges crossed
by an edge); it follows that edge (ui, ui+1) can be still added without creating crossing
and so that all vertices of G remain on the outer face. Hence, the subgraph induced by
u0, u1, . . . , u4 is K5 and every edge (ui, ui+1) is not crossed in Γ. 2

We now prove the upper bound on the density of outer fan-planar graphs. Clearly,
it is sufficient to restrict to maximally dense outer fan-planar graphs.

Lemma 5. Let G be a maximally dense outer fan-planar graph with n vertices and m
edges. Then m ≤ 3n− 5 edges.

7
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PROOF. Let Γ be an outer fan-planar drawing of G. We first claim that G is bicon-
nected. Suppose by contradiction that G is not biconnected, and let C1 and C2 be two
distinct biconnected components ofG that share a cut-vertex v. Let u be the first vertex
of G encountered while moving from v clockwise on the external boundary of Γ[C1],
and let w be the first vertex encountered while moving from v counterclockwise on the
external boundary of Γ[C2]. One can suitably add edge (u,w) in Γ, still getting an
outer fan-planar drawing, which contradicts the hypothesis that G is maximally dense.

Now, by Corollary 1, CR(Γ) can only have either even cycles or cycles of length 5.
Also, by Lemma 4, every cycle of length 5 in CR(Γ) corresponds to a subset of edges
whose end-vertices induce K5. We prove the statement by induction on the number h
of K5 subgraphs in G.
Base Case. If h = 0 then, by Lemma 2, G has at most 3n− 6 edges.
Inductive Case. Suppose by induction that the claim is true for h ≥ 0, and suppose
G contains h + 1 subgraphs that are K5. Let G∗ be one of these h + 1 subgraphs.
Let e = (u, v) be an edge on the outer face of Γ[G∗] that is not on the outer face
of Γ. Vertices u and v are a separation pair of G, as otherwise either (i) edge (u, v) is
crossed by some edge of Γ, or (ii) one between u or v is not on the outer face of Γ.
However, Case (i) is ruled out by Lemma 4 and case (ii) by the outer fan-planarity
of Γ. Hence, we can split G into two biconnected subgraphs that share only edge e,
one of them containing G∗. Let G1, G2, . . . , Gk (k ≤ 5) be the biconnected subgraphs
of G distinct from G∗ such that each Gi shares exactly one edge with G∗. Each Gi
(i = 1, 2, . . . , k) contains at most h subgraphs that are K5, and therefore it has at most
3ni − 5 edges by induction, where ni denotes the number of vertices of Gi. On the
other hand, G∗ has 3n∗ − 5 = 10 edges, where n∗ = 5 is the number of vertices of
G∗. It follows that m ≤ 3(n∗ + n1 + · · · + nk) − 5(k + 1) − k (k ≤ 5). Since
n∗ + n1 + · · ·+ nk ≤ n+ 2k we have m ≤ 3(n+ 2k)− 5(k + 1)− k = 3n− 5. 2

The existence of an infinite family of outer fan-planar graphs that match the 3n− 5
bound is proved in the next lemma. Refer to Figure 4 for an illustration.

e

e′X1

X2

(a)

G2

(b)

Gi

Xi+1

(c)

Figure 4: Illustration for the proof of Lemma 6. (a) X1 and X2 before being merged. (b) Merging X1 and
X2 into G2. (c) Gi and Xi+1, the bold edges are used for merging.
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Lemma 6. For any integer h ≥ 1 there exists an outer fan-planar graph G with n =
3h+ 2 vertices and m = 3n− 5 edges.

PROOF. Consider h graphs X1, . . . , Xh, such that each Xi is a K5 graph, for i =
1, . . . , h. We now describe how to construct G. The idea is to “glue” X1, . . . , Xh

together in such a way that they share single edges one to another. The proof is by
induction on the number of merged graphs. Denote by Gi the graph obtained after
merging X1, . . . , Xi, for 1 < i ≤ h. We prove by induction that Gi respects the
following invariants: (I1) it is an outer fan-planar graph; (I2) it has ni = 3i+2 vertices
and mi = 3ni − 5 edges. In the base case i = 2, we merge G1 = X1 and X2 as
follows. Pick an edge e on the outer face of X1 and an edge e′ on the outer face of
X2. Merge X1 and X2 by identifying e with e′, see also Figs. 4(a) and 4(b). The
new graph G2 is clearly an outer fan-planar graph with n2 = 5 + 5 − 2 = 8 vertices
and m2 = 10 + 10 − 1 = 19 edges. Thus, the two invariants hold. In the inductive
case, suppose we constructed Gi for 2 < i < h and we want to attach Xi+1 (see also
Figure 4(c)). Pick any edge e on the outer face of Gi and any edge e′ on the outer
face of Xi+1. Merge the two graphs in the same way as done in the base case. It is
immediate to see that (I1) holds. Also, ni+1 = ni + 3 and mi+1 = mi + 9. Since by
induction mi = 3ni − 5, then mi+1 = 3ni − 5 + 9 = 3ni+1 − 5. 2

Lemmas 5 and 6 imply the following theorem.

Theorem 1. An outer fan-planar graph with n vertices has at most 3n− 5 edges, and
this bound is tight for n ≥ 5.

An obvious consequence of Theorem 1 and of the definition of outer fan-planar
graphs that are maximally dense is the following fact.

Corollary 2. Every maximally dense outer fan-planar graph with n = 3h+ 2 vertices
(h ≥ 1) has 3n− 5 edges.

Concerning 2-layer fan planar graphs, we already observed that a 2-layer fan planar
graph G is an outer fan-planar graph. Also, since all vertices on the same layer form
an independent set, G is bipartite.

Theorem 2. A 2-layer fan-planar graph with n vertices has at most 2n− 4 edges, and
this bound is tight for n ≥ 3.

PROOF. Let G be a maximally dense 2-layer fan-planar graph with n vertices and m
edges, and let Γ be a 2-layer fan-planar drawing of G. Denote by V1 = {v1, . . . , vn1

}
and V2 = {vn1+1, . . . , vn} the two independent sets of vertices of G. Without loss of
generality, suppose that in Γ vi precedes vi+1 along the layer of V1 (for i = 1, . . . , n1−
1), and vj follows vj+1 along the layer of V2 (for j = n1 + 1, . . . , n − 1). See
Figure 5(a). Construct from G a super-graph G∗, by adding an edge (vi, vi+1), for
i = 1, . . . , n1 − 1, and an edge (vj , vj+1), for j = n1 + 1, . . . , n (see Figure 5(b)).
Graph G∗ is still outer fan-planar. Moreover, since G does not contain a K5 sub-
graph (because it is bipartite), also G∗ does not contain a K5 subgraph, as otherwise
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G
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G∗
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v1 v2

v3v4vn

(c)

Figure 5: Illustration for the proof of Theorem 2.

at least three vertices of the same layer in G should form a 3-cycle in G∗ (which does
not happen by construction). Thus, by Lemma 3 and Property 1, the crossing graph
of any outer fan-planar drawing of G∗ contains only even cycles. Hence, denoted as
m∗ the number of edges of G∗, by Lemma 2 we have m∗ ≤ 3n − 6, and therefore
m = m∗− (n− 2) ≤ 2n− 4. A family of 2-layer fan-planar graphs with 2n− 4 edges
is the family of the bipartite complete graphs K2,n−2 (see Figure 5(c)). 2

4. Fan-planar and k-planar Graphs

A k-planar drawing is a drawing where each edge is crossed at most k times, and
a k-planar graph is a graph that admits a k-planar drawing. Clearly, every 1-planar
graph is also a fan-planar graph. Also, both the maximum number of edges of fan-
planar graphs [35] and the maximum number of edges of 2-planar graphs [37] have
been shown to be 5n − 10. Thus it is natural to ask what is the relationship between
fan-planar and 2-planar graphs. More in general, we prove that there are fan-planar
graphs that are not k-planar, for any k ≥ 1, and that there are k-planar graphs (for
k > 1) that are not fan-planar. The existence of fan-planar graphs that are not k-
planar is proved with a counting argument on the minimum number of crossings of
graph drawings. The crossing number cr(G) of G is the smallest number of crossings
required in any drawing of G. We give the following.

Theorem 3. For any integer k ≥ 1 there is a graph that is fan-planar but not k-planar.

PROOF. Consider the complete 3-partite graph K1,3,h. This graph is fan-planar for
every h ≥ 1 (see Figure 6(a)). It is known [7, 38] that cr(K1,3,h) = 2

⌊
h
2

⌋ ⌊
h−1
2

⌋
+⌈

h
2

⌉
. For h = 4k + 2, we have cr(K1,3,4k+2) = 2

⌊
4k+2

2

⌋ ⌊
4k+1

2

⌋
+

⌈
4k+2

2

⌉
=

4k(2k + 1) + 2k + 1 = 8k2 + 6k + 1. Thus, in every drawing of K1,3,4k+2 there
are at least 8k2 + 6k + 1 crossings. On the other hand, in a k-planar drawing there
can be at most km2 crossings, where m is the number of edges in the drawing. Since
K1,3,4k+2 has 16k + 11 edges, to be k-planar it should admit a drawing with at most
km
2 = k(16k+11)

2 = 8k2 + 11
2 k crossings. Since 6k + 1 > 11

2 k for every k ≥ 1,
K1,3,4k+2 is not k-planar. 2

To prove that for any k > 1 there are k-planar graphs that are not fan-planar (The-
orem 4), we first give a technical result (Lemma 7), which will be also reused in Sec-
tion 5. Let Γ be a fan-planar drawing of a graph. We may regard crossed edges of Γ
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. . .

(a)

v4 v6

v5

v2 v3v1 v7

(b)

v4 v6

v5

v2 v3v1 v7

(c)

Figure 6: (a) A fan-planar drawing of K1,3,h. (b) A fan-planar drawing of the K7 graph. (c) The fragments
of the fan-planar drawing in (b) are the thicker lines.

as composed by fragments, where a fragment is the portion of the edge that is between
two consecutive crossings or between one of the two end-vertices of the edge and the
first crossing encountered while moving along the edge towards the other end-vertex.
An edge that is not crossed does not have any fragment. Figure 6(b) shows a fan-planar
drawing of the K7 graph and Figure 6(c) shows the fragments of the drawing in Fig-
ure 6(b). We consider two fragments adjacent if they share a common crossing or a
common end-vertex. The next lemma provides an interesting and useful property.

Lemma 7. In any fan-planar drawing of the K7 graph, any pair of vertices is joined
by a sequence of adjacent fragments.

PROOF. Consider a fan-planar drawing Γ of the K7 graph and consider any vertex vi
of it (i = 1, 2, . . . , 7). Vertex vi must be incident to some fragment in Γ. Indeed, if
vertex vi had no incident fragment, all the edges incident to vi were uncrossed in Γ,
and removing vi and all its incident edges from Γ would yield a fan-planar drawing
of the K6 graph where all vertices are on the same face (this would clearly imply
the existence of an outer fan-planar drawing of K6). This is however impossible by
Lemma 5 (K6 has 6 vertices and 15 edges, i.e., more than 3 · 6 − 5 edges). Since a
fragment is originated by a crossed edge and since two crossing edges are not adjacent,
we have that vertex vi is linked by a sequence of fragments to at least other three
distinct vertices. Therefore, the vertices of K7 are linked by sequences of fragments in
groups of at least four. Being seven vertices in total, this implies that all vertices of K7

are linked together by sequences of fragments. 2

Theorem 4. For any integer k > 1 there is a graph that is k-planar but not fan-planar.

PROOF. Since 2-planar graphs are also k-planar graphs, for k > 1, it is sufficient to
prove that there is a 2-planar graph that is not fan-planar. Let G′ be a graph consisting
of a cycle C = (v1, v2, . . . , v10) and of the edges (v1, v4), (v5, v10), (v6, v9) (see
Figure 7(a)). Let G′′ be the graph obtained from G′ by replacing each edge (vi, vj)
(1 ≤ i, j ≤ 10) with a copy of K7, whose vertices are denoted as u1, u2, . . . , u7, so
that vi = u1 and vj = u7 (see Figure 7(b)). The copy of K7 that replaces (vi, vj)

is denoted as Ki,j
7 . Let G be the graph obtained from G′′ by adding the four edges

(v1, v7), (v2, v6), (v3, v9), and (v4, v8) (see Figure 7(c)). GraphG is 2-planar. Namely,
planarly embed G′ as shown in Figure 7(a). Construct a drawing Γ of G by replacing
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(a)

K7 v1
v2

v3
v4 v5

v6
v7

v8

v9
v10

(b)

v1
v2

v3
v4 v5

v6
v7

v8

v9
v10

(c)

Figure 7: (a)–(c) Illustration for the proof of Theorem 4: (a) graph G′; (b) graph G′′; (c) graph G.

each edge ofG′ with a drawing ofKi,j
7 like the one in Figure 6(b) (see Figure 7(b)), and

draw the edges (v1, v7), (v2, v6), (v3, v9), (v4, v8) inside C as in Figure 7(c). Drawing
Γ is 2-planar.

We now prove that G is not fan-planar. Suppose by contradiction that G has a fan-
planar drawing Γ. By Lemma 7, for each Ki,j

7 (1 ≤ i, j ≤ 10) there is a sequence
of fragments leading from vi = u1 to vj = u7; we call it the spine of Ki,j

7 . Delete
from Γ all fragments except those in the spine of each Ki,j

7 ; delete also all non-crossed
edges and isolated vertices. The remaining drawing Γ′ is a planar drawing, because
each spine cannot be crossed by any other fragment or edge, otherwise the drawing is
no longer fan-planar. We denote by C ′ the cycle of spines corresponding to C, by S
the set of spines of K1,4

7 , K5,10
7 , and K6,9

7 , and by F the set of edges (v1, v7), (v2, v6),
(v3, v9), and (v4, v8). Since Γ′ is planar each spine in S is either inside C ′ or outside
C ′ in Γ′, and therefore in Γ. Furthermore, since the edges of F cannot cross the spine
of any Ki,j

7 (1 ≤ i, j ≤ 10) in Γ, each of them must be either inside or outside C ′ in
Γ. Given two elements of S ∪F we say that they are on the same side of C ′ if they are
both inside or both outside C ′ in Γ, otherwise we say that they are on opposite sides of
C ′. Since there cannot be a crossing between an element of F and one of S, each of
the two edges (v2, v6) and (v3, v9) must be on the opposite side of C ′ with respect to
K1,4

7 . Analogously, each of the two edges (v1, v7) and (v4, v8) must be on the opposite
side of C ′ with respect to K6,9

7 . Finally, K5,10
7 must be on the opposite side of C ′ with

respect to (v1, v7), (v2, v6), (v3, v9), and (v4, v8). It follows that the spines of S and
the edges of F must be on opposite sides of C ′, which implies that each edge in F is
crossed by two independent edges (see Figure 7(c)), a contradiction. 2

5. Complexity of the Fan-planarity Testing Problem

We exploit the results of Sections 3 and 4 to prove that testing whether a graph
is fan-planar in the variable embedding setting is NP-complete. We call this problem
the fan-planarity testing. We use a reduction from the 1-planarity testing, which is
NP-complete in the variable embedding setting [32, 36]. The 1-planarity testing asks
whether a given graph admits a 1-planar drawing. We prove the following.

Theorem 5. Fan-planarity testing is NP-complete.
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PROOF. Similarly to the result of Garey and Johnson on the NP-completeness of the
crossing number problem [31], a non-deterministic algorithm to test whether a graph
admits a fan-planar drawing with k crossings considers all possible k pairs of edges
that cross (and the order of the crossings along the edges), discards the configurations
where an edge crosses more than one fan, replaces crossings with dummy vertices, and
tests the obtained graph for planarity. Hence the problem belongs to NP.

We now prove the hardness. Given an instance G = (V,E) of the 1-planarity
testing we build an instance Gf = (Vf , Ef ) of the fan-planarity testing by replacing
each edge (u, v) ∈ E with two K7 graphs with vertices u = u1, u2, . . . , u7 and v =
v1, v2, . . . , v7, called attachment gadgets and joined by a spanning edge (u7, v7) (see
Figure 8 for an illustration). Gf = (Vf , Ef ) can be constructed in polynomial time,
having |Vf | = |V | + |E| × 12 vertices and |Ef | = |E| × 43 edges, where |E| × 42
of them belong to the attachment gadgets and the remaining |E| are spanning edges
that join different attachment gadgets. We show that G is 1-planar if and only if Gf
is fan-planar. If G admits a 1-planar drawing, replace each edge (u, v) of G with two
fan-planar drawings of K7 like those depicted in Figure 6(b) and with edge (u7, v7),
in such a way that the possible crossing of (u, v) occurs on (u7, v7). The obtained
drawing of Gf is fan-planar since each attachment gadget has a fan-planar drawing
and each spanning edge has at most one crossing. Conversely, suppose Gf admits a
fan-planar drawing Γf . By Lemma 7, for any attachment gadget of Gf attached to
vertex u, there is at least a sequence of fragments leading from u = u1 to u7. As in
the proof of Theorem 4, call such a sequence of fragments the spine of the attachment
gadget. Delete from Γf all fragments except those in the spines. Delete from Γf all
uncrossed edges except the spanning edges. Remove also isolated vertices. A drawing
Γ of G is obtained, where the drawing of edge (u, v) is given by the spine from u = u1
to u7, the spanning edge (u7, v7), and the spine from v7 to v1 = v. Observe that, u 6= v,
as otherwise there would be a self-loop in G. We claim that Γ is a 1-planar drawing
of G. Indeed, fragments in the spines can not be crossed by any other fragment or
spanning edge of Γf . It follows that spanning edges can cross only among themselves
in Γf . However, they can cross only once, as they are a matching of Gf and Γf is
fan-planar. Hence, Γ is a 1-planar drawing, but not necessarily simple; indeed, it may
happen that two crossing edges (u, v) and (w, z) in Γ share an end-vertex, say u = w
(this happens when in Γf there are two crossing spanning edges of two K7 attached to
u). The crossing between (u, v) and (u, z) in Γ can be easily removed by rerouting the
edges (see Figure 8(c)). 2

6. Conclusions and Open Problems

We extended the study of fan-planar drawings started by Kaufmann and Ueck-
erdt [35]. We showed tight bounds on the density of constrained versions of fan-planar
drawings and clarified the relationship between fan-planarity and k-planarity. Also, we
proved that the fan-planarity testing in the variable embedding setting is NP-complete.
A related work by Bekos et al. [10] proves that the fan-planarity testing problem is NP-
hard also if the circular ordering of the edges around each vertex is given and cannot be
changed, i.e., if the graph is given with a so-called rotation system; on the positive side,
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z
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Figure 8: Illustration of the reduction used in Theorem 5. (a) An instance G of 1-planarity testing; (b) The
reduced instance Gf of fan-planarity testing. (c) Two adjacent edges of G that cross one to another in Γ; the
crossing can be removed by rerouting the two edges as shown by the dashed lines.

they prove that it is polynomial-time solvable to recognize graphs that are maximal
outer fan-planar, i.e., graphs that admit an outer fan-planar drawing and that cannot be
augmented with any edge without loosing this property (see also [11] for a technical
report). Instead, the complexity of recognizing outer fan-planar drawable graphs in the
general case remains an open problem.

Several other interesting research directions can be explored, including the follow-
ing:

Research Direction 1. From the combinatorial point of view, it would be interesting
to establish lower bounds on the number of edges of maximal fan-planar graphs,
also in the outer and in the 2-layer constrained versions. Results on this kind of
question have been established for example for maximal 1-planar and 2-planar
graphs [9, 15].

Research Direction 2. On the algorithmic side, it is still unknown the complexity of
recognizing outer fan-planar or 2-layer fan-planar graphs that are not necessar-
ily maximal. In this research line, efficient recognition algorithms have been
provided for example for outer 1-planar graphs [8, 33] and for 2-layer RAC
graphs [19]. It is also still unknown the complexity of recognizing maximal
or maximally dense fan-planar graphs.

Research Direction 3. From an application-oriented perspective, it would be interest-
ing to develop algorithms that are able to combine fan-planarity and bundling
techniques to create confluent drawings with few crossings (similarly to the ex-
amples of Figures 1(b) and 1(c)).
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[2] E. Ackerman, R. Fulek, and C. D. Tóth. Graphs that admit polyline drawings with few
crossing angles. SIAM Journal on Discrete Mathematics, 26(1):305–320, 2012.

[3] E. Ackerman and G. Tardos. On the maximum number of edges in quasi-planar graphs.
Journal of Combinatorial Theory, Series A, 114(3):563–571, 2007.

[4] P. K. Agarwal, B. Aronov, J. Pach, R. Pollack, and M. Sharir. Quasi-planar graphs have a
linear number of edges. Combinatorica, 17(1):1–9, 1997.

[5] M. J. Alam, F. J. Brandenburg, and S. G. Kobourov. Straight-line grid drawings of 3-
connected 1-planar graphs. In GD, volume 8242 of LNCS, pages 83–94, 2013.

[6] P. Angelini, G. Di Battista, W. Didimo, F. Frati, S.-H. Hong, M. Kaufmann, G. Liotta, and
A. Lubiw. Large angle crossing drawings of planar graphs in subquadratic area. In EGC,
volume 7579 of LNCS, pages 200–209, 2011.

[7] K. Asano. The crossing number of K1,3,n and K2,3,n. Journal of Graph Theory, 10(1):1–
8, 1986.

[8] C. Auer, C. Bachmaier, F. J. Brandenburg, A. Gleißner, K. Hanauer, D. Neuwirth, and
J. Reislhuber. Recognizing outer 1-planar graphs in linear time. In GD, volume 8242 of
LNCS, pages 107–118, 2013.

[9] C. Auer, F.-J. Brandenburg, A. Gleißner, and K. Hanauer. On sparse maximal 2-planar
graphs. In GD, volume 7704 of LNCS, pages 555–556, 2012.

[10] M. A. Bekos, S. Cornelsen, L. Grilli, S. Hong, and M. Kaufmann. On the recognition of
fan-planar and maximal outer-fan-planar graphs. In GD, LNCS, page to appear, 2014.

[11] M. A. Bekos, S. Cornelsen, L. Grilli, S. Hong, and M. Kaufmann. On the recognition of
fan-planar and maximal outer-fan-planar graphs. CoRR, abs/1409.0461, 2014.

[12] C. Binucci, E. Di Giacomo, W. Didimo, F. Montecchiani, M. Patrignani, and I. G. Tollis.
Fan-planar graphs: Combinatorial properties and complexity results. In GD, LNCS, page
to appear, 2014.

[13] C. Binucci, E. Di Giacomo, W. Didimo, F. Montecchiani, M. Patrignani, and I. G. Tollis.
Properties and complexity of fan-planarity. CoRR, abs/1406.5299, 2014.

[14] R. Bodendiek, H. Schumacher, and K. Wagner. Über 1-optimale Graphen. Mathematische
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[27] V. Dujmović, J. Gudmundsson, P. Morin, and T. Wolle. Notes on large angle crossing
graphs. Chicago Journal on Theoretical Computer Science, 2011, 2011.

[28] P. Eades and G. Liotta. Right angle crossing graphs and 1-planarity. Discrete Applied
Mathematics, 161(7-8):961–969, 2013.

[29] D. Eppstein, M. T. Goodrich, and J. Y. Meng. Confluent layered drawings. Algorithmica,
47(4):439–452, 2007.

[30] J. Fox, J. Pach, and A. Suk. The number of edges in k-quasi-planar graphs. SIAM Journal
on Discrete Mathematics, 27(1):550–561, 2013.

[31] M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM Journal on
Algebraic and Discrete Methods, 4(3):312–316, 1983.

[32] A. Grigoriev and H. L. Bodlaender. Algorithms for graphs embeddable with few crossings
per edge. Algorithmica, 49(1):1–11, 2007.

[33] S.-H. Hong, P. Eades, N. Katoh, G. Liotta, P. Schweitzer, and Y. Suzuki. A linear-time
algorithm for testing outer-1-planarity. In GD, volume 8242 of LNCS, pages 71–82, 2013.

16



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[34] S.-H. Hong, P. Eades, G. Liotta, and S.-H. Poon. Fáry’s theorem for 1-planar graphs. In
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