
32

Testing Planarity of Partially Embedded Graphs

PATRIZIO ANGELINI and GIUSEPPE DI BATTISTA, Roma Tre University, Italy
FABRIZIO FRATI, University of Sydney, Australia
VÍT JELÍNEK and JAN KRATOCHVÍL, Charles University, Prague, Czech Republic
MAURIZIO PATRIGNANI, Roma Tre University, Italy
IGNAZ RUTTER, Karlsruhe Institute of Technology (KIT), Germany and Charles University, Prague

We study the following problem: given a planar graph G and a planar drawing (embedding) of a subgraph
of G, can such a drawing be extended to a planar drawing of the entire graph G? This problem fits the
paradigm of extending a partial solution for a problem to a complete one, which has been studied before in
many different settings. Unlike many cases, in which the presence of a partial solution in the input makes an
otherwise easy problem hard, we show that the planarity question remains polynomial-time solvable. Our
algorithm is based on several combinatorial lemmas, which show that the planarity of partially embedded
graphs exhibits the ‘TONCAS’ behavior “the obvious necessary conditions for planarity are also sufficient.”
These conditions are expressed in terms of the interplay between (1) the rotation system and containment
relationships between cycles and (2) the decomposition of a graph into its connected, biconnected, and
triconnected components. This implies that no dynamic programming is needed for a decision algorithm and
that the elements of the decomposition can be processed independently.

Further, by equipping the components of the decomposition with suitable data structures and by carefully
splitting the problem into simpler subproblems, we make our algorithm run in linear time.

Finally, we consider several generalizations of the problem, such as minimizing the number of edges of
the partial embedding that need to be rerouted to extend it, and argue that they are NP-hard. We also apply
our algorithm to the simultaneous graph drawing problem SIMULTANEOUS EMBEDDING WITH FIXED EDGES (SEFE).
There we obtain a linear-time algorithm for the case that one of the input graphs or the common graph has
a fixed planar embedding.

Categories and Subject Descriptors: G.2.2 [Algorithms]

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Planarity, partial embedding, simultaneous embedding, algorithm

A preliminary version of this article appeared as “Testing Planarity of Partially Embedded Graphs” in
Proceedings of the 21st ACM-SIAM Symposium on Discrete Algorithms (SODA’10), pages 202–221.
Work on the journal version of this article was supported by ESF EuroGIGA GraDR as Czech Research grant
GACR GIG-11-E023 for V. Jelı́nek, J. Kratochvı́l, and I. Rutter (partial support). I. Rutter was supported
by a fellowship within the postdoctoral program of the German Academic Exchange Service (DAAD). F.
Frati acknowledges support from the Australian Research Council (grant DE140100708). Research was
supported in part by the MIUR project AMANDA (Algorithmics for Massive and Networked Data) protocol
2012C4E3KT_001.
Authors’ addresses: P. Angelini, G. Di Battista, and M. Patrignani, Dipartimento di Ingegneria, Universita’
Roma Tre, Via della Vasca Navale 79, 00146, Rome, Italy; emails: {angelini, gdb, patrigna}@dia.uniroma3.it;
F. Frati, School of Information Technologies, The University of Sydney, NSW 2006, Sydney, Australia; email:
fabrizio.frati@sydney.edu.au; V. Jelı́nek, IUUK MFF UK, Malostranske nam 25, 11800 Praha 1, Czech;
email: jelinek@iuuk.mff.cuni.cz; J. Kratochvı́l, KAM MFF UK, Malostranske nam 25, 11800 Praha 1, Czech
Republic; email: honza@kam.mff.cuni.cz; I. Rutter, Karlsruhe Institute of Technology (KIT), Institute of
Theoretical Informatics, Box 6980, D-76128, Karlsruhe, Germany; email: rutter@kit.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1549-6325/2015/04-ART32 $15.00

DOI: http://dx.doi.org/10.1145/2629341

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

http://dx.doi.org/10.1145/2629341

32:2 P. Angelini et al.

ACM Reference Format:
Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vı́t Jelı́nek, Jan Kratochvı́l, Maurizio Patrignani,
and Ignaz Rutter. 2015. Testing planarity of partially embedded graphs. ACM Trans. Algor. 11, 4, Article 32
(April 2015), 42 pages.
DOI: http://dx.doi.org/10.1145/2629341

1. INTRODUCTION

Planarity is one of the central concepts not only in graph drawing but in graph theory as
a whole. The characterization of planar graphs proved by Kuratowski [1930] represents
a fundamental result in modern graph theory. This characterization, based on two
forbidden topological subgraphs—K5 and K3,3—makes planarity a finite problem and
leads to a polynomial-time recognition algorithm. Planarity is thus “simple” from the
computational point of view (this, of course, does not mean that algorithms for testing
planarity are trivial) in the strongest possible way, as several linear-time algorithms
for testing planarity are known [Boyer and Myrvold 2004; de Fraysseix et al. 2006;
Hopcroft and Tarjan 1974].

In this article, we pose and study the question of planarity testing in a constrained
setting, namely when part of the input graph is already drawn and cannot be changed.
Practical motivation for this question comes from the visualization of large networks
in which certain patterns are required to be drawn in a standard way. The known
planarity testing algorithms, even those that build a drawing incrementally, are of no
help here, as they are allowed to redraw at each step the part of the graph processed
so far. For similar reasons, online planar embedding and planarity testing algorithms,
such as those of Di Battista and Tamassia [1996], Poutré [1994], Tamassia [1996], and
Westbrook [1992], are not suitable to be used in this context.

Related work. The question of testing the planarity of partially drawn graphs fits
into the general paradigm of extending a partial solution for a problem to a full one.
This has been studied in various settings, and often the extendability problem is more
difficult than the unconstrained one. As an example, graph coloring is NP-complete for
perfect graphs even if only four vertices are already colored [Kratochvı́l and Sebo 1997],
whereas the chromatic number of a perfect graph can be determined in polynomial
time [Grötschel et al. 1988]. Another example is provided by edge colorings—deciding
3-edge-colorability of cubic bipartite graphs if some edges are already colored is NP-
complete [Fiala 2003], whereas it follows from the famous Kőnig-Hall theorem that
cubic bipartite graphs are always 3-edge colorable. In view of these hardness results,
it is somewhat surprising that the planarity of partially drawn graphs can be tested in
polynomial time, in fact in linear time, as we show in this article. This is all the more
so, considering that this problem is known to be NP-hard for drawings where edges are
constrained to be straight-line segments [Patrignani 2006].

Specific constraints on planar graph drawings have been studied by several authors
(e.g., see Dornheim [2002], Gutwenger et al. [2008], Tamassia [1998], and Tamassia
et al. [1988]). However, none of those results can be exploited to solve the question
that we pose in this article. The work in Juvan and Mohar [2005] and Mohar [1999]
give algorithms for extending 2-cell embeddings on the torus and surfaces of higher
genus. Their results show that even for arbitrary surfaces, the problem of extending
an embedding of a graph H ⊆ G to an embedding of G is fixed-parameter tractable
with respect to the branch size of H. The branch size of a graph H is the size of
the smallest graph H′ from which H can be obtained as a subdivision. However, the
approach of Juvan and Mohar is not applicable to our problem, as our goal is to find
algorithms that are polynomial in the size of H as well as G. Moreover, the algorithm

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

http://dx.doi.org/10.1145/2629341

Testing Planarity of Partially Embedded Graphs 32:3

by Juvan and Mohar assumes that either each component of G − H has at most two
allowed embeddings, which are given as part of the input, or H has a closed 2-cell
embedding—that is, H is biconnected.

Contribution and outline. To solve the general problem, we allow disconnected graphs
or graphs with low connectivity to be part of the input. It is readily seen that in this case
the rotation system (i.e., the cyclic orderings of the edges incident to the vertices of the
graph) does not fully describe the input. In fact, the relative position of vertices against
cycles in the graph must also be considered. (These concepts and their technical details
are discussed later.) Further, we make use of the fact that drawing graphs on the plane
and on the sphere are equivalent concepts. The advantage of considering embeddings
on the sphere lies in the fact that we do not need to distinguish between the outer face
and the inner faces.

Many known planarity testing algorithms work by incrementally extending a partial
drawing constructed in previous steps. The main idea of our algorithm is to look at the
problem from the “opposite” perspective. Namely, we do not try to directly extend the
input partial embedding (which seems much harder than one would expect). Instead,
we look at the possible embeddings of the entire graph and decide if any of them
contains the embedding of the subgraph prescribed by the input.

Our algorithm is based on several combinatorial lemmas, relating the problem to the
connectivity of the graph. Most of them exhibit the TONCAS property—“the obvious
necessary conditions are also sufficient.” This is particularly elegant in the case of
2-connected graphs, in which we exploit the SPQR-tree decomposition of the graph.
This notion was introduced by Di Battista and Tamassia [1996] to describe all possible
embeddings of 2-connected planar graphs in a succinct way and has been used in
various situations when asking for planar embeddings with special properties. A survey
on the use of this technique in planar graphs is given by Mutzel [2003]. It is indeed
obvious that if a 2-connected graph admits an embedding extending a given partial
embedding, then the skeleton of each node of the SPQR-tree has a drawing compatible
(a precise definition of compatibility will come later) with the partial embedding. We
prove that the converse is also true. Hence, if we only aim at polynomial running time,
we do not need to perform any dynamic programming on the SPQR-tree and could
process its nodes independently. However, for the ultimate goal of linear running time,
we must refine the approach and pass several pieces of information through the SPQR-
tree. Then, dynamic programming becomes very useful. In addition, the SPQR-trees
are exploited at two levels of abstraction, both for decomposing an entire block and for
computing the embedding of the subgraph induced by each face of the constrained part
of the drawing.

The article is organized as follows. We first describe the terminology and list aux-
iliary topological lemmas in Section 2. In particular, the combinatorial invariants of
equivalent embeddings are introduced. In Section 3, we state the combinatorial char-
acterization theorems for 2-connected, connected, and disconnected cases. These the-
orems yield a simple polynomial-time algorithm outlined at the end of the section.
Section 4 is devoted to the technical details of the linear-time algorithm. Section 5
discusses several possible generalizations of the partially embedded planarity concept
leading to NP-hard problems and shows how our techniques can be used to solve other
graph drawing problems. We summarize our results and discuss some directions for
further research in Section 6.

2. NOTATION AND PRELIMINARIES

In this section, we introduce some notations and preliminaries that we use throughout
the article. In particular, we give a detailed description of how planar embeddings of

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

32:4 P. Angelini et al.

Fig. 1. (a) A planar drawing of a graph G. The shaded region represents a face f of the drawing.
(b) The boundary of f . The circular lists defining the boundary of f are [15, 16, 17], [33, 31, 32, 31],
[13, 12, 14, 12, 11, 10, 9, 4, 29, 20, 19, 18, 20, 4], [34]. (c) The facial cycles of f .

not necessarily connected graphs can be handled, and we give a first characterization
of the embeddings extending given partial embeddings. We conclude with an overview
of data structures and their efficient construction, which will be particularly important
for the linear-time implementation of our algorithm.

The definitions listed in this section are standard and can be found in most graph the-
ory textbooks. We are listing them for the sake of completeness. Perhaps less standard
is the notion of H-bridges (first introduced by Demoucron et al. [1964] under the name
fragment) and the definition of SPQR-trees (introduced in Di Battista and Tamassia
[1996], we have followed an alternative wording used in the conference version of this
paper [Angelini et al. 2010]).

2.1. Drawings, Embeddings, and the Problem Definition

A drawing of a graph is a mapping of each vertex to a distinct point of the plane and
of each edge to a simple curve connecting its endpoints. A drawing is planar if the
curves representing its edges do not intersect, except, possibly, at common endpoints.
A graph is planar if it admits a planar drawing. A planar drawing � determines a
subdivision of the plane into connected regions, called faces, and a circular ordering of
the edges incident to each vertex, called rotation system. The circular ordering of the
edges incident to a vertex x is the (local) rotation of x.

Visiting the (not necessarily connected) border of a face f of � in such a way to keep
f to the left, we determine a set of circular lists of vertices. Such a set is the boundary
of f . Two drawings are equivalent if they have the same rotation system and the same
face boundaries. A planar embedding is an equivalence class of planar drawings. Note
that equivalent planar drawings need not have the same outer face, and that a planar
embedding does not determine which face is the outer face. This loss of information
is harmless, as for the purposes of extending a partial embedding, the choice of the
outer face is irrelevant. It is therefore convenient to imagine planar graphs as being
embedded on a sphere, where no face plays the special role of outer face.

For connected graphs in the plane, an embedding is uniquely determined by the
rotation system. For disconnected graphs, on the other hand, this information is not
sufficient, as it does not determine the relative positions of the connected components.
However, this additional information is encoded in the face boundaries, which, together
with the rotation system, completely describe planar embeddings, even for disconnected
graphs; Figure 1(a) and (b) provide an example.

Our initial motivation was to extend a given drawing of a subgraph of a planar
graph to a planar drawing of the entire graph; however, it is not hard to see that this
is equivalent to an embedding problem, where we wish to extend a planar embedding
of a subgraph to a planar embedding of the whole graph.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

Testing Planarity of Partially Embedded Graphs 32:5

Fig. 2. Two different planar embeddings of a graph G whose restrictions to H (black vertices and edges)
coincide with H (a, b). An instance that does not admit an embedding extension (c). Vertices and edges in
G\H are grey.

A partially embedded graph, or PEG for short, is a triplet (G, H,H), where G is a
graph, H is a subgraph of G, and H is a planar embedding of H. We say that the
vertices and edges of H are prescribed. The problem PARTIALLY EMBEDDED PLANARITY

(PEP) asks whether a given PEG (G, H,H) admits a planar embedding G of G whose
restriction to H is H. In this case, we say that the PEG (G, H,H) is planar. We say that
G is an extension of an embedding H of H if the restriction of G to H is H. Figure 2
presents an example of a PEG that admits several different embedding extensions and
an example that does not admit any.

2.2. Facial Cycles

Let � be a planar drawing of a graph H (see Figure 1(a)). Let �C be a simple cycle in H
with an arbitrary orientation. The oriented cycle �C splits the plane into two connected
parts. Denote by V left

� (�C) and V right
� (�C) the sets of vertices of the graph that are to the

left and to the right of �C in �, respectively. The boundary of each face f of � can be
uniquely decomposed into simple edge-disjoint cycles, bridges (edges that are not part
of any cycle), and isolated vertices see Figure 1(b)). Orient the cycles in such a way that
f is to the left when walking along the cycle according to the orientation. Call these
oriented cycles the facial cycles of f (see Figure 1(c)). Observe that the sets V left

� (�C),
V right

� (�C), and the notion of facial cycles only depend on the embedding H of �. Hence,
it makes sense to write V left

H (�C) and V right
H (�C), and to define the facial cycles of H as the

facial cycles of the faces of H.
For a vertex x of a graph G with embedding G, we denote by EG(x) the set of edges

incident to x and by σG(x) the (local) rotation of x in G. The following lemma character-
izes the planar embeddings of a PEG (G, H,H) that extend H in terms of the rotation
system and relative cycle–vertex positions with respect to the facial cycles of H.

LEMMA 2.1. Let (G, H,H) be a PEG and let G be a planar embedding of G. The
restriction of G to H is H if and only if the following conditions hold:

(1) for every vertex x ∈ V (H), σG(x) restricted to EH(x) coincides with σH(x), and
(2) for every facial cycle �C of each face of H, we have that V left

H (�C) ⊆ V left
G (�C) and

V right
H (�C) ⊆ V right

G (�C).

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

32:6 P. Angelini et al.

PROOF. The proof follows easily from the following statement. Let �1 and �2 be two
drawings of the same graph G such that for every vertex x ∈ V (G), σ�1 (x) = σ�2 (x)
holds. Assume that each facial cycle �C for any face f in �1 or in �2 is oriented in
such a way that f is to the left of �C. Drawings �1 and �2 are equivalent if and only if
they have the same oriented facial cycles and, for each oriented facial cycle �C, it holds
V left

�1
(�C) = V left

�2
(�C).

We need to prove this statement in both directions: (i) if �1 and �2 have the same
embedding, then they have the same oriented facial cycles and, for each facial cycle �C,
we have V left

�1
(�C) = V left

�2
(�C), and (ii) if �1 and �2 have the same oriented facial cycles

and, for each facial cycle �C, we have V left
�1

(�C) = V left
�2

(�C), then �1 and �2 have the same
embedding.

We start with direction (i). By definition, drawings with the same embedding have
the same facial boundaries and hence the same oriented facial cycles. Suppose for a
contradiction that for some facial cycle �C, V left

�1
(�C) �= V left

�2
(�C). Then, at least one vertex

v is to the left of �C in �1 and to the right of �C in �2 (the opposite case being analogous).
Hence, v is part of the boundary of a face that is to the left of �C in �1 and part of the
boundary of a face that is to the right of �C in �2, contradicting the hypothesis that �1
and �2 have the same facial boundaries.

We now come to the proof of direction (ii). First, suppose that G is connected and
has at least one vertex of degree 3. In this case, the fact that �1 and �2 have the
same rotation system implies that they also have the same face boundaries and, hence,
the same embedding. Second, suppose that G is connected and has maximum degree
2. Then, G is either a path or a cycle. In both cases, the face boundaries of �1 and
�2 are the same (recall that G is drawn on the sphere). Finally, suppose that G has
several connected components C1, C2, . . . , Ck. We say that two components Ci and C j
share a face f if there exists a vertex of Ci and a vertex of Cj on the boundary of
f . The drawings �1 and �2 have the same face boundaries if (a) for each Ci, with
i = 1, . . . , k, the embedding G1 of G in �1 restricted to Ci is the same as the embedding
G2 of G in �2 restricted to Ci, and (b) each pair of connected components Ci and Cj ,
with i, j ∈ {1, . . . , k} and i �= j, either do not share a face both in G1 and in G2 or they
contribute with the same circular lists to the boundary of the same face f in G1 and
in G2.

It can be seen that condition (a) is satisfied by applying the argument we made for a
connected graph to each connected component of G.

Condition (b) follows from the hypothesis that for each oriented facial cycle �C, we
have V left

�1
(�C) = V left

�2
(�C). Suppose, for a contradiction, that two connected components

Cx and Cy of G share a face f in G1 and no face in G2. Since Cx and Cy share a face in
G1, they are on the same side of any facial cycle �C belonging to any other component
Cz of G (more intuitively, Cx and Cy are not separated by any cycle and in particular
by any facial cycle in �1). On the other hand, since Cx and Cy do not share a face in
�2, there exists a component Cz of G containing a facial cycle �C separating Cx from Cy,
thus contradicting the hypothesis that V left

�1
(�C) = V left

�2
(�C).

Next suppose, for a contradiction, that two connected components Cx and Cy con-
tribute with circular lists Lx

1 and Ly
1 to the boundary of the same face f1 of G1 and with

circular lists Lx
2 and Ly

2 to the boundary of the same face f2 of G2 and suppose that
Lx

1 �= Lx
2. In particular, assume, without loss of generality, that there exists a facial

cycle �C ′ of f2 that is part of Cx and that is not a facial cycle of f1. The boundary of f1 is

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

Testing Planarity of Partially Embedded Graphs 32:7

Fig. 3. A nonlocal bridge is either necessarily contained in a face fK (a) or causes a nonplanarity (b).

oriented in such a way that every facial cycle of f1 has f1 to its left. Then, every facial
cycle of f1 obtained from Lx

1 has Cy to its left. Further, there exists a facial cycle �C of f1

obtained from Lx
1 that has �C ′ to its right (part of �C and of �C ′ may coincide). As G1 and

G2 restricted to Cx give the same embedding, the last statement is true both in G1 and
in G2. Since �C ′ is incident to f2 and since Cy is incident to f2, such a component is to
the right of �C, contradicting the hypothesis that V left

�1
(�C) = V left

�2
(�C).

2.3. Connectivity, H -Bridges, and Data Structures

A graph is connected if every pair of vertices is connected by a path. A k-connected graph
G is such that removing any at most k − 1 vertices leaves G connected; 3-connected,
2-connected, and 1-connected graphs are also called triconnected, biconnected, and
simply connected graphs, respectively. By convention, the complete graph on k vertices
is (k − 1)-connected but not k-connected. A separating k-set is a set of k vertices whose
removal disconnects the graph. Separating 1- and 2-sets are called cutvertices and
separation pairs, respectively. Hence, a connected graph is biconnected if it has no
cutvertices, and it is triconnected if it has no separation pairs and no cutvertices. A
block of G is either a maximal biconnected subgraph of G or a bridge in G. Each edge of
G falls into a single block of G, whereas cutvertices are shared by different blocks. We
extend the notion of k-connectivity to PEGs by saying that a PEG (G, H,H) is k-connected
if and only if G is k-connected.

Let G be a graph and let H be a subgraph of G. An H-bridge K of G is a subgraph of
G formed either by a single edge e ∈ E(G)\E(H) whose end-vertices belong to H or by a
connected component K− of G − V (H), together with all edges (and their end-vertices)
that connect a vertex in K− to vertices in H. In the first case, the H-bridge is trivial.
A vertex that belongs to V (H) ∩ V (K) is called an attachment vertex (or attachment) of
K. Note that the edge sets of the H-bridges form a partition of E(G)\E(H).

An H-bridge K is local to a block B of H if all attachments of K belong to B. Notice
that an H-bridge with a single attachment can be local to more than one block, whereas
an H-bridge with at least two attachments is local to at most one block. An H-bridge
that is not local to any block of H is nonlocal.

Note that for a nonlocal H-bridge K, there exists at most one face of H containing all
attachments of K (Figure 3(a)). Namely, if all attachments of K were contained on the
boundaries of two distinct faces of H, then K would necessarily be local. In addition, if

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

32:8 P. Angelini et al.

there is no face of H incident to all attachments of K, then G clearly has no embedding
extension (see Figure 3(b)).

Let (G, H,H) be a PEG. In the following, we define some data structures that are
widely used throughout the article. All of these data structures can easily be computed
in time linear in the number of edges of the graph or of the embedding to which they
refer. We use the decomposition of a graph G into its connected, biconnected, and
triconnected components. To further relate these decompositions with the embedding
of H, we make use of several auxiliary data structures.

The component–face tree CF of H is a tree whose nodes are the connected compo-
nents of H and the faces of H. A face f and a component C are joined by an edge if
a vertex of C is incident to f . The block–face tree BF of H is a tree whose nodes are
the blocks of H and the faces of H. A face f and a block B are joined by an edge if
B contains an edge incident to f . The vertex–face incidence graph VF of H is a graph
whose nodes are the vertices of H and the faces of H. A vertex v and a face f are joined
by an edge if v appears on the boundary of f .

To handle the decomposition of a graph into biconnected components, we use the
block-cutvertex tree. The block-cutvertex tree of a connected graph G is a tree whose
nodes are the blocks and the cutvertices of G. Edges in the block-cutvertex tree join
each cutvertex to the blocks to which it belongs. The enriched block-cutvertex tree of G
is a tree obtained by adding to the block-cutvertex tree of G each vertex v of G that is
not a cutvertex and by connecting v to the unique block to which it belongs.

To handle the decomposition of a graph into its triconnected components, we use the
SPQR-tree T of G, which we describe in the following.

Let G be a graph. A split pair of G is either a separation pair or a pair of adjacent
vertices. A maximal split component1 of G with respect to a split pair {u, v} (or, simply,
a maximal split component of {u, v}) is either an edge (u, v) or a maximal subgraph G′
of G such that G′ contains u and v, and {u, v} is not a split pair of G′. A vertex w �= u, v
belongs to exactly one maximal split component of {u, v}. A split component of {u, v} is
the union of any number of maximal split components of {u, v}.

The SPQR-tree T of a biconnected graph G is a data structure that describes a
recursive decomposition of G induced by its split pairs. The nodes of T are of four
types: S, P, Q, and R. The Q-nodes are the leaves of the tree T . Each Q-node represents
a unique edge of the graph G.

Each node μ of T has an associated biconnected multigraph, called the skeleton of μ
and denoted by skel(μ). The skeleton describes a decomposition of G into edge-disjoint
split components. The edges of the skeleton are called virtual edges.

For an internal node μ of T of degree d, the skeleton skel(μ) has d virtual edges
e1, e2, . . . , ed, which correspond bijectively to the connected components of T −μ. Let Ti
be the component of T − μ corresponding to ei, and let Gi be the subgraph of G formed
by all edges of G whose Q-nodes belong to Ti. The graph Gi is called the expansion graph
of ei. Each expansion graph Gi is a split component of G, and by replacing each virtual
edge ei in skel(μ) with its expansion graph Gi, we obtain the graph G.

For algorithmic purposes, it is often convenient to treat T as a rooted tree. In such a
case, we choose an arbitrary Q-node as a root of T . In the skeleton of any nonroot node
μ, there is a unique virtual edge representing the component of T −μ that contains the
root. This virtual edge is the parent edge of skel(μ). Supposing that μ has k children,
let e1, . . . , ek be the nonparent edges of skel(μ), and let G1, . . . , Gk be their expansion
graphs. The graph G∗ = G1 ∪G2 ∪· · ·∪Gk is the pertinent graph of μ, denoted by pert(μ).

1Note that “maximal” refers to the splitting (the component cannot be split further by {u, v}), not the size, of
the component. We use the term for consistency with existing literature.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

Testing Planarity of Partially Embedded Graphs 32:9

Fig. 4. Different cases in the construction of an SPQR-tree: parallel case (a), series case (b), and rigid case
(c). The skeletons are shown in a box with the parent edge dashed. The dashed curves in the graphs represent
the split pair with respect to which the graphs are decomposed; the procedure decomposes the graph without
the dashed edge. The grey curves show the correspondence between the virtual edges of the skeleton and the
corresponding split pairs in the children.

If μ has no children—that is, μ is a nonroot Q-node—then pert(μ) consists of the single
edge represented by the node μ.

Note that the expansion graph of the parent edge of skel(μ) contains precisely those
edges of G that do not belong to pert(μ). Note also that if ν is the parent of μ, then
skel(ν) has a virtual edge whose expansion graph is pert(μ).

To give a precise definition of the SPQR-tree, we present an algorithm that recur-
sively builds T , starting from the root and then at each step adding a new child to a
previously constructed node. Given a biconnected graph G and an edge e = (u′, v′) of G,
the algorithm proceeds as follows. At each recursive step, a split pair {u, v} of G, a split
component G∗ of {u, v}, and a previously constructed node ν of T are given. A new node
μ with pertinent graph G∗ is added to T and attached as a child to ν. The vertices u
and v are the poles of μ and are denoted by u(μ) and v(μ), respectively. The algorithm
then possibly recurs on some split components of G∗.

At the beginning, the Q-node representing the edge e = {u′, v′} is designated as the
root of T . The algorithm then recurs with G∗ = G − {e}, {u, v} = {u′, v′}, and ν being the
root. The recursive step distinguishes some cases, which are illustrated in Figure 4:

Base case: If G∗ consists of exactly one edge between u and v, then μ is a Q-node
whose skeleton is a cycle of length 2.

Parallel case: If G∗ is composed of at least two maximal split components G1, . . . , Gk
(k ≥ 2) of G with respect to {u, v}, then μ is a P-node. The graph skel(μ) consists of k
parallel virtual edges between u and v, denoted by e1, . . . , ek and corresponding to
G1, . . . , Gk, respectively, plus an additional parent edge (u, v). The decomposition
recurs on G1, . . . , Gk, with {u, v} as poles for every graph, and with μ as parent
node.

Series case: If G∗ is composed of exactly one maximal split component of G with
respect to {u, v} and if G∗ has cutvertices c1, . . . , ck−1 (k ≥ 2), appearing in this
order on a path from u to v, then μ is an S-node. The graph skel(μ) is the cy-
cle composed of a path e1, . . . , ek of virtual edges, where e1 connects u with c1, ei
connects ci−1 with ci (i = 2, . . . , k − 1), and ek connects ck−1 with v, plus a par-
ent edge (u, v). The decomposition recurs on the split components corresponding
to each of e1, e2, . . . , ek−1, ek with μ as parent node and with {u, c1}, {c1, c2},
. . . ,{ck−2, ck−1}, {ck−1, v} as poles, respectively.

Rigid case: If none of the preceding cases applies, the purpose of the decomposition
step is that of partitioning G∗ into the minimum number of split components and
recurring on each of them. We need some further definitions. Given a maximal
split component G′ of a split pair {s, t} of G∗, a vertex w ∈ G′ properly belongs
to G′ if w �= s, t. Given a split pair {s, t} of G∗, a maximal split component G′
of {s, t} is internal if neither u nor v (the poles of G∗) properly belongs to G′,
external otherwise. A maximal split pair {s, t} of G∗ is a split pair of G∗ that is not

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

32:10 P. Angelini et al.

Fig. 5. The example graph of Figure 4 and its SPQR-tree with respect to the dashed reference edge. For
clarity, Q-nodes are omitted. The parent edge of each skeleton is dashed, and each skeleton is connected by
a grey curve to the virtual edge in the parent that represents it.

contained in an internal maximal split component of any other split pair {s′, t′}
of G∗. Let {u1, v1}, . . . , {uk, vk} be the maximal split pairs of G∗ (k ≥ 1) that have
at least one internal split component, and for i = 1, . . . , k, let Gi be the union
of all internal maximal split components of {ui, vi}. Observe that each vertex of
G∗ either properly belongs to exactly one Gi or belongs to some maximal split
pair {ui, vi}. Node μ is an R-node. Graph skel(μ) is the graph obtained from G∗
by replacing each subgraph Gi with the virtual edge ei between ui and vi and by
adding a parent edge (u, v). The decomposition recurs on each Gi with μ as parent
node and with {ui, vi} as poles. It can be shown that the skeleton of an R-node is
a triconnected graph.

Figure 5 illustrates an example of the construction of the SPQR-tree of a biconnected
graph G. The SPQR-tree T of an n-vertex biconnected graph G is well suited for the
implementation of efficient algorithms, as T can be computed in linear time [Gutwenger
and Mutzel 2000], it has O(n) nodes, and the total size of all skeletons of all nodes of
T is also O(n) [Bertolazzi et al. 2000]. We say that an edge e of G projects to a virtual
edge e′ (or belongs to e′) of skel(μ), for some node μ in T , if e belongs to the expansion
graph of e′.

The SPQR-tree T can be used to represent all planar embeddings of G. In the first
part of the article, for our characterization, we will use the unrooted version of the
SPQR-tree. In the second part of the article, for the linear-time implementation, we
will then root the tree to allow for dynamic programming on the tree in a bottom-up
fashion.

We emphasize the following properties, which are implicitly exploited throughout
the article.

PROPERTY 1. A planar embedding of the skeleton of every node of T determines a
planar embedding of G and vice versa.

PROPERTY 2. Let C be a cycle of G and let μ be any node of T . Then, either the edges of
C belong to a single virtual edge of skel(μ) or they belong to a set of virtual edges that
induce a cycle in skel(μ).

Efficient computation of data structures. We now briefly discuss the time complexity
of constructing the introduced data structures. We further show how to implement the
basic queries used in our algorithms in constant time per operation.

First, observe that linear-time preprocessing can associate each edge of a planar
graph with the unique connected component to which it belongs, with the unique block
to which it belongs, and (given a planar embedding of the graph) with the (at most) two
faces to which it is incident. Additionally, we can associate each vertex of a graph with
the unique connected component to which it belongs.

The block-cutvertex tree of a connected planar graph [Tarjan 1972] and the SPQR-
tree of a biconnected planar graph [Gutwenger and Mutzel 2000] can be constructed
in linear time. The enriched block-cutvertex tree of a connected planar graph G can be

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

Testing Planarity of Partially Embedded Graphs 32:11

constructed starting from the block-cutvertex tree of G by adding to the tree (i) each
vertex v that is not a cutvertex of G, and (ii) an edge between v and the only block to
which it belongs.

The block-face tree BF of a planar embedding G of a planar graph G can be con-
structed in linear time. Namely, for each edge e of G, let Be be the unique block of G
containing e and let f ′

e and f ′′
e be the two faces of G adjacent to e (possibly f ′

e = f ′′
e). Add

edges (f ′
e, Be) and (f ′′

e , Be) to BF. When all edges of G have been considered, the result-
ing multigraph BF has a linear number of edges. Remove multiple edges as follows.
Root BF at any node and orient BF so that all edges point toward the root. Remove
all edges exiting from each node, except for one, thus obtaining the block-face tree BF
of G. The component-face tree CF of a planar embedding G of a planar graph G can be
constructed analogously in linear time.

The vertex-face incidence graph VF of a planar embedding G of a planar graph G can
be constructed in linear time by processing faces of G one by one, where for each face f
we walk along the boundary of f and add to VF edges between f and the vertices on
the boundary. To avoid adding multiple edges, we remember, for each vertex x, the last
face f that has been connected to x in VF. Note that VF is a planar graph.

Kowalik and Kurowski [2003] have shown that for a given planar graph F and a
fixed integer k, it is possible to build in linear time a “short-path” data structure that
allows checking in constant time whether two given vertices of F are connected by a
path of length at most k and returning such a path if it exists. We will employ this data
structure to search for paths of lengths 1 and 2 in our auxiliary graphs. Using this
data structure, we can, for example, determine in constant time whether two vertices
share a common face in H (by finding a path of length two in the vertex-face incidence
graph VF) or whether they share the same block (by finding a path of length 2 in the
enriched block-cutvertex tree).

Efficient computation of local and nonlocal H-bridges. We now describe how these
data structures can be used to solve the following problem. Given an instance (G, H,H)
of PEP and an H-bridge K of G, determine whether K is local or not and, in the latter
case, compute the unique face f of H in which K has to be embedded in any solution of
(G, H,H). In the following lemma, we show how to solve this problem in time linear in
the size of K.

LEMMA 2.2. Let (G, H,H) be any instance of PEP. Assume that we are given the
component-face tree CF of H, the vertex-face incidence graph VF of H, the block-face
tree BF of H, and, for each connected component Ci of H, the enriched block-cutvertex
tree B+

i of Ci. Suppose further that all of these graphs are endowed with short-path data
structures to check for paths of length 1 and 2. Let K be an H-bridge of G. There is an
algorithm that checks whether K is local to any block of H in time linear in the size of
K. Furthermore, if K is nonlocal, the algorithm computes the only face of H incident to
all attachment vertices of K, if such a face exists, in time linear in the size of K.

PROOF. Consider the attachment vertices a1, a2, . . . , ah of K. If h = 1, then K is
local. Otherwise, h ≥ 2. To decide whether K is local for some block of H, we perform
the following check. Consider the attachment vertices a1 and a2. If a1 and a2 belong
to distinct connected components, then K is not local to any block. Otherwise, they
belong to the same connected component Ci. Check whether a1 and a2 have distance
2 in B+

i —that is, whether they belong to the same block B. This is done in constant
time by querying the short-path structure. If the check fails, then K is not local to any
block. Otherwise, B contains both a1 and a2. In the latter case, check whether B is
also adjacent in B+

i to all other attachment vertices a3, . . . , ah of K. Again, each such
a check is performed in constant time. If the test succeeds, then K is local to block B.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

32:12 P. Angelini et al.

Otherwise, there exists a vertex aj , with 3 ≤ j ≤ h, that is not incident to B, and K is
not local to any block.

If K is nonlocal, we compute the unique face f of H to which all attachment vertices
of K are incident. First, we choose two attachment vertices ap and aq, with 1 ≤ p, q ≤ h,
that do not belong to the same block. If a1 and a2 do not belong to the same block,
then we take ap = a1 and aq = a2. If the check failed on an attachment vertex aj in
a3, . . . , ah, then either a1 and aj or a2 and aj do not belong to the same block. In the
former case, set ap = a1 and aq = aj ; in the latter one, set ap = a2 and aq = aj . By
querying the short-path data structure, we determine in constant time whether ap and
aq are connected by a path of length 2 in VF and find the middle vertex of such a path.
This middle vertex corresponds to the unique common face f of ap and aq. We then
check whether all attachments of K are adjacent to f in VF. If the test fails, then
no face of H contains all attachments of K. Otherwise, f is the only face of H whose
boundary contains all attachments of K.

3. COMBINATORIAL CHARACTERIZATION

We first present a combinatorial characterization of planar PEGs. This not only forms a
basis of our algorithm but also is interesting in its own right, as it shows that a PEG has
an embedding extension if and only if it satisfies simple conditions that are obviously
necessary for an embedding extension to exist.

Our characterization is based on a decomposition of the graph G of a PEG (G, H,H)
into its connected, biconnected and triconnected components. For triconnected PEGs,
the problem is particularly easy. For a triconnected PEG (G, H,H), the graph G has
only two distinct planar embeddings: G1 and G2. The PEG is thus planar if and only
if either G1 or G2 extends H. Clearly, for a disconnected PEG to admit an embedding
extension, it is a necessary condition that each of its connected components admits an
embedding extension. Similarly, it is a necessary condition for a connected PEG that
each biconnected component admits an embedding extension. We start with the most
specific case—the case where G is biconnected—and then extend the characterization
to the cases where G is connected or even disconnected.

3.1. Planarity of Biconnected PEGs

In this section, we focus on biconnected PEGs (G, H,H). This assumption allows us to
use the SPQR-tree T of G as the main tool of our characterization, which is based on
the two necessary and sufficient conditions of Lemma 2.1. We show that they can be
individually translated to constraints on the embeddings of the skeletons of T .

Definition 3.1. A planar embedding of the skeleton of a node μ of the SPQR-tree of G
is edge-compatible with H if, for every vertex x of skel(μ), and for every three edges of
EH(x) belonging to different virtual edges of skel(μ), their clockwise order determined
by the embedding of skel(μ) is a suborder of σH(x).

LEMMA 3.2. Let (G, H,H) be a biconnected PEG. Let T be the SPQR-tree of G. An
embedding G of G satisfies condition 1 of Lemma 2.1 if and only if for each node μ of T ,
the corresponding embedding of skel(μ) is edge-compatible with H.

PROOF. Obviously, if G has an embedding satisfying condition 1 of Lemma 2.1, then
the corresponding embedding of skel(μ) is edge-compatible with H for each node μ
of T .

To prove the converse, assume that the skeleton of every node of T has an embedding
that is edge-compatible with H, and let G be the embedding of G determined by all such
skeleton embeddings. We claim that G satisfies condition 1 of Lemma 2.1. To prove the
claim, it suffices to show that any three edges e, f, and g of H that share a common

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

Testing Planarity of Partially Embedded Graphs 32:13

Fig. 6. Illustration for the proof of Lemma 3.4. (a) Path P, vertices x and y, and edges e, f , and g in G. (b)
Path or cycle P ′ and edges e′, f ′, and g′ of skel(μ). Grey regions represent virtual edges of the skeleton of a
node of T .

vertex x appear in the same clockwise order around x in H and in G. Assume that the
triple (e, f, g) is embedded in clockwise order around x in H. Let μ be the node of T with
the property that the Q-nodes representing e, f , and g appear in distinct components
of T − μ. Note that such a node μ exists and is unique. The three edges e, f , and g
project into three distinct virtual edges e′, f ′, and g′ of skel(μ). Since the embedding of
skel(μ) is assumed to be edge-compatible with H, the triple (e′, f ′, g′) is embedded in
clockwise order in skel(μ), and hence the triple (e, f, g) is embedded in clockwise order
in G.

Lemma 3.2 settles the translation of condition 1 of Lemma 2.1 to conditions on the
embeddings of the skeletons of the SPQR-tree of G. Next, we deal with condition 2.
Consider a simple cycle �C of G with an arbitrary orientation and a node μ of the SPQR-
tree of G. By Property 2, either all edges of �C belong to the expansion graph of a single
virtual edge of skel(μ) or the virtual edges whose expansion graphs contain the edges
of �C form a simple cycle in skel(μ). Such a cycle in skel(μ) inherits the orientation of �C
in a natural way.

Definition 3.3. A planar embedding of the skeleton of a node μ of the SPQR-tree of G
is cycle-compatible with H if for every facial cycle �C of H whose edges project to a simple
cycle �C ′ in skel(μ), all vertices of skel(μ) that belong to V left

H (�C) and all virtual edges
that contain vertices of V left

H (�C) (except for the virtual edges of �C ′ itself) are embedded
to the left of �C ′, and analogously for V right

H (�C).

LEMMA 3.4. Let (G, H,H) be a biconnected PEG. Let T be the SPQR-tree of G. An
embedding G of G satisfies condition 2 of Lemma 2.1 if and only if for each node μ of T ,
the corresponding embedding of skel(μ) is cycle-compatible with H.

PROOF. Obviously, if G is an embedding of G that satisfies condition 2 of Lemma 2.1,
then the corresponding embedding of skel(μ) is cycle-compatible with H for each node
μ of T .

To prove the converse, assume that skel(μ) has an embedding that is cycle-compatible
with H for each node μ of T , and let G be the resulting embedding of G.

Our goal is to show that for every facial cycle �C of H and for every vertex x of
H − V (�C), the left/right position of x with respect to �C is the same in H as in G.

Refer to Figure 6(a). Assume that x is to the right of �C in G (the other case being
analogous). Let P be a shortest path in G that connects x to a vertex of �C. Such a path
exists since G is connected. Let y be the vertex of �C ∩ P, and let e and f be the two
edges of �C adjacent to y, where e directly precedes f in the orientation of �C. By the

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

32:14 P. Angelini et al.

minimality of P, all vertices of P − y avoid �C, and hence all vertices of P − y are to the
right of �C in G. Let g be the edge of P adjacent to y. In G, the triple (e, f, g) appears in
clockwise order around y.

Refer to Figure 6(b). Let μ be the (unique) internal node of T in which e, f , and g
project to distinct edges e′, f ′, and g′ of skel(μ). Let �C ′ be the projection of �C into skel(μ)
(i.e., �C ′ is the subgraph of skel(μ) formed by edges that contain the projection of at least
one edge of �C), and let P ′ be the projection of P. It is easy to see that �C ′ is a cycle of
length at least 2, whereas P ′ is either a path or a cycle. Note that the latter case only
happens when P ′ has at least two edges and the vertex x properly belongs to a virtual
edge d′ of skel(μ) incident with y. Assume that the edges of �C ′ are oriented consistently
with the orientation of �C and that the edges of P ′ form an ordered sequence, where the
edge containing x is the first and g′ is the last.

Both the endpoints of an edge of �C ′ are vertices of �C. Analogously, both the endpoints
of an edge of P ′ are vertices of P, with the possible exception of the first vertex of P ′. It
follows that no vertex of P ′ belongs to �C ′, except possibly for the first one and the last
one. Thus, no edge of P ′ belongs to �C ′, and by the assumption that the embedding of
skel(μ) is planar and that G is the embedding resulting from the skeleton embedding
choices, all edges of P ′ are embedded to the right of the directed cycle �C ′ in skel(μ). In
particular, the edge of skel(μ) containing x is to the right of �C ′. Since the embedding of
skel(μ) is assumed to be cycle-compatible with H, x is to the right of �C in H.

This shows that G satisfies condition 2 of Lemma 2.1, as claimed.

Definition 3.5. A planar embedding of the skeleton of a node μ of the SPQR-tree of
G is compatible with H if it is both edge- and cycle-compatible with H.

As a consequence of Lemmas 3.2 and 3.4, we obtain the following characterization of
planar biconnected PEGs.

THEOREM 3.6. Let (G, H,H) be a biconnected PEG. Then, G has an embedding that
extends H if and only if the skeleton of each node of its SPQR-tree has an embedding
compatible with H.

If G is biconnected, we can use Theorem 3.6 for devising a polynomial-time algorithm
for PEP. Namely, we can test, for each node μ of the SPQR-tree T of G, whether skel(μ)
has an embedding that is compatible with H. For Q-, S-, and R-nodes, this test is easily
done in polynomial time.

If μ is a P-node, the test is more complex. Let x and y be the two poles of skel(μ). We
say that a virtual edge e of skel(μ) is constrained if the expansion graph of e contains
at least one edge of H incident to x and at least one edge of H incident to y. To obtain
an embedding of μ edge-compatible with H, the constrained edges must be embedded
in a cyclic order that is consistent with σH(x) and σH(y). Such a cyclic order, if it exists,
is unique and can be determined in polynomial time. Note that if H has a facial cycle
�C that projects to a proper cycle �C ′ in μ, then �C ′ has exactly two edges and these two
edges are both constrained. Thus, the embedding of any such cycle �C ′ in μ is fixed
as soon as we fix the cyclic order of the constrained edges. Once the cyclic order of
the constrained edges of μ is determined, we process the remaining edges one by one
and insert them among the edges that are already embedded in such a way that no
edge- or cycle compatibility constraints are violated. It is not difficult to verify that
this procedure constructs an embedding of μ compatible with H, if such an embedding
exists.

Thus, PEP can be solved in polynomial time for biconnected PEGs.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

Testing Planarity of Partially Embedded Graphs 32:15

Fig. 7. Three examples of PEP instances (G, H,H) that have no embedding extension, even though each
block of G admits an embedding extending the corresponding sub-embedding of H. The black edges and
vertices represent H, and the grey edges and vertices belong to G but not to H. Note that instance (a) fails
to satisfy condition 3 of Lemma 3.8 (shown later), instance (b) fails to satisfy condition 2 of Lemma 3.8, and
instance (c) has a nontrivial nonlocal H-bridge. The modification of instance (c) into an equivalent instance
without nontrivial nonlocal H-bridges creates a block of G that does not have an embedding extension.

3.2. Planarity of Connected and Disconnected PEGs

A graph is planar if and only if each of its blocks is planar. Thus, planarity testing
of general graphs can be reduced to planarity testing of biconnected graphs. For pla-
narity testing of partially embedded graphs, the same simple reduction does not work
(Figure 7). However, we will show that solving partially embedded planarity for a gen-
eral instance (G, H,H) can be reduced to solving the subinstances induced by the blocks
of G and to checking additional conditions guaranteeing that the partial solutions can
be combined into a full solution for (G, H,H).

Let us consider a connected PEG (G, H,H)—that is, an instance of PEP in which G
is connected. When dealing with such an instance, it is useful to assume that G has
no nontrivial nonlocal H-bridge. We will now show that any instance of PEP can be
transformed into an equivalent instance that satisfies this additional assumption.

Let K be a nontrivial nonlocal H-bridge of G. Since K is nonlocal, it must have at
least two attachments that do not belong to any single block of H. Let fK be the face
of H whose boundary contains all attachments of the H-bridge K, if any such a face
exists. Otherwise, let fK be an arbitrary face of H.

LetK be the set of nontrivial nonlocal H-bridges of G. It is clear that in any embedding
of G extending H, all vertices of K − V (H) are embedded inside fK for every K ∈ K.
This motivates the following definition.

Definition 3.7. Let H′ be the graph whose edge set is equal to the edge set of H and
whose vertex set is defined by V (H′) = V (H) ∪ ⋃

K∈K V (K). Let H′ be the embedding
of H′ that is obtained from H by inserting, for every H-bridge K ∈ K, all vertices of
K − V (H) into the interior of face fK.

Observe that the graph G has no nontrivial nonlocal H′-bridges. In addition, observe
that any embedding of G that extends H also extends H′, and vice versa. Thus, the
instance (G, H,H) of PEP is equivalent to the instance (G, H′,H′), which contains no
nontrivial nonlocal bridges.

Before we state the next lemma, we need more terminology. Let H be an embedding
of a graph H, and let H1 and H2 be edge-disjoint subgraphs of H. We say that H1 and
H2 alternate around a vertex x of H if there are two pairs of edges e, e′ ∈ E(H1) and
f, f ′ ∈ E(H2) that are incident to x and that appear in the cyclic order (e, f, e′, f ′) in the
rotation of x restricted to these four edges. Let x and y be two vertices of H and let �C be

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

32:16 P. Angelini et al.

a directed cycle in H. We say that �C separates x and y if x ∈ V left
H (�C) and y ∈ V right

H (�C),
or vice versa.

LEMMA 3.8. Let (G, H,H) be an instance of PEP where G is connected and every
nontrivial H-bridge of G is local. Let G1, . . . , Gt be the blocks of G, let Hi be the subgraph
of H induced by the vertices of Gi, and let Hi be H restricted to Hi. Then, G has an
embedding extending H if and only if

(1) Gi has an embedding extending Hi , for every 1 ≤ i ≤ t,
(2) no two distinct graphs Hi and Hj alternate around any vertex of H, and
(3) for every facial cycle �C of H and for any two vertices x and y of H separated by �C,

any path in G connecting x and y contains a vertex of �C.

PROOF. Clearly, the three conditions of the lemma are necessary. To show that
they are also sufficient, assume that the three conditions are satisfied and proceed by
induction on the number t of blocks of G.

If t = 1, then G is biconnected and there is nothing to prove. Assume that t ≥ 2. If
there is at least one block Gi that does not contain any vertex of H, we consider the
subgraph G′ of G consisting of those blocks that contain at least one vertex of H. Since
every nontrivial H-bridge of G is local, the graph G′ is connected, and hence it satisfies
the three conditions of the lemma. By induction, the embedding H can be extended
into an embedding G ′ of G′. Since every block Gi of G is planar (by condition 1 of the
lemma), it is easy to extend the embedding G ′ into an embedding G of G.

Assume now that every block of G contains at least one vertex of H. This implies
that every cutvertex of G belongs to H, because otherwise the cutvertex would belong
to a nontrivial nonlocal H-bridge, which is impossible by assumption. Let x be any
cutvertex of G. Let G′

1, G′
2, . . . , G′

k be the connected components of G − x, where we
select G′

1 by the following rules: if there is a component of G − x that has no vertex
connected to x by an edge of H, then let G′

1 be such a component; if each component of
G − x is connected to x by an edge of H, then choose G′

1 in such a way that the edges
of H incident to x and belonging to G′

1 form an interval in σH(x). Such a choice of G′
1 is

always possible, due to condition 2 of the lemma.
Let G′ be the subgraph of G induced by V (G′

1) ∪ {x} and let G′′ be the subgraph of
G induced by V (G′

2) ∪ · · · ∪ V (G′
k) ∪ {x}. Let H′ and H′′ be the subgraphs of H induced

by the vertices of G′ and G′′, respectively, and let H′ and H′′ be H restricted to H′ and
H′′, respectively. Both G′ and G′′ have fewer blocks than G. In addition, both instances,
(G′, H′,H′) and (G′′, H′′,H′′), satisfy the conditions of the lemma. Thus, by induction,
there is an embedding G ′ of G′ that extends H′ and an embedding G ′′ of G′′ that extends
H′′. Our goal is to combine G ′ and G ′′ into a single embedding of G that extends H. To
see that this is possible, we prove two auxiliary claims.

Claim 1. H′ has a face f ′ whose boundary contains x and, for any facial cycle �C of
f ′, all vertices of H′′ except for x are in V left

H (�C)—that is, they are “inside” f ′.

To see that the claim holds, assume first that H′ has no edge incident to x
(Figure 8(a)). Let f ′ be the unique face of H′ incident to x. We show that all ver-
tices of H′′ are inside f ′ in H. Let y be any vertex of H′′. Since G′′ is connected, there is
a path P in G′′ from y to x. Assume for contradiction that H′ has a facial cycle �C such
that �C separates y from x in H. This cycle belongs to H′ − x, and hence �C and P are
disjoint, contradicting condition 3 of the lemma.

Next, assume that H′ has an edge incident to x (see Figure 8(b)). By the construction
of G1, each connected component of G − x has at least one vertex connected to x by
an edge of H. Moreover, the edges of H′ incident to x form an interval in σH(x). This
shows that H′ has a face f ′ containing x on its boundary, such that every vertex of H′′

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

Testing Planarity of Partially Embedded Graphs 32:17

Fig. 8. Illustration for the proof of Lemma 3.8. (a) H′ has no edge incident to x. (b) H′ has an edge incident
to x.

adjacent to x is inside f ′ in H. We now show that all vertices of H′′ except for x are
inside f ′. Let y be a vertex of H′′ different from x. Let G′

i be the component of G − x
containing y. We know that G′

i has a vertex z adjacent to x by an edge of H and that z
is inside f ′ in H. Let P be a path in G′

i connecting y and z. If y is not inside f ′, then y
is separated from z in H by a facial cycle of H′, contradicting condition 3 of the lemma.

Claim 2. All vertices of H′, except for x, appear in H inside the same face f ′′ of H′′;
furthermore, x is on the boundary of f ′′.

To prove the claim, note that any two vertices from H′ − x are inside the same face
f ′′ of H′′ in H by condition 3 of the lemma because they are connected by a path in G′

1.
Vertex x is on the boundary of f ′′, as otherwise it would be separated in H from the
remaining vertices of H′ by a facial cycle of f ′′, again contradicting condition 3 of the
lemma.

In view of the previous two claims, the embedding G ′ of G′ and the embedding G ′′ of G′′
can be combined into a single embedding G of G that extends H. To see this, note that
when H′ is extended into G ′, the face f ′ from Claim 1 can be subdivided into several
faces of G ′, at least one of which, say g′, contains x on its boundary. Analogously, the
face f ′′ from Claim 2 can be subdivided into several faces of G ′′, at least one of which,
say g′′, contains x on its boundary. We then obtain the embedding G by merging the
faces g′ and g′′ into a single face.

Observe that computing the nonlocal H-bridges K and, for each nonlocal H-bridge
K ∈ K, the face fK can be done in polynomial time. Afterward, the second and third
conditions of Lemma 3.8 can easily be checked in polynomial time.

Next, we focus on disconnected PEGs—that is, the instances (G, H,H) of PEP in which
G is not connected. The possibility of solving the subinstances of (G, H,H) induced
by the connected components of G does not guarantee that the instance (G, H,H) of
PEP has a solution. However, we show that solving PEP for an instance (G, H,H) can
be reduced to solving the subinstances induced by the connected components of G
and to checking additional conditions that guarantee that the partial solutions can be
combined into a full solution for (G, H,H).

LEMMA 3.9. Let (G, H,H) be an instance of PEP. Let G1, . . . , Gt be the connected
components of G. Let Hi be the subgraph of H induced by the vertices of Gi, and let Hi
be H restricted to Hi. Then G has an embedding extending H if and only if

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

32:18 P. Angelini et al.

(1) Gi has an embedding extending Hi , for every 1 ≤ i ≤ t, and
(2) for every 1 ≤ i, j ≤ t with j �= i, and for each facial cycle �C of Hi, no two vertices of

Hj are separated by �C.

PROOF. Clearly, the two conditions of the lemma are necessary. To show that they are
also sufficient, assume that the two conditions are satisfied and proceed by induction
on the number t of connected components of G.

If t = 1, then G is connected and there is nothing to prove. Assume now that G has
t ≥ 2 connected components G1, . . . , Gt. Let Hi and Hi be defined as in the statement
of the lemma. Note that Hi may consist of several connected components. Let CF be
the component-face tree of H, rooted at a node that represents an arbitrary face of H.
We say that a face fi of H is the outer face of Hi if at least one child of fi in CF is a
component of Hi but the parent of fi is not a component of Hi. Observe that due to the
second condition of the lemma, each Hi has exactly one outer face fi. We thus have a
sequence of (not necessarily distinct) outer faces f1, . . . , ft of H1, . . . ,Ht.

Let us now assume, without loss of generality, that in the subtree of CF rooted at f1,
there is no outer face fi �= f1. This implies that f1 is the only face of H that is incident
both to H1 and to H − H1. By induction, the embedding H − H1 can be extended to
an embedding G≥2 of the graph G − G1. By the first condition of the lemma, H1 can
be extended into an embedding G1 of G1. The two embeddings H − H1 and H1 share a
single face f1.

When extending the embedding H1 into G1, the face f1 of H1 can be subdivided into
several faces of G1. Let f ′ be any face of G1 obtained by subdividing f1. Analogously, in
the embedding G≥2 the face f1 can be subdivided into several faces, among which we
choose an arbitrary face f ′′.

We then glue the two embeddings G1 and G≥2 by identifying the face f ′ of G1 and the
face f ′′ of G≥2 into a single face whose boundary is the union of the boundaries of f ′
and f ′′. This yields an embedding of G that extends H.

Note that the second condition of Lemma 3.9 can easily be tested in polynomial
time. Thus, we can use the characterization to directly prove that PARTIALLY EMBEDDED

PLANARITY is solvable in polynomial time. In the rest of the article, we describe a more
sophisticated algorithm that solves PEP in linear time.

4. LINEAR-TIME ALGORITHM

In this section, we devise a linear-time algorithm for solving PEP. The algorithm ba-
sically follows the outline of the characterization. The first milestone is a linear-time
algorithm for testing the planarity of biconnected PEGs. Afterward, we show that the ad-
ditional conditions for the planarity of connected and disconnected PEGs can be checked
in linear time.

Essentially, to solve the biconnected case, it is sufficient to give a linear-time imple-
mentation of the algorithm sketched at the end of Section 3.1. In fact, most of the steps
sketched there are fairly easy to implement in linear time. The problem of finding a
compatible embedding of a P-node, however, is tricky. Indeed, a P-node μ may contain
a linear number of facial cycles of H that project to cycles in skel(μ). Further, a linear
number of virtual edges of skel(μ) may have no H-edge adjacent to the poles of μ; hence,
the positions at which they have to be inserted in the cyclic orderings around the poles
of μ depend only on the cycle containment constraints. To process the skeleton of a
P-node μ in time proportional to its size, we would need to find, for each virtual edge
e of skel(μ), a position such that e is contained in all and only the cycles in which it
needs to be contained.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

Testing Planarity of Partially Embedded Graphs 32:19

Therefore, the main problem for reaching linear running time stems from the cycle
compatibility constraints (condition 2 of Lemma 2.1). The constraints stemming from
rotation system (condition 1 of Lemma 2.1) consist of orderings of subsets of the edges
incident to each vertex. Thus, the total size of the latter constraints is linear, and
additionally, the constraints are very “local.” In light of these two properties, it is not
surprising that the rotation system constraints are relatively simple to handle in total
linear time. The same does not hold, however, for the cycle containment constraints. As
specified in condition 2 of Lemma 2.1, these constraints determine, for each directed
facial cycle �C of H and each vertex v of H − C, whether v is to the left or to the right of
�C. Note that the graph H may contain a linear number of facial cycles, and thus this
amounts to quadratically many cycle–vertex constraints. Further, these constraints do
not exhibit any locality on G. Evidently, a lot of the information encoded in the cycle
containment constraints is redundant, as the set of cycles involved in these constraints
is the set of facial cycles of a planar graph.

We use two different approaches to handle the cycle containment constraints in
linear time. One is to ignore them; we prove that this yields a correct solution if H is
connected, as in this case the cycle containment constraints are implied by the rotation
system constraints. The second consists of considering restricted instances, where the
constraints can easily be expressed in linear time and space. Suppose that we have a
PEG (G, H,H) with a face f of H such that all vertices of H are part of at least one facial
cycle of f . This implies that each facial cycle of H has f on its left side and the right
side does not contain any vertex of H. In this case, the cycle containment constraints
of each facial cycle �C of f can be expressed as V right

H (�C) = ∅, thus yielding a set of
constraints whose size is linear. Moreover, in the SPQR-tree, it is sufficient to keep
track of which virtual edges contain vertices of H and which do not. This information
is much easier to aggregate than information about individual vertices and all of their
cycle containment constraints.

First, we tackle the case in which G is biconnected. The algorithm solving this case,
presented in Section 4.3, uses the algorithms presented in Sections 4.1 and 4.2 as
subroutines to solve more restricted subcases. Then, we deal with the case in which
G is simply connected and with the general case, where G may be disconnected,
in Section 4.4. The algorithm we present exploits several auxiliary data structures,
namely block-cutvertex trees, SPQR-trees, enriched block-cutvertex trees, block-face
trees, component-face trees, and vertex-face incidence graphs. Note that all of these
data structures can easily be computed in linear time (see Section 2.3).

4.1. G Biconnected, H Connected

In this section, we show how to solve PEP in linear time for biconnected PEGs (G, H,H)
with H connected. We first show that in this case the rotation system alone is sufficient
for finding an embedding extension.

LEMMA 4.1. Let (G, H,H) be a PEG such that H is connected. Let G be any planar
embedding of G satisfying condition 1 of Lemma 2.1. Then, G satisfies condition 2 of
Lemma 2.1.

PROOF. Suppose, for a contradiction, that a planar embedding G of G exists such
that G satisfies condition 1 and does not satisfy condition 2 of Lemma 2.1. Then, there
exists a facial cycle �C of H such that either there exists a vertex x ∈ V left

H (�C) with
x ∈ V right

G (�C) or there exists a vertex x ∈ V right
H (�C) with x ∈ V left

G (�C). Suppose that we
are in the former case, as the latter case can be treated analogously. Since H is a planar
embedding and H is connected, there exists a path P = (x1, x2, . . . , xk) ∈ H such that x1

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

32:20 P. Angelini et al.

is a vertex of �C, xi ∈ V left
H (�C), for each i = 2, . . . , k, and xk = x. Denote by x−

1 and by x+
1

the vertex preceding and following x1 in the oriented cycle �C, respectively. Consider the
placement of x2 with respect to �C in G. As x2 /∈ �C, either x2 ∈ V left

G (�C) or x2 ∈ V right
G (�C).

In the first case, the path (x2, . . . , xk) crosses �C, since x2 ∈ V left
G (�C), xk ∈ V right

G (�C),
and no vertex vi belongs to �C, for i = 2, . . . , k, thus contradicting the planarity of the
embedding G. In the second case, the clockwise order of the edges incident to x1 in H
is (x1, x−

1), (x1, x2), and (x1, x+
1), whereas the clockwise order of the edges incident to x1

in G is (x1, x−
1), (x1, x+

1), and (x1, x2), thus contradicting the assumption that G satisfies
condition 1 of Lemma 2.1.

By Lemma 4.1, testing whether a planar embedding G exists satisfying conditions 1
and 2 of Lemma 2.1 is equivalent to testing whether a planar embedding G exists
satisfying condition 1 of Lemma 2.1. Due to Lemma 3.2, testing whether a planar
embedding G exists satisfying condition 1 is equivalent to testing whether the skeleton
of each node of the SPQR-tree of G has a planar embedding that is edge-compatible
with H. We now describe an algorithm—Algorithm BC (for G Biconnected and H
Connected)—that achieves this in linear time.

Algorithm BC. Construct the SPQR-tree T of G and root it at an arbitrary Q-node.
This choice determines the pertinent graph of each node μ of T and also determines the
parent virtual edge in the skeleton of each nonroot node μ of T . A bottom-up visit of T is
performed, such that after a node μ of T has been visited, an embedding of skel(μ) that
is edge-compatible with H is selected, if it exists. To find an edge-compatible embedding
of the skeleton skel(μ) of a node μ of T , we need to know whether the expansion graph
of each virtual edge uv of skel(μ) contains H-edges incident to u and v. Due to the
bottom-up traversal, the pertinent graphs of all children have already been processed
by the algorithm, and we can thus aggregate this information for all virtual edges,
except for the parent edge.

To keep track of the edges of H that belong to pert(μ) and that are incident to the
pole u(μ), define the first edge fu(μ) and the last edge lu(μ) as the edges of H incident
to u(μ) in pert(μ) such that all other edges of H incident to u(μ) in pert(μ) appear
between fu(μ) and lu(μ) in the counterclockwise order of the edges incident to u(μ) in H.
The first and last edge of v(μ) are defined analogously. Note that if the edges of H that
belong to pert(μ) and are incident to u(μ) do not form an interval in the rotation of u in
H, then the skeleton of μ has no edge-compatible embedding and the PEG (G, H,H) is
nonplanar.

After a node μ of T has been visited by the algorithm, edges fu(μ), lu(μ), fv(μ), and lv(μ)
are associated with μ. We can then also refer to them as fu(e), lu(e), fv(e), and lv(e), where
e is the virtual edge corresponding to μ in the skeleton of the parent of μ.

If μ is a Q- or an S-node, no check is needed. As skel(μ) is a cycle (possibly of length 2
in case of a Q-node), the only planar embedding of skel(μ) is edge-compatible with H.
The edges fu(μ), lu(μ), fv(μ), and lv(μ) are easily computed.

If μ is an R-node, then skel(μ) has only two planar embeddings. For each of them,
verify if it is edge-compatible with H by performing the following check. For each vertex
x of skel(μ), restrict the circular list of its incident virtual edges to the virtual edges
e1, . . . , eh that contain an edge of H incident to x. Check if lx(ei) precedes fx(ei+1) (for
i = 1, . . . , h, where eh+1 = e1) in the list EH(x) of edges incident to x in H. If x is a
pole, do an analogous check on the linear list of its incident virtual edges obtained by
removing the parent edge from the circular list. If one of the tests succeeds, then select
the corresponding embedding for skel(μ). Set fu(μ) = fu(f1), lu(μ) = lu(fp), fv(μ) = fv(g1),
and lv(μ) = lv(gq), where f1 and fp (g1 and gq) are the first and the last virtual edge in the

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

Testing Planarity of Partially Embedded Graphs 32:21

linear list of the virtual edges containing an edge of H and incident to u(μ) (respectively
to v(μ)).

If μ is a P-node, an embedding of skel(μ) is a counterclockwise order of its virtual
edges around u(μ). We describe how to verify whether an embedding of skel(μ) exists
that is edge-compatible with H.

Consider the virtual edges containing edges of H incident to u(μ). We show how
to construct a list Lu of such edges corresponding to the ordering they have in any
embedding of skel(μ) that is edge-compatible with H. Insert one such edge, say ei, into
Lu. Repeatedly consider the last element e j of Lu, and insert as the new last element
of Lu the edge e j+1 such that lu(e j) immediately precedes fu(e j+1) in the counterclockwise
order of the edges incident to u(μ) in H. If e j+1 = ei, then Lu is the desired circular
list. If e j+1 does not exist, then the edge following lu(e j) belongs to the parent edge of
μ. Then, consider the first edge ei. Repeatedly consider the first element e j of Lu, and
insert as the new first element of Lu the edge e j−1 such that fu(e j) immediately follows
lu(e j−1) in the counterclockwise order of the edges incident to u(μ) in H. If e j−1 does not
exist, then check whether all virtual edges containing edges of H incident to u(μ) have
been processed, and in this case insert the the parent edge of μ as the first element of
Lu. Analogously, construct a list Lv.

Let Luv be the sublist obtained by restricting Lu to those edges that appear in Lv. Let
Lvu be the corresponding sublist of Lv. Check whether Luv and Lvu are the reverse of
each other. If this is the case, a list L of the virtual edges of skel(μ) containing edges of
H incident to u(μ) or to v(μ) can easily be constructed compatible with both Lu and Lv.

Finally, arbitrarily insert into L the virtual edges of skel(μ) not in Lu and not in Lv,
thus obtaining an embedding of skel(μ) edge-compatible with H.

Denote by f1 and fp (by g1 and gq) the virtual edges containing edges of H incident
to u(μ) (respectively to v(μ)) following and preceding the parent edge of μ in L. Set
fu(μ) = fu(f1), lu(μ) = lu(fp), fv(μ) = fv(g1), and lv(μ) = lv(gq).

THEOREM 4.2. Let (G, H,H) be an n-vertex instance of PEP such that G is biconnected
and H is connected. Algorithm BC solves PEP for (G, H,H) in O(n) time.

PROOF. We show that Algorithm BC processes each node μ of T in O(kμ) time, where
kμ is the number of children of μ in T .

First, observe that the computation of fu(μ), lu(μ), fv(μ), and lv(μ) is trivially done in
O(1) time once the embedding of skel(μ) has been decided.

If μ is a Q-node or an S-node, Algorithm BC does not perform any check or embedding
choice.

If μ is an R-node, Algorithm BC computes the two planar embeddings of skel(μ)
in O(kμ) time. For each of these embeddings, Algorithm BC processes each vertex x
of skel(μ) separately, considering the list of the virtual edges incident to x (which is
trivially constructed in O(t) time, where t is the number of such edges), and restricting
the list to those virtual edges containing an edge of H incident to x (for each virtual
edge, it suffices to check whether the first edge incident to x is associated with an edge
of H, which is done in O(1) time). Checking whether lx(ei) precedes fx(ei+1) in the list of
the edges incident to x in H is done in O(1) time. Hence, the total time spent for each
node x is O(t). Summing up over all nodes of skel(μ) results in a total O(kμ) time, as
every edge is incident to two nodes and the total number of edges in skel(μ) is O(kμ).

If μ is a P-node, extracting the virtual edges of skel(μ) containing edges of H incident
to u(μ) or to v(μ) can be done in O(kμ) time, as in the R-node case. For each of such edges,
equipping fu(e), lu(e), fv(e), and lv(e) with a link to e is done in constant time. Determining
an ordering of the virtual edges containing edges of H incident to u(μ) can be done in
O(kμ) time, as the operations performed for each virtual edge ei are accessing the first

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

32:22 P. Angelini et al.

and the last edge of ei, accessing the edge following the last edge of ei (preceding the
first edge of ei) in the counterclockwise order of the edges incident to u(μ) in H, and
accessing a virtual edge linked from the first or last edge; each of these operations is
trivially done in O(1) time. Marking the virtual edges in Lu and in Lv is done in O(kμ)
time, as Lu and Lv have O(kμ) elements. Then, obtaining Luv and Lvu, and checking
whether they are the reverse of each other, is done in O(kμ) time. Finally, extending
Luv to L is also easily done in O(kμ) time; namely, if Luv is empty, then let L be the
concatenation of Lu and Lv (where such lists are made linear by cutting them at any
point). Otherwise, start from an edge ei of Luv; ei is also in Lu and in Lv; insert ei into
L; insert into L all the edges of Lu following ei until the next edge ei+1 of Luv has been
found; insert into L all edges of Lv preceding ei until the next edge ei+1 of Luv has been
found; insert ei+1 into L, and repeat the procedure. Each element of Luv, Lu, and Lv is
visited once, and hence such a step is performed in O(kμ) time.

As
∑

μ∈T kμ = O(n), the total running time of the algorithm is O(n).

Note that although Algorithm BC relies only on the assumptions that G is bicon-
nected and H is connected, we will only use it in the more special case where H is also
biconnected.

4.2. G Biconnected, All Vertices and Edges of G Lie in the Same Face of H
The PEGs considered in this section are denoted by (G(f), H(f),H(f)). Such instances
are assumed to satisfy the following properties: (i) G(f) is biconnected, (ii) G(f) and
H(f) have the same vertex set, (iii) all vertices and edges of H(f) are incident to the
same face f of H(f), and (iv) no edge of G(f)\H(f) connects two vertices of the same
block of H(f). Algorithm BF, which deals with such a setting, is used as a subroutine
by Algorithm BA, to be shown later, dealing with the instances of PEP in which G is
biconnected and H is arbitrary.

First, we show that the structure of the cycles in H(f) is very special.

PROPERTY 3. Every simple path with at least two vertices of H(f) is contained in at
most one simple cycle of H(f).

PROOF. Suppose that there exists a path (that can possibly be a single edge) of H(f)
belonging to at least two simple cycles of H(f). Then, such cycles share edges and
define at least three regions of the plane. Not all edges of the two cycles can be incident
to the same region, contradicting the fact that all edges of H(f) are incident to the
same region of the plane in H(f).

Since all vertices and edges are incident to f , the only relevant cycles for which
cycle–vertex constraints have to be checked are the facial cycles of f . We exploit this
particular structure of the input to simplify the test of cycle compatibility with H(f)
for the skeleton of a node μ of T (f), where T (f) is the SPQR-tree of G(f).

LEMMA 4.3. Consider any node μ of T (f). Then, an embedding of skel(μ) is cycle-
compatible with H(f) if and only if for every facial cycle �C of H(f) whose edges project
to a cycle �C ′ of skel(μ), no vertex and no edge of skel(μ) is to the right of �C ′, where �C ′ is
oriented according to the orientation of �C.

PROOF. By assumption (iii) on the input, all vertices and edges of H(f) are incident
to the same face f of H(f). By construction, every facial cycle �C of H(f) is oriented
in such a way that f and hence all vertices of H(f) are to the left of �C. Then, by
Lemma 3.4, if the edges of �C determine a cycle �C ′ of virtual edges of skel(μ), all vertices
of skel(μ) that are not in �C and all virtual edges of skel(μ) that are not in �C ′ and that

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

Testing Planarity of Partially Embedded Graphs 32:23

contain vertices of G(f) have to be to the left of �C ′. Finally, all virtual edges that are
not in �C ′ and that do not contain any vertex of G(f) (i.e., virtual edges corresponding
to Q-nodes) have one end-vertex that is not in �C, by assumption (iv) on the input. Such
an end-vertex forces the edge to be to the left of �C ′.

To find compatible embeddings for the skeletons of the nodes of T (f), we again need
to find edge-compatible embeddings, which can be done as in Algorithm BC. However,
unlike Algorithm BC, Algorithm BF has also to make embedding choices to satisfy cycle
compatibility constraints. Such constraints are the ones expressed by Lemma 4.3: for
any node μ of T (f), the sought-after embedding of skel(μ) is such that for every facial
cycle �C of H(f) whose edges project to a cycle �C ′ of skel(μ), no vertex and no edge of
skel(μ) is to the right of �C ′, where �C ′ is oriented according to the orientation of �C.

The choice of an embedding for skel(μ) does not affect whether the cycle compatibility
constraints are satisfied for the facial cycles �C of H(f) whose edges project to a single
virtual edge of skel(μ). On the other hand, the choice of an embedding for skel(μ) does
affect whether the cycle compatibility constraints are satisfied for the facial cycles �C of
H(f) whose edges project to a cycle �C ′ of skel(μ). Hence, to ensure cycle compatibility,
we need to (quickly) find the projections of the facial cycles of H(f) in the skeletons
of the nodes of T (f) and need to perform embedding choices for such skeletons that
satisfy the constraints of Lemma 4.3. These tasks are simplified by the following two
observations.

First, the facial cycles �C of H(f) whose edges project to a cycle �C ′ of skel(μ) are
composed of a sequence of traversing paths for the neighbors of μ in T (f): for any
neighbor ν of μ in T (f), a traversing path is a path between u(ν) and v(ν) that is
composed of edges of H(f), that belongs to pert(ν), and that is part of a facial cycle �C
of H(f) not entirely contained in pert(ν).

Second, by Property 3, every edge of H(f) (and hence every path of H(f)) can be
contained in at most one facial cycle of H(f). Therefore, a single flag suffices to encode
the existence of a traversing path for a node of T (f).

We now give a high-level description of Algorithm BF.
Like Algorithm BC, Algorithm BF starts with the construction of the SPQR-tree

T (f) of G(f), roots it at an arbitrary Q-node, and visits T (f) in bottom-up order in
such a way that after a node μ of T (f) has been visited, an embedding of skel(μ) that
is compatible with H(f) is selected, if it exists.

To deal with edge compatibility constraints, Algorithm BF maintains edges fu(μ),
lu(μ), fv(μ), and lv(μ) for each node μ of T (f) (and for each virtual edge in the skeleton
of each node of T (f)) as in Algorithm BC. Additionally, to deal with cycle compatibility
constraints, the algorithm maintains a flag p(μ) for each node μ of T (f) such that
p(μ) is set to TRUE if there exists a traversing path P for μ; flag p(μ) is set to FALSE

otherwise. Furthermore, to encode the direction of P the algorithm maintains a flag
uv(μ). If p(μ) = TRUE, the flag uv(μ) is set to TRUE if P is oriented from u(μ) to v(μ)
according to the orientation of �C, and it is set equal to FALSE otherwise. We also refer
to these flags as p(e) and uv(e), where e is the virtual edge corresponding to μ in the
skeleton of the parent of μ.

Now, we state lemmas specifically dealing with S-, R-, and P-nodes of T (f). These
lemmas will be used in the description of Algorithm BF.

LEMMA 4.4. Let μ be an S-node of T (f) with children μ1, μ2, . . . , μk. Then, p(μi) =
TRUE for some 1 ≤ i ≤ k if and only if p(μ j) = TRUE for all 1 ≤ j ≤ k.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

32:24 P. Angelini et al.

PROOF. If p(μ j) = TRUE for all 1 ≤ j ≤ k, then trivially p(μi) = TRUE. If p(μi) = TRUE

for some 1 ≤ i ≤ k, there exists a traversing path of μi that is part of a simple cycle �C of
H(f) not entirely contained in pert(μi); however, as μ is an S-node, �C does not entirely
lie inside pert(μ), as otherwise it would entirely lie inside pert(μi). Then, �C consists of
a traversing path of pert(μ j), for all 1 ≤ j ≤ k, and of a traversing path of the parent
edge of skel(μ), thus proving the lemma.

Next, we derive a simple criterion for an embedding of an R-node to be cycle-
compatible. By Lemma 4.3, an embedding of a skeleton skel(μ) is cycle-compatible
if for each facial cycle �C of f that projects to a cycle �C ′ in skel(μ), the right side of �C ′

is empty. For an R-node μ this condition can be reformulated: each such cycle �C ′ must
have a face on its right side.

LEMMA 4.5. Let μ be an R-node of T (f). If an edge e of skel(μ) has a traversing path
belonging to a facial cycle �C, let us orient e in the direction determined by the projection
of �C in skel(μ). An embedding of skel(μ) is cycle-compatible with H(f) if and only if for
each face g of the embedding of skel(μ), either (i) every virtual edge e on the boundary of
g is oriented so that g is to the right of e or (ii) none of the virtual edges on the boundary
of g is oriented in a way that g is to the right of it.

PROOF. Suppose that an embedding of skel(μ) is cycle-compatible with H(f). Let g
be a face of the embedding. If no edge e on the boundary of g contains a traversing
path, then g satisfies condition (ii). Otherwise, assume that on the boundary of g there
is an edge e containing a traversing path P such that g is to the right of e. Let �C be
the facial cycle of H(f) that contains P. By Lemma 4.3, �C projects to a directed cycle
�C ′ in skel(μ), and no vertex or edge of skel(μ) is embedded to the right of �C ′. Thus, �C ′
corresponds to the boundary of the face g, and hence g satisfies condition (i).

Suppose now that in an embedding of skel(μ), every face satisfies condition (i) or
condition (ii). We claim that the embedding of skel(μ) is cycle-compatible with H(f).
To prove it, we use Lemma 4.3. Let �C be a facial cycle of H(f) that projects to a simple
cycle �C ′ in skel(μ). Let e be any edge of �C ′ and let g be the face to the right of e in
the embedding of skel(μ). Necessarily, g satisfies condition (i). Hence, each edge on the
boundary of g has a traversing path. The union of these paths forms a cycle in H(f),
and by Property 3, this cycle is equal to �C. Thus, the boundary of g coincides with the
cycle �C ′. In particular, no vertex and no edge of skel(μ) is embedded to the right of
�C ′. By Lemma 4.3, this means that the embedding of skel(μ) is cycle-compatible with
H(f).

We next deal with P-nodes. The special structure of the PEGs (G(f), H(f),H(f))
considered in this section implies that for each P-node μ, there exists at most one facial
cycle �C of f that projects to a cycle in skel(μ).

LEMMA 4.6. Let μ be a P-node of T (f). There exist either zero or two virtual edges of
skel(μ) containing a traversing path.

PROOF. If there exists one virtual edge ei of skel(μ) containing a traversing path that
is part of a simple cycle �C of H(f) not entirely contained in pert(ei), another virtual edge
of skel(μ) containing a traversing path that is part of �C exists, as otherwise �C would
not be a cycle. Further, if there exist at least three virtual edges of skel(μ) containing
traversing paths, then each such path belongs to two simple cycles, thus contradicting
Property 3.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

Testing Planarity of Partially Embedded Graphs 32:25

Fig. 9. Illustration for the case in which μ is an R-node. (a) One of the two embeddings of skel(μ). Grey
regions represent expansion graphs of the virtual edges of the skeleton of μ. The expansion graph of the
parent edge ep is shaded. Edges in G(f) not in H(f) are not shown. (b) Graph skel′(μ) obtained by restricting
skel(μ) to those edges ei �= ep with p(ei) = TRUE. The only edges of H(f) shown are those belonging to
traversing paths for children of μ in T (f).

Hence, the skeleton of every P-node contains at most one such cycle, whose right side
must be empty by Lemma 4.3. This considerably simplifies the problem of finding a
cycle-compatible embedding of a P-node. We are now ready to exhibit the main steps
of Algorithm BF.

Algorithm BF. As stated earlier, Algorithm BF performs a bottom-up traversal of
the rooted SPQR-tree T (f) of G(f) such that for each processed node μ, a compatible
embedding of skel(μ) is computed, if it exists. The algorithm computes the edges fu(μ),
lu(μ), fv(μ), and lv(μ) for each node μ of T (f) (and for each virtual edge in the skeleton of
each node of T (f)) as in Algorithm BC to find edge-compatible embeddings. Further, it
computes the flags p(μ) and uv(μ) for each processed node to identify facial cycles of f
that project to cycles in skel(μ). We now give a detailed description of how Algorithm
BF processes a node μ, assuming that all flags and edges for all children of μ have
already been computed.

If μ is a Q- or an S-node, no check is needed. As skel(μ) is a cycle, the only planar
embedding of skel(μ) is compatible with H(f). Edges fu(μ), lu(μ), fv(μ), and lv(μ), as well
as flags p(μ) and uv(μ), can easily be computed. In particular, by Lemma 4.4, if μ is an
S-node, then p(μ) = p(μi) for any child μi of μ.

If μ is an R-node, as in Figure 9(a), then for each of the two planar embeddings of
skel(μ), check if it is edge-compatible with H(f) and set values for fu(μ), lu(μ), fv(μ), and
lv(μ) as in Algorithm BC. To check if any of the two embeddings is cycle-compatible with
H(f), we check if the conditions of Lemma 4.5 are satisfied. To perform this test, we
need, for each virtual edge e = uv of skel(μ), the corresponding flags p(e) and uv(e).
This information is already known for all virtual edges, except the parent edge ep of
skel(μ). To compute the flags for ep, we need to determine whether the virtual edge ep
contains a traversing path Pp and, if it does, determine its orientation. By definition
of traversing path, Pp exists if and only if there exists a traversing path in pert(μ).
Restrict skel(μ) to those edges ei �= ep with p(ei) = TRUE, and denote by skel′(μ) the

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

32:26 P. Angelini et al.

Fig. 10. Illustration for the case in which μ is a P-node. An embedding of skel(μ) is shown. Grey regions
represent expansion graphs of the virtual edges of the skeleton of μ. The expansion graph of the parent edge
ep is shaded. Edges in G(f) not in H(f) are not shown.

resulting graph. Refer to Figure 9(b). Note that by Property 3, for each virtual edge
ei ∈ skel′(μ), there exists exactly one traversing path in pert(ei), and this traversing
path is contained in exactly one simple cycle of H(f). In addition, for each simple cycle
�C of H(f) passing through a vertex of skel′(μ), there exist exactly two virtual edges of
skel′(μ) incident to this vertex that contain a traversing path that is part of �C. These
two observations imply that a traversing path Pp exists if and only if both the degree
of u(μ) and the degree of v(μ) in skel′(μ) are odd. Hence, if both the degree of u(μ)
and the degree of v(μ) are odd, then set p(μ) = TRUE and p(ep) = TRUE; otherwise, set
p(μ) = FALSE and p(ep) = FALSE. In the former case, the orientation of Pp is the only
one that makes the number of edges ei incident to u(μ) with uv(ei) = TRUE equal to
the number of edges ei incident to u(μ) with uv(ei) = FALSE; this determines uv(μ) and
uv(ep).

Now, p(ei) and uv(ei) are defined for every virtual edge ei of skel(μ). Consider every
face g of skel(μ) and denote by e j = (uj, v j) any edge incident to g. Suppose, without
loss of generality, that g is to the right of e j when traversing it from uj to v j . Then,
check if p(e j) = FALSE, or p(e j) = TRUE and uv(e j) = FALSE for all edges e j incident to g,
and check whether p(e j) = TRUE and uv(e j) = TRUE for all edges e j incident to g. If one
of the two checks succeeds, the face does not violate Lemma 4.5, but otherwise it does.

If μ is a P-node, as in Figure 10, check if an embedding of skel(μ) exists that is
compatible with H(f) as follows. By Lemma 4.6, there exist either zero or two virtual
edges of skel(μ) containing a traversing path. Then, consider the children μi of μ such
that p(μi) = TRUE. If zero or two such children exist, then the parent edge of skel(μ)
has no traversing path; if one such a child exists, then the parent edge of skel(μ) has a
traversing path. Denote by ei and e j the edges of skel(μ) containing a traversing path,
if such edges exist, where possibly e j is the parent edge (in this case, set p(e j) = TRUE,
and set uv(e j) = TRUE if uv(ei) = FALSE and uv(e j) = FALSE otherwise). If there exists
no edge ei of skel(μ) such that p(ei) = TRUE, then construct an embedding of skel(μ)
that is edge-compatible with H(f), if possible, as in Algorithm BC; as there exists no
facial cycle of H(f) whose edges belong to distinct virtual edges of skel(μ), then an
edge-compatible embedding is also cycle-compatible with H(f). Edges fu(μ), lu(μ), fv(μ),

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

Testing Planarity of Partially Embedded Graphs 32:27

and lv(μ) are computed as in Algorithm BC. Set flag p(μ) = FALSE. If there exist two
edges ei and e j such that p(ei) = TRUE, p(e j) = TRUE, and p(el) = FALSE for every edge
el �= ei, e j , suppose that uv(ei) = TRUE and uv(e j) = FALSE, the case in which uv(ei) = FALSE

and uv(e j) = TRUE being analogous. Note that the expansion graphs of ei and e j must
contain at least one H-edge incident to u(μ) as well as at least one H-edge incident to
v(μ). By Lemma 4.3, e j has to immediately precede ei in the counterclockwise order
of the edges incident to u(μ). Then, construct Lu and Lv as in Algorithm BC; check
whether Lu and Lv, restricted to the edges that appear in both lists, are the reverse of
each other; and further, check whether e j precedes ei in Lu and whether ei precedes e j in
Lv. If the checks are positive, construct the list L of all edges of skel(μ) as in Algorithm
BC, except for the fact that the edges of skel(μ) not in Lu and not in Lv are not inserted
between e j and ei. Edges fu(μ), lu(μ), fv(μ), and lv(μ) are computed as in Algorithm BC. Set
p(μ) = FALSE if e j corresponds to a child μ j of μ and p(μ) = TRUE if e j is the parent edge
of μ; in the latter case, uv(μ) = TRUE if uv(μi) = TRUE and uv(μ) = FALSE otherwise.

We get the following theorem.

THEOREM 4.7. Let (G(f), H(f),H(f)) be a biconnected PEG with n vertices such that
G(f) and H(f) have the same vertex set, all vertices and edges of H(f) are incident to
the same face f of H(f), and no edge of G(f)\H(f) connects two vertices belonging to
the same block of H(f). Algorithm BF solves PEP for (G(f), H(f),H(f)) in O(n) time.

PROOF. We show that Algorithm BF processes each node μ of T (f) in O(kμ) time,
where μ1, . . . , μkμ

are the children of μ in T (f).
Observe that the computation of fu(μ), lu(μ), fv(μ), and lv(μ) and the check of edge-

compatibility are done as in Algorithm BC; hence, they take O(kμ) time. We describe
how to check the cycle compatibility of an embedding of skel(μ) in O(kμ) time.

If μ is a Q-node or an S-node, Algorithm BF neither performs any checks nor does it
make any embedding choices.

If μ is a P-node, then Algorithm BF performs the same checks and embedding choices
as Algorithm BC, plus the check that the two edges ei and e j with p(ei) = TRUE and
p(e j) = FALSE (notice that one of these edges could be the the parent edge of μ) are
consecutive (with the right order) in Lu and Lv. This is done in constant time. Flags
p(μ) and uv(μ) are computed in O(kμ) time, by simply checking the flags p(μi) and
uv(μi), for i = 1, . . . , k.

Suppose that μ is an R-node. The construction of skel′(μ) can easily be done in O(kμ)
time, as such a graph can be obtained from skel(μ) by simply checking flag p(ei), for
each edge ei in skel(μ). Then, the degree of u(μ) and v(μ) in skel′(μ), as well as the flags
p(μ), uv(μ), p(ep) and uv(ep), can be computed in total O(kμ) time. The test on each
face takes time linear in the number of edges incident to the face. Namely, such a test
consists of two checks, each of which requires considering a constant number of flags
associated with each edge of the face. As every edge is incident to two faces of skel(μ)
and the number of edges in skel(μ) is O(kμ), the total time spent for the test on the
faces of skel(μ) is O(kμ).

As
∑

μ∈T kμ = O(n), the total running time of the algorithm is O(n).

4.3. G Biconnected

In this section, we show how to solve PEP for general biconnected PEGs—that is PEGs
(G, H,H) where G is biconnected and H is arbitrary. The algorithm employs the algo-
rithms from the previous two sections as subroutines. The general outline is as follows.
First, compute a subgraph H+ of G with the following properties: (i) H+ is biconnected;
(ii) H is a subgraph of H+; and (iii) H+ contains every nonlocal H-bridge of G. Second,
solve instance (H+, H,H) obtaining an embedding H+ of H+ extending H, if H+ admits

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

32:28 P. Angelini et al.

one. We will show that this step can be reduced to several applications of Algorithm
BF. Finally, solve instance (G, H+,H+) with Algorithm BC—we will see that H+ is
connected (even biconnected), and hence the algorithm can be applied.

In a first step, we ensure that all nonlocal H-bridges of G are trivial. Recall that
every nontrivial nonlocal H-bridge K has at most one candidate face fK of H where it
can be embedded. We obtain the graph H′ with embedding H′ as in Definition 3.7 by
adding the vertices of K − V (H) to H and embedding them into the face fK for each
nontrivial nonlocal H-bridge K of G.

Let H+ be the graph obtained from G by removing the vertices and edges (but not
the attachments) of all local H-bridges of G. Note that H′ ⊆ H+, that H+ and H′ have
the same vertex set, and that any embedding of H+ that extends H also extends H′
and vice versa.

Each H′-bridge K of H+ is nonlocal, and therefore there exists a unique face fK where
it needs to be embedded. Since H-bridges that are embedded in distinct faces ofH do not
interact, we can solve the instances stemming from the faces of H independently, which
enables us to use Algorithm BF to find an embedding extension of H+. This motivates
the following definitions, which take a more local view at the PEG (H+, H′,H′). Let f
be a face of H′ and let V (f) be the set of vertices of H′ that are incident to f . Let H(f)
be the subgraph of H′ induced by V (f), let H(f) be H′ restricted to H(f), and let G(f)
be the subgraph of H+ induced by V (f). By construction, in any embedding of H+ that
extends H, the edges of G(f) not belonging to H(f) are embedded inside f .

Our approach is to first find an embedding H+ of H+ that extends H′ (i.e., solve
PEP for (H+, H′,H′)) and then find an embedding G for (G, H+,H+) (i.e., solve PEP

for (G, H+,H+)). The latter step is actually simple, as H+ is biconnected and thus
connected. Therefore, Algorithm BC can be used to solve this subproblem.

LEMMA 4.8. H+ is biconnected.

PROOF. By construction of H+, each H+-bridge of G has all of its attachment vertices
in the same block of H, and hence in the same block of H+, as H is a subgraph of H+.
Therefore, the number of blocks of H+ is not modified by the addition of the H+-bridges
of G. Since such an addition produces G, which is biconnected, it follows that H+ is
biconnected.

Clearly, if (G, H,H) is planar, then an embedding G of G extending H exists, and the
restriction of G to H+ yields an intermediate embedding H+ of H+ extending H′, which
can then be extended to an embedding of G extending H. We show that the choice of H+
does not change the possibility of finding such an embedding extension. In particular, if
H+

1 and H+
2 are two embeddings of H+ extending H, then the PEG (G, H+,H+

1) is planar
if and only if (G, H+,H+

2) is planar.

LEMMA 4.9. A biconnected PEG (G, H,H) is planar if and only if (a) H+ admits a planar
embedding extending H and (b) for every planar embedding H+ of H+, (G, H+,H+) is
planar.

PROOF. Clearly, if conditions (a) and (b) hold, then G has an embedding extending H.
To prove the converse, assume that G has an embedding G extending H. Clearly, G

contains a subembedding H+ of H+ that extends H, so condition (a) holds. It remains
to prove that condition (b) holds as well.

First, we introduce some terminology. Let f be any face of H and let H+ be any
embedding of H+ that extends H. In H+, the face f can be partitioned (by the edges of
H+ not in H) into several faces, which we will call the subfaces of f . A set of vertices
S ⊆ V (H) is said to be mutually visible in f with respect to H+ if H+ has a subface of
f that contains all vertices of S on its boundary.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

Testing Planarity of Partially Embedded Graphs 32:29

The proof that condition (b) holds is based on two claims. The first one shows that
for the vertices that belong to the same block of H, mutual visibility is independent of
the choice of H+.

Claim 3. Let �C be a facial cycle of f and let S ⊆ V (�C) be a set of vertices of �C. If the
vertices in S are mutually visible in f with respect to at least one embedding of H+
that extends H, then they are mutually visible in f with respect to every embedding
of H+ that extends H.

Note that the mutual visibility of S in f only depends on the embedding H+ restricted
to G(f). Let T be the SPQR-tree of G(f). By Theorem 3.6, the embeddings of G(f) that
extend H(f) are exactly obtained by specifying a compatible embedding for the skeleton
of each node of T . Assume that G1 and G2 are two embeddings of G(f) that extend H.
Assume that the vertices of S are mutually visible in f with respect to G1. We will show
that they are also mutually visible with respect to G2. In view of Theorem 3.6, we may
assume that G2 was obtained from G1 by changing the embedding of the skeleton of a
single node μ ∈ T .

Let us distinguish two cases, depending on whether �C is contained in the expansion
graph of a single virtual edge of skel(μ) or whether it projects to a cycle in skel(μ).

If �C is part of the expansion graph of a single virtual edge e = {x, y} ∈ skel(μ), then
let Ge be the embedded graph obtained as the union of the expansion graph of e and a
single edge connecting x and y, embedded in the outer face of the expansion graph. We
easily see that the vertices in S are mutually visible in f if and only if they share the
same face of Ge, other than the face that is to the right of �C. Since Ge does not depend
on the embedding of skel(μ), the vertices in S are mutually visible in G2.

Assume now that the cycle �C projects to a cycle �C ′ in skel(μ). By Lemma 4.3, in any
compatible embedding of skel(μ), all vertices and edges of skel(μ) that do not belong
to �C ′ are embedded to the left of �C ′. In particular, if μ is an R-node, then skel(μ) only
has a single compatible embedding. Thus, μ must be a P-node. Let e and e′ be the two
virtual edges of skel(μ) that form �C ′. In each compatible embedding of skel(μ), these
two edges must be embedded next to each other and in the same order. It follows easily
that any two compatible embeddings of skel(μ) yield embeddings of G(f) in which the
vertices from S have the same mutual visibility. This completes the proof of the claim.

Let us proceed with the proof that condition (b) holds. We need more terminology.
Let K and K′ be a pair of local H-bridges of G whose attachments all appear on a
facial cycle �C of a face f in H. We say that K and K′ have a three-vertex conflict on �C
if they share at least three attachments, and that they have a four-vertex conflict on �C
if there are four vertices x, x′, y, y′ that appear on �C in this cyclic order, and x, y are
attachments of K, whereas x′, y′ are attachments of K′.

Claim 4. Assume that a face fK of H has been assigned to every local H-bridge K
of G so that all attachments of K are on the boundary of fK. Let H+ be an embedding
of H+ extending H. There is an embedding G of G extending H+, with the additional
property that each local H-bridge K is embedded inside a subface of fK if and only if:

(1) For any local H-bridge K, all attachments of K are mutually visible in fK with
respect to H+.

(2) If K and L are distinct local H-bridges assigned to the same face fK = fL such that
the attachments of K and L appear on a common facial cycle �C of H+, then K and
L have no conflict on �C.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

32:30 P. Angelini et al.

Clearly, the two conditions are necessary. To prove that they are also sufficient,
assume that both the conditions hold. Construct an embedding of G with the desired
properties as follows. Let f be any face of H. Observe that the first condition of the
claim guarantees that for every H-bridge K assigned to f, there is a face f ′ of H+ that
is a subface of f such that all attachments of K appear on the boundary of f ′. Let f ′
be a face of H+ that is a subface of f , and let K1, . . . Ks be all local H-bridges that were
assigned to f and whose attachments all appear on the boundary of f ′. We show that
all bridges K1, . . . , Ks can be embedded inside f ′.

First, observe that the boundary of f ′ is a simple cycle C ′, because H+ is biconnected.
In addition, observe that no two bridges Ki and Kj have a conflict on C ′, by the second
condition of the claim. To show that all bridges K1, . . . , Ks can be embedded inside C ′,
proceed by induction on s. If s = 1, the statement is clear. Assume that s ≥ 2 and that
the bridge K1 has been successfully embedded into f ′. The embedding of K1 partitions
f ′ into several subfaces f ′

1, . . . , f ′
t . Such subfaces are again bounded by simple cycles;

otherwise, G would not be biconnected. We claim that for every bridge Ki, with i ≥ 2,
there is a subface f ′

j containing all attachments of Ki. Consider any bridge Ki. Assume
first that Ki has an attachment x that is not an attachment of K1. Then, x belongs to a
unique subface f ′

j . Hence, if Ki has another attachment not belonging to f ′
j , there is a

four-vertex conflict of K1 and Ki on �C ′, contradicting the second condition of the claim.
Assume next that each attachment of Ki is also an attachment of K1. Then, Ki has ex-
actly two attachments, and if such attachments do not share a face f ′

j , a four-vertex con-
flict of K1 and Ki on �C ′ is created, again contradicting the second condition of the claim.

We can thus assign to each Ki a subface f ′
j that contains all of its attachments. By

induction, all Ki ’s can be embedded into their assigned faces, thus proving the second
claim.

The proof that condition (b) holds follows easily from the two claims. Namely, assume
that G has an embedding G extending H. Let H+ be G restricted to H+. For every local
H-bridge K of G, let fK be the face of H inside which K is embedded in G. Clearly, H+
satisfies the two conditions of the second claim, as it can be extended into G. Then, every
embedding of H+ that extends H satisfies the two conditions of the second claim: for the
first condition, this is a consequence of the first claim, and for the second condition, this
is obvious. We conclude that every embedding of H+ that extends H can be extended
into an embedding of G, thus proving condition (b) and hence the lemma.

As stated earlier, each H′-bridge K of (H+, H′,H′) is nonlocal, and we therefore know
into which face fK it needs to be embedded. Since H′-bridges that are embedded in
different faces do not interact, we can solve the subinstance (G(f), H(f),H(f)) arising
from each face separately. Clearly, if one of the instances fails, then G does not have
an embedding extension. If all instances admit embedding extensions, gluing them
together yields an embedding H+ of H+ extending H′. The previous lemma then implies
that (G, H,H) is planar if and only if (G, H+,H+) is planar. We are now ready to describe
Algorithm BA (for G Biconnected and H Arbitrary).

Algorithm BA. Starting from an instance (G, H,H) of PEP, graphs G(f) and H(f),
and embedding H(f), for every face f of H, are computed as follows. For each H-bridge
K of G, determine whether it is local to a block of H or not. In the former case, K is
not associated to any face f of H. In the latter case, we compute the unique face f of
H in which K has to be embedded in any solution of instance (G, H,H) of PEP, and we
associate K with f .

These computations can be performed in linear time by applying Lemma 2.2. To
do so, we have to construct the CF-tree of H, the BF-tree of H, the VF-graph of H,
and the enriched block-cutvertex tree of each connected component of H. As shown in
Section 2.3, this can be done in linear time.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

Testing Planarity of Partially Embedded Graphs 32:31

Then, for each face f of H, consider every H-bridge K associated with f . Add the
vertices and the edges of K to G(f), and add the vertices of K to H(f) inside f . Let
H+ = ⋃

f ∈H G(f). For each face f ofH, call Algorithm BF with input (G(f), H(f),H(f)).
If Algorithm BF succeeds for every instance (G(f), H(f),H(f)) (thus providing an
embedding H+(f) of G(f) whose restriction to H(f) is H(f)), merge the embeddings
H+(f) of G(f) into a planar embedding H+ of H+. Finally, call Algorithm BC with
(G, H+,H+).

THEOREM 4.10. Let (G, H,H) be an n-vertex instance of PEP such that G is biconnected.
Algorithm BA solves PEP for (G, H,H) in O(n) time.

PROOF. The correctness of the algorithm follows from Lemma 4.9.
By Lemma 2.2, determining whether an H-bridge K is local or not can be done in

time linear in the size of K. Further, if K is nonlocal, the only face of H incident to all
attachment vertices of K can be computed, if it exists, in time linear in the size of K.
Then, the construction of graphs G(f), H(f), H+ and of embeddings H(f) takes O(n)
time, as it only requires to perform the union of graphs that have total O(n) edges.

By Theorem 4.7, Algorithm BF runs in time linear in the number of edges of G(f),
and hence all executions of Algorithm BF take a total O(n) time. By Theorem 4.2,
Algorithm BC runs in O(n) time, and hence the total running time of Algorithm BA is
O(n).

This concludes the case of biconnected PEGs.

4.4. G Connected or Disconnected

In this section, we give an algorithm that decides the planarity of general PEGs. First,
we deal with instances (G, H,H) of PEP in which G is connected, every nontrivial
H-bridge of G is local, and H is arbitrary. We show that the three conditions of
Lemma 3.8 can be checked in linear time. The first condition can be checked in linear
time by Theorem 4.10. The second and the third conditions can be checked in linear
time by the following two lemmas.

LEMMA 4.11. Let (G, H,H) be a connected PEG. Let G1, . . . , Gt be the blocks of G, and
let Hi be the subgraph of H induced by the vertices of Gi. There is a linear-time algorithm
that checks whether any two distinct graphs among H1, . . . , Ht alternate around any
vertex of H.

PROOF. Let us describe the algorithm that performs the required checks. We assume
that every edge e of H has an associated label indicating the block of G that contains e.
We also associate to each block two integer counters that will be used in the algorithm.

We now describe a procedure TEST(x), which, for a given vertex x ∈ V (H), checks
whether any two graphs Hi, Hj alternate around x. Let us use the term x-edge to refer
to any edge of H incident to x, and let x-block refer to any block of G that contains at
least one x-edge.

The procedure TEST(x) proceeds as follows. First, for every x-block Gi, it determines
the number of x-edges in Gi and stores this in a counter associated with Gi. This is
done by simply looking at every edge incident to x and incrementing the counter of
the corresponding block. Next, TEST(x) visits all x-edges in the order determined by
the rotation σH(x), starting at an arbitrary x-edge. For each x-block, it maintains in a
counter the number of its x-edges that have been visited so far. An x-block is active if
some but not all of its x-edges have already been visited.

The procedure TEST(x) also maintains a stack containing the active x-blocks. At the
beginning of the procedure, the counters of visited edges of each x-block are set to zero
and the stack is empty.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

32:32 P. Angelini et al.

For every edge e that TEST(x) visits, it performs the following steps:

(1) Let Gi denote the block containing e. Increment the counter of visited x-edges of
Gi.

(2) If no other edge of Gi has been visited so far, push Gi on the stack.
(3) If some x-edge of Gi has been visited before e, we know that Gi is currently some-

where on the stack. Check whether Gi is on the top of the stack. If the top of the
stack contains an x-block Gj different from Gi, output that Hi and Hj alternate
around x and stop.

(4) Check whether e is the last x-edge of Gi to be visited (comparing its counter of
visited x-edges to the counter of total x-edges), and if it is, pop Gi from the stack.
(Note that if Gi has only one x-edge, it is pushed and popped during the visit of this
edge.)

If TEST(x) visits all x-edges without rejecting, it outputs that there is no alternation
around x.

The procedure TEST(x) takes time proportional to the number of x-edges. Thus, we
can call TEST(x) for all vertices x ∈ V (H) in linear time to test whether there is any
alternation in H.

Let us now argue that the procedure TEST(x) is correct. Assume that TEST(x) out-
puts an alternation of Hi and Hj . This can only happen when Gj is on the top of the
stack while an x-edge e ∈ Gi is visited, and furthermore, e is not the first edge of Gi
to be visited. It follows that the first edge of Gi was visited before the first edge of Gj ,
and Gj is still active when e is visited. This shows that Hi and Hj indeed alternate
around x.

Conversely, assume that there is a pair of graphs Hi and Hj that alternate around
x, and the alternation is witnessed by two pairs of x-edges e, e′ ∈ Hi and f, f ′ ∈ Hj .
For contradiction, assume that TEST(x) outputs that there is no alternation. Without
loss of generality, assume that at least one x-edge of Hi is visited before any x-edge of
Hj , that e is visited before e′, and that f is visited before f ′. Thus, the four x-edges are
visited in the order e, f, e′, f ′. When the procedure visits e′, both Gi and Gj are active,
and Gj is on the stack above Gi since we assumed that the first x-edge of Gi is visited
before the first x-edge of Gj . This means that when TEST(x) visited e′, Gi was not on
the top of the stack and an alternation should have been reported.

This contradiction completes the proof of the lemma.

The next lemma shows that the third condition of Lemma 3.8 can also be tested in
linear time, assuming that the first and second conditions of the lemma hold.

LEMMA 4.12. Let (G, H,H) be a connected PEG. Let G1, . . . , Gt be the blocks of G, and
let Hi be the subgraph of H induced by the vertices of Gi. Let Hi be H restricted to Hi.
Assume that the following conditions hold:

(1) each nontrivial H-bridge of G is local,
(2) each Gi has an embedding that extends Hi , and
(3) no two of the graphs H1, . . . , Ht alternate around any vertex of H.

There is a linear-time algorithm that decides whether there exists a facial cycle �C of H
that separates a pair of vertices x and y of H such that x and y are connected by a path
of G that has no vertex in common with �C.

PROOF. Let P be a path in G with end-vertices in H, and let �C be a facial cycle of
H. If P and �C are vertex-disjoint and the end-vertices of P are separated by �C, we
say that P and �C form a PC-obstruction. A PC-obstruction (P, �C) is called minimal if

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

Testing Planarity of Partially Embedded Graphs 32:33

Fig. 11. Illustration for the case in which K is local to a block B of H. Two edges of the path Q ⊆ B ⊆ Gi

connecting x and y in H alternate with two edges of cycle �C ∈ Gj around vertex z, which is a contradiction
to condition 3 of the lemma.

no proper subpath P ′ ⊂ P forms a PC-obstruction with �C. Observe that in a minimal
PC-obstruction, all internal vertices of P belong to V (G)\V (H).

We want to show that the existence of a PC-obstruction can be tested in linear time.
Of course, it is sufficient to test the existence of a minimal PC-obstruction. Before
we explain how this test is done, we make some more observations concerning the
structure of minimal PC-obstructions.

Let (P, �C) be a minimal PC-obstruction, and let x and y be the end-vertices of P. As
the internal vertices of P belong to V (G)\V (H), P is a subgraph of an H-bridge K, and
x and y are among the attachments of K. Let us now distinguish two cases, depending
on whether K is local to some block or not.

First, assume that K is local to a block B of H. Refer to Figure 11. Then, both B
and P are part of the same block Gi of G. Hence, �C belongs to a different block of G,
because if it belonged to Gi, then Gi would contain the whole PC-obstruction (P, �C) and
it would be impossible to extend the embedding Hi to Gi, thus contradicting condition 2
of the lemma. Then, let Gj be the block of G that contains �C. Since x and y belong to a
common block B of H, they are connected by a path Q ⊆ B. Since x and y are separated
by �C, Q shares a vertex z with �C (otherwise, the embedding H would not be planar).
Since Q and �C belong to distinct blocks, z is their unique common vertex. This, together
with the fact that �C separates x and y, implies that the two edges that belong to Q
alternate with the two edges that belong to �C in the rotation of z. Thus, Gi alternates
with Gj around z, contradicting condition 3 of the lemma. Then, K cannot be a local
bridge.

Suppose now that K is nonlocal. By condition 1 of the lemma, K consists of a sin-
gle edge of E(G)\E(H). We conclude that any minimal PC-obstruction (P, �C) has the
property that P is a single edge that forms a nonlocal H-bridge of G.

Observe that two vertices x and y belonging to distinct blocks of H are separated by
a facial cycle of H if and only if there is no face of H to which both x and y are incident.

We are now ready to describe the algorithm that determines the existence of a
minimal PC-obstruction. The algorithm tests all edges of E(G)\E(H) one by one. For
any such edge e, it determines in constant time whether it is an H-bridge—that is,
whether its endpoints x and y belong to H. If it is an H-bridge, it checks whether it
is nonlocal in constant time by using Lemma 2.2. For a nonlocal bridge, the algorithm
then checks in constant time whether there is a face f of H into which this bridge can be
embedded, again using Lemma 2.2. Such a face f , if it exists, is uniquely determined,
and its boundary contains x and y.

Overall, for any edge e, the algorithm determines in constant time whether this edge
is a nonlocal bridge that is part of a minimal PC-obstruction. Hence, in linear time,
we determine whether G has any PC-obstruction, thus concluding the proof of the
lemma.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

32:34 P. Angelini et al.

Combining Lemmas 2.2, 3.8, 4.11, and 4.12 with Theorem 4.10, we obtain the follow-
ing result.

THEOREM 4.13. PEP can be solved in linear time when restricted to instances (G, H,H)
where G is connected.

PROOF. By Lemma 2.2, an instance of PEP where G is connected can be reduced in
linear time to an equivalent instance that has the additional property that all nontrivial
H-bridges are local. Namely, by Lemma 2.2, we may compute whether an H-bridge K
is nonlocal and, in such case, which is the face of H in which K has to be embedded, in
time linear in the size of K. We may thus assume that (G, H,H) is an instance of PEP

where G is simply connected and all nontrivial H-bridges in G are local to some block.
To solve PEP for (G, H,H), we present an algorithm based on the characterization

of Lemma 3.8. First, we generate all subinstances (Gi, Hi,Hi) for i = 1, . . . , t, induced
by the blocks of G. It is not difficult to see that the subinstances can be generated in
linear time. We then solve these subinstances using Algorithm BA, which takes linear
time, by Theorem 4.10, since the total size of the subinstances is linear. If any of the
subinstances does not have an embedding extension, we reject (G, H,H), and otherwise
we continue.

In the next step, we check whether there is a pair of graphs Hi, Hj that have an
alternation around a vertex of H. If there is an alternation, we reject the instance,
and otherwise we continue. This step can be implemented in linear time, due to
Lemma 4.11.

Finally, we check the existence of PC-obstructions, which by Lemma 4.12 can be
done in linear time. We accept the instance if and only if we find no PC-obstruction.
The correctness of this algorithm follows from Lemma 3.8.

Next, we deal with the instances (G, H,H) of PEP in which G is disconnected and H
is arbitrary. We use Lemma 3.9 directly and show that the two conditions of the lemma
can be checked in linear time. The first condition of Lemma 3.9 can be checked in linear
time by Theorem 4.13. As the proof of the next theorem shows, the second condition
can be tested efficiently as well.

THEOREM 4.14. PEP can be solved in linear time.

PROOF. Let (G, H,H) be an instance of PEP. Let G1, . . . , Gt be the connected compo-
nents of G, let Hi be the subgraph of H induced by the vertices of Gi, and let Hi be H
restricted to Hi.

By Lemma 3.9, (G, H,H) has an embedding extension if and only if each instance
(Gi, Hi,Hi) has an embedding extension and, for i �= j, no facial cycle of Hi separates a
pair of vertices of Hj . By Theorem 4.13, we can test in linear time whether all instances
(Gi, Hi,Hi) have an embedding extension.

It remains to test the existence of a facial cycle of Hi that separates vertices of Hj .
For this test, we use the component-face tree CF of H. Assume that CF is rooted at any
node representing a face of H; call this face the root face of H. A face f is an outer face
of H j if at least one child of f in CF is a component of Hj but the parent of f does not
belong to Hj (which includes the possibility that f is the root face).

We claim that a pair of vertices of Hj is separated by a facial cycle belonging to
another component of H if and only if there are at least two distinct outer faces of H j in
CF. To see this, assume first that H j has two distinct outer faces f1 and f2, and let C1
(or C2) be a component of Hj which is a child of f1 (or f2, respectively). Any path from
C1 to C2 in CF visits the parent of f1 or the parent of f2. These parents correspond to
components of H not belonging to Hj , and at least one facial cycle determined by these
components separates C1 from C2.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

Testing Planarity of Partially Embedded Graphs 32:35

Conversely, if C1 and C2 are components of Hj separated by a facial cycle belonging
to a component C3 of Hi (i �= j), then the path in CF that connects C1 to C2 visits C3,
and in such a case it is easy to see that H j has at least two outer faces.

We now describe the algorithm that tests the second condition of Lemma 3.9. We
assume that each connected component of H has associated its corresponding subgraph
Hi in CF. We then process the components of H one by one, and for each component C,
we check whether its parent node is an outer face of the embedding Hi of the subgraph
Hi containing C. We accept (G, H,H) if and only if each Hi has one outer face. This
algorithm clearly runs in linear time.

The algorithms for PEP we presented in this section, handling simply connected and
disconnected PEGs, are nonconstructive. For simplicity, we preferred to present shorter
and nonconstructive versions of these algorithms. We now briefly sketch how they can
be extended to constructive linear-time algorithms.

Sketch of constructive algorithms. For the reduction from disconnected to connected
PEGs, designing a constructive algorithm is rather simple. Let (G, H,H) be a PEG and
let G1, . . . , Gt be the connected components of G. Assume that we already have an
embedding Gi for each instance (Gi, Hi,Hi), where Hi is the subgraph of H contained
in Gi and Hi is the restriction of H to Hi. Note that each Hi may consist of several
connected components. To merge the embeddings Gi into a single embedding G that
extends H, we make use of the following auxiliary graph. Create a node for each face
of H and a node for each Hi, i = 1, . . . , t. Connect a face f and a component Hi if f
is incident to an edge of Hi. For each edge (f, Hi) of this auxiliary graph, additionally
store a pointer to some edge e f,Hi ∈ Hi such that f is to the right of e f,Hi . By Lemma 3.9,
this auxiliary graph is a tree T if the instance admits a solution. It can be computed
from the component face tree of H in O(n) time. We use T to guide the merging of the
embeddings Gi. Namely, for each face node f , let If be the set of indices i so that f is
adjacent to Hi. To merge the embeddings Gi, i ∈ If , we find in each of the Gi a subface of
f and merge their face boundaries. To find a subface of f in Gi, we use the additional
information stored in T . Namely, T contains the edge (f, Hi), and using the pointer
stored there, we find the edge e f,Hi of Hi. Recall that f lies to the right of e f,Hi in H.
Let f ′ be the face that lies to the right of e f,Hi in Gi. Clearly, f ′ is a subface of f , and it
can be found in O(1) time. Thus, the merge step for face f can be implemented to run
in O(|If |) time, and the tree structure of T implies that the total time for merging all
faces is O(n).

Let us now consider the reduction from connected to biconnected PEGs. Recall that
for a cutvertex x of G, an x-edge is an edge of H incident to x, and an x-block is a block
of G containing at least one x-edge. Observe that the procedure TEST(x) described in
the proof of Lemma 4.11 does not just check whether, around each cutvertex x, the
x-blocks B1, . . . , Bt of G have a parenthetical structure, but it can actually be employed
to find an ordering of B1, . . . , Bt such that the blocks can be removed one by one in
such a way that the x-edges of Bi form an interval when Bi is removed. Further, the
check whether a trivial H-bridge is part of a PC-obstruction actually reveals a unique
face of H into which the block containing the H-bridge has to be embedded. We use
an arbitrary such H-bridge to determine the correct face into which any block that
does not contain any x-edge has to be embedded. This either gives a correct embedding
or one of the conditions of Lemma 4.11 or Lemma 4.12 is violated, in which case an
embedding does not exist. In the following, we assume that we have a feasible instance.

Our procedure for handling simply connected graphs is as follows. We first com-
pute the block-cutvertex tree BC of G and use Lemma 2.2 to ensure that all nonlocal
H-bridges are trivial. Let G1, . . . , Gt be the blocks of G and let H1, . . . , Ht be the sub-
graphs of H induced by G1, . . . , Gt, together with the embeddings H1, . . . ,Ht induced

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

32:36 P. Angelini et al.

by H. First, we compute in linear time an embedding extension Gi for each instance
(Gi, Hi,Hi). Next, we merge embeddings Gi into a single embedding G extending H, if
possible. To this end, we need to merge the rotation systems of the embeddings Gi at
the cutvertices of G. First, we iteratively remove each leaf block of BC that does not
contain any vertex of H, except, possibly, for the unique cutvertex of G that it contains.
Clearly, the removed blocks can easily be embedded later, as they are not subject to
any constraints. The remaining instance (let us denote it again by (G, H,H)) is still
connected. Moreover, by the assumption that all nonlocal H-bridges are trivial, all
cutvertices of G belong to H. Therefore, every block contains at least two vertices of H
(namely, every block of G that is not a leaf in BC contains at least two cutvertices, and
every block of G that is a leaf in BC contains at least two vertices of H, as otherwise it
would have been removed).

Let x be a cutvertex of G and let B1, . . . , Bt be the blocks incident to x. Denote by Bi
the embedding of Bi that has been already computed and that extends the restriction
of embedding H to the vertices of H in Bi. Assume that the ordering of the blocks
incident to x is such that B1, . . . , Bk contain an x-edge, whereas Bk+1, . . . , Bt do not.
We embed the blocks B1, . . . , Bk by using a modified version of the procedure TEST(x),
described in the proof of Lemma 4.11. For each i in k + 1, . . . , t, let e = xy be any edge
incident to x in Bi. Since Bi contains an H-vertex distinct from x, vertex y belongs to
H as well; otherwise, e would be part of a nontrivial nonlocal H-bridge. Since edge e
does not belong to H, we have that x and y belong to distinct connected components
of H. We use the component face tree CF to find in O(1) time the unique face fi of
H that is shared by x and y. We associate Bi with fi. Although the choice of e is
arbitrary, either all edges of Bi incident to x yield the same face or at least one of
them is part of a PC-obstruction, which we can rule out by first running the checking
algorithm.

We now construct the cyclic ordering of all edges of G incident to x by a single
traversal of σH(x), similarly to procedure TEST(x), except we alternately visit edges
and faces as they occur in counterclockwise order around x in H.

When the procedure visits a face f , it appends the edges of all blocks associated with
this face in the order as they occur in the embedding of the block. More precisely, let
Bi be any block associated with f , let e be any edge of Bi incident to x, and let e′ be the
predecessor of e in the counterclockwise ordering of x in Bi. Then, the counterclockwise
order of the edges incident to x in Bi forms a sequence e, . . . , e′, which we append to
our global ordering of the edges of G incident to x. We do this for all blocks associated
with f in an arbitrary order. When the procedure encounters the first x-edge ei of a
block Bi (recall that such an edge belongs to H and is incident to x), it appends ei to
the global ordering of x and stores the last encountered x-edge of Bi as ei. Whenever
it encounters another x-edge e′ of Bi, it appends all edges between ei and e′, excluding
ei and including e′, to the global ordering of the edges incident to x, then updates the
last encountered x-edge of Bi to e′. When the procedure encounters the last x-edge of
a block, it also inserts all remaining edges of Bi between the last encountered x-edge
and the first x-edge of Bi. As the x-edges occur in the embedding Bi of each block Bi in
the same order as in σH(x), each edge is inserted exactly once into the cyclic ordering.
Considering the output sequence as a cyclic sequence, we have found a cyclic ordering of
all edges incident to x in G. Clearly, the running time of the procedure is proportional
to the number of edges incident to x in G. In addition, the ordering is such that its
restriction to H yields σH(x), no two blocks alternate, and the ordering of the edges
of each incident block Bi are compatible with Bi. Finally, also the blocks that do not
have an x-edge are embedded into the correct face since this face exists and thus is
uniquely determined. The previously removed blocks containing at most one vertex of
H—the cutvertex x—can be embedded into arbitrary faces incident to their cutvertices

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

Testing Planarity of Partially Embedded Graphs 32:37

in reverse order of removal. Clearly, the total running time of this procedure is linear.
The following theorem summarizes our results.

THEOREM 4.15. Let (G, H,H) be a PEG. There is a linear-time algorithm that either
finds an embedding extension G of H or concludes that such an embedding does not
exist.

5. APPLICATIONS AND EXTENSIONS

In this section, we discuss several extensions of the problem PARTIALLY EMBEDDED PLA-
NARITY. Additionally, we show that PEP has some connections to the problem of finding a
simultaneous embedding with fixed edges of a pair of graphs. In particular, the results
of this work can be used to solve this problem for a restricted class of inputs.

Problem extensions. Several generalizations of the PARTIALLY EMBEDDED PLANARITY

problem naturally arise. In all of the following generalizations (denoted by G1 through
G4), the input is still a PEG (G, H,H). For the first two generalizations, we readily
conclude that they are NP-complete since they contain as special cases CROSSING NUMBER

and MAXIMUM PLANAR SUBGRAPH, respectively: (G1) deciding if H can be extended to a
drawing of G with at most k crossings and (G2) deciding if at least k edges of E(G)\E(H)
can be added to H while preserving planarity.

The following two additional problems generalize PEP in different directions: (G3)
deciding whether G has a planar embedding G in which at least k edges of H are
embedded as in H and (G4) deciding whether there is a set F ⊆ E(H) of at most k edges
such that (G\F, H\F,H\F) is a planar PEG. We show that problems G3 and G4, called
MINIMUM REROUTING PARTIALLY EMBEDDED PLANARITY and MAXIMUM PRESERVED PARTIALLY

EMBEDDED PLANARITY, respectively, are NP-hard.

THEOREM 5.1. MINIMUM REROUTING PARTIALLY EMBEDDED PLANARITY and MAXIMUM PRE-
SERVED PARTIALLY EMBEDDED PLANARITY are NP-hard.

PROOF. The proof is by reduction from STEINERTREE in planar graphs, which is known
to be NP-hard [Garey and Johnson 1977]. The problem STEINERTREE in planar graphs
takes as an input a planar graph G = (V, E), a set T ⊂ V of terminals, and an integer
k and asks whether a tree T ∗ = (V ∗, E∗) exists such that (1) V ∗ ⊆ V , (2) E∗ ⊆ E,
(3) T ⊆ V ∗, and (4) |E∗| ≤ k.

We show how to construct an equivalent instance (G′, H,H, k′) of MAXIMUM PRESERVED

PARTIALLY EMBEDDED PLANARITY, given an instance (G = (V, E), T , k) of STEINERTREE in
planar graphs. First, choose an embedding � of G and let H be the dual of �, with
embedding H. For each terminal t ∈ T , we add a new vertex vt to H and prescribe it
inside the face that is dual to t. This completes the construction of H and H. Graph G′
has the same vertex set as H, and its edge set is E(H) ∪ S, where S is the edge set of
any connected planar graph GS spanning the vertices vt. Finally, we set k′ = k.

Now consider the problem of finding a set F of k edges of H such that
(G′\F, H\F,H\F) is a planar PEG. Clearly, GS can be drawn in a planar way if and
only if we choose F in such a way that all vertices vt lie in the same face of H\F. This is
equivalent to the property that the set F� of edges dual to F is a Steiner tree in G with
terminal set T . Hence, (G′, H,H, k′) is a positive instance of MAXIMUM PRESERVED PAR-
TIALLY EMBEDDED PLANARITY if and only if (G, T , k) is a positive instance of STEINERTREE.
This shows that MAXIMUM PRESERVED PARTIALLY EMBEDDED PLANARITY is NP-hard.

The reduction from an instance (G, T , k) of STEINERTREE in planar graphs to an in-
stance (G′, H,H, k′) of MINIMUM REROUTING PARTIALLY EMBEDDED PLANARITY is analogous
to the one for MAXIMUM PRESERVED PARTIALLY EMBEDDED PLANARITY. In particular, G′, H,
and H are constructed in exactly the same way; however, in such a case, we have

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

32:38 P. Angelini et al.

k′ = |E| − k. Then, it is sufficient to observe that (i) graph GS can be drawn in a planar
way if and only if a set F of edges can be deleted in such a way that all vertices vt lie
in the same face of H\F; (ii) the set F� of edges dual to F is a Steiner tree in G with
terminal set T ; and (iii) since GS is a connected component of G′, the edges of F can be
reinserted without crossings into the drawing—that is, to have all vertices vt lie in the
same face of H, it is sufficient to reroute (instead of delete) the edges in F. This shows
that MINIMUM REROUTING PARTIALLY EMBEDDED PLANARITY is NP-hard.

In the case of MAXIMUM PRESERVED PARTIALLY EMBEDDED PLANARITY, we can even make
H connected as follows. We connect each vertex vt to an arbitrary vertex of its pre-
scribed face, and we let GS be a star graph on the vertices vt. Thus, MAXIMUM PRESERVED

PARTIALLY EMBEDDED PLANARITY is NP-hard even if the prescribed graph H is connected.
However, this strategy does not work for MINIMUM REROUTING PARTIALLY EMBEDDED PLA-
NARITY, as the reduction for this problem relies on the property that every edge of each
face can be removed and reinserted after drawing GS. This is not the case if H is con-
nected. We leave open the question whether MINIMUM REROUTING PARTIALLY EMBEDDED

PLANARITY is NP-hard if the graph H with prescribed embedding is connected.

Application to simultaneous embedding with fixed edges. The results presented in
this work can be used to solve special cases of the problem simultaneous embedding
with fixed edges. A simultaneous embedding with fixed edges (in the following called
SEFE, for short) of a pair G1 = (V, E1), G2 = (V, E2) of graphs on the same vertex set is
a pair (�1, �2) of drawings such that (i) �i is a planar drawing of Gi, for each i = 1, 2;
(ii) each vertex v ∈ V is drawn on the same point in �1 and in �2; and (iii) each edge
(u, v) ∈ E1 ∩ E2 is represented by the same curve in �1 and in �2. The problem can also
be generalized to simultaneous embedding of more than two graphs.

The SEFE problem is a well-studied problem in graph drawing. A lot of research has
been devoted to find pairs of graph classes that always admit a SEFE and to determine
how many bends are necessary for constructing a SEFE of pairs of graphs that admit
one (e.g., see Angelini et al. [2012b], Di Giacomo and Liotta [2007], Erten and Kobourov
[2005], Fowler et al. [2011], and Frati [2006]). Additionally, a lot of work is concerned
with the algorithmic aspects of the SEFE problem. In particular, it is known that SEFE

is NP-hard for two geometric graphs, where edges are restricted to be straight-line
segments [Estrella-Balderrama et al. 2007] and that SEFE is NP-hard for three (or
more) graphs [Gassner et al. 2006]. Polynomial-time algorithms have been designed
for deciding the existence of a SEFE of two graphs, if some further assumptions are made
on the input, such as if the intersection of the two input graphs is biconnected [Angelini
et al. 2012a; Haeupler et al. 2013], if the input graphs are biconnected and the common
graph is connected [Bläsius and Rutter 2013b], and if the connected components of
the common graph are biconnected or have low degree [Bläsius et al. 2013a; Bläsius
and Rutter 2013a; Schaefer 2013]. Refer to Bläsius et al. [2013b] for a comprehensive
survey on this topic. Despite a large amount of research, the complexity status of the
SEFE problem for two graphs remains open.

The results presented in this work allow us to solve in linear time an interesting
case of the SEFE problem. Namely, Jünger and Schulz [2009] showed that two graphs
G1 = (V, E1) and G2 = (V, E2) admit a SEFE if and only if they admit planar embeddings
E1 and E2, respectively, that coincide on the intersection graph. This result, together
with the results we presented on the PEP problem, implies the following theorem.

THEOREM 5.2. Let G1 and G2 be two graphs with the same n vertices, and let G1∩2 be a
planar embedding of their intersection graph G1∩2 := G1 ∩G2. There exists a linear-time
algorithm to decide whether G1 and G2 admit a SEFE in which the embedding of G1∩2
coincides with G1∩2.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

Testing Planarity of Partially Embedded Graphs 32:39

PROOF. By Jünger and Schulz [2009], G1 and G2 admit a SEFE in which the embedding
of G1∩2 coincides with G1∩2 if and only if each of G1 and G2 admits a planar embedding
that coincides with G1∩2 when restricted to the vertices and edges of G1∩2. In other
words, G1 and G2 admit a SEFE in which the embedding of G1∩2 coincides with G1∩2 if
and only if (G1, G1∩2,G1∩2) and (G2, G1∩2,G1∩2) are both YES-instances of PEP.

Theorem 5.2 implies that deciding whether two graphs have a SEFE is a linear-time
solvable problem if one of the graphs has a fixed embedding, such as if one of the two
graphs is triconnected.

6. CONCLUDING REMARKS

In this article, we showed that PARTIALLY EMBEDDED PLANARITY (PEP) is a linear-time
solvable problem. Problem PEP asks whether a partially embedded graph (PEG) is
planar—that is, whether a planar drawing H of a subgraph H of a planar graph G
can be extended to a planar drawing of G. To derive our linear-time algorithm, we
first presented a combinatorial characterization of planar PEGs in terms of conditions
on the structure of the triconnected, biconnected, and connected components of the
input graph. This characterization immediately implies a polynomial-time algorithm
for testing the planarity of a given PEG. The second part of the article was devoted to a
careful implementation of the algorithm following from the characterization, resulting
in an algorithm for PEP with optimal linear running time. Although edge compatibility
exhibits a very local behavior and hence is not too difficult to enforce in linear time,
numerous steps are necessary to handle cycle compatibility in linear time as well. In
addition, we showed that our testing algorithm can be made constructive—that is, it
can be implemented so that it finds an embedding extension for the input PEG, if one
exists. Altogether, from a purely algorithmic point of view, this completely settles the
problem PEP.

Further, we considered several generalizations of PEP and proved that they are
NP-hard. Additionally, we showed that PEP exhibits strong connections with another
well-known graph drawing problem: the SEFE problem. The results in this work im-
mediately imply a linear-time algorithm for solving SEFE when the embedding of the
intersection graph is fixed, which holds, for example, if one of the input graphs is
triconnected.

In a subsequent paper, Jelı́nek et al. [2013] characterize the planar PEGs via for-
bidden substructures in the spirit of Kuratowski’s theorem. In conjunction with the
results presented in this work, this gives an efficient algorithm that, for a given PEG,
either finds a planar extension or decides that the PEG is nonplanar and extracts an
obstruction.

Open problems. The problem PEP asks for determining the extendability of planar
combinatorial embeddings or, equivalently, of topological drawings of planar graphs. An
obvious research direction is to consider the complexity of the extendability question
for other drawing styles. It is known that completing partial straight-line drawings
is NP-hard [Patrignani 2006], and it seems that the NP-hardness proof generalizes
easily to poly-line drawings that admit a fixed number of bends per edge. Subsequent
to the conference version of this article [Angelini et al. 2010], the problem of extend-
ing partial representations has been considered for function graphs and permutation
graphs [Klavı́k et al. 2012a], for subclasses of chordal graphs [Klavı́k et al. 2012b], for
interval graphs [Klavı́k et al. 2011], and for proper and unit interval graphs [Klavı́k
et al. 2012c]. However, it might be interesting to consider the problems of extending,
for example, orthogonal drawings [Tamassia 1987] or Manhattan-geodesic drawings
[Katz et al. 2010].

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

32:40 P. Angelini et al.

A different direction for generalizing PEP would be to relax the strict condition to
have a fixed embedding H for a subgraph H of the entire planar graph G. Gutwenger
et al. [2008] consider the problem of testing the planarity of a graph with the fur-
ther constraint that every vertex has an associated PQ-tree representing the possible
rotations that are allowed for that vertex. The common generalization of PEP and
this problem assumes that only a subgraph is constrained by such PQ-trees and the
remaining edges can be inserted arbitrarily. Is it possible to decide planarity of a par-
tially PQ-constrained graph G in polynomial time? A positive answer to the previous
question has been provided in Bläsius and Rutter [2013b] for the case in which G is
biconnected.

ACKNOWLEDGMENTS

This work began at the BICI Workshop on Graph Drawing, held in Bertinoro, Italy, in March 2009 and was
carried out while the authors were at the Department of Applied Mathematics, Charles University, Prague.

REFERENCES

P. Angelini, G. Di Battista, F. Frati, V. Jelı́nek, J. Kratochvı́l, M. Patrignani, and I. Rutter. 2010. Testing
planarity of partially embedded graphs. In Proceedings of SODA’10. 202–221.

P. Angelini, G. Di Battista, F. Frati, M. Patrignani, and I. Rutter. 2012a. Testing the simultaneous embed-
dability of two graphs whose intersection is a biconnected or a connected graph. Journal of Discrete
Algorithms 14, 150–172.

P. Angelini, M. Geyer, M. Kaufmann, and D. Neuwirth. 2012b. On a tree and a path with no geometric
simultaneous embedding. Journal of Graph Algorithms and Algorithms 16, 1, 37–83.

P. Bertolazzi, G. Di Battista, and W. Didimo. 2000. Computing orthogonal drawings with the minimum
number of bends. IEEE Transactions on Computers 49, 8, 826–840.

T. Bläsius, A. Karrer, and I. Rutter. 2013a. Simultaneous embedding: Edge orderings, relative positions,
cutvertices. In Graph Drawing. Lecture Notes in Computer Science, Vol. 8242. Springer, 220–231.

T. Bläsius, S. G. Kobourov, and I. Rutter. 2013b. Simultaneous embedding of planar graphs. In Handbook of
Graph Drawing and Visualization, R. Tamassia (Ed.). CRC Press.

T. Bläsius and I. Rutter. 2013a. Disconnectivity and relative positions in simultaneous embeddings. In Graph
Drawing. Lecture Notes in Computer Science, Vol. 7704. Springer, 31–42.

T. Bläsius and I. Rutter. 2013b. Simultaneous pq-ordering with applications to constrained embedding
problems. In Proceedings of SODA’13. 1030–1043.

J. M. Boyer and W. J. Myrvold. 2004. On the cutting edge: Simplified O(n) planarity by edge addition. Journal
of Graph Algorithms and Applications 8, 3, 241–273.

H. de Fraysseix, P. O. de Mendez, and P. Rosenstiehl. 2006. Trémaux trees and planarity. International
Journal on Foundations of Computer Science 17, 1017–1030.

G. Demoucron, Y. Malgrange, and R. Pertuiset. 1964. Reconnaissance et construction de représentations
planaires topologiques. Rev. Francaise Recherche Opérationelle 8, 33–34.

G. Di Battista and R. Tamassia. 1996. On-line planarity testing. SIAM Journal on Computing 25, 956–997.
E. Di Giacomo and G. Liotta. 2007. Simultaneous embedding of outerplanar graphs, paths, and cycles.

International Journal of Computational Geometry and Applications 17, 2, 139–160.
C. Dornheim. 2002. Planar graphs with topological constraints. Journal of Graph Algorithms and Applica-

tions 6, 1, 27–66.
C. Erten and S. G. Kobourov. 2005. Simultaneous embedding of planar graphs with few bends. Journal of

Graph Algorithms and Applications 9, 3, 347–364.
A. Estrella-Balderrama, E. Gassner, M. Jünger, M. Percan, M. Schaefer, and M. Schulz. 2007. Simultane-

ous geometric graph embeddings. In Graph Drawing. Lecture Notes in Computer Science, Vol. 4875.
Springer, 280–290.

J. Fiala. 2003. NP-completeness of the edge precoloring extension problem on bipartite graphs. Journal of
Graph Theory 43, 2, 156–160.

J. Fowler, M. Jünger, S. G. Kobourov, and M. Schulz. 2011. Characterizations of restricted pairs of planar
graphs allowing simultaneous embedding with fixed edges. Computational Geometry 44, 8, 385–398.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

Testing Planarity of Partially Embedded Graphs 32:41

F. Frati. 2006. Embedding graphs simultaneously with fixed edges. In Graph Drawing. Lecture Notes in
Computer Science, Vol. 4372. Springer, 108–113.

M. Garey and D. Johnson. 1977. The rectilinear Steiner tree problem is NP-complete. SIAM Journal on
Applied Mathematics 32, 4, 826–834.

E. Gassner, M. Jünger, M. Percan, M. Schaefer, and M. Schulz. 2006. Simultaneous graph embeddings with
fixed edges. In Graph-Theoretic Concepts in Computer Science. Lecture Notes in Computer Science,
Vol. 4271. Springer, 325–335.

M. Grötschel, L. Lovász, and A. Schrijver. 1988. Stable sets in graphs. In Geometric Algorithms and Combi-
natorial Optimization. Springer, 273–303.

C. Gutwenger, K. Klein, and P. Mutzel. 2008. Planarity testing and optimal edge insertion with embedding
constraints. Journal of Graph Algorithms and Applications 12, 1, 73–95.

C. Gutwenger and P. Mutzel. 2000. A linear time implementation of SPQR-trees. In Graph Drawing. Lecture
Notes in Computer Science, Vol. 1984. Springer, 77–90.

B. Haeupler, K. R. Jampani, and A. Lubiw. 2013. Testing simultaneous planarity when the common graph is
2-connected. Journal of Graph Algorithms and Applications 17, 3, 147–171.

J. Hopcroft and R. E. Tarjan. 1974. Efficient planarity testing. Journal of the ACM 21, 4, 549–568.
V. Jelı́nek, J. Kratochvı́l, and I. Rutter. 2013. A Kuratowski-type theorem for planarity of partially em-

bedded graphs. Computational Geometry: Theory and Applications 46, 4, 466–492. DOI:http://dx.doi.
org/10.1016/j.comgeo.2012.07.005

M. Jünger and M. Schulz. 2009. Intersection graphs in simultaneous embedding with fixed edges. Journal
of Graph Algorithms and Applications 13, 2, 205–218.

M. Juvan and B. Mohar. 2005. 2-restricted extensions of partial embeddings of graphs. European Journal of
Combinatorics 26, 3–4, 339–375.

B. Katz, M. Krug, I. Rutter, and A. Wolff. 2010. Manhattan-geodesic embedding of planar graphs. In Graph
Drawing. Lecture Notes in Computer Science, Vol. 5849. Springer, 207–218.

P. Klavı́k, J. Kratochvı́l, T. Krawczyk, and B. Walczak. 2012a. Extending partial representations of func-
tion graphs and permutation graphs. In Algorithms—ESA 2012. Lecture Notes in Computer Science,
Vol. 7501. Springer, 671–682.

P. Klavı́k, J. Kratochvı́l, Y. Otachi, I. Rutter, T. Saitoh, M. Saumell, and T. Vyskočil. 2012c. Extending partial
representations of proper and unit interval graphs. CoRR abs/1207.6960.

P. Klavı́k, J. Kratochvı́l, Y. Otachi, and T. Saitoh. 2012b. Extending partial representations of subclasses
of chordal graphs. In Algorithms and Computation. Lecture Notes in Computer Science, Vol. 7676.
Springer, 444–454.

P. Klavı́k, J. Kratochvı́l, and T. Vyskočil. 2011. Extending partial representations of interval graphs. In Theory
and Applications of Models of Computation. Lecture Notes in Computer Science, Vol. 6648. Springer,
276–285.

L. Kowalik and M. Kurowski. 2003. Short path queries in planar graphs in constant time. In Proceedings of
STOC’03. 143–148.

J. Kratochvı́l and A. Sebo. 1997. Coloring precolored perfect graphs. Journal of Graph Theory 25,
207–215.

K. Kuratowski. 1930. Sur le problème des courbes gauches en topologie. Fundamenta Mathematicae 15,
271–283.

B. Mohar. 1999. A linear time algorithm for embedding graphs in an arbitrary surface. SIAM Journal on
Discrete Mathematics 12, 1, 6–26.

P. Mutzel. 2003. The SPQR-tree data structure in graph drawing. In Automata, Languages and Programming.
Lecture Notes in Computer Science, Vol. 2719. Springer, 35–46.

M. Patrignani. 2006. On extending a partial straight-line drawing. International Journal of Foundations of
Computer Science 17, 5, 1061–1069.

J. A. La Poutré. 1994. Alpha-algorithms for incremental planarity testing. In Proceedings of STOC’94. 706–
715.

M. Schaefer. 2013. Toward a theory of planarity: Hanani-tutte and planarity variants. Journal of Graph
Algorithms and Applications 17, 4, 367–440.

R. Tamassia. 1987. On embedding a graph in the grid with the minimum number of bends. SIAM Journal
on Computing 16, 3, 421–444.

R. Tamassia. 1996. On-line planar graph embedding. Journal of Algorithms 21, 2, 201–239.
R. Tamassia. 1998. Constraints in graph drawing algorithms. Constraints 3, 1, 87–120.

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

http://dx.doi.org/10.1016/j.comgeo.2012.07.005
http://dx.doi.org/10.1016/j.comgeo.2012.07.005

32:42 P. Angelini et al.

R. Tamassia, G. Di Battista, and C. Batini. 1988. Automatic graph drawing and readability of diagrams.
IEEE Transactions on Systems, Man, and Cybernetics 18, 1, 61–79.

R. E. Tarjan. 1972. Depth first search and linear graph algorithms. SIAM Journal on Computing 2, 146–160.
J. Westbrook. 1992. Fast incremental planarity testing. In Automata, Languages and Programming. Lecture

Notes in Computer Science, Vol. 623. Springer, 342–353.

Received March 2013; revised April 2014; accepted April 2014

ACM Transactions on Algorithms, Vol. 11, No. 4, Article 32, Publication date: April 2015.

