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We present a nonperturbative lattice calculation of the form factors which contribute to the amplitudes
for the radiative decays P → lν̄lγ, where P is a pseudoscalar meson and l is a charged lepton. Together
with the nonperturbative determination of the corrections to the processes P → lν̄l due to the exchange of
a virtual photon, this allows accurate predictions at OðαemÞ to be made for leptonic decay rates for
pseudoscalar mesons ranging from the pion to the Ds meson. We are able to separate unambiguously and
nonpertubatively the pointlike contribution, from the structure-dependent, infrared-safe, terms in the
amplitude. The fully nonperturbative OðaÞ improved calculation of the inclusive leptonic decay rates will
lead to the determination of the corresponding Cabibbo-Kobayashi-Maskawa matrix elements also at
OðαemÞ. Prospects for a precise evaluation of leptonic decay rates with emission of a hard photon are also
very interesting, especially for the decays of heavy D and B mesons for which currently only model-
dependent predictions are available to compare with existing experimental data.
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I. INTRODUCTION

The unitarity of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix is one of the most precise tests of the
Standard Model. Indeed, CKM unitarity may rule out many
theoretically well-motivated models for new physics and
put severe constraints on the energy scale where new
phenomena might occur, well beyond the range accessible
to direct experimental searches. In this respect, leptonic
decay rates of light and heavy pseudoscalar mesons are
essential ingredients for the extraction of the CKM matrix
elements. A first-principles calculation of these quantities
requires nonperturbative accuracy and hence numerical
lattice simulations. Moreover, in order to fully exploit
the presently available experimental information and to

perform the next generation of flavor-physics tests, OðαemÞ
electromagnetic corrections must be included. In this
endeavor, the radiative leptonic decays P → lν̄lðγÞ (where
P is a negatively charged pseudoscalar meson, l a lepton,
ν̄l the corresponding antineutrino, and γ a photon) are
particularly important; see [1].
Knowledge of the radiative leptonic decay rate in the

region of small (soft) photon energies is required in order to
properly define the infrared-safe measurable decay rate for
the process P → lν̄lðγÞ. Indeed, according to the well-
known Bloch-Nordsieck mechanism [2], the integral of the
radiative decay rate in the phase space region correspond-
ing to soft photons must be added to the decay rate with no
real photons in the final states (the so-called virtual rate) in
order to cancel infrared divergent contributions appearing
in unphysical quantities at intermediate stages of the
calculations.
On the one hand, in the limit of ultrasoft photon energy,

the radiative decay rate can be reliably calculated in an
effective theory in which the meson is treated as a pointlike
particle. This is a manifestation of the well-known
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mechanism known as the “universality of infrared diver-
gences” (see e.g. Refs. [3,4]) that finds its physical
explanation in the fact that ultrasoft photons cannot resolve
the internal structure of the meson. On the other hand, the
ultrasoft limit is an idealization and experimental measure-
ments, particularly in the case of heavy mesons, are
inclusive up to photon energies that may be too large to
safely neglect the structure-dependent (SD) corrections to
the pointlike approximation.
In the region of hard (experimentally detectable) photon

energies, radiative leptonic decays represent important
probes of the internal structure of the mesons. Moreover,
radiative decays can provide independent determinations of
CKM matrix elements with respect to the purely leptonic
channels. A nonperturbative calculation of the radiative
decay rates can be particularly important for heavy mesons
since, unlike the case of pions and kaons where such
decays have been studied using chiral perturbation theory
(ChPT) [5–9], no model-independent calculations have
ever been performed. Even in the case of light mesons,
although the quoted ChPT calculations represent a first-
principles approach to the problem, the low-energy con-
stants entering in the final results at Oðp6Þ have been
estimated in phenomenological analyses relying in part on
model-dependent assumptions.
In Ref. [10], a strategy to compute QED radiative cor-

rections to the P → lν̄lðγÞ decay rates at OðαemÞ by
starting from first-principles lattice calculations was pro-
posed. The strategy has subsequently been applied in
Refs. [11–15], within the RM123 approach [16,17], to
provide the first nonperturbative model-independent calcu-
lation of the decay rates π− → μ−ν̄μðγÞ and K− → μ−ν̄μðγÞ.
In these calculations, the real soft-photon contributions have
been evaluated in the pointlike effective theory and, using the
ChPT results quoted above, the SD corrections have been
estimated to be negligible for these processes (see [10]). In
the same phenomenological analysis, it has been shown that
the SD correctionsmight instead be relevant for the decays of
pions and kaons into electrons. Moreover, by using the same
single-pole dominance approximation as originally used in
Ref. [18], SD contributions have been estimated to be
phenomenologically important for decays of heavy-flavor
mesons.
In this paper, we present the first nonperturbative lattice

calculation of the rates for the radiative decays P → lν̄γ,

where P is a pion, kaon, D or Ds meson. We use the Nf ¼
2þ 1þ 1 gauge ensembles generated by the European
Twisted Mass Collaboration (ETMC) and analyzed for
mesonic observables in Ref. [19]. Preliminary results from
this study were presented in Ref. [20]; the decays of bottom
mesons will be studied in future papers. Note also that Kane
et al. have presented preliminary results for the decays
Dþ

s → lþνγ and K− → l−ν̄γ, where l� represents the
charged leptons and γ is a hard photon with energy in the
range of about 0.5–1 GeV in Ref. [21].
The plan of the remainder of this paper is as follows. In

Sec. II, we introduce the basic quantities which enter in the
amplitude for the leptonic decay of a pseudoscalar meson
with the emission of a real photon; in particular, we define
the axial and vector form factors FA and FV . We express the
decay rates in terms of these quantities in Appendix A. In
Sec. III, we describe the general strategy that we followed
to extract the amplitudes from suitable Euclidean correla-
tion functions and discuss finite-time effects. The presence
of discretization effects which diverge at small photon
momenta is demonstrated in Sec. IV and Appendix C,
together with a strategy for subtracting them nonperturba-
tively. In Sec. V, we present the numerical results for pions,
kaons,D andDs mesons. Many formulas which are used in
the paper are discussed and derived in Appendices A–C.
Finally, in Appendix D, we present some of our numerical
results, including the correlation matrices, in a way which
we hope may be useful to readers who wish to use them in
phenomenological applications.

II. DEFINITION OF THE FORM FACTORS

The nonperturbative contribution to the radiative lep-
tonic decay rate for the processes P → lν̄lγ is encoded in
the following hadronic matrix element, see the left panel of
Fig. 1:

Hαr
W ðk; pÞ ¼ ϵrμðkÞHαμ

W ðk; pÞ

¼ ϵrμðkÞ
Z

d4yeik·yTh0jjαWð0ÞjμemðyÞjPðpÞi; ð1Þ

where ϵrμðkÞ is the polarization vector of the outgoing
photon with four-momentum k, p is the momentum of the
ingoing pseudoscalar meson of mass mP (p≡ ðE; pÞ,
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

P þ p2
p

, and p2 ¼ m2
P). Here and in the following

FIG. 1. Feynman diagrams representing the amplitudes with the emission of a real photon from the P− meson (left panel) or from the
final-state charged lepton l− (right panel).
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Greek letters, α; μ; ν;…, denote Lorentz indices, Latin
letters, i; j; k;… denote spatial indices, and r denotes the
index identifying the polarization of the real photon. The
operators

jμemðxÞ ¼
X
f

qfψ̄fðxÞγμψfðxÞ;

jαWðxÞ ¼ jαVðxÞ − jαAðxÞ ¼ ψ̄UðxÞðγα − γαγ5ÞψDðxÞ ð2Þ

are, respectively, the electromagnetic hadronic current and
the hadronic weak current expressed in terms of the quark
fields ψf having electric charge qf in units of the charge of
the positron; ψU and ψD indicate the fields of an up-type or
a down-type quark and for the mesons considered in this
studyU can be either an up or a charm quark andD a down
or a strange quark. In order to calculate the full amplitude,
one has also to consider the contribution in which the
photon is emitted from the final-state charged lepton; see
the right panel of Fig. 1. This latter contribution, however,
can be computed in perturbation theory using the meson’s
decay constant fP. Both contributions are included in the
formulas for the decay rate given in Appendix A.
The decomposition of Hαr

W ðk; pÞ in terms of scalar form
factors has been discussed in Ref. [10] (see also [22]). Here
we adopt the same basis used in that paper to write

Hαr
W ðk; pÞ ¼ ϵrμðkÞ

�
H1½k2gμα − kμkα�

þH2½ðp · k − k2Þkμ − k2ðp − kÞμ�ðp − kÞα

− i
FV

mP
εμαγβkγpβ

þ FA

mP
½ðp · k − k2Þgμα − ðp − kÞμkα�

þ fP

�
gμα þ ð2p − kÞμðp − kÞα

2p · k − k2

��
: ð3Þ

The term in the last line of Eq. (3), which we write as
Hαμ

pt ðk; pÞ, is the pointlike infrared-divergent contribution.
The other terms correspond to the so-called SD contribu-
tion, Hαμ

SDðk; pÞ. Hαμ
pt ðk; pÞ saturates the Ward Identity (WI)

satisfied by Hαμ
W ðk; pÞ,

kμH
αμ
W ðk; pÞ ¼ kμH

αμ
pt ðk; pÞ ¼ ih0jjαWð0ÞjPðpÞi ¼ fPpα;

kμH
αμ
SDðk; pÞ ¼ 0; ð4Þ

as explained in detail in Appendix C. The four form factors
H1;2 and FV;A are scalar functions of Lorentz invariants,
m2

P, p · k, and k2. Equation (3) is valid for generic (off-
shell) values of the photon momentum and for generic
choices of the polarization vectors. The knowledge of
the four form factors in the case of off-shell photons
(k2 ≠ 0) gives access to the study of decays in which

the pseudoscalar meson decays into four leptons. These
processes are very interesting in the search of physics
beyond the Standard Model and will be the subject of a
future work. In this paper, we concentrate on the case in
which the photon is on-shell.
By setting k2 ¼ 0, at fixed meson mass, the form factors

are functions of p · k only. Moreover, by choosing a
physical basis for the polarization vectors so that

ϵrðkÞ · k ¼ 0; ð5Þ
one has

Hαr
W ðk; pÞ ¼ ϵrμðkÞ

�
−i

FV

mP
εμαγβkγpβ þ

�
FA

mP
þ fP
p · k

�

× ðp · kgμα − pμkαÞ þ fP
p · k

pμpα

�
: ð6Þ

Once the decay constant fP and the two SD axial and
vector form factors FA and FV are known, the radiative
decay rate can be calculated by using the formulas given in
Appendix A. These formulas are expressed in terms of the
convenient dimensionless variable

xγ ¼
2p · k
m2

P
with 0 ≤ xγ ≤ 1 −

m2
l

m2
P
; ð7Þ

where ml is the mass of the outgoing lepton in the P →
lν̄lγ decay.
Our definition of the form factor FA differs from the

definition, FB
A, of Refs. [21,23],

FB
A ¼ FA þmPfP

p · k
: ð8Þ

We note that FB
A includes the pointlike infrared divergent

contribution which totally dominates at low values of xγ ,
thus obscuring the interesting structure-dependent contri-
bution. For this reason, we strongly advocate the use of our
definition [10]. Moreover, the sign of FV used in this paper
is opposite to the one used in Ref. [21].

III. FORM FACTORS FROM EUCLIDEAN
CORRELATION FUNCTIONS

In order to relate the hadronic matrix element to
Euclidean correlation functions, the primary quantities
computed in lattice calculations, it is useful to express
the Hαr

W ðk; pÞ, defined in Eq. (1) in Minkowski space in
terms of the contributions coming from the different time
orderings. To this end, we define

Hαr
W ðk; pÞ ¼ Hαr

W;1ðk; pÞ þHαr
W;2ðk; pÞ;

jrðkÞ ¼ ϵrμðkÞ
Z

d3ye−ik·yjμemð0; yÞ ð9Þ
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and perform the ty integral,

Hαr
W;1ðk; pÞ ¼

Z
0

−∞
dtyeiEγtyh0jjαWð0ÞeiðĤ−E−iεÞtyjrðkÞjPðpÞi

¼ −ih0jjαWð0Þ
1

Ĥ þ Eγ − E − iε
jrðkÞjPðpÞi;

Hαr
W;2ðk; pÞ ¼

Z
∞

0

dtyeiEγtyh0jjrðkÞe−iðĤ−iεÞtyjαWð0ÞjPðpÞi

¼ −ih0jjrðkÞ 1

Ĥ − Eγ − iε
jαWð0ÞjPðpÞi; ð10Þ

where Ĥ is the QCD Hamiltonian operator, E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

P þ p2
p

is the energy of the decaying meson P, and
Eγ ¼ jkj is the energy of the outgoing real photon.
The important observation that makes the lattice calcu-

lation possible by using standard effective-mass/residue
techniques is that the integrals over ty appearing in the
definition ofHαr

W ðk; pÞ can beWick rotated to the Euclidean
space without encountering any obstruction. Such obstruc-
tions arise whenever there are states propagating between
the operators in the T-products that have energies smaller
than the energy of the external states [24]. This does not
happen in our case. For this reason, Hαr

W;1;2ðk; pÞ can be
rewritten in terms of Euclidean integrals,

Hαr
W;1ðk; pÞ ¼ −i

Z
0

−∞
dtyh0jjαWð0ÞeðĤþEγ−EÞtyjrðkÞjPðpÞi

Hαr
W;2ðk; pÞ ¼ −i

Z
∞

0

dtyh0jjrðkÞe−ðĤ−EγÞtyjαWð0ÞjPðpÞi;

ð11Þ

both of which are convergent for physical (nonvanishing)
photon energies. In Eq. (11) and below, ty is a Euclidean
time variable and r refers to the photon polarization as in
Eq. (9). Indeed, the hadronic state of lowest energy that can
propagate between the two currents is the pseudoscalar
meson with spatial momentum p − k (it appears in the time-
ordering Hαr

W;1) and we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

P þ ðp − kÞ2
q

þ Eγ >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

P þ p2
q

; jkj ≠ 0: ð12Þ

As a consequence, Hαr
W ðk; pÞ can be rewritten as

Hαr
W ðk; pÞ ¼ −i

Z
d4yeEγty−ik·yϵrμðkÞTh0jjαWð0ÞjμemðyÞjPðpÞi:

ð13Þ

From this observation, it follows that the hadronic matrix
element can be extracted from the Euclidean correlation
functions

Cαr
W ðt; k; pÞ ¼ −iϵrμðkÞ

Z
d4yd3xetyEγ−ik·yþip·x

× Th0jjαWðtÞjμemðyÞPð0; xÞj0i; ð14Þ

where P ¼ iψ̄Dγ5ψU is a Hermitian pseudoscalar interpo-
lating operator having the flavor quantum numbers of the
incoming meson. In Eq. (14), using the translational
invariance of the correlation function, we have moved
the origin in time to the pseudoscalar source, Pð0; xÞ, and
placed the weak current at t. In the large-t limit, one has

Rαr
W ðt; k; pÞ ¼ 2E

e−tðE−EγÞhPðpÞjPð0Þj0iC
αr
W ðt; k; pÞ

¼ Hαr
W ðk; pÞ þ � � � ; ð15Þ

where the ellipsis represents the subleading exponentials.
The expressions for the correlation function Cαr

W ðt; k; pÞ
in Eq. (14) and for the ratio Rαr

W ðt; k; pÞ in Eq. (15) refer to
the ideal case of a lattice with infinite-time extent. The
extraction of the matrix elements from correlation functions
computed on a finite lattice in our numerical simulations is
discussed in Appendix B. Although some of the details of
the appendix refer to our specific lattice procedures (the
choice of lattice fermions, renormalization of the operators,
etc.), the strategy itself is general and can be directly
translated to other lattice discretizations of QCD and of
QED. Here in the main text, we use Fig. 2 to illustrate the
strategy used in our numerical simulations, performed with
(anti-) periodic boundary conditions in time for the (fer-
mionic) bosonic fields, to extract the form factors. The two
panels in Fig. 2 represent the forward (0 ≪ t ≪ T=2) and
backward (T=2 ≪ t ≪ T) halves of the lattice. In both

FIG. 2. Schematic diagrams representing the correlation function CαrW ðt; T=2; k; pÞ used to extract the form factors; see Appendix B.
The interpolating operator for the meson P and the weak current jW are placed at fixed times 0 and t, and the electromagnetic current jem
is inserted at ty which is integrated over 0 ≤ ty ≤ T, where T is the temporal extent of the lattice. The left and right panels correspond to
the leading contributions to the correlation functions for ty < T=2 and ty > T=2, respectively, with mesons propagating with momenta p
or p − k.
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cases, the ty integral is dominated by the region in which ty
is close to t, allowing for the propagation of the lightest
state over the longest time interval.
In Fig. 3, we show two more diagrams to illustrate two

important points concerning our numerical calculation
of the correlation functions and of the form factors. The
diagram in the left panel shows a quark-disconnected
contribution to the correlation function originating from
the possibility that the external real photon is emitted from
sea quarks. In this work, we have been using the so-called
electroquenched approximation in which the sea quarks are
electrically neutral. In practice, this means that we have
neglected the contributions represented by the diagram in
the left panel of Fig. 3.
The quark-connected diagram in the right panel of

Fig. 3 is shown in order to explain the strategy we have
used to set the values of the spatial momenta. We exploited
the fact that, by working within the electroquenched
approximation, that is, in the absence of the contribu-
tions illustrated in the left panel of the figure, it is possible
to choose arbitrary values of the spatial momenta by
using different spatial boundary conditions for the quark
fields [25]. More precisely, we set the boundary condi-
tions for the “spectator” quark such that ψðxþ nLÞ ¼
expð2πin · θsÞψðxÞ, where L is the spatial extent of the
lattice in each spatial direction. We treat the two propa-
gators that are connected to the electromagnetic current as
the result of the Wick contractions of two different fields
having the same mass and electric charge but satisfying
different boundary conditions [26]. This is possible at the
price of accepting tiny violations of unitarity that are
exponentially suppressed with the volume. By setting the
boundary conditions as illustrated in the figure, we have
thus been able to choose arbitrary (nonquantized) values for
the meson and photon spatial momenta,

p ¼ 2π

L
ðθ0 − θsÞ; k ¼ 2π

L
ðθ0 − θtÞ; ð16Þ

by tuning the real three-vectors θ0;t;s. We find that the most
precise results are obtained with small values of jpj and in
particular with p ¼ 0.
The numerical results presented in the following sections

have been obtained by setting the nonzero components of
the spatial momenta along the third direction, that is,

p ¼ ð0; 0; jpjÞ; k ¼ ð0; 0; EγÞ: ð17Þ

With this particular choice of the kinematical configuration,
a convenient basis for the polarization vectors of the photon
(see Appendix B for more details) is the one in which the
two physical polarization vectors are given by

ϵ1μ ¼
�
0;−

1ffiffiffi
2

p ;−
1ffiffiffi
2

p ; 0

�
; ϵ2μ ¼

�
0;

1ffiffiffi
2

p ;−
1ffiffiffi
2

p ; 0

�
;

ð18Þ

while the unphysical polarization vectors vanish identically,
ϵ0μ ¼ ϵ3μ ¼ 0. Notice that in this basis we have

ϵr · p ¼ ϵr · k ¼ 0; ð19Þ

and, consequently,

Hjr
A ðk; pÞ ¼

ϵrjmP

2
xγ

�
FA þ 2fP

mPxγ

�
;

Hjr
V ðk; pÞ ¼

iðEγϵr ∧ p − Eϵr ∧ kÞj
mP

FV: ð20Þ

Using these formulas, we have built the following numeri-
cal estimators:

RAðtÞ ¼
1

2mP

X
r¼1;2

X
j¼1;2

Rjr
A ðt;T=2;k;pÞ

ϵrj
→ xγFAðxγÞþ

2fP
mP

;

ð21Þ

FIG. 3. The diagram on the left represents the contributions to the correlation functions arising from the emission of the photon by the
sea quarks. In our numerical simulations, we work in the electroquenched approximation and neglect such diagrams. The diagram on the
right explains our choice of the spatial boundary conditions, which allows us to set arbitrary values for the meson and photon spatial
momenta. The spatial momenta of the valence quarks, modulo 2π=L, in terms of the twisting angles are as indicated. Each diagram
implicitly includes all orders in QCD.
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RVðtÞ ¼
mP

4

X
r¼1;2

X
j¼1;2

Rjr
V ðt; T=2; k; pÞ

iðEγϵr ∧ p − Eϵr ∧ kÞj → FVðxγÞ

ð22Þ
for the form factors, which we determine by fitting to the
plateaux in the region 0 ≪ t ≪ T=2. The discussion here
and below corresponds explicitly to the forward half of the
lattice (0 ≪ t ≪ T=2). We combine the results with those
from the backward half (T=2 ≪ t ≪ T) by exploiting time-
reversal symmetry as explained in Appendix B.
The ratios Rjr

Wðt; T=2; k; pÞ appearing in Eqs. (21) and
(22), which we evaluate separately for the axial (W ¼ A)
and vector (W ¼ V) components of the weak current, are
the finite-T generalizations [see Eq. (B19)] of the ratios
Rαr
W ðt; k; pÞ defined above in Eq. (15). The values of the

meson energies and of the matrix elements hPjPj0i needed
to build these estimators have been obtained from standard
effective-mass/residue analyses of pseudoscalar-pseudo-
scalar two-point functions. We have also computed the
pseudoscalar-axial two-point functions from which we
have extracted the decay constants fP on our data sets
in order to be able to separate the SD axial form factor FA
from the pointlike contribution 2fP=ðmPxγÞ.

IV. NONPERTURBATIVE SUBTRACTION
OF INFRARED DIVERGENT
DISCRETIZATION EFFECTS

In this section, we want to stress a very important issue
associated with infrared divergent cutoff effects which can
jeopardize the extraction of FA at small values of xγ . We
also introduce a strategy to overcome this problem.
In Fig. 4, we plot FAðxγÞ þ 2fP=ðmPxγÞ, the sum of the

pointlike and SD axial form factors which are extracted
directly from the correlation functions using RAðtÞ [see
Eq. (21)], as a function of xγ for the K (left panel) and the
Ds (right panel) mesons. The pointlike contribution,
2fP=ðmPxγÞ, dominates the axial form factor in the full
physical range of photon energies and is overwhelming at
small xγ . Using the decay constant and mass, computed in
the standard way from the two-point functions, we can in
principle subtract the pointlike term and extract FAðxγÞ.
However, this turns out to be very difficult because of the
possible presence of discretization effects which cannot be
excluded by the WI of the lattice action. Moreover, these
lattice artifacts diverge as xγ → 0. We now propose a
nonperturbative method to eliminate this problem.
At finite lattice spacing, the axial form factor is con-

strained, as in the continuum [see Eq. (4)], by an exact
lattice WI,

2 sinðkμa=2Þ
a

Hαμ
L ðk; pÞ ¼ −h0jjαAð0ÞjPðpÞi ¼ −fLPpα

L;

ð23Þ

that is true at all orders in the lattice spacing a (see
Appendix C). The label L here, and in the remainder of this
section, stands for “lattice” as the discussion concerns the
Ward identity in a discrete space-time. It should not be
confused with the spatial extent of the lattice. This however
does not exclude the presence of cutoff effects in Eq. (21).
These are terms of Oða2Þ1 and, in particular, include
contributions of Oða2=xγÞ,

RAðtÞ
xγ

→
1

4xγ

X
r¼1;2

X
j¼1;2

2Hjr
A ðk; pÞ
ϵrjmP

¼ ½FAðxγÞ þ a2ΔFAðxγÞ�

þ 2

mPxγ
ðfP þ a2ΔfPÞ þ � � � ; ð24Þ

where the ellipsis represents higher orders in a2, while the
quantities ΔFA and ΔfP depend upon the parameters of the
theory regularized on the lattice, on the light- and heavy-
quark masses and upon ΛQCD. Discretization effects in the
pseudoscalar masses are also absorbed into ΔFA and ΔfP.
The crucial point to notice is that the lattice decay constant
of the WI in Eq. (23) fLP ≠ fP þ a2ΔfP. This implies the
presence of the extra term of Oða2=xγÞ which appears, in
spite of the naive expectations based on the exact lattice
WI. Thus, the coefficient of the last term in Eq. (24) is not
in general given by 2fLP=ðmPxγÞ, where fLP is the quantity
extracted from the axial-pseudoscalar lattice correlation
functions at finite lattice spacing. More precisely, once the
matrix element h0jjαAð0ÞjPðpÞi is parametrized as in
Eq. (23), the definition of fLP at fixed cutoff depends upon
the choice of the index α and of the lattice momentum pα

L
and, for this reason, is not unique. Therefore, given a
generic definition of fLP, one cannot expect a complete
cancellation of the infrared divergent term on the right-hand
side of Eq. (24), because a residual lattice artifact will
survive,

Fsub
A ðxγÞ ¼

1

4xγ

X
r¼1;2

X
j¼1;2

2Hjr
A ðk; pÞ
ϵrjmP

−
2fLP
xγmP

¼ FAðxγÞ þ a2ΔFAðxγÞ þ
2a2Δf̃P
xγmP

; ð25Þ

generating an effective, unphysical infrared divergent con-
tribution to Fsub

A ðxγÞ at finite cutoff (a2Δf̃P ¼ fP − fLP þ
a2ΔfP). This phenomenon is illustrated for the Ds meson
in Fig. 5 where Fsub

A is plotted as function of xγ . Since the
subtraction of the potentially divergent term is incomplete,
we observe a fast rise of the effective Fsub

A ðxγÞ at small

1We assume here that we are using a lattice discretization in
which the leading artifacts are Oða2Þ. For Wilson fermions in
which they are OðaÞ, the discussion has to be modified accord-
ingly.
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values of xγ . For this reason, even if one has data at different
values of the lattice spacing, it is particularly difficult to
extract the continuum form factor FAðxγÞ from Fsub

A ðxγÞ,
especially at small xγ and for heavy mesons. This is
illustrated by the intermediate (red) points in Fig. 5 which
were obtained by fitting and subtracting the Oða2=xγÞ
artifacts. The divergence at small xγ is reduced but the
relative statistical uncertainties are increased.
We now present an alternative strategy that avoids this

problem. In Appendix C, we show that the correlation
function Cαr

A ðt; k; pÞ has a smooth behavior as a function of
k and that from Cαr

A ðt; 0; pÞ it is possible to extract directly
Hir

A ð0; pÞ ¼ ϵri fP [see Eq. (20)]. We can then construct the
quantity

R̄AðtÞ ¼ e−tEγ

P
r¼1;2

P
j¼1;2

Cjr
A ðt;T=2;k;pÞ

ϵrjP
r¼1;2

P
j¼1;2

Cjr
A ðt;T=2;0;pÞ

ϵrj

− 1 ð26Þ

that, by construction, vanishes identically at xγ ¼ 0. Up to
statistical uncertainties, each term in the sums in the
numerator and denominator of Eq. (26) is independent
of the indices j, r. For the study of the constraints imposed
by the electromagnetic Ward identity, it is helpful to view
the right-hand side as Hjr

A ðk; pÞ=Hjr
A ð0; pÞ − 1 (which is

also independent of j, r). From the improved estimator
R̄AðtÞ, we can extract the structure-dependent form factor
FA using

2fP
mPxγ

R̄AðtÞ → FNPsub
A ðxγÞ ¼ FAðxγÞ þOða2Þ; ð27Þ

a quantity that we also show in Fig. 5 and that, in contrast to
Fsub
A , does not show any divergent behavior at small xγ . The

reduction of the uncertainty on FAðxγÞ using R̄AðtÞ, with
respect to a fit to the right-hand side of Eq. (25), as shown
in Fig. 5, is impressive, particularly at small xγ and also for
heavy mesons where there are discretization effects of
Oða2m2

DðsÞ Þ. In the following, we will only present results

obtained with this method.
The knowledge of Cjr

A ðt; T=2; 0; pÞ allows us also to
define an alternative estimator for the form factor FVðxγÞ,
namely,

R̄VðtÞ¼fPmP

	P
r¼1;2

P
j¼1;2

Cjr
V ðt;T=2;k;pÞ−Cjr

V ðt;T=2;0;pÞ
iðEγϵr∧p−Eϵr∧kÞj e−tEγ



	P

r¼1;2

P
j¼1;2

Cjr
A ðt;T=2;0;pÞ

ϵrj




→FVðxγÞ; ð28Þ
that we find has reduced statistical errors compared to
RVðtÞ. Note that because of parity symmetry the correlation

FIG. 5. Study of FA for the Ds meson. The upper (blue) points
show Fsub

A ðxγÞ obtained from Eq. (25). The divergence at small xγ
is reduced by fitting and subtracting the Oða2=xγÞ artifacts, at the
price of increased uncertainties at small xγ; these are the
intermediate (red) points. The most accurate results are given
by FNPsub

A , obtained by the nonperturbative subtraction of these
artifacts as in Eq. (27) and are shown by the lower (black) points.
The data are obtained using the ensemble B55.32 of Ref. [15].

FIG. 4. The blue circles represent FAðxγÞ þ 2fP=ðmPxγÞ, extracted directly from RAðtÞ, as a function of xγ for the K meson (left) and
for the Ds meson (right). The red squares represent the pointlike contribution given by 2fP=ðmPxγÞ. The data are taken from the
ensemble D15.48 of Ref. [15].
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functionCjr
V ðt; T=2; 0; pÞ ¼ 0, but this is only approximately

true when it is estimated using a finite statistical sample.
We find that taking the difference Cjr

V ðt; T=2; k; pÞ −
Cjr
V ðt; T=2; 0; pÞ in the numerator of Eq. (28) results in a

significant reduction of the statistical uncertainty for physical
values of xγ [see Eq. (7)].

V. NUMERICAL RESULTS

The results presented in this paper were obtained using
the ETMC gauge ensembles with Nf ¼ 2þ 1þ 1 dynami-
cal quarks at three different values of the lattice spacing,
a ¼ 0.0885ð36Þ; 0.0815ð30Þ, and 0.0619(18) fm, with
meson masses in the range 220–2110 MeV. Details about
these ensembles are given in Table II of Ref. [15]; see also
Table I in Appendix D. In total, we have included 125
different combinations of momenta obtained by assigning
to each of the θi¼0;t;s five different values; making the same
assignments for all choices of the quark masses. In the
figures below, we illustrate the quality and features of our
results by showing examples of plots for light and heavy
mesons. The plots used for illustration correspond to
unphysical values of the MS renormalized light-quark
mass,mudð2 GeVÞ ¼ 11.7 MeV. The correspondingmeson
masses are mDs

¼ 2027ð3Þ MeV, mD ¼ 1929ð6Þ MeV,
mK ¼ 530ð2Þ MeV, and mπ ¼ 228ð2Þ MeV. Similar plots
can be shown for other values of the simulation parameters.
The scale setting is taken from Ref. [19], where

the continuum value of r0 [27] was obtained imposing
mexp

π ¼ mπ0 ¼ 134.98 MeV and fexpπ ¼ 130.41ð20Þ MeV.
The values of the strange and charm quark masses,
obtained by extrapolating the kaon and D meson masses

to the continuum and at the physical point in the
light-quark masses, are msð2 GeVÞ ¼ 99.6ð4.3Þ MeV
and mcð2GeVÞ¼1.176ð39ÞGeV. In the following for
the renormalized quark mass, we shall use m ¼ μ=ZP,
where μ is the twisted mass of the given quark and ZP is the
renormalization constant of the pseudoscalar density in
the MS scheme, at 2 GeV, computed with method M2 [19].
The values of μ used in our simulation can also be found in
Tables I and II in Appendix D (see also Table II of
Ref. [15]). Renormalization of the corresponding axial-
vector and vector currents with twisted mass fermions gives
FA ¼ ZVF0

A and FV ¼ ZAF0
V , where F0

A and F0
V are the

unrenormalized quantities as explained in Eq. (B6), ZA has
been computed with method M2 and ZV with the WI [19].
In Table II of Appendix D, we give further details of our
simulation including the values of the angles θi¼0;s;t used to
fix the hadron and photon momenta; see Eq. (16).
In Figs. 6 and 7, we show examples of plateaux for the

ratios R̄A;VðtÞ, defined in Eqs. (26) and (28), respectively,
for K andDmesons. These figures are representative of the
signal quality also for other values of masses, momenta,
and lattice spacings. The values of all the form factors
discussed in the following have been extracted from the
plateaux obtained by using Eqs. (26) and (28). The time
interval used for the extraction has been chosen, for each of
the data ensembles and for each of the mesons, in such a
way as to observe a reasonable plateau for all values of
the meson/photon momenta. Regarding the quality
of the plateaux, we have performed an extensive study
of the dependence of the results on the time interval chosen
for the fits and the differences are included in the estimates
of the uncertainties on the extracted values of FA;V .

FIG. 6. Examples of fits to plateaux for the ratio R̄AðtÞ for the kaon (left) andDmeson (right) at larger (upper panels) or smaller (lower
panels) values of xγ . The values obtained from the fits, together with their uncertainties, are indicated by the horizontal (red) bands.
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In order to extract the form factors FA;V at physical
values of the quark masses and in the continuum limit, we
have used a variety of fitting formulas for light and heavy
mesons as discussed below.

For pions and kaons, we have covered the full physical
range of xγ, 0 ≤ xγ ≤ 1 −m2

l=m
2
π;K (indeed we even have

data for unphysical values corresponding to xγ > 1).
For the pion, guided by ChPT, we fit to the formula

FA;VðxγÞ ¼
mπ

fπ

��
c0 þ c00

m2
π

ð4πfπÞ2
þ c̃0

a2

r20

�
þ
�
c01

m2
π

ð4πfπÞ2
þ c̃1

a2

r20

�
xγ

�
: ð29Þ

This is certainly not the most general formula to include
higher-order terms in ChPT; for example, it does not
contain chiral logarithms, but it is sufficiently simple
and adequate to describe the pion data. The two coefficients
c̃0 and c̃1 take into account possible mass-independent
discretization effects. c01 is multiplied by m2

π because it
arises in higher orders in ChPT. On the other hand, the
discretization term proportional to c̃1 is not multiplied by

the mass of the meson because at this order in a there is an
explicit violation of chiral invariance in the lattice fermion
Lagrangian.
When using the simpler expression in Eq. (29), we

exclude data at pion masses mπ ≳ 350 MeV. Since in our
data we have pion masses up to about 500 MeV, we have
also performed fits in the full range by modifying Eq. (29)
to include higher-order terms as follows:

FA;VðxγÞ ¼
mπ

fπ

��
c0 þ c00

m2
π

ð4πfπÞ2
þ c̃0

a2

r20
þ Δc00

m4
π

ð4πfπÞ4
þ Δc̃0a2m2

π

�

þ
�
c01

m2
π

ð4πfπÞ2
þ c̃1

a2

r20
þ Δc01

m4
π

ð4πfπÞ4
þ Δc̃1a2m2

π

�
xγ

�
: ð30Þ

The higher-order coefficients Δc00, Δc̃0, c̃1, Δc01, and Δc̃1
have very little effect on the extrapolated results and for this
reason they are not well determined. Indeed, they only
contribute to a slight increase in the uncertainty in the value
of the pion form factors at xγ ¼ 0 and in the slope in xγ .

Similarly, in the different fits that we performed, we also
added some of the possible lattice artifacts that break
Lorentz invariance, for example, those proportional to
a2jkj2 (in the frame where the meson is at rest), where k
is the momentum of the photon. We found that their effect

FIG. 7. Examples of fits to plateaux for the ratio R̄VðtÞ for the kaon (left) andDmeson (right) at larger (upper panels) or smaller (lower
panels) values of xγ . The values obtained from the fits, together with their uncertainties, are indicated by the horizontal (red) bands.
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is very small and this was only taken into account in the
evaluation of the final uncertainties. Since SUð3Þ breaking
effects may be important, and we only have results obtained

at two values of the strange quark mass, for the kaon we
first interpolate the form factors to the physical kaon mass
and then fit them to the formula

FA;VðxγÞ ¼
mK

fK

��
c0 þ c00

m2
π

ð4πfπÞ2
þ c̃0

a2

r20

�
þ
�
c1 þ c01

m2
π

ð4πfπÞ2
þ c̃1

a2

r20

�
xγ

�
; ð31Þ

with pion masses mπ < 350 MeV and

FA;VðxγÞ ¼
mK

fK

��
c0 þ c00

m2
π

ð4πfπÞ2
þ c̃0

a2

r20
þ Δc00

m4
π

ð4πfπÞ4
þ Δc̃0a2m2

π

�

þ
�
c1 þ c01

m2
π

ð4πfπÞ2
þ c̃1

a2

r20
þ Δc01

m4
π

ð4πfπÞ4
þ Δc̃1a2m2

π

�
xγ

�
ð32Þ

in the full range of pion masses. Formulas (31) and (32) for
the kaon are equivalent to those in (29) and (30), respec-
tively, for the pion. The presence of the constant term c1 in
Eqs. (31) and (32) is a reflection of the fact that the strange
quark mass is fixed to its physical value. To simplify the
notation, we have used the same symbols for the coef-
ficients in Eqs. (29)–(32), but the reader should note that
their values are different in each case. We do not have
sufficient data to include terms proportional to m2

Km
2
π

or m4
π with logarithmic corrections in Eq. (32). In order

to show that the quark mass dependence is well described
by our Ansatz, in Fig. 8 we plot the dependence of the
pion’s FAðxγ ¼ 0.5Þ (left panel) and FVðxγ ¼ 0.5Þ (right
panel) on the light-quark masses (specifically on mπ=fπ)
for different values of the lattice spacing. The results
are compared to the fit to the data obtained using the
expression in Eq. (30). Some interpolation of the data in xγ
was needed to match the points and plot them as a function
of mπ=fπ only.
In Fig. 9, we present the values of the pion (left panels)

and kaon (right panels) form factors FAðxγÞ (upper panels)
and FVðxγÞ (lower panels) as a function of xγ for the

configurations at a ¼ 0.0619 fm. The plotted points with
error bars correspond to different values of the light-quark
mass at several values of xγ . The points with large
uncertainties (σFA;V

≥ 0.01 for the kaon or σFA;V
≥ 0.008

for the pion) are shown with faint gray symbols. These
points are obtained for mesons with substantial nonzero
momenta p ≠ 0. The results of our simulation are compared
to the lowest order in ChPT, given by

FAðxγÞ ¼ const: ¼ 8mP

fP
ðLr

9 þ Lr
10Þ

FVðxγÞ ¼ const: ¼ mP

4π2fP
; ð33Þ

where P represents π or K and we take ðLr
9 þ Lr

10Þ ≃
0.0017 [28]; this is indicated by the horizontal red lines.
The blue lines and green bands are the results and
uncertainties of the fits, obtained using Eqs. (30) and
(32) after the extrapolation to physical quark masses and
to zero lattice spacing has been performed. In Fig. 10, we
show the value of the pion (left) and the kaon (right) form
factors FAðxγÞ (upper) and FVðxγÞ (lower) as a function of
xγ , extrapolated to the continuum at the physical point,

FIG. 8. Dependence of FAðxγÞ (left panel) and FVðxγÞ (right panel) for the pion on the light-quark masses, specifically onmπ=fπ . The
letters A, B, and D refer to the sets of gauge field configurations at different lattice spacings listed in Table I of Appendix D.
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either using Eqs. (29) and (31) for the pion and kaon,
respectively, to fit the data, full green bands, or by using
Eqs. (30) and (32), shaded blue bands. In the figure, we also
show the values of the form factors for selected values of xγ
extrapolated to the continuum and to the physical point,

together with the corresponding statistical and systematic
uncertainties. The systematic uncertainties were estimated
from the differences in the results coming from different
fits of higher-order terms in the meson masses, the
inclusion of different possible discretization corrections

FIG. 10. Extracted values of the pion (left) and kaon (right) form factors FAðxγÞ (upper) and FVðxγÞ (lower) as a function of xγ . The
horizontal red lines correspond to lowest order ChPT predictions in Eq. (33). The full green bands are the results of the fits after the
continuum and chiral extrapolations obtained using Eqs. (29) and (31) for the pion and kaon, respectively, and the shaded blue bands are
obtained using (30) or (32). We also show the extrapolated form factors and the corresponding uncertainties (statistical and systematic)
for selected values of xγ .

FIG. 9. Extracted values of the pion (left) and kaon (right) form factors FAðxγÞ (upper) and FVðxγÞ (lower) as a function of xγ for the
configurations at a ¼ 0.0619 fm. The horizontal red lines correspond to the lowest order ChPT prediction in Eq. (33). The green lines
and bands are the results of the fits, using the formulas given in Eqs. (29) and (31), after extrapolation to the continuum limit and
physical quark masses, together with the corresponding uncertainties.
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and the functional forms of the fits, that is, whether we use
Eqs. (29) and (31) for the pion and kaon, respectively, or
Eqs. (30) and (32). The results for the form factors FA;V at
selected values of xγ, the corresponding uncertaintiesΔFA;V

,
and their correlation matrices are given for all the mesons in
Appendix D.
For heavy mesons H, we expect that the form factors

scale as m−3=2
h ∼ fH=mH, where mh is the mass of the

heavy quark contained in H,

FA;VðxγÞ ¼ F0
A;V

fH
mH

�
1þO

�
ΛQCD

mH

�
þ…

�
þOða2m2

HÞ;

ð34Þ

where the constants F0
A;V are a function of the light-quark

masses. Since, however, for this exploratory study, we have
only two values of the heavy-quark mass, both around the
charm mass, we prefer to interpolate the values of the form
factors to the physical charm quark mass and then to fit the
result with the simple formula

FA;VðxγÞ ¼ d0 þ d00
m2

π

ð4πfπÞ2
þ d̃0

a2

r20

þ
�
d1 þ d01

m2
π

ð4πfπÞ2
þ d̃1

a2

r20

�
xγ: ð35Þ

We have also performed fits with the polelike formula

FA;VðxγÞ ¼
d0 þ d00

m2
π

ð4πfπÞ2

1þ
	
Δ1 þ Δ0

1
m2

π

ð4πfπÞ2


xγ

þ d̃0
a2

r20
þ d̃1

a2

r20
xγ:

ð36Þ
In this first study, we only have results for the DðsÞ

mesons in the range 0 ≤ xγ ≤ 0.4, corresponding to Eγ ≲
400 MeV in the rest frame of the hadron. In Fig. 11, we
give results for the form factors of the Ds meson, FAðxγÞ
and FVðxγÞ, at a ¼ 0.0815 fm. The full blue and shaded
orange bands are the results of the fits with the polynomial
or pole formula given in Eq. (35) and (36), respectively.
Since the lattice spacing is fixed, the coefficients d̃0;1 are
not included in the fit. We see that the both the fits give a
good description of our results in the region where we have
data, but differ significantly for xγ ≥ 0.4. This means that,
although both the linear and the pole fit describe accurately
the form factors in the region in which we have data, it is
not reliable to use these fits in the region xγ ≥ 0.4. In our
future investigations, we plan to provide nonperturbative
data for the form factors in the full kinematical
range 0 ≤ xγ ≤ 1 −m2

l=m
2
DðsÞ .

In Fig. 12, we present the values of the form factors
FAðxγÞ (upper) and FVðxγÞ (lower) for the Ds meson as a

FIG. 11. The form factors FAðxγÞ (upper) and FVðxγÞ (lower) of
the Ds meson as a function of xγ at fixed lattice spacing
(a ¼ 0.0815 fm) for the ensemble B25.32 [15]. The full blue
and shaded orange bands are the results of the fits with the
polynomial or pole formulas given in Eqs. (35) and (36),
respectively.

FIG. 12. The form factors FAðxγÞ (upper) and FVðxγÞ (lower) of
the Ds meson as a function of xγ at three values of the lattice
spacing with separate fits to the data using Eq. (35) at each value
of the lattice spacing. The orange bands with their central red
lines represent the result of a single fit to all the data extrapolated
to the continuum limit and to physical quark masses.
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function of xγ . We show the data obtained at the three
different values of the lattice spacing, together with fits
using Eq. (35) at each value of the lattice spacing. The
orange bands with their central red lines are the results of a
single fit to all the data after extrapolation to the continuum
limit and to physical quark masses. The discretization
artifacts, which include ones of Oðm2

ca2Þ, while approx-
imately of the expected size, appear to be relatively large
because the form factors are small. In fact, the form factors
at the three lattice spacings we have at our disposal are fully
consistent, within our uncertainties, with a linear behavior
in a2, as illustrated in Fig. 13 where the form factors at
xγ ¼ 0.2 are presented as a function of the lattice spacing.
The points in the figure are obtained after extrapolation to
physical quark masses either using a polynomial of pole

Ansatz corresponding to Eq. (35) or (36) at fixed lattice
spacing. In this first study, with only three lattice spacings
at our disposal, we are unable to include corrections of
higher order in a2 beyond those present in Eqs. (35) and
(36). In Appendix D, we have estimated their effects in the
uncertainties of our final results for the form factors.
We also study our physical results (i.e those obtained

after the continuum and chiral extrapolations) as a function
of xγ by fitting them to the following linear expressions:

FP
A;VðxγÞ ¼ CP

A;V þDP
A;Vxγ; ð37Þ

where P represents each of the pseudoscalar mesons, π, K,
D, and Ds.
For the axial form factors, we find

Cπ
A ¼ 0.010� 0.003; Dπ

A ¼ 0.0004� 0.0006; ρCπ
A;D

π
A
¼ −0.419;

CK
A ¼ 0.037� 0.009; DK

A ¼ −0.001� 0.007; ρCK
A ;D

K
A
¼ −0.673;

CD
A ¼ 0.109� 0.009; DD

A ¼ −0.10� 0.03; ρCD
A ;D

D
A
¼ −0.557;

CDs
A ¼ 0.092� 0.006; DDs

A ¼ −0.07� 0.01; ρCDs
A ;DDs

A
¼ −0.745; ð38Þ

and for the vector form factors we obtain

Cπ
V ¼ 0.023� 0.002; Dπ

V ¼ −0.0003� 0.0003; ρCπ
V ;D

π
V
¼ −0.570;

CK
V ¼ 0.12� 0.01; DK

V ¼ −0.02� 0.01; ρCK
V ;D

K
V
¼ −0.714;

CD
V ¼ −0.15� 0.02; DD

V ¼ 0.12� 0.04; ρCD
V ;D

D
V
¼ −0.580;

CDs
V ¼ −0.12� 0.02; DDs

V ¼ 0.16� 0.03; ρCDs
V ;DDs

V
¼ −0.900: ð39Þ

In Eqs. (38) and (39), for each of the C’s and D’s, ρC;D is the correlation between them, defined by

ρC;D ¼
P

iðCi − μCÞðDi − μDÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðCi − μCÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðDi − μDÞ2

p ; μC ¼ 1

N

X
i

Ci; μD ¼ 1

N

X
i

Di; ð40Þ

FIG. 13. The form factors FA (left) and FV (right) of the Ds meson at xγ ¼ 0.2 as functions of a2. The polynomial and pole fits
correspond to Eqs. (35) and (36), respectively.
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whereCi andDi are the jackknife samples and the sum runs
over all the jackknifes following the procedure in Appen-
dix A of Ref. [29]. The full correlation matrices are given in
Appendix E.
For the pion and kaon, we can compare the constants

Cπ;K
A;V in Eqs. (38) and (39) with the constant (i.e. xγ-

independent) values obtained in ChPT using Eq. (33):
Fπ
A ¼ 0.0119, Fπ

V ¼ 0.0254, FK
A ¼ 0.042, FK

V ¼ 0.096.
The pion vector form factor Fπ

V was computed on the
lattice in Ref. [30] where the process π0 → γγ was
studied. The main difference between Ref. [30] and our
approach is that in that case the space momentum p of the
meson and of one of the two photons, let us call it q, was
fixed, whereas the space momentum of the remaining
photon, corresponding to our k, was given by momentum
conservation. In general, then, the two photons are off-mass-
shell, and an extrapolation to the on-shell condition q2 ¼
k2 ¼ 0 is performed in order to obtain the form factor at the
physical point. The authors give their form factor, defined as
Fðm2

π; q2; k2Þ ¼ Fπ
Vð4π2fπÞ=mπ at the pointsFðm2

π; 0; 0Þ ¼
1.005ð20Þð30Þ and Fð0; 0; 0Þ ¼ 1.009ð22Þð29Þ, whereas
we have the form factor as a function of q2, which is fixed
by xγ. Given the smooth dependence of the vector form
factor on the momenta, we can nevertheless make a
comparison of these results with ours, namely, with
ðCπ

V þDπ
VÞð4π2fπÞ=mπ ¼ 0.88ð8Þ. The results are compat-

ible within the errors.
In the remainder of this section, we present a brief

comparison of our results with experimental data. A more
detailed phenomenological analysis will be presented in a
separate paper.
For the pion, the Particle Data Group (PDG) [1]

quotes the following results: Fπ
A ¼ 0.0119ð1Þ (this value

comes from fixing the vector form factor at the con-
served vector current prediction from π0 → γγ decays,
Fπ
Vðxγ¼0Þ¼1=α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Γðπ0→γγÞ=ðπmπ0Þ

p
¼0.0259ð5Þ), and

Fπ
V¼0.025ð2Þ in nice agreement with our results, respec-

tively, Fπ
A ¼ Cπ

A ¼ 0.010ð3Þ and Fπ
V ¼ Cπ

V ¼ 0.023ð2Þ.
Also the slope of Fπ

VðxγÞ has been measured from
the expression Fπ

VðxγÞ¼Fπ
Vð1Þð1þλð1−xγÞÞ with the

result λ ¼ 0.10ð6Þ, to be compared with our result
λ ¼ −Dπ

V=ðCπ
V þDπ

VÞ ¼ 0.011ð12Þ.
For the kaon, the PDG quotes the two combinations

FK
V �FK

A . They present separate values obtained fromK→e
decays, FK

V þ FK
A ¼ 0.133ð8Þ, and from K → μ decays,

FK
V þ FK

A ¼ 0.165ð13Þ. Of course, the results should be
independent of whether the final-state charged lepton is an
electron or muon. For this combination of form factors, our
value is FK

V þ FK
A ¼ 0.161� 0.013 at xγ ¼ 0 and FK

A þ
FK
V ¼ 0.1363� 0.0096 at xγ ¼ 1. For the other combina-

tion of form factors, the PDG quotes FK
A − FK

V ¼ −0.21ð6Þ
obtained from K → μ decays, which is quite different from
our result FK

A − FK
V ¼ −0.087� 0.013 at xγ ¼ 0 or FK

A −
FK
V ¼ −0.06� 0.01 at xγ ¼ 1. From K → e decays, there

is only the upper bound FK
A ð0Þ − FK

V ð0Þ < 0.49.
The results in Eqs. (38) and (39) can be combined

with the values of the decays constants computed in
Refs. [19,31],

fπ ¼ ð130.41� 0.20Þ MeV fK ¼ ð155.0� 1.9Þ MeV

fD ¼ ð207.4� 3.8Þ MeV fDs
¼ ð247.2� 4.1Þ MeV;

ð41Þ
to compute the differential or total decay rate using the
expressions given in Appendix A.

For completeness, we also present the constants C̃
DðsÞ
A;V

and D̃
DðsÞ
A;V which appear in the pole representation of the

form factors for D and Ds mesons,

F
DðsÞ
A;V ðxγÞ ¼

C̃
DðsÞ
A;V

1þ D̃
DðsÞ
A;V xγ

∶ ð42Þ

C̃D
A ¼ 0.112� 0.009; D̃D

A ¼ 1.3� 0.4; ρC̃D
V ;D̃

D
V
¼ 0.346;

C̃D
V ¼ −0.15� 0.02; D̃D

V ¼ 1.2� 0.4; ρC̃D
V ;D̃

D
V
¼ −0.383; ð43Þ

C̃Ds
A ¼ 0.094� 0.006; D̃Ds

A ¼ 1.1� 0.2; ρC̃Ds
V ;D̃Ds

V
¼ 0.546;

C̃Ds
V ¼ −0.12� 0.02; D̃Ds

V ¼ 2.6� 0.2; ρC̃Ds
V ;D̃Ds

V
¼ −0.373: ð44Þ

VI. CONCLUSIONS

In conclusion, we have shown that by using lattice QCD,
even with moderate statistics, it is possible to predict with
good precision the structure-dependent form factors FA and
FV relevant for P → lν̄lγ decays for both light and heavy

mesons and that it is also possible to extract their momentum
dependence. Previous determinations of these quantities
relied either on ChPT for light mesons or on the heavy-quark
expansion and model-dependent assumptions for heavy
mesons. Our work shows that it is possible to compute the
relevant form factors from first principles.
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We found that the extraction of the axial form factor FA
at small values of xγ is problematic because of the presence
of very large discretization effects of Oða2=ðr20xγÞÞ and we
provided a procedure for the nonperturbative cancellation
of these systematic errors. We also found that for charmed
mesons the discretization effects of Oða2m2

HÞ, while of the
expected order of magnitude, are large relative to the small
size of the form factors. Nevertheless, the results for the
form factors at the three lattice spacings are consistent,
within our uncertainties, with a linear behavior in a2.
Simulations on one or more finer lattices would enable us to
improve our estimates of the higher-order artifacts and
hence reduce the corresponding systematic uncertainty.
Such preliminary studies of charmed mesons are also
essential in order to study radiative decays of B mesons
in the future. In this respect, the use of the ratio method may
also be very useful [32].
Although the present study clearly can and will be

improved by, for example, increasing the statistics, cover-
ing the full range of xγ for D and Ds mesons or simulating
on a finer lattice, the results presented in this work already
allow for an accurate comparison of the theoretical pre-
dictions with experimental measurements and we will
discuss the phenomenological implications of our results
in a forthcoming paper.
In future, we also plan to study the emission of off-shell

photons (k2 ≠ 0), computing all four form factors appear-
ing in Eq. (3), which would allow us to predict the rates for
processes in which the pseudoscalar meson decays into
four leptons. These processes are very interesting in the
search of physics beyond the Standard Model [33–35].
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APPENDIX A: EXPRESSIONS FOR THE DECAY
RATES IN TERMS OF FV AND FA

In this appendix, we present the explicit formulas needed
to evaluate the total and differential decay rates at order αem,
combining the nonperturbative determination of the virtual

corrections computed with the approach of Ref. [10]
with the calculation of the SD form factors FA and FV
determined with the method proposed in this paper. These
formulas can be used to compute the double differential
decay rates d2Γ=ðdxγdxlÞ, the single differential decay
rates, dΓ=dxl or dΓ=dxγ, as well as the integrated decay

rate ΓðΔEγÞ ¼
R 2ΔEγ=mP

0 dxγðdΓ=dxγÞ (ΔEγ is the upper
limit on the energy of the emitted photon in the meson
rest frame).
The exchange of a virtual photon depends on the hadron

structure, since all momentum modes are included, and the
amplitude must therefore be computed nonperturbatively.
On the other hand, the nonperturbative evaluation of the
amplitude for the emission of a real photon is not strictly
necessary [10]. Indeed, it is possible to compute the
amplitudes for real-photon emission in perturbation theory
when xγ is sufficiently small that the internal structure of
the decaying meson is not resolved. The infrared diver-
gences in the nonperturbatively computed amplitude with
the exchange of a virtual photon are canceled in the decay
rates by those present in the emission of a real photon, even
when the latter is computed perturbatively. The reason for
this cancellation is the universality of the infrared behavior
of the theory (i.e. the infrared divergences do not depend on
the structure of the decaying hadron). For large photon
energies, for example, those present in the decays of heavy
mesons, a full nonperturbative determination of the relevant
amplitudes is necessary.
To calculate the partial rates for the emission of a hard

real photon, it is sufficient to know the SD form factors, FA
and FV , and the meson’s decay constant fP. For the
integrated rate ΓðΔEγÞ instead, in the intermediate steps
of the calculation, it is necessary to introduce an infrared
regulator. To this end, in order to work with quantities that
are finite when the infrared regulator is removed, it is very
useful to organize the inclusive rate ΓðΔEγÞ ¼ ΓðP− →
l−ν̄lðγÞÞjEγ≤ΔEγ

as follows:

ΓðΔEγÞ ¼ lim
L→∞

½Γ0ðLÞ − Γpt
0 ðLÞ�

þ lim
μγ→0

½Γpt
0 ðμγÞ þ Γpt

1 ðΔEγ; μγÞ�

þ ½Γ1ðΔEγÞ − Γpt
1 ðΔEγÞ�; ðA1Þ

where the subscripts 0,1 indicate the number of photons in
the final state, while the superscript pt denotes the pointlike
approximation of the decaying meson and μγ is an infrared
regulator. On the right-hand side of Eq. (A1), the quantities
Γ0ðLÞ and Γ1ðΔEγÞ are evaluated on the lattice.
The terms in the first parentheses on the right-hand side

of Eq. (A1), Γ0ðLÞ and Γpt
0 ðLÞ, have the same infrared

divergences which therefore cancel in the difference. Here
we use the lattice size L as the intermediate infrared
regulator by working in the QEDL formulation of QED
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in a finite volume [36], but any other consistent formulation
of QED on the lattice can also be used. The difference
½Γ0 − Γpt

0 � is independent of the regulator as this is removed
[11]. Γ0ðLÞ depends on the structure of the decaying meson
and is computed nonperturbatively, Refs. [11–15].
In the terms in the second parentheses on the right-

hand side of Eq. (A1), the decaying meson is taken to
be a pointlike charged particle and both Γpt

0 ðμγÞ and
Γpt
1 ðΔEγ; μγÞ can be computed directly in infinite volume,

in perturbation theory, using some infrared regulator,
for example, a photon mass μγ ¼ mγ. Each term is infrared
divergent, but the sum is convergent [2] and independent
of the infrared regulator. In Refs. [10,11], the explicit
perturbative calculations of ½Γpt

0 ðμγÞ þ Γpt
1 ðΔEγ; μγÞ� and

Γpt
0 ðLÞ have been performed with a small photon mass μγ or

using the finite volume, respectively, as the infrared
regulators.
Finally, the term on second line of the right-hand side

of Eq. (A1) is infrared finite. It can be computed in the
infinite-volume limit requiring only knowledge of the
structure-dependent form factors, FAðxγÞ and FVðxγÞ,
and of the meson’s decay constant fP,

½Γ1ðΔEγÞ − Γpt
1 ðΔEγÞ� ¼ ΓSDðΔEγÞ þ ΓINTðΔEγÞ; ðA2Þ

where ΓSD is the structure-dependent contribution and ΓINT
is that from the interference between the SD and pointlike
components of the amplitudes. Both ΓSD and ΓINT are
separately infrared finite and there is no need to introduce
an infrared regulator in this term.

We express the differential decay rate in terms of the
following quantities:

(i) The two dimensionless kinematical variables

xγ ¼
2p · k
m2

P
; xl ¼ 2p · pl −m2

l

m2
P

; ðA3Þ

where ml the mass of the lepton l, 1 − xγ þ xγr2l=
ð1 − xγÞ ≤ xl ≤ 1, and 0 ≤ xγ ≤ 1 − r2l, with
rl ¼ ml=mP.

(ii) The decay constant of the meson fP.
(iii) The two SD axial and vector form factors FA

and FV .
The differential decay rate is given by the sum of three

contributions,

d2Γ
dxγdxl

¼ αemΓð0Þ

4π

�
d2Γpt

dxγdxl
þ d2ΓSD

dxγdxl
þ d2ΓINT

dxγdxl

�
; ðA4Þ

where Γð0Þ is the leptonic decay rate in the absence of
electromagnetic corrections. This is given by

Γð0Þ ¼ G2
FjVCKMj2f2P

8π
m3

Pr
2
lð1 − r2lÞ2; ðA5Þ

where GF is the Fermi’s constant and VCKM the relevant
CKM matrix element.
The quantities in the braces on the right-hand side of

Eq. (A4) are given by

d2Γpt

dxγdxl
¼ 2fptðxγ; xlÞ

ð1 − r2lÞ2
;

d2ΓSD

dxγdxl
¼ m2

Pf½FVðxγÞ þ FAðxγÞ�2fþSDðxγ; xlÞ þ ½FVðxγÞ − FAðxγÞ�2f−SDðxγ; xlÞg
2f2Pr

2
lð1 − r2lÞ2

;

d2ΓINT

dxγdxl
¼ −

2mPf½FVðxγÞ þ FAðxγÞ�fþINTðxγ; xlÞ þ ½FVðxγÞ − FAðxγÞ�f−INTðxγ; xlÞg
fPð1 − r2lÞ2

ðA6Þ

and correspond to the contribution of the pointlike approximation, to the SD contribution and to the interference between
pointlike and SD terms (INT), respectively. The kinematical functions appearing in Eq. (A6) are given by

fptðxγ; xlÞ ¼
1 − xl

x2γðxγ þ xl − 1Þ
�
x2γ þ 2ð1 − xγÞð1 − r2lÞ −

2xγr2lð1 − r2lÞ
xγ þ xl − 1

�
;

fþSDðxγ; xlÞ ¼ ðxγ þ xl − 1Þ½ðxγ þ xl − 1þ r2lÞð1 − xγÞ − r2l�;
f−SDðxγ; xlÞ ¼ −ð1 − xlÞ½ðxl − 1þ r2lÞð1 − xγÞ − r2l�;

fþINTðxγ; xlÞ ¼ −
1 − xl

xγðxγ þ xl − 1Þ ½ðxγ þ xl − 1þ r2lÞð1 − xγÞ − r2l�;

f−INTðxγ; xlÞ ¼
1 − xl

xγðxγ þ xl − 1Þ ½x
2
γ þ ðxγ þ xl − 1þ r2lÞð1 − xγÞ − r2l�: ðA7Þ
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The distribution with respect to the photon’s momentum is
obtained after integrating over the lepton’s momentum

dΓ
dxγ

¼
Z

1

xmin
l ðxγÞ

dxl
d2Γ

dxγdxl
: ðA8Þ

As xγ → 0, the allowed kinematical range for xl is
squeezed around its maximum, xmin

l ðxγÞ ¼ 1 − xγ þ xγr2l=
ð1 − xγÞ ≤ xl ≤ 1. Thus, with the exception of the con-
tribution proportional to fptðxγ; xlÞ ∼ 1=x2γ , all the other
contributions vanish in the soft-photon region, which
is consequently dominated by the pointlike (eikonal)
result

dΓ
dxγ

∼
Z

1

xmin
l ðxγÞ

dxl
d2Γpt

dxγdxl
∼ 1=xγ: ðA9Þ

The 1=xγ behavior of the differential rate at small xγ leads
to a logarithmic infrared divergence in the total rate. It is
canceled by the infrared divergence in the OðαemÞ virtual
corrections to the inclusive decay rate. The SD and INT
contributions vanish at small xγ .
Equations (A4)–(A9) allow us to compute the spectrum

dΓ=dxγ. We advocate organizing the determination of the
integrated rate in terms of the three sets of parentheses on
the right-hand side of Eq. (A1). The procedure to evaluate
the term in the first parentheses, Γ0ðLÞ − Γpt

0 ðLÞ, is
explained in detail in Ref. [10], where the explicit expres-
sion for the term in the second parentheses, Γpt

0 ðμγÞ þ
Γpt
1 ðΔEγ; μγÞ, can also be found. The third term on the right-

hand side of Eq. (A1), Γ1ðΔEγÞ − Γpt
1 ðΔEγÞ ¼ ΓSD þ ΓINT,

is the subject of this paper. As explained above, both ΓSD
and ΓINT are infrared finite and are obtained by integrating
the differential rates over the physical range of xγ ,

ΓSDðΔEγÞ ¼
Z

2ΔEγ=mP

0

dxγ
dΓSD

dxγ
;

ΓINTðΔEγÞ ¼
Z

2ΔEγ=mP

0

dxγ
dΓINT

dxγ
: ðA10Þ

APPENDIX B: CALCULATING MATRIX
ELEMENTS FROM FINITE
EUCLIDEAN LATTICES

In this appendix, we derive some useful formulas for the
extraction of the two relevant form factors, FA;V , from the
Euclidean correlation functions expressed in terms of
lattice operators on a lattice with finite-time extent T.
In order to construct the finite T equivalent of Cαr

W ðt; k; pÞ
in Eq. (14), that we will denote as CαrW ðt; T=2; k; pÞ, it is
convenient to define the following hadronic correlation
function at fixed t and ty:

Mαr
W ðty; t; k; pÞ ¼

X
i¼1;2;3

ϵri ðkÞ
X
y

X
x

e−ik·ðyþî=2Þþip·x

× ThjαWðtÞjiemðty; yÞPð0; xÞiLT; ðB1Þ

where h…iLT denotes the average over the gauge field
configurations at finite L and T and we introduced suitable
independent vectors ϵrðkÞ, r ¼ 1, 2, corresponding to the
physical polarizations of the emitted photon. A possible
simple choice, and one in which the unphysical polar-
izations vanish explicitly, is given by

ϵ1μðkÞ≡
�
0;

−k1k3
jkj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

p ;
−k2k3

jkj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

p ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

p
jkj

�
;

ϵ2μðkÞ≡
�
0;

k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

p ;−
k1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k21 þ k22
p ; 0

�
: ðB2Þ

The polarization vectors satisfy

X3
i¼1

ϵri ðkÞki ¼ 0;
X3
i¼1

ϵri ðkÞϵsi ðkÞ ¼ δrs: ðB3Þ

Since in our simulations we always use k ¼ ð0; 0; jkjÞ, the
polarization vectors reduce to

ϵ1μ ¼
�
0;−

1ffiffiffi
2

p ;−
1ffiffiffi
2

p ; 0

�
ϵ2μ ¼

�
0;

1ffiffiffi
2

p ;−
1ffiffiffi
2

p ; 0

�
:

ðB4Þ
The “topology” of the correlation function in Eq. (B1) is

explained in Fig. 2.
(i) The incoming meson is interpolated at fixed spatial

momentum p by the pseudoscalar operator P placed
at time t ¼ 0,

Pð0Þ ¼
X
x

eip·xPð0; xÞ: ðB5Þ

(ii) The hadronic weak current jαWðtÞ is placed at the
generic time t. We used a local discretization of the
weak current that, in the twisted-mass discretization
of the fermionic action used in this work [37], is
explicitly given by

jαWðtÞ ¼ jαVðtÞ − jαAðtÞ; jαVðtÞ ¼ ZAψ̄UðtÞγαψDðtÞ;
jαAðtÞ ¼ ZV ψ̄UðtÞγαγ5ψDðtÞ; ðB6Þ

where jαVðtÞ and jαAðtÞ are the vector and axial
components that include the corresponding renorm-
alization factors. Note that the renormalization
factors to be used in twisted mass at maximal twist
are chirally rotated with respect to the ones of
standard Wilson fermions [38]. In Eq. (B6), ψU
indicates the field of an up-type quark that, for the
mesons considered in this study, can be either an up
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or a charm. Similarly, ψD can be either a down or a
strange quark field. The actions of the up-type and
down-type quark fields have been discretized with
opposite values of the chirally rotatedWilson term in
order to numerically suppress Oða2Þ lattice artifacts
in the meson masses [38,39].

(iii) The electromagnetic current jμemðty; yÞ, carrying a
three-momentum k is inserted at y ¼ ðty; yÞ. This
current is defined by

jμemðty; yÞ ¼
X
f

qfj
μ
fðty; yÞ; ðB7Þ

where f is the flavor index, qf is equal to 2=3 for up-
type quarks and to −1=3 for down-type quarks, and

jμfðxÞ ¼ −
�
ψ̄fðxÞ

�iγ5 − γμ

2
UμðxÞψfðxþ μ̂Þ

− ψ̄fðxþ μ̂Þ�iγ5 þ γμ

2
UμðxÞ†ψfðxÞ

�
:

ðB8Þ

In Eq. (B8), UμðxÞ are the QCD link variables and
the signs � are induced by the choice made in the
case of the flavor f for the sign of the chirally rotated
Wilson term [17].

We have used e−ik·ðyþî=2Þ, rather than the simpler,
standard exponent e−ik·y, for the Fourier transform of
the current appearing in Eq. (B1),

jrðty; kÞ ¼
X3
i¼1

ϵri ðkÞ
X
y

e−ik·ðyþî=2Þjiemðty; yÞ: ðB9Þ

Our choice of the exponent, which is equivalent to
standard one in the continuum limit, is more
convenient for the discussion of the lattice WIs
since we have used the point-split exactly conserved
electromagnetic current in our simulations.

(iv) A technical subtlety needs to be stressed here.
As discussed in the main text, in order to choose
arbitrary (nondiscretized) values of the spatial
momenta for the meson and for the photon, we
have introduced a “flavored” extension of the elec-
tromagnetic current (see the explanation in the
caption of Fig. 3). In practice, in order to have two
quarks (ψ0 and ψ t, where 0 and t are labels for the
quark fields) having the same mass, the same
electric charge, the same sign of the chirally
rotated Wilson term but different boundary con-
ditions [26], the expression to be used in the
numerical calculation is

e−ik·ðxþî=2ÞjifðxÞ ¼ −
�
χ̄tðxÞ

�iγ5 − γi

2
e
iπðθitþθi

0
Þ

L UiðxÞχ0ðxþ îÞ − χ̄tðxþ îÞ�iγ5 þ γi

2
e−

iπðθitþθi
0
Þ

L UiðxÞ†χ0ðxÞ
�
; ðB10Þ

where we have used the fact that [see Eq. (16)]

k ¼ 2πðθ0 − θtÞ
L

; ψf0;tgðxþ îLÞ ¼ e2πiî·θf0;tgψf0;tgðxÞ; ðB11Þ

and we have defined, as usually done in implementing twisted boundary conditions [25], the periodic fields

χf0;tgðxÞ ¼ e−
2πix·θf0;tg

L ψf0;tgðxÞ: ðB12Þ

In all the formulas that will follow, the range of the time parameters is extended over the full lattice extension,
0 ≤ t < T and 0 ≤ ty < T.

We are now ready to define the finite-T correlation function

CαrW ðt; T=2; k; pÞ ¼ −iθðT=2 − tÞ
XT
ty¼0

ðθðT=2 − tyÞeEγty þ θðty − T=2Þe−EγðT−tyÞÞMαr
W ðty; t; k; pÞ

− iθðt − T=2Þ
XT
ty¼0

ðθðT=2 − tyÞe−Eγty þ θðty − T=2Þe−Eγðty−TÞÞMαr
W ðty; t; k; pÞ: ðB13Þ
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In the continuum and large-T limits, one can readily show that for 0 ≪ t ≪ T=2,

CαrW ðt; T=2; k; pÞ → Cαr
W ðt; k; pÞ ¼ Hαr

W ðk; pÞ e
−tðE−EγÞhPjPj0i

2E
þ � � � ; ðB14Þ

where Cαr
W ðt; k; pÞ is the correlation function introduced in the main text defined in Eq. (14),Hαr

W ðk; pÞ is the physical matrix
element defined in Eq. (1) and the ellipsis represent subleading exponentials.
For negative time t on the other hand, that is, for time separations such that T=2 ≪ t ≪ T, in the continuum and large-T

limits, we have

CαrW ðt; T=2; k; pÞ → ½Hαr
W ðk; pÞ�† e

−ðT−tÞðE−EγÞh0jPjPi
2E

þ � � � ; ðB15Þ

with the ellipsis again representing the subleading exponentials.
It is useful to note that, in order to separate the axial and vector form factors, it is enough to compute separately the

correlation functions corresponding to the vector, CαrV ðt; T=2; k; pÞ, and the axial, CαrA ðt; T=2; k; pÞ, components of the weak
current. Moreover, from the properties

½Hαr
A ðk; pÞ�† ¼ Hαr

A ðk; pÞ; ½Hαr
V ðk; pÞ�† ¼ −Hαr

V ðk; pÞ; ðB16Þ
we deduce the following properties of the corresponding correlation functions under time reversal:

CαrA ðT − t; T=2; k; pÞ ¼ CαrA ðt; T=2; k; pÞ; CαrV ðT − t; T=2; k; pÞ ¼ −CαrV ðt; T=2; k; pÞ: ðB17Þ
Using these relations, the quantities

Hir
A ðk; pÞ ¼ ϵrip · k

�
FAðp · kÞ

mP
þ fP
p · k

�
; Hir

V ðk; pÞ ¼ iðEγϵr ∧ p − Eϵr ∧ kÞi FVðp · kÞ
mP

ðB18Þ

were extracted from the ratios of the correlation functions averaged over the two temporal halves of the lattice

Rir
A;Vðt; T=2; k; pÞ ¼

2ECαrA;Vðt; T=2; k; pÞ
e−tðE−EγÞhPjPj0i ¼ Hir

A;Vðk; pÞ þ…: ðB19Þ

In all the formulas of this appendix, we have used continuum notation for the four vectors but the momentum and energy
carried by the current (including the associated projectors) have to be read by performing the following substitutions:

ki → k̂i ¼ 2

a
sin

�
aki

2

�
; jkj → jk̂j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂21 þ k̂22 þ k̂23

q
; Eγ ¼

2

a
sinh−1

�
ajk̂j
2

�
: ðB20Þ

In the lattice regularization that we are using (i.e. Wilson
quarks at maximal twist), Eqs. (B16) and (B17) hold for
given values of the indices α and r ∈ f1; 2g only up to
Oða2nþ1Þ lattice artifacts (for integer n). One can show
however, that, as a consequence of exact lattice symmetries
(see e.g. Refs. [38,39]) and the choice of momenta and
polarization vectors given in Eqs. (16) and (18), these
Oða2nþ1Þ cutoff effects cancel if one evaluates appropriate
combinations of the relevant correlation functions, namely,

1

4

X
r¼1;2

X
j¼1;2

Cjr
A ðt; T=2;k;pÞ=ϵrj ðB21Þ

and

1

4

X
r¼1;2

X
j¼1;2

Cjr
V ðt; T=2;k;pÞ=Fr;jðEγ; EÞ;

Fr;jðEγ; EÞ ¼ iðEγϵ
r ∧ p − Eϵr ∧ kÞj; ðB22Þ

which are precisely those that occur in Eqs. (26) and (28) of
the main text. For the terms in Eqs. (B21) and (B22), the
time-reflection properties of Eq. (B17) hold and the derived
matrix elements, in addition to satisfying the Hermiticity
properties of Eq. (B16), allow for the extraction of the form
factors FA and FV with no Oða2nþ1Þ lattice artifacts. Our
analysis of lattice correlators leading to the results in this
paper has been based on data obtained from automatically
OðaÞ improved combinations of the form (B21) and (B22).
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APPENDIX C: EXPLOITING THE
ELECTROMAGNETIC WARD IDENTITY
TO RELATE THE MATRIX ELEMENT
Hαr

A ðk;pÞ TO THE DECAY CONSTANT f P

In this appendix, we study the WI that relates the axial
correlation function Cαr

A ðt; k; pÞ to the axial-pseudoscalar
correlation function and, consequently, the matrix element
Hαr

A ðk; pÞ to the decay constant of the meson fP. As
discussed in the main text, a careful analysis of the cutoff
effects reveals that the WI does not exclude the possibility
of different Oða2Þ artifacts appearing in the decay constant
extracted from the three-point function and that from the
two-point function.
We start with a remark about the matrix element of the

axial current, determined at a finite lattice spacing a and
using a particular lattice discretization, which we write in
the form

h0jjαAð0ÞjPðpÞi ¼ fLPp
α
L; ðC1Þ

where the combination fLPp
α
L is a vector under the orthogo-

nal group Hð4Þ.2 At finite a, the definition of the lattice
decay constant fLP depends on the definition that we assume
for the lattice momentum pα

L; for example, we may choose
pα
L ¼ pα or pα

L ¼ 2=a sin½apα=2�, where pα is the con-
tinuum value of the momentum. In particular, we define f̂P
by h0jjαAð0ÞjPðpÞi ¼ f̂PðpÞpα. Note that f̂P ¼ fP þOða2Þ,
where fP is the continuum value of the decay constant.
Consider the following correlation function which is

relevant to our study:

Z
d4yd3xe−ik·y−ip·xh0jT½jαAð0ÞjμemðyÞPð−t;−xÞ�j0i: ðC2Þ

WithWilson-like Fermions, such as those used in our study,
at fixed lattice spacing (for simplicity in the T → ∞ limit),
the electromagnetic WI implies that [40]

1

a

X3
μ¼0

Z
d4yd3xe−ik·y−ip·xh0jT½jαAð0ÞfjμemðyÞ − jμemðy − μ̂ÞgPð−xÞ�j0i

¼ −
Z

d4yd3xe−ik·y−ip·xfδ4ðyÞ − δ4ðyþ xÞgh0jT½jαAð0ÞPð−xÞ�j0i; ðC3Þ

where integrals over the spatial coordinates have to be read as lattice sums and, in the case of a real photon,
k0 ¼ iEγðkÞ ¼ ijkj.
The WI can be rewritten in the form

X3
i¼1

2 sinðaki=2Þ
a

Cαi
A ðt; k; pÞ ¼ Cα

Aðt; pÞ − Cα
Aðt; k; pÞ; ðC4Þ

where we have defined [note the shift in the exponent with respect to Eq. (C3)]

Cαμ
A ðt; k; pÞ ¼ −i

Z
d4yd3xe−ik·ðyþμ̂=2Þ−ip·xh0jT½jαAð0ÞjμemðyÞPð−t;−xÞ�j0i ðC5Þ

and

Cα
Aðt; pÞ ¼

Z
d4yd3xe−ik·y−ip·xδ4ðyÞh0jT½jαAð0ÞPð−t;−xÞ�j0i

¼
Z

d3xe−ip·xh0jT½jαAð0ÞPð−t;−xÞ�j0i

Cα
Aðt;Eγ; p − kÞ ¼

Z
d4yd3xe−ik·y−ip·xδ4ðyþ xÞh0jT½jαAð0ÞPð−t;−xÞ�j0i

¼
Z

d3xeEγt−iðp−kÞ·xh0jT½jαAð0ÞPð−t;−xÞ�j0i: ðC6Þ

2In this appendix, as in Sec. IV, the label L stands for lattice, as the discussion concerns the Ward identity in a discrete space-time. It
should not be confused here with the spatial extent of the lattice.

A. DESIDERIO et al. PHYS. REV. D 103, 014502 (2021)

014502-20



We can derive the Ward identity for the matrix element
itself by going onto the mass shell of the pseudoscalar
meson, which in the Euclidean corresponds to selecting the
energy of the external hadronic state to be EP as j− tj
becomes very large.

Consider first the case with k ≠ 0. In this case, the
second term on the right-hand side of Eq. (C4) does not
contribute because it corresponds to a different energy.
Thus, in this case, we have the following identity which is
true at all orders in a:

2 sinðkμa=2Þ
a

Hαμ
L ðk; pÞ ¼ −i

2 sinðkμa=2Þ
a

Z
d4ye−ik·ðyþμ̂=2Þ½h0jT½jαAð0ÞjμemðyÞÞ�jPðpÞi

¼ h0jjαAð0ÞjPðpÞi: ðC7Þ
Note that to arrive at this identity we do not need to specify the choice of fLP. As a → 0, the discretized derivative in Fourier
space 2=a sinðakμ=2Þ → kμ and we recover the continuumWI in Eq. (4). We can now proceed in analogy to the continuum
and separate Hαμ

L ðk; pÞ into a pointlike and a structure-dependent tensor, Hαμ
L ðk; pÞ ¼ Hαμ

L−ptðk; pÞ þHαμ
L−SDðk; pÞ such that

2 sinðakμ=2Þ
a

Hαμ
L−SDðk; pÞ ¼ 0 ðC8Þ

at fixed a. Even in the continuum, the separation of Hαμ into a pointlike and a structure-dependent component has an
ambiguity in the terms, starting at Oðk2Þ, which are not constrained by the Ward identity or the equations of motion.
Moreover, there are an infinite number of possible point-like lattice-regularized versions of Hαμ

L−ptðk; pÞ which tend to the
chosen continuum one as a → 0. We choose to define Hαμ

L−pt by

Hαμ
L−ptðk; pÞ ¼ fLP

�
Aðk; pÞδαμ þ Tαμðk; pÞ

Δ

�
; ðC9Þ

where Δ−1 is some version of a lattice boson propagator, for example,

Δ−1 ¼ 1

4=a2
P

ρsin
2½ðp − kÞρa=2� þm2

P
→

1

−2p · kþ k2
þOða2Þ ðC10Þ

as a → 0, Aðk; pÞ ¼ 1þOða2Þ and Tαμðk; pÞ ¼ ð2p − kÞμðp − kÞα þOða2Þ are functions of the momenta which depend
on the lattice regularization and fLP is the meson decay constant extracted from the matrix element in Eq. (C1). We therefore
have

lim
a→0

Hαμ
L−ptðk; pÞ ¼ Hαμ

pt ðk; pÞ: ðC11Þ

At fixed lattice spacing, the only condition that must be satisfied is that in applying the WI,

2 sinðakμ=2Þ
a

Hαμ
L−ptðk; pÞ ¼ fLP

�
2 sinðkαa=2Þ

a
Aðk; pÞ þ 2 sinðkμa=2Þ

a
Tαμðk; pÞ

Δ

�

¼ fLPp
α
L ¼ fPpα þOða2Þ; ðC12Þ

the denominator Δ of Eq. (C9) disappears. The WI
guarantees that the right-hand side of Eq. (C12) is the
matrix element h0jjαAð0ÞjPðpÞi including all orders in a.
By iterating order by order in a, we may find solutions of

the form

Aðk; pÞ ¼ 1þ a2Ãðp2Þ þOða4Þ
Tαμðk; pÞ ¼ ð2p − kÞμðp − kÞα þ a2T̃αμðk; pÞ þOða4Þ

ðC13Þ

that satisfy the WI, where the coefficients of the expansion
are not unique. The only relevant term for the extraction of
the form factor FA, however, is the coefficient Aðk; pÞ
(since ϵrμðkÞTαμðk; pÞ ¼ 0), which may differ from one by
terms of Oða2Þ, thus giving an effective decay constant
which is different from the one naively expected from the
WI. The absence of lattice artifacts of Oða2nþ1Þ is a
consequence of our use of the combinations of lattice
correlations functions in Eqs. (B21) and (B22) and the
resultingHαμ

L matrix elements [see Eq. (C9)]. Alternatively,
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one might work with lattice formulations which preserve
chiral symmetry, such as those based on overlap or domain
wall fermions. For OðaÞ improved Wilson fermion lattice
actions, instead, corrections of Oða3Þ will in general occur.
From the above discussion, we conclude that the lattice

Hjr
A ðk; pÞ has the form

Hjr
A ðk; pÞ ¼ ϵrj

mP

2

�
xγðFAðxγÞ þ a2ΔFAðxγÞÞ

þ 2

mP
ðfP þ a2ΔfPÞ

�
þ � � � ; ðC14Þ

where the dots represent higher-order discretization
corrections.
In order to implement the strategy described in Eq. (27),

we need to perform a direct calculation of Hjr
A ð0; pÞ and

hence to study the k → 0 limit of the WI. The problem is
nontrivial because from the spectral analysis of Cαμ

A ðt; k; pÞ
it follows that

Cαμ
A ðt; k; pÞ ¼ cαμ1 e−tEPðpÞ þ cαμ2 e−tfEPðp−kÞþEγðkÞg þ � � � ;

ðC15Þ

where the ellipsis represents exponentially suppressed
contributions, with a gap that is OðmπÞ. The first expo-
nential corresponds to the on-shell external meson P and
represents the state we are interested in. The second
exponential corresponds to the state Pþ γ where both
the meson and the photon are on-shell and have a total
momentum p and a relative momentum k. A similar
time dependence also appears in the WI from the rotation
of the P source; this is the second term on the right-hand
side of Eq. (C4). As discussed above, when k ≠ 0, it is
possible to isolate the matrix element corresponding to the
state P.
The problem we now address is to study the limit k → 0,

paying special attention to the leading cutoff effects. This
can be done by using the exact WI satisfied by Cαμ

A ðt; k; pÞ
at finite lattice spacing; in particular, we aim to understand
the structure of the correlation function Cαμ

A ðt; k; pÞ at
k ¼ 0. To this end, we consider the two-point correlation
functions on the right-hand side of Eq. (C4) when α is a
spatial index (the case α ¼ 0 is similar, but in the following
we shall concentrate on the case α ¼ 1, 2, 3). By setting
Eγ ¼ 0 in the last term of Eq. (C6), we have

Cj
Aðt; pÞ ¼

pjf̂PðpÞĜPðpÞ
2ÊPðpÞ

e−tÊPðpÞ þ…;

Cj
Aðt;Eγ ¼ 0; p − kÞ ¼ Cj

Aðt; p − kÞ ¼ ðp − kÞjf̂Pðp − kÞĜPðp − kÞ
2ÊPðp − kÞ e−tÊPðp−kÞ þ…; ðC16Þ

where the ellipsis represents subleading exponentials (the gap is at least 2mπ). In the previous expressions
f̂PðpÞ ¼ fP þOða2Þ, ĜPðpÞ ¼ GP þOða2Þ, and ÊPðpÞ ¼ EPðpÞ þOða2Þ where fP, GP, and EPðpÞ are, respectively,
the continuum decay constant, the continuum matrix element of the pseudoscalar density used as interpolating operator,
GP ¼ h0jPjPðpÞi, and the continuum energy of the meson.
By using the previous two expressions and by differentiating Eq. (C4) with respect to the component ki of k and then

setting k ¼ 0, we obtain

Cji
A ðt; 0; pÞ ¼

f̂PðpÞĜPðpÞ
2ÊPðpÞ

e−tÊPðpÞ
�
δij þ pj

�
1

f̂PðpÞ
∂f̂PðpÞ
∂pi þ 1

ĜPðpÞ
∂ĜPðpÞ
∂pi −

�
tþ 1

ÊPðpÞ

� ∂ÊPðpÞ
∂pi

��
þ…; ðC17Þ

where the ellipsis again represents the subleading expo-
nentials and we have used the fact that −∂kigðp − kÞ ¼
∂pi

gðp − kÞ.
As can be seen, the structure of Cji

A ðt; 0; pÞ is highly
nontrivial. Note in particular the term linear in t that is a
manifestation of the singular behavior at large distances of
the correlation function (this generates a double pole in
momentum space that is at the original the infrared
divergence). An important consequence of the strategy
proposed in Sec. IV which we have used in our calculations
is that the terms in squared brackets in Eq. (C17) disappear
at any value of p when we contract the correlation function
with the physical polarization vectors of the photon. With
our choice of kinematics, these satisfy the relation

X3
μ¼0

ϵrμðkÞpμ ¼
X3
i¼1

ϵri ð0Þpi ¼ 0: ðC18Þ

Indeed, the Hð3Þ symmetry implies that

∂f̂PðpÞ
∂pi ¼ pi ×Oða2Þ; ∂ĜPðpÞ

∂pi ¼ pi ×Oða2Þ;

∂ÊPðpÞ
∂pi ¼ pi

EPðpÞ
þOða2Þ ðC19Þ

and thus
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Cjr
A ðt; 0; pÞ ¼

X3
i¼1

ϵri ð0ÞCji
A ðt; 0; pÞ

¼ ϵrjð0Þ
f̂PðpÞĜPðpÞ
2ÊPðpÞ

e−tÊPðpÞ þ…: ðC20Þ

We conclude that Cjr
A ðt; 0; pÞ can be analyzed as expected

to extract the coefficient of the leading exponential. We
stress that the above demonstration shows that from
Cjr
A ðt; 0; pÞ we can extract precisely the decay constant

which appears in the lattice matrix element of the axial
current in Eq. (C1), without to have to make a choice for the
lattice momentum pα

L.

APPENDIX D: DETAILS OF THE SIMULATION
AND CORRELATION MATRICES FOR THE

FORM FACTORS

In this appendix, we present some numerical information
that may be useful to the reader. We start by listing in

Tables I and II the parameters used in our numerical
simulations: the values of β and the corresponding lattice
spacings, the volumes, the quark mass parameters and the
corresponding pion masses, mπ , and mπL, the numbers of
configurations, and the twisting angles introduced to inject
momenta in the correlation functions.
Given the smooth behavior that we find for the form

factors as functions of xγ in the region where we have data,
for most phenomenological purposes it is sufficient to use
form factors obtained using the Ansätze and coefficients
given in Sec. V. However, in the tables in Secs. D 1–D 4
below, we also present the values of the form factors, FA
and FV at selected values of the photon energy xγ, for the
pion, kaon, D and Ds mesons, together with the corre-
sponding uncertainties,ΔFA

andΔFV
. The results have been

extrapolated to the continuum and to physical quark
masses. We also give the correlation matrices of these
results. For the D and Ds mesons, for which we only have
data in a limited range of xγ , the results in Secs. D 3 and D 4
were obtained by averaging the results obtained using

TABLE I. There was a mistake in the values of the lattice spacing values of the simulated sea and valence quark
bare masses for each ensemble used in this work. The table is the same as in Ref. [15] except for μs and μc which are
given in Table II.

Ensemble β aðfmÞ V=a4 aμsea ¼ aμl aμσ aμδ Ncfg

A30.32 1.90 0.0885(36) 323 × 64 0.0030 0.15 0.19 150
A40.32 0.0040 100
A60.24 1.90 0.0885(36) 244 × 48 0.0060 0.15 0.19 150
A80.24 0.0080 150
B25.32 1.95 0.0815(30) 323 × 64 0.0025 0.135 0.170 150
B35.32 0.0035 150
B55.32 0.0055 150
B75.32 0.0075 80
D15.48 2.10 0.0619(18) 483 × 96 0.0015 0.12 0.1385 100
D20.48 0.0020 100
D30.48 0.0030 100

TABLE II. Central values of the pion mass mπ , of the lattice size L, and of the product mπL for the various
ensembles used in this work. We also give the values of the angles use to define the z-component of the meson and
photon momenta, p ¼ ð0; 0; 2πL ðθ0 − θsÞÞ and k ¼ ð0; 0; 2πL ðθ0 − θtÞÞ, respectively.
Ensemble β LðfmÞ mπðMeVÞ mπL aμsea ¼ aμl aμs aμc θi¼0;s;t

A30.32 1.90 2.84 273 3.9 0.0030 0.02363, 0.27903, 0, 0.2288, 0.3432,
A40.32 315 4.5 0.0040 0.02760 0.29900 0.6864, 0.8580
A60.24 1.90 2.13 383 4.1 0.0060
A80.24 441 4.7 0.0080
B25.32 1.95 2.61 256 3.4 0.0025 0.02094, 0.24725, 0, 0.2107, 0.3160,
B35.32 300 4.0 0.0035 0.0239 0.267300 0.6321, 0.7901
B55.32 373 4.9 0.0055
B75.32 436 6.1 0.0075
D15.48 2.10 2.97 228 3.4 0.0015 0.01612, 0.19037, 0, 0.2400, 0.3601,
D20.48 252 3.8 0.0020 0.01910 0.20540 0.7201, 0.9002
D30.48 309 4.7 0.0030
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Eqs. (37) and (42) and including the difference between the
two Anzätze in the estimate of the uncertainties. As might be
expected from Fig. 11 and the accompanying discussion, the

extrapolations using the two anzatze diverge significantly at
larger xγ which is reflected in the growing uncertainties in the
results in the tables in Secs. D 3 and D 4.

1. Results for FAðxγÞ and FVðxγÞ of the pion

xγ FA ΔFA

0 0.0104088 0.00262483

0.1 0.0104435 0.00260149

0.2 0.0104782 0.0025792

0.3 0.0105129 0.00255799

0.4 0.0105477 0.00253788

0.5 0.0105824 0.00251889

0.6 0.0106171 0.00250106

0.7 0.0106519 0.00248441

0.8 0.0106866 0.00246897

0.9 0.0107213 0.00245474

1 0.010756 0.00244177

FAcorrelation matrix0
BBBBBBBBBBBBBBBBBBBBBBBB@

1.000 1.000 0.999 0.998 0.997 0.995 0.992 0.989 0.986 0.982 0.977

1.000 1.000 1.000 0.999 0.998 0.997 0.995 0.992 0.989 0.985 0.981

0.999 1.000 1.000 1.000 0.999 0.998 0.996 0.994 0.992 0.989 0.985

0.998 0.999 1.000 1.000 1.000 0.999 0.998 0.996 0.994 0.992 0.988

0.997 0.998 0.999 1.000 1.000 1.000 0.999 0.998 0.996 0.994 0.991

0.995 0.997 0.998 0.999 1.000 1.000 1.000 0.999 0.998 0.996 0.994

0.992 0.995 0.996 0.998 0.999 1.000 1.000 1.000 0.999 0.998 0.996

0.989 0.992 0.994 0.996 0.998 0.999 1.000 1.000 1.000 0.999 0.998

0.986 0.989 0.992 0.994 0.996 0.998 0.999 1.000 1.000 1.000 0.999

0.982 0.985 0.989 0.992 0.994 0.996 0.998 0.999 1.000 1.000 1.000

0.977 0.981 0.985 0.988 0.991 0.994 0.996 0.998 0.999 1.000 1.000

1
CCCCCCCCCCCCCCCCCCCCCCCCA

xγ FV ΔFV

0 0.0233352 0.00214581

0.1 0.023309 0.0021304

0.2 0.0232828 0.00211523

0.3 0.0232566 0.00210031

0.4 0.0232303 0.00208563

0.5 0.0232041 0.00207121

0.6 0.0231779 0.00205705

0.7 0.0231517 0.00204315

0.8 0.0231254 0.00202952

0.9 0.0230992 0.00201617

1 0.023073 0.0020031

FV correlation matrix0
BBBBBBBBBBBBBBBBBBBBBBBB@

1.000 1.000 1.000 0.999 0.999 0.999 0.998 0.997 0.996 0.995 0.994

1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.998 0.997 0.996 0.995

1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.998 0.997 0.996

0.999 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.998 0.997

0.999 0.999 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.998

0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.998

0.998 0.998 0.999 0.999 1.000 1.000 1.000 1.000 1.000 0.999 0.999

0.997 0.998 0.998 0.999 0.999 1.000 1.000 1.000 1.000 1.000 0.999

0.996 0.997 0.998 0.998 0.999 0.999 1.000 1.000 1.000 1.000 1.000

0.995 0.996 0.997 0.998 0.998 0.999 0.999 1.000 1.000 1.000 1.000

0.994 0.995 0.996 0.997 0.998 0.998 0.999 0.999 1.000 1.000 1.000

1
CCCCCCCCCCCCCCCCCCCCCCCCA
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2. Results for FAðxγÞ and FVðxγÞ of the kaon

xγ FA ΔFA

0 0.0370382 0.00876335

0.1 0.0369171 0.00828189

0.2 0.0367961 0.00784116

0.3 0.0366751 0.00744839

0.4 0.0365541 0.00711155

0.5 0.0364331 0.00683889

0.6 0.0363121 0.00663833

0.7 0.0361911 0.00651654

0.8 0.0360701 0.00647795

0.9 0.0359491 0.00652404

1 0.035828 0.00665305

FAcorrelation matrix0
BBBBBBBBBBBBBBBBBBBBBBBB@

1.000 0.998 0.990 0.975 0.951 0.916 0.869 0.808 0.736 0.654 0.566

0.998 1.000 0.997 0.988 0.970 0.941 0.899 0.845 0.779 0.703 0.620

0.990 0.997 1.000 0.997 0.985 0.963 0.929 0.883 0.823 0.753 0.676

0.975 0.988 0.997 1.000 0.996 0.982 0.957 0.918 0.867 0.805 0.734

0.951 0.970 0.985 0.996 1.000 0.995 0.979 0.950 0.909 0.855 0.793

0.916 0.941 0.963 0.982 0.995 1.000 0.994 0.976 0.946 0.902 0.849

0.869 0.899 0.929 0.957 0.979 0.994 1.000 0.994 0.975 0.943 0.900

0.808 0.845 0.883 0.918 0.950 0.976 0.994 1.000 0.993 0.974 0.943

0.736 0.779 0.823 0.867 0.909 0.946 0.975 0.993 1.000 0.994 0.975

0.654 0.703 0.753 0.805 0.855 0.902 0.943 0.974 0.994 1.000 0.994

0.566 0.620 0.676 0.734 0.793 0.849 0.900 0.943 0.975 0.994 1.000

1
CCCCCCCCCCCCCCCCCCCCCCCCA

xγ FV ΔFV

0 0.12439 0.00960998

0.1 0.121998 0.00891388

0.2 0.119606 0.00828371

0.3 0.117214 0.0077356

0.4 0.114821 0.0072881

0.5 0.112429 0.00696062

0.6 0.110037 0.00677062

0.7 0.107645 0.00672974

0.8 0.105253 0.00684066

0.9 0.102861 0.00709626

1 0.100469 0.00748173

FV correlation matrix0
BBBBBBBBBBBBBBBBBBBBBBBB@

1.000 0.997 0.985 0.961 0.921 0.860 0.777 0.674 0.558 0.435 0.316

0.997 1.000 0.996 0.980 0.949 0.898 0.825 0.731 0.622 0.506 0.391

0.985 0.996 1.000 0.994 0.974 0.935 0.874 0.791 0.692 0.583 0.474

0.961 0.980 0.994 1.000 0.993 0.967 0.921 0.852 0.765 0.666 0.565

0.921 0.949 0.974 0.993 1.000 0.991 0.961 0.909 0.837 0.752 0.661

0.860 0.898 0.935 0.967 0.991 1.000 0.989 0.957 0.903 0.834 0.756

0.777 0.825 0.874 0.921 0.961 0.989 1.000 0.989 0.956 0.905 0.843

0.674 0.731 0.791 0.852 0.909 0.957 0.989 1.000 0.989 0.958 0.914

0.558 0.622 0.692 0.765 0.837 0.903 0.956 0.989 1.000 0.990 0.964

0.435 0.506 0.583 0.666 0.752 0.834 0.905 0.958 0.990 1.000 0.992

0.316 0.391 0.474 0.565 0.661 0.756 0.843 0.914 0.964 0.992 1.000

1
CCCCCCCCCCCCCCCCCCCCCCCCA
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3. Results for FAðxγÞ and FVðxγÞ of the D meson

xγ FA ΔFA

0 0.11029 0.00885428

0.1 0.0988347 0.00740568

0.2 0.0887281 0.00727782

0.3 0.079585 0.00791868

0.4 0.0711547 0.0092365

0.5 0.063267 0.0111973

0.6 0.0558021 0.0137148

0.7 0.0486731 0.0166835

0.8 0.0418154 0.0200096

0.9 0.0351801 0.02362

1 0.0287293 0.027459

FAcorrelation matrix0
BBBBBBBBBBBBBBBBBBBBBBBB@

1.000 0.907 0.704 0.491 0.314 0.187 0.102 0.049 0.015 −0.006 −0.020
0.907 1.000 0.931 0.776 0.598 0.439 0.314 0.223 0.156 0.108 0.072

0.704 0.931 1.000 0.948 0.827 0.688 0.564 0.465 0.387 0.327 0.281

0.491 0.776 0.948 1.000 0.961 0.875 0.781 0.697 0.627 0.570 0.524

0.314 0.598 0.827 0.961 1.000 0.974 0.921 0.863 0.810 0.764 0.726

0.187 0.439 0.688 0.875 0.974 1.000 0.985 0.954 0.920 0.888 0.859

0.102 0.314 0.564 0.781 0.921 0.985 1.000 0.991 0.974 0.953 0.934

0.049 0.223 0.465 0.697 0.863 0.954 0.991 1.000 0.995 0.985 0.972

0.015 0.156 0.387 0.627 0.810 0.920 0.974 0.995 1.000 0.997 0.991

−0.006 0.108 0.327 0.570 0.764 0.888 0.953 0.985 0.997 1.000 0.998

−0.020 0.072 0.281 0.524 0.726 0.859 0.934 0.972 0.991 0.998 1.000

1
CCCCCCCCCCCCCCCCCCCCCCCCA

xγ FV ΔFV

0 −0.150466 0.0144033

0.1 −0.135916 0.0119914

0.2 −0.123034 0.0114497

0.3 −0.111365 0.0119456

0.4 −0.100606 0.0132415

0.5 −0.0905481 0.0152892

0.6 −0.0810413 0.0180286

0.7 −0.071976 0.0213636

0.8 −0.0632697 0.0251904

0.9 −0.0548596 0.0294171

1 −0.0466964 0.0339692

FV correlation matrix0
BBBBBBBBBBBBBBBBBBBBBBBB@

1.000 0.925 0.749 0.552 0.377 0.239 0.140 0.072 0.027 −0.003 −0.023
0.925 1.000 0.941 0.807 0.647 0.494 0.364 0.263 0.187 0.130 0.087

0.749 0.941 1.000 0.956 0.851 0.721 0.596 0.488 0.401 0.331 0.276

0.552 0.807 0.956 1.000 0.966 0.885 0.789 0.696 0.615 0.547 0.492

0.377 0.647 0.851 0.966 1.000 0.975 0.918 0.852 0.788 0.732 0.684

0.239 0.494 0.721 0.885 0.975 1.000 0.983 0.946 0.904 0.862 0.824

0.140 0.364 0.596 0.789 0.918 0.983 1.000 0.989 0.966 0.939 0.913

0.072 0.263 0.488 0.696 0.852 0.946 0.989 1.000 0.993 0.979 0.962

0.027 0.187 0.401 0.615 0.788 0.904 0.966 0.993 1.000 0.996 0.987

−0.003 0.130 0.331 0.547 0.732 0.862 0.939 0.979 0.996 1.000 0.997

−0.023 0.087 0.276 0.492 0.684 0.824 0.913 0.962 0.987 0.997 1.000

1
CCCCCCCCCCCCCCCCCCCCCCCCA
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4. Results for FAðxγÞ and FVðxγÞ of the Ds meson

xγ FA ΔFA

0 0.09307 0.00598514

0.1 0.0849608 0.00486963

0.2 0.0776688 0.00422644

0.3 0.0709899 0.00389515

0.4 0.0647833 0.00400167

0.5 0.0589483 0.00469896

0.6 0.0534115 0.00595597

0.7 0.0481175 0.00763605

0.8 0.0430239 0.00962076

0.9 0.0380979 0.0118319

1 0.0333133 0.0142191

FAcorrelation matrix0
BBBBBBBBBBBBBBBBBBBBBBBB@

1.000 0.959 0.862 0.725 0.537 0.338 0.186 0.091 0.034 0.001 −0.020
0.959 1.000 0.966 0.861 0.664 0.423 0.224 0.091 0.006 −0.048 −0.084
0.862 0.966 1.000 0.957 0.802 0.569 0.357 0.206 0.105 0.037 −0.010
0.725 0.861 0.957 1.000 0.937 0.768 0.583 0.437 0.334 0.261 0.208

0.537 0.664 0.802 0.937 1.000 0.942 0.824 0.713 0.626 0.561 0.512

0.338 0.423 0.569 0.768 0.942 1.000 0.966 0.906 0.848 0.802 0.764

0.186 0.224 0.357 0.583 0.824 0.966 1.000 0.984 0.956 0.928 0.903

0.091 0.091 0.206 0.437 0.713 0.906 0.984 1.000 0.993 0.979 0.965

0.034 0.006 0.105 0.334 0.626 0.848 0.956 0.993 1.000 0.996 0.989

0.001 −0.048 0.037 0.261 0.561 0.802 0.928 0.979 0.996 1.000 0.998

−0.020 −0.084 −0.010 0.208 0.512 0.764 0.903 0.965 0.989 0.998 1.000

1
CCCCCCCCCCCCCCCCCCCCCCCCA

xγ FV ΔFV

0 −0.120018 0.0155225

0.1 −0.0989568 0.0117214

0.2 −0.0824261 0.00951697

0.3 −0.0684115 0.00783577

0.4 −0.05594 0.00806476

0.5 −0.0444834 0.0110619

0.6 −0.03373 0.0158477

0.7 −0.0234841 0.0215682

0.8 −0.0136163 0.0278383

0.9 −0.00403801 0.0344741

1 0.00531392 0.0413737

FV correlation matrix0
BBBBBBBBBBBBBBBBBBBBBBBB@

1.000 0.933 0.886 0.898 0.782 0.543 0.379 0.288 0.236 0.205 0.184

0.933 1.000 0.989 0.935 0.667 0.317 0.107 −0.004 −0.066 −0.103 −0.127
0.886 0.989 1.000 0.955 0.679 0.314 0.093 −0.024 −0.090 −0.130 −0.157
0.898 0.935 0.955 1.000 0.862 0.571 0.369 0.255 0.188 0.147 0.119

0.782 0.667 0.679 0.862 1.000 0.908 0.787 0.707 0.656 0.623 0.600

0.543 0.317 0.314 0.571 0.908 1.000 0.973 0.938 0.912 0.893 0.879

0.379 0.107 0.093 0.369 0.787 0.973 1.000 0.993 0.982 0.972 0.965

0.288 −0.004 −0.024 0.255 0.707 0.938 0.993 1.000 0.998 0.993 0.990

0.236 −0.066 −0.090 0.188 0.656 0.912 0.982 0.998 1.000 0.999 0.997

0.205 −0.103 −0.130 0.147 0.623 0.893 0.972 0.993 0.999 1.000 1.000

0.184 −0.127 −0.157 0.119 0.600 0.879 0.965 0.990 0.997 1.000 1.000

1
CCCCCCCCCCCCCCCCCCCCCCCCA

APPENDIX E: CORRELATION MATRICES OF THE COEFFICIENTS CP
A;V AND DP

A;V

(i) Pion

Cπ
A ¼ 0.0104� 0.0026

Cπ
V ¼ 0.0233� 0.0021

Dπ
A ¼ 0.00035� 0.00057

Dπ
V ¼ −0.00026� 0.00027

Cπ
A Cπ

V Dπ
A Dπ

V

Cπ
A 1.000 0.323 −0.419 −0.185

Cπ
V 0.323 1.000 −0.444 −0.570

Dπ
A −0.419 −0.444 1.000 0.523

Dπ
V −0.185 −0.570 0.523 1.000
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(ii) Kaon

CK
A ¼ 0.0370� 0.0088

CK
V ¼ 0.1244� 0.0096

DK
A ¼ −0.0012� 0.0074

DK
V ¼ −0.02� 0.01

CK
A CK

V DK
A DK

V

CK
A 1.000 0.027 −0.673 0.067

CK
V 0.027 1.000 0.032 −0.714

DK
A −0.673 0.032 1.000 −0.193

DK
V 0.067 −0.714 −0.193 1.000

(iii) D-meson (linear)

CD
A ¼ 0.1090� 0.0087

CD
V ¼ −0.148� 0.014

DD
A ¼ −0.10� 0.03

DD
V ¼ 0.123� 0.041

CD
A CD

V DD
A DD

V

CD
A 1.000 −0.234 −0.557 0.217

CD
V −0.234 1.000 0.143 −0.580

DD
A −0.557 0.143 1.000 −0.209

DD
V 0.217 −0.580 −0.209 1.000

(iv) D-meson (pole)

C̃D
A ¼ 0.1115� 0.0088

C̃D
V ¼ −0.153� 0.015

D̃D
A ¼ 1.3� 0.4

D̃D
V ¼ 1.23� 0.44

C̃D
A C̃D

V D̃D
A D̃D

V

C̃D
A 1.000 −0.259 0.346 0.199

C̃D
V −0.259 1.000 −0.105 −0.383

D̃D
A 0.346 −0.105 1.000 0.173

D̃D
V 0.199 −0.383 0.173 1.000

(v) Ds-meson (linear)

CDs
A ¼ 0.0923� 0.0058

CDs
V ¼ −0.116� 0.014

DDs
A ¼ −0.071� 0.013

DDs
V ¼ 0.160� 0.029

CDs
A CDs

V DDs
A DDs

V

CDs
A 1.000 −0.454 −0.745 0.544

CDs
V −0.454 1.000 0.474 −0.900

DDs
A −0.745 0.474 1.000 −0.721

DDs
V 0.544 −0.900 −0.721 1.000

(vi) Ds-meson (pole)

C̃Ds
A ¼ 0.094� 0.006

C̃Ds
V ¼ −0.124� 0.015

D̃Ds
A ¼ 1.07� 0.19

D̃Ds
V ¼ 2.64� 0.24

C̃Ds
A C̃Ds

V D̃Ds
A D̃Ds

V

C̃Ds
A 1.000 −0.444 0.546 0.477

C̃Ds
V −0.444 1.000 −0.335 −0.373

D̃Ds
A 0.546 −0.335 1.000 0.681

D̃Ds
V 0.477 −0.373 0.681 1.000
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