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ABSTRACT
Pliocene occurrences of Prolagus Pomel, 1853 in central Europe represent anomalies out of the 
peri-Mediterranean area, at that time the core distribution of the genus. Th ough known for several 
decades, those materials never underwent a general revision. Th e detailed analysis and comparison 
of all available materials performed here revealed two phenotypic entities: 1) Prolagus bilobus Heller, 
1936 (Gundersheim localities, Raciszyn 1), for which were defi ned additional diagnostic characters 
and ontogenetic patterns of variation (d3/p3 and mandible); and 2) Prolagus sp. (Beremend 26/39), 
probably a new species. All the available occurrences are dated to MN15b. Th e morphological trends 
towards the reduction of p3 entoconid and of enamel folding evidenced in Pliocene Prolagus of western 
Europe cannot be recognized in coeval central European forms. Evidently, P. bilobus and Prolagus sp. 
do not pertain to the western European clade, whose separation is known since the early late Miocene. 
We hypothesize that at least P. bilobus originated from a dispersal of Prolagus from south-eastern re-
gions of Europe rather than from an autochthonous speciation of isolated populations left as a relict 
after the southward displacement of Prolagus distribution area. Th e dispersal is likely to be related to 
the Pliocene global environmental changes during which extensive faunal rearrangements took place 
in Europe, in particular to those near the early/late Pliocene boundary.

KEY WORDS
Prolagidae, 

Prolagus bilobus, 
Gundersheim, 

Raciszyn 1, 
Beremend, 

palaeobiogeography.
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RÉSUMÉ
Prolagus Pomel, 1853  (Lagomorpha, Mammalia) dans le cadre des réarrangements fauniques du Pliocène 
de l’Europe centrale.
Le peu de données dont nous disposons  sur le Prolagus Pomel, 1853 du Pliocène d’Europe centrale 
représentent des anomalies dans la distribution géographique du genre, qui, à cette époque, est limité 
à la zone péri-Méditerranéenne. Bien que la présence de Prolagus dans le Pliocène d’Europe centrale 
est connue depuis plusieurs décennies, de tels matériels n’ont jamais fait l’objet d’une révision géné-
rale. Une analyse détaillée et une comparaison de tous les matériels disponibles étudiés ici ont permis 
d’identifi er deux éntités phénotypiques : 1) Prolagus bilobus Heller, 1936 à Gundersheim (plusieurs 
localités) et Raciszyn 1, pour lequel des caractères diagnostiques additionnels et des modèles onto-
génétiques de variation (d3/p3 et mandibule) ont été défi nis ; et 2) Prolagus sp. à Beremend 26/39, 
qui représente probablement une nouvelle espèce. Toutes les occurrences disponibles sont datées du 
MN15b. Les tendances morphologiques vers une réduction de l’entoconide de p3 et une diminution 
du repli de l’émail, mises en évidence dans les espèces pliocènes de Prolagus d’Europe occidentale, n’ont 
pas été reconnues dans des formes contemporaines d’Europe centrale. Prolagus bilobus et Prolagus sp. 
n’appartiennent manifestement pas au clade ouest-européen, dont la séparation est connue depuis 
le début du Miocène supérieur. Notre hypothèse est qu’au moins P. bilobus trouve son origine dans 
une dispersion des populations à partir de l’Europe sud-orientale plutôt que, comme on le croyait 
autrefois, dans une spéciation autochtone de populations isolées, laissées telles des vestiges à la suite 
du déplacement vers le sud de l’aire de distribution géographique de Prolagus. Cette dispersion est 
probablement liée aux changements environnementaux à l’échelle globale survenus au Pliocène, et 
responsables de changements environnementaux globaux pendant lesquels des réarrangements fau-
niques majeurs ont pris place en Europe, et particulièrement à la transition Pliocène inférieur/supérieur.

MOTS CLÉS
Prolagidae, 

Prolagus bilobus, 
Gundersheim, 

Raciszyn 1, 
Beremend, 

paléobiogéographie.

INTRODUCTION

Prolagus Pomel, 1853 represents a successful, long-lasting, 
species-rich lagomorph genus that during most of the Mio-
cene was widely distributed throughout Europe and formed 
a signifi cant part of the small mammal assemblages (López 
Martínez 1974, 1989, 2001). Probably, since the latest Mio-
cene, its geographical range started to dwindle. Th e Pliocene 
is a critical moment in the evolution of Prolagus. Th e changes 
in its palaeobiogeographical distribution from pan-European 
to patchy and mainly peri-Mediterranean distribution become 
evident in this period. Th e Pliocene record of Prolagus in 
the peri-Mediterranean area is quite common and well doc-
umented, in contrast to central Europe, where the genus is 
very rare and occurs sporadically in a few localities.

Isolated Pliocene populations of Prolagus in central Europe 
have been known since the early 20th century (Heller 1936). 
Th e proven occurences of the genus have been limited until 
now to Prolagus bilobus Heller, 1936 documented from Gunder-
sheim sites (MN15b) in Germany and Raciszyn 1 (MN15b) in 
Poland (Heller 1936; Fejfar & Storch 1990; Fejfar et al. 2006; 
Fostowicz-Frelik 2010; Čermák & Angelone 2013). Apart from 
punctual taxonomic disputes (cfr. Fostowicz-Frelik 2010 vs 
Čermák & Angelone 2013), these remains have never been 
the subject of a detailed, dedicated study. 

Some studies exist about the taxonomy and phylogeny of 
Pliocene Prolagus from western Europe (López Martínez & 
Th aler 1975; López Martínez 1989; Angelone 2008a), and 
as well, some enigmatic isolated remains have been reported 
from eastern Europe (Agadjanian & Erbajeva 1983; Erbajeva & 

Shushpanov 1988; Averianov & Tesakov 1998; Tesakov & 
Averianov 2002). 

We decided to focus our attention to Pliocene central Euro-
pean Prolagus, in order to summarize the available materials, 
to clarify their taxonomic status, and to try to unravel the 
reasons that led to the palaeobiogeographical distribution 
observed after the Miocene.

THE LOCALITIES: HISTORICAL BACKGROUND 
AND GEOLOGICAL SETTING

Th e Pliocene record of Prolagus in Central Europe is limited 
to the following localities; their geographical locations are 
shown in Figure 1. 

GUNDERSHEIM 
Most of the fossil faunas at Gundersheim (Alzey-Worms dis-
trict, Rheinland-Pfalz, Germany) come from three quarries, 
located SW from the homonymous village. A study of the 
fossil record from Gundersheim was fi rst performed by Hel-
ler (1936). However, although the material originated from 
several fi ssures of quarries, F. Heller published the diff erent 
faunas considering them as one assemblage, with only sporadic 
notes concerning their original provenance. Th us, the exact 
location, age, and name of each site/assemblage have since then 
remained unclear. Until the 1960s, all the samples were gener-
ally considered as pertaining to one faunal unit, and referred to 
simply as “Gundersheim”. Eventually, Kretzoi (1962) distin-
guished two faunal units in Heller’s original material: an older 
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one, correlated with the Csarnotanian (sensu Kretzoi 1962; 
c. MN15b), called Gundersheim 1 by Tobien (1980), and a 
younger one, correlated with the late Villányian (sensu Kret-
zoi 1962; c. MN17), called Gundersheim 2 by Tobien (1980).

Tobien (1980) also numbered particular Gundersheim 
fi ssures. Since the 1950s, he discovered and studied 22 fi s-
sures of which fi ve yielded identifi able faunal remains. Th e 
most interesting was fi ssure no. 4, in which were recovered 
Trilophomys schaubi, Bjoernkurtenia canterranensis, Baranomys 
longidens, Germanomys weileri, and Mimomys gracilis, which 
indicate a late Ruscinian age (MN15b). Th is site, published 
in detail by Fejfar et al. (2006), is known as Gundersheim-
fi ssure 4 (Gundersheim 3 sensu Koenigswald & Tobien 1990). 
Tobien (1980) assumed that the most of Heller’s older faunal 
unit (Gundersheim 1) most likely originated from this fi ssure. 

Th e last fauna at Gundersheim was discovered in 1976 in 
an isolated block of calcifi ed red loam found in the open fi eld 
near the Rosengartenbruch quarry. Th e locality, known as 
Gundersheim-Findling (Gundersheim 4 sensu Koenigswald & 
Tobien 1990), yielded a faunal assemblage analogous to the 
one found in Gundersheim-fi ssure 4 described by Fejfar 
et al. (2006), and indicating a late Ruscinian (MN15b) age 
as well. Rodents from this locality were described in detail 
by Fejfar & Storch (1990), insectivores by Dahlmann & 
Storch (1996), and prolagid lagomorphs partly by Čermák & 
Angelone (2013).

Apart from Prolagus, herein studied, Gundersheim locali-
ties yielded other lagomorph taxa: Gundersheim-Findling – 
Pliopentalagus dietrichi (Fejfar, 1961) published in detail by 

Čermák & Wagner (2013) and Hypolagus petenyii Čermák & 
Fladerer in Čermák, 2009 (p3 dex [morphotype I/a/A], 2 lower 
molariforms); Gundersheim-fi ssure 4 – Leporidae gen. et sp. 
indet. (fragmentary lower molariform); and “Hasenfunds-
telle I” (after label by Heller) – Hypolagus published by Hel-
ler (1936: 137-139; fi gs 1-2, pl. XI: 13-14) as H. brachygnathus 
and reassigned here as H. cf. brachygnathus (Kormos, 1930) 
(2 mandibles – sin with p3-p4 [morphotype II/c/D] and dex 
with p3 [(I/II)/c/C]).

RACISZYN 1 
Th e locality Raciszyn 1 corresponds to a small abandoned 
quarry located c. 500 m W from the village of Raciszyn (district 
Gmina Działoszyn, province Łódź, central Poland). Th e fossil 
material comes from the terra rossa fi lling of a collapsed cave 
formed in Oxfordian limestones. Preliminary information about 
the locality and its fauna was provided by Kowalski (1990), 
Nadachowski (1990), Sulimski & Szynkiewicz (1994), Szyn-
kiewicz & Jagiełło (2015), and Nadachowski et al. (2015). 
Th e locality yielded a fossil assemblage consisting of about 40 
mammalian taxa (Sulimski in Szynkiewicz & Jagiełło 2015). 
Th e assemblage includes biostratigraphically valuable taxa such 
as a small Mimomys of the gracilis-stehlini lineage (with prev-
alence of primitive forms), Mimomys hassiacus, Baranomys or 
Trilophomys  (Nadachowski 1990; Szynkiewicz & Jagiełło 2015; 
Nadachowski et al. 2015), indicating a late Ruscinian (MN15b) 
age (Kowalski 1990; Nadachowski et al. 2015). Th e remains 
of Prolagus addressed in this paper were fi rst studied by Fos-
towicz-Frelik (2010) and described as a new species, Prolagus 

1

2

3

4

5

200 km

N

FIG. 1 . — Geographical localization of Pliocene Prolagus-bearing localities in central Europe: 1, Gundersheim 1 (sensu Tobien 1980; age uncertain, most likely 
MN15b), Gundersheim-Findling (MN15b), Gundersheim-fi ssure 4 (MN15b); 2, Raciszyn 1 (MN15b); 3, Beremend 26 and 39 (MN15b); 4, Wölfersheim (MN15b); 
5, Kisláng (Prolagus age uncertain, most likely MN15b). Black circles, available and studied material; white circles, unavailable material mentioned in literature 
(not fi gured, nor described).



600 COMPTES RENDUS PALEVOL • 2021 • 20 (28) 

Čermák S. et al.

osmolskae Fostowicz-Frelik, 2010. Eventually, Čermák & 
Angelone (2013) revised and synonymized the species with 
Prolagus bilobus. Th e only other lagomorph species found in 
Raciszyn 1 is Hypolagus petenyii (Nadachowski et al. 2015).

BEREMEND

Th e limestone quarry at Beremend is situated in the western-
most part of the Villány Hills (Baranya region, Hungary), an 
area palaeontologically investigated since the half of the 19th 
century. Th e fi rst fossiliferous fi ssures in the quarry were dis-
covered by S. J. Petényi in 1847 (Petényi 1864; Kordos 1991). 
During the 20th century, the quarry yielded several dozens of 
vertebrate-bearing sites, whose age span from the early Plio-
cene to the early Pleistocene (see Kretzoi 1956, 1959, 1962; 
Jánossy 1986; Kordos 1991; Pongrácz 1999; Császár & Kor-
dos 2004 for details). Th e material, comprising remains of the 
genus Prolagus studied herein, was collected by L. Pongrácz 
from fi ssure fi llings Beremend 26 and 39. Th e site no. 26 
yielded a very extensive and diverse fossil assemblage of mam-
mals including the biostratigraphical markers Mimomys gracilis, 
Dolomys nehringi, and Propliomys hungaricus  (cf. Császár & 
Kordos 2004; Čermák 2007; Čermák unpubl. data). Such taxa 
indicate a late Ruscinian (MN15b) age for Beremend 26, i.e., 
slightly younger than Csarnóta 2 (L. Kordos pers. comm.). 
Apart from Prolagus, the locality yielded also other lagomorphs, 
namely Ochotonoma csarnotana Kretzoi, 1959 (partly studied 
by SČ; see Čermák 2007) and Hypolagus petenyii. 

In comparison with Beremend 26, the fossil record from 
Beremend 39 is much scantier and less diverse, consisting of 
“only” about 15 mammalian taxa (Pongrácz in litt.; Čermák & 
Wagner 2013). Nevertheless, the presence of Beremendia fi s-
sidens, Eliomys intermedius, M. cf. gracilis, Propliomys hunga-
ricus, H. petenyii, and Trischizolagus dumitrescuae, together 
with the evolutionary degree of the arvicolids, indicate also 
a late Ruscinian (MN15b) age, analogous to Beremend 26 
(Čermák & Wagner 2013).

OTHER LOCALITIES

In addition to the above mentioned localities, there are other 
two relevant sites from which the presence of Prolagus was 
reported. Unfortunately, however, we were not successful to 
track down the lagomorph material from those localities. Th e 
taxonomic position of those samples remained thus unclear.

– Wölfersheim (Wetterau district, Germany; MN15b) – the 
occurrence of P. bilobus in this locality was reported in a fau-
nal list by Tobien (1977). Dahlmann (2001) studied in detail 
small mammals from this locality, but not lagomorphs, which 
were reported only in a faunal list (ibid.: 95) with reference to 
Tobien’s list (1977). Th e collection of mammals from Wölfer-
sheim is deposited in the SMF, but lagomorphs are missing. 

– Kisláng (Polgárdi district, Hungary; MN15 or MN17 
according to Mayhew 2012) – Kretzoi (1954) reports from 
this locality a sole left p3 of Prolagus. Based on the presence 
of the crochet (“Der Sporn am Mittelgraben der Kaufl ache”), 
Kretzoi (1954: 247) hypothesized a taxonomic proximity of 
the Kisláng specimen to Prolagus from Gundersheim, and 
referred to it as P. cf. bilobus. Th e material of Kisláng collected 

and described by Kretzoi (1954) is currently curated in the 
collection of the MFGI, but the last surveys (SČ in 2005) 
were not successful to track down the specimen. At any rate, 
the Kisláng mammalian assemblage is a mixture of material 
of diff erent geological ages with a minimum estimated range 
between c. 1.7-3.5 Ma (Mayhew 2012). Th us, the age of the 
p3 reported by Kretzoi (1954) is unclear. Nevertheless, con-
sidering the presence of Mimomys cf. hassiacus in the locality 
(Mayhew 2012), the late Ruscinian (MN15b) age cannot be 
excluded (see for details Čermák & Angelone 2013).

MATERIAL AND METHODS

All the material from the Gundersheim localities is stored in 
the collections of the SMF and the material from Raciszyn 1 
is curated in the collections of the ZPAL. Th e material from 
Beremend 26 and 39 comes from the private collection of 
L. Pongrácz (Győr, Hungary) and is temporarily housed in the 
collection of the GLI. Following Čermák & Angelone (2013), 
we used Gundersheim 1 and Gundersheim 2 for Heller’s original 
localities/assemblages (sensu Tobien 1980), and Gundersheim-
fi ssure 4 and Gundersheim-Findling for localities published 
by Fejfar et al. (2006) and Fejfar & Storch (1990).

For teeth nomenclature and metrics we follow López 
Martínez (1989) and Angelone & Sesé (2009), for jaws we 
follow Wible (2007) and Čermák (2009). Drawings and mea-
sures were taken with the aid of a Dino-Lite digital microscope 
and of a binocular microscope with ocular micrometer. Dental 
measurements were taken as maximum antero-posterior or 
bucco-lingual dimensions of the respective two-dimensional 
dental structures orthogonal to prismatic shaft. For consis-
tency, only adult specimens (recognized by their prismatic 
tooth shape) were used for interspecifi c size comparisons. All 
measured data are given in millimeters [mm]. 

Th e biostratigraphic terminology used in this paper follows 
Fejfar & Heinrich (1983) and Fejfar et al. (1998). Th e term 
“Central Europe” is understood here as a geographic region in 
the center of Europe including Germany, Switzerland, Liech-
tenstein, Austria, Poland, the Czech Republic, Slovakia, and 
Hungary. Country abbreviations follow ISO 3166-1 alpha-2 
codes. Following the recommendations of the International 
Commission of Stratigraphy, the fi rst letter of informal sub-
epochs is not capitalized.

Interspecifi c comparisons were made with the early Miocene 
to Pleistocene European species of Prolagus using original or 
additional materials (indicated by “*”), or on a bibliographical 
basis (unless otherwise stated, data were taken from the original 
descriptions of species): *P. oeningensis (König, 1825); *P. sar-
dus (Wagner, 1829); P. vasconiensis Viret in Roman & Viret, 
1930; *P. savagei Berzi, 1967; *P. crusafonti López Martínez in 
López Martínez & Th aler, 1975; P. depereti López Martínez in 
López Martínez & Th aler, 1975; *P. fi garo López Martínez in 
López Martínez & Th aler, 1975; *P. ibericus López Martínez in 
López Martínez & Th aler, 1975; *P. michauxi López Martínez 
in López Martínez & Th aler, 1975; *P. tobieni López in López 
Martínez et al., 1977; *P. sorbinii Masini, 1989; P. fortis López 
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Martínez & Sesé in Álvarez-Sierra et al., 1990; P. caucasicus 
Averianov & Tesakov, 1998; *P. italicus Angelone, 2008a; 
*P. latiuncinatus Angelone & Čermák, 2015; and *P. pannoni-
cus Angelone & Čermák, 2015. Other metric data were taken 
from Álvarez-Sierra et al. (1990), Tesakov & Averianov (2002), 
and Angelone & Veitschegger (2015).

ABBREVIATIONS 
Institutions
GLI  Institute of Geology of the Czech Academy of Sci-

ences, Prague;
MFGI  Magyar Földtani és Geofi zikai Intézet [Hungarian 

Institute of Geology and Geophysics], Budapest; 
SMF Senckenberg Museum, Frankfurt;
ZPAL  Institute of Palaeobiology, Polish Academy of Sci-

ences, Warszawa.

Teeth
D/d Upper/lower deciduous teeth; 
I/i Upper and lower incisors; 
M/m Upper/lower molar; 
P/p Upper/lower premolar.

Measurements
AA Partial width; 
L Length; 
Ltrig Trigonid length; 
PH Hypofl exus width; 
TH Distal hyperloph length; 
W Width; 
Wtl Th ird lobe width of m2; 
Wtal Talonid width; 
Wtrig Trigonid width.

Other abbreviations 
Dp-d (L of d3)-(L of p3) [mm]; 
Kd/p ((L of d3)/(L of p3))*100 [%]; 
MdL ((L of alveolar row)/(L of diastema))*100 [%]; 
MH  (((H of mandible at p3+ H of mandible at m2)/2)/ 

L of alveolar row)*100 [%]; 
N Number of specimens; 
OR Observed range; 
X̄ Arithmetic mean. 

SYSTEMATIC PALAEONTOLOGY

Class MAMMALIA Linnaeus, 1758
Order LAGOMORPHA Brandt, 1855

Family PROLAGIDAE Gureev, 1960
Genus Prolagus Pomel, 1853

Prolagus bilobus Heller, 1936
(Figs 2-4)

NAME-BEARING TYPE AND TYPE LOCALITY. — Lectotype – left p3 (SMF 
1996/136), illustrated in Heller (1936: fi g. 3), designed by López 

Martínez & Th aler (1975), revised by Čermák & Angelone (2013). 
Gundersheim (probably Gundersheim 1 sensu Tobien 1980; age 
uncertain, most likely MN15b), Rheinland-Pfalz, Germany (see 
Čermák & Angelone 2013 for details).

EMENDED DIAGNOSIS. — See Čermák & Angelone (2013: 49).

MATERIAL. — Gundersheim (probably Gundersheim 1, original 
material of F. Heller, partly published in Heller [1936]): 1 p3 sin, 
SMF 1996/136; 1 fragment of mandibular body dex with p4-m2, 
SMF 1994/895; 1 talonid of p4 dex, SMF 1994/896; 1 talonid of 
p4 or m1 dex, SMF 1994/897; 1 trigonid of p4 or m1 dex, SMF 
1996/137; 1 mandibular body dex with p4-m2, SMF 1996/156; 
1 mandibular ramus dex with articular head, SMF 1996/157; 1 
mandibular ramus dex with p4-m1, SMF 1996/158. Gundersheim-
fi ssure 4 (material published by Fejfar et al. 2006): 2 P2 sin, SMF 
2005/1, 2; 1 P3 sin, SMF 2005/3; 1 d3 dex, SMF 2005/4; 1 p3 sin, 
SMF 2005/5; 1 fragment of mandibular body dex, SMF 2005/6. 
Gundersheim-Findling: 11 I1 sin, SMF 1985/171–181; 6 I1 dex, 
SMF 1985/182-187; 2 P2 sin, SMF 1985/70, 71; 5 P2 dex, SMF 
1985/72-76; 5 P3 sin, SMF 1985/77, 80, 82, 84, 85; 7 P3 dex, 
SMF 1985/78, 79, 81, 83, 86–88; 8 P4 sin, SMF 1985/89-96; 12 
P4 dex, SMF 1985/97-108; 1 fragment of P4 sin, SMF 1985/242; 
4 fragments of P4 dex, SMF 1985/240, 241, 243, 244; 9 M1 sin, 
SMF 1985/109-112, 115, 124, 126, 247, 248; 17 M1 dex, SMF 
1985/113, 114; 116-123, 125, 141, 142, 245, 246, 249, 255; 4 M2 
sin, SMF 1985/129, 133, 135, 140; 12 M2 dex, SMF 1985/127, 
128, 130-132, 134, 136-139, 178, 179; 3 enamel fragments of up-
per molariforms, SMF 1985/252-254; 6 fragments of mandibular 
bodies dex with various teeth, SMF 1985/165-170; 1 i1 sin, SMF 
1985/188; 6 p3 sin, SMF 1985/144-146, 160, 161, 163; 11 p3 dex, 
SMF 1985/143, 147-153, 159, 162, 164; 5 fragments of p3, SMF 
1985/154-158; 9 p4/m1 sin, SMF 1985/189-196, 234; 6 p4/m1 dex, 
SMF 1985/215-220; 6 trigonids of p4/m1 sin, SMF 1985/204-206, 
209, 223, 235; 4 trigonids of p4/m1 dex, SMF 1985/221, 225, 236, 
237; 3 talonids of p4/m1 sin, SMF 1985/207, 208, 238; 2 talonids 
of p4/m1 dex, SMF 1985/222, 224; 1 m2 sin, SMF 1985/210; 
1 m2 dex, SMF 1985/226; 1 trigonid of m2 sin, SMF 1985/211; 
1 trigonid of m2 dex, SMF 1985/228; 3 talonids of m2 sin, SMF 
1985/212-214; 4 talonids of m2 dex, SMF 1985/227, 229, 230, 
239; 2 ?m2 sin, SMF 1985/232, 233; 2 D3/4 sin, SMF 1985/268, 
269; 2 d3 sin, SMF 1985/256, 257; 5 d3 dex, SMF 1985/258-262; 
4 d4 sin, SMF 1985/263-266; 1 d4 dex, SMF 1985/267. Raciszyn 
1: 1 mandible body dex with complete dentition, ZPAL M.10.

MEASUREMENTS. — See Tables 1 and 2, Fejfar et al. (2006), and 
Čermák & Angelone (2013).

STRATIGRAPHIC AND GEOGRAPHIC DISTRIBUTION. — Early Pliocene 
(late Ruscinian, MN15b) of central Europe: localities Gundersheim 
(probably Gundersheim 1 sensu Tobien 1980; original material of 
F. Heller), Gundersheim-fi ssure 4, Gundersheim-Findling, possibly 
Wölfersheim (all in Germany) and Raciszyn 1 (Poland).

DESCRIPTION

d3 (Fig. 2A, B)
Th ree-lobed tooth; the anteroconid is always isolated (N = 7), 
shaped as an elongated triangle; it may bear an anterior and/or 
posterior undulation in the lingual side; in one case there is a 
connection of the anteroconid and the accessory cusp, marked 
by a deep anterofl exid. A small, roundish cusp is present in 
the antero-lingual side, between anteroconid and protofl exid, 
in 86% of cases (N = 7). Th e trigonid is indented by an 
average-sized to deep centrofl exid; the protoconulid is quite 
reduced, as well as the metaconid. A centroisthmus between 
trigonid and talonid is present in 40% of cases (N = 5). In 
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the talonid, the entoconid is much smaller than the globous 
hypoconid, which appears to be the largest cusp, sometimes 
even larger than the anteroconid.

d4 (Fig. 2C, D)
Trigonid and talonid are always well separated. Th e trigonid 
is of equal size or slightly smaller than the talonid; it bears a 
quite developed, fl attened anterior lobe, separated from the 
main body of the trigonid by a simple, straight parafl exid 
(no centrofl exid). Th e triangular talonid lacks or has a very 
reduced anterior isthmus.

p3 (Fig. 2E [in part], F-N)
Th e occlusal features of adult teeth (identifi ed mainly by their 
prismatic shaft) are the following: large size; the anteroconid 
is as large as metaconid (92%, N = 12) – in one case, it is 
slightly smaller; the anteroconid is roughly shaped as a right-
angled triangle and appears “tilted” (i.e., with the 90° angle 
pointing posteriorly); the main body of the anteroconid is 
always displaced towards the lingual side (N = 13), its posterior 
and labial sides with undulation or notch in 69% (N = 13); 
the metaconid is quadrangular, with enamel undulated and/
or crenulated all around; the crenulation may interest also 

the anterior side of the entoconid, which is always quite 
thick (length > 1/5 of total L; N = 11) and without enamel 
hiatus; the mesofl exid is very variable, from relatively short 
and U-shaped to quite long and J-shaped (N = 12) – in one 
case, the mesofl exid connects to the centrofl exid, isolating 
the metaconid, and in 2 cases it hosts an additional enamel 
islet in its lingual side (such islet in one case connects to the 
entoconid with wear, in the other case it remains isolated); 
the crochet is present in all adult specimens, predominantly 
with a very large size (in 50%; large in 36%, small in 14%; 
N = 14); the centrofl exid has undulated sides (71%, N = 
14), parallel in ¾ of its length, then widens in correspond-
ence of the crochet – apart for the sporadical above men-
tioned connection with the mesofl exid, the centrofl exid 
may be anteriorly “closed” by a connection of proto- and 
metaconid; the metaisthmus varies from relatively wide (2 
cases) to very thin (N = 14), when it is thin, it may have a 
bottlenecked appearance; the protoisthmus is always thin to 
very thin (N = 13) and its connection with the protoconid 
has a “bottlenecked” appearance only in 23% (N = 13); the 
hypoconid is triangular in shape and predominantly of aver-
age size (only in two cases it is quite large); the hypofl exid is 
very deep, almost reaching the posterior side of the tooth; 
the anterior part of the protoconid is quite protruding lin-
gually, and the passage to the thin posterior part is marked 
by an abrupt narrowing; the protoconid is connected to the 
protoconulid by a wide to very wide loph, at the junction 
protoconid-protoconulid there may be a spur in about half 
of the cases; the protoconulid is quite short, often very wide 
with a bulky appearance.

Th e occlusal features of juvenile teeth (identifi ed mainly by 
their conical shaft; N = 6) are the following: the anteroconid, 
always displaced towards the lingual side, is medium-sized 
(smaller than metaconid in 67%), rather fl attened oval in 
shape, distally smooth (in one case lingually with fold); the 
metaconid is mainly triangular, in one case is isolated; the 
crochet may be absent (1 case), very reduced or of average 
size, straight or inclined with respect to the antero-posterior 
axis of the tooth, and its position also varies from central to 
displaced (there is no univocal correspondence between its 
size, shape and position); the hypoconid is large compared 
to the size of the tooth, triangular or with rounded lingual 
edge; the hypofl exid is deep, as in adult individuals; the 
mesofl exid is predominantly V-shaped and short; the cen-
trofl exid shape is similar to that of adults, with undulated 
sides in 33%; the protoisthmus is thin to very thin, often 
bottlenecked (50%); the metaisthmus varies from thin to 
average wide; the protoconid has the same shape as in adults 
(developed anteriorly, reduced posteriorly), however the 
anterior part may be more or less developed towards the 
lingual side; the proportions protoconid-protoconulid are 
variable, but in general the protoconulid is usually thin, 
though not very long.

p4-m2 (Fig. 2E [in part], O)
Th e p4-m1 consist of two separate lobes of approximately 
similar width fused together by cement; posteriorly, both 

TABLE 1 . — Dental measurements of Prolagus bilobus Heller, 1936 from the early 
Pliocene (MN15b) locality Gundersheim-Findling. See Material and methods 
for abbreviations.

Lower and upper teeth
N x̄ OR CV

p3 L 10 2.47 2.20-2.77 7.96
W 9 2.30 2.11-2.57 6.34

p4/m1 L 13 1.95 1.69-2.13 7.11
Ltrig 22 1.12 0.90-1.32 9.41
Wtrig 23 2.13 1.88-2.47 8.64
Wtal 19 2.09 1.85-2.39 7.73

m2 L 3 2.65 2.45-2.81 –
Wtrig 6 2.02 1.71-2.19 9.09
Wtal 7 1.99 1.82-2.25 7.36
Wtl 7 1.38 1.26-1.54 8.46

d3 L 5 1.37 1.07-1.50 12.84
W 5 1.06 0.96-1.14 7.27

d4 L 5 1.50 1.29-1.79 12.30
Wtrig 5 1.12 1.00-1.21 7.94
Wtal 5 1.16 1.05-1.25 6.88

P2 L 5 1.69 1.60-1.82 5.52
W 5 2.64 2.50-2.87 6.97

P3 L 10 2.04 1.71-2.21 7.06
W 9 3.45 2.85-3.84 8.92
AA 9 2.36 1.70-2.76 12.77

P4 L 16 1.65 1.36-1.85 8.73
TH 17 0.98 0.80-1.17 10.79
W 11 3.23 2.79-3.80 9.98
AA 11 2.87 2.42-3.31 11.01
PH 12 1.45 1.19-1.69 11.61

M1 L 19 1.66 1.12-1.95 13.64
W 18 3.07 2.30-3.51 12.39
AA 19 2.70 1.94-3.04 11.76
PH 19 2.42 1.70-2.90 12.70

M2 L 13 1.51 1.25-1.80 11.03
W 12 2.84 2.29-3.54 13.32
AA 13 2.44 1.94-2.98 13.33
PH 13 2.21 1.80-2.69 12.99

D3/4 L 2 – 1.21, 1.29 –
W 2 – 1.75, 1.96 –
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lobes have thickened enamel. Th e trigonids are of rhomboid 
shape, longer than talonids, with an accentuated anterior 
step; the talonid shows an antero-labial fl exid, and a shal-
low notch in the labial edge; the m2 are three-lobed, the 
fi rst two similar to p4-m1, whereas the last lobe is simple, 
triangular-shaped.

Lower jaw (Fig. 4)
Eleven fragments of mandibular bodies in diff erent ontoge-
netic stages are available. In adult individuals, the mandible 
is rather robust. Th e diastema is long, but slightly shorter 
than the p3-m2 alveolar row (Table 2). Th e posterior mental 
foramen is large, oval, located close to the ventral edge of 
the mandibular body below m1 (in most cases, below the 
trigonid/talonid connection; c. 67%, N = 6), and remarkably 
maintains the same position both in juvenile and adult spec-
imens. Th e area below p3-p4 is richly fenestrated. Th e lower 
incisor extends below the p4 (in most cases below the trigo-
nid/talonid connection; c. 50%, N = 6). Th e ventral margin 

of the mandible is convex, and becomes more prominent 
and angular with increasing ontogenetic age. Th e mylohyoid 
line is moderately developed, and in ventral view it appears 
located near the buccal edge of the mandibular body. Th e 
coronoid process is weakly developed. Th e articular head is 
strongly convex in medio-lateral direction.

D3-4 (Fig. 3X, Y)
Th ree roots. Th e mesial hyperloph becomes longer with wear; 
in less worn specimens it covers the lagiloph, and then “grows” 
to cover the entire postcone. Th e mesial hyperloph has a 
notch on the posterior edge. Th e mesial hypercone is much 
less developed than the distal one, both in size and width. 
Consequently, the hypofl exus appears as a very open “V”. Both 
para- and mesofl exus are very deep, and their relative depth 
can vary: the parafl exus can be deeper than the mesofl exus 
or viceversa. Th e lagicone is small and thin; its connection 
with the very short lagiloph is bottlenecked. Th e postcone is 
rounded, with inclined axis and with a developed postlobule.

A
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FIG. 2 . — Morphology of lower teeth of Prolagus bilobus Heller, 1936 from the early Pliocene (MN15b) locality Gundersheim-Findling: A, left d3, occlusal view, 
SMF 1985/256; B, right d3, occlusal view, reversed, SMF 1985/259; C, left d4, occlusal view, SMF 1985/264; D, right d4, occlusal view, reversed, SMF 1985/267; 
E, right p3-m2, occlusal view, reversed, SMF 1985/165; F, right p3, occlusal and root views, reversed, SMF 1985/152; G, right p3, occlusal and root views, re-
versed, SMF 1985/151; H, right p3, occlusal and root views, reversed, SMF 1985/150; I, left p3, occlusal and root views, SMF 1985/145; J, right p3, occlusal 
view, reversed, SMF 1985/147; K, right p3, occlusal view, reversed, SMF 1985/159; L, right p3, occlusal view, reversed, SMF 1985/162; M, right p3, occlusal 
view, reversed, SMF 1985/164; N, left p3, occlusal and root views, SMF 1985/163; O, right p4-m2, occlusal view, reversed, SMF 1985/166. Scale bar: 1 mm.
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P2 (Fig. 3A-E) 
Quite fl attened in shape. Th e mesial hyperloph is long, 
covering 67-78% (N = 6) of the tooth width, often robust, 
and always without enamel hiatus. Th e lagicone is straight 
or very slightly inclined lingually, variable in thickness, 
and slightly longer than postcone in 83% (N = 6), in one 
case with an undulation in its postero-lingual side. Para- 
and mesofl exus are deep and curved, with the latter longer 
than the former. 

P3 (Fig. 3F-J)
Th e mesial hyperloph is of average thickness, slightly widened 
at the distal end, always without enamel hiatus (N = 10). 
Th e mesial hypercone is lingually less protruding than the 
distal one. Th e hypofl exus is V-shaped, from very shallow 
to shallow. Th e para- and mesofl exus are deep, curved, of 
equal depth or sometimes with the parafl exus as the deepest 
of the two. Th e lagicone-lagiloph complex is very thin in 
most cases, the lagicone-lagiloph connection is marked by 
a sharp change of the curvature. Th e lagiloph covers half or 
the entire postcone (in any case, never reaching the labial 
side of the tooth). Th e postcone is rounded or quadrangular, 
connected posterolabially to a postlobule of very variable size.

P4 (Fig. 3K-O)
Th e mesial hyperloph is more protruding lingually than the 
distal one, but it is much shorter (TH, i.e., its average length, 
is 40% of tooth L). Th e hypofl exus reaches about 45% of 
tooth W (50% of AA) and never merged with parafossette 
(N = 21), it is V-shaped in its lingual part, then becomes 
narrow U-shaped in 62% (N = 21); the U-shaped part also 
has a diff erent inclination with respect to the other part, i.e., 
pointing anteriorly. Th e parafossette is long to extremely long 
in its anterior part, slightly inclined towards the anterior side 
of the tooth in most cases, and its width remains constant 
all along, except for a few cases, in which the anterior end is 
slightly widened; sometimes the anterior end of the parafos-
settes covers and surpasses the mesofossette (18%; N = 22). 
Th e mesofossette is variable in size from large to very large, 
and in shape from V-shaped (predominant), to U-shaped 
and C-shaped.

M1 (Fig. 3P-T)
Th e mesial hypercone is more protruding than the distal one. 
Th e hypofl exus is very long (c. 79% of W; c. 90% of AA), 
curved posteriorly or straight. Th e fossettes are predominantly 
present; in 92% of cases (N = 26) there is one fossette, in 4% 
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FIG. 3 . — Occlusal morphology of upper teeth of Prolagus bilobus Heller, 1936 from the early Pliocene (MN15b) locality Gundersheim-Findling: A, left P2, SMF 
1985/70; B, left P2, SMF 1985/71; C, right P2, reversed, SMF 1985/72; D, right P2, reversed, SMF 1985/73; E, right P2, reversed, SMF 1985/74; F, right P3, re-
versed, SMF 1985/86; G, left P3, SMF 1985/77; H, right P3, reversed, SMF 1985/78; I, right P3, reversed, SMF 1985/79; J, left P3, SMF 1985/82; K, left P4, SMF 
1985/89; L, left P4, SMF 1985/91; M, left P4, SMF 1985/92; N, right P4, reversed, SMF 1985/99; O, right P4, reversed, SMF 1985/101; P, left M1, SMF 1985/109; 
Q, left M1, SMF 1985/110; R, left M1, SMF 1985/112; S, left M1, SMF 1985/111; T, right M1, reversed, SMF 1985/113; U, right M2, reversed, SMF 1985/127; 
V, right M2, reversed, SMF 1985/128; W, left M2, SMF 1985/129; X, left D3/4, SMF 1985/268; Y, left D3/4, SMF 1985/269. Scale bar: 1 mm.
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of cases two fossettes, and in the remaining cases (4%) fos-
settes are absent. Th e fossettes are positioned just under the 
distal end of the hypofl exus; they vary in shape from round 
to slightly oval (42%; N = 24) to elongated (58%).

M2 (Fig. 3U-W)
Th e precone is well-developed, the postlobule reduced. Th e 
mesial hypercone is slightly more protruding than the distal 
one. As with M1, the hypofl exus is very long (c. 78% of W; 
c. 91% of AA) and curved posteriorly or straight. Th e fossettes 
are predominantly absent (93%; N = 15); when present, they 
are round and rather small. 

TAXONOMIC COMPARISON AND REMARKS

Prolagus bilobus has recently been partly revised by Čermák & 
Angelone (2013). Th e species is clearly diff erentiated by its 
very large p3 (Fig. 5) with lingually shifted, large, triangular, 
posteriorly, and buccally indented anteroconid; undulated 
sides of centrofl exid; long crochet; metaconid of similar size as 
anteroconid; thick entoconid lacking enamel hiatus. Th e p3 of 
P. bilobus has a very homogeneous and stable morphology, as 
far as the anteroconid, crochet and entoconid are considered: 
all the adult individuals have a lingually displaced anteroconid 
with a unique “tilted” appearance, a voluminous crochet, and 
a thick, crenulated entoconid. Th ese features seem unaff ected 
by the intraspecifi c variability range. Th e p3 diff ers from that 
in: 1) P. pannonicus, P. sorbinii, P. latiuncinatus, P. caucasicus, 
P. michauxi, P. ibericus, and P. savagei in having a signifi cantly 
larger size (Fig. 5); 2) P. pannonicus and P. caucasicus in having 
a larger and wider p3 anteroconid; 3) P. sorbinii, P. ibericus, 
P. depereti, P. savagei, and P. italicus in having a larger crochet; 
4) P. caucasicus in having a quadrangular metaconid; and 

5) P. michauxi and P. sorbinii in having a triangular indented 
anteroconid, vertically aligned with the entoconid.

Th e availability of additional materials allowed us to highlight 
some peculiarities of the species also in other tooth positions:

– d3 with its isolated labial cusp and predominance of 
separated talonid also in advanced stages of wear. Th is fea-
ture, which recalls P. crusafonti (see Angelone 2007: table 2, 
p. 413), can be considered as quite primitive. In fact, latest 
Miocene and Pliocene species (as far as we know, taking into 
account the scarce availability of fossil lagomorphs deciduous 
teeth and of detailed studies on the subject) are characterized 
by a connected talonid. 

– d4 with a very deep parafl exid but not a centrofl exid, as 
in late Miocene congeneric populations of western Europe.

– P2 with generally fl attened appearance and very long 
mesial hyperloph. A fl attened P2 is a common and stable 
feature of P. bilobus, but it is instead quite variable in other 
Pliocene species. Th e mesial hyperloph is remarkably longer 
compared to the Pliocene species P. pannonicus, P. latiunci-
natus, and P. ibericus.

– P3 with centrocone not reaching the labial edge and 
P4 with long, upturned parafossette. Both characters are in 
common with the sorbinii group, providing a hint about the 
possible phylogenetic affi  nity of P. bilobus.

– P4 with mesial hyperloph remarkably thin.
Th e very thin dentine bridge between parafossette and 

hypofl exus in P4 of P. bilobus can be well observed in P. pan-
nonicus and P. latiuncinatus; in Prolagus sp. from Beremend 
39 these structures may even be confl uent.

Tesakov & Averianov (2002) attributed to P. bilobus scanty 
materials of isolated p3s from Tanatary (MD, MN15; 1 
p3, formerly attributed to P. cf. oeningensis by Erbajeva & 
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FIG. 4 . — Mandibles of Prolagus bilobus Heller, 1936: A, juvenile right mandible with i1, p3-m2 (SMF 1985/165) from Gundersheim-Findling; B, fragment of right 
mandible with p4-m2 (SMF 1985/166) from Gundersheim-Findling; C, fragment of right mandible with p4-m2 (SMF 1994/895, paralectotype of P. bilobus) from 
Gundersheim (probably Gundersheim 1 sensu Tobien 1980); D, right mandible with p4-m2 (SMF 1996/156-157) from Gundersheim (unpublished material by 
F. Heller probably from Gundersheim 1 sensu Tobien 1980); E, right mandible with i1, p3-m2 (ZPAL M.10.) from Raciszyn 1. Scale bar: 10 mm.
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Shushpanov (1988) and Erbajeva (1988)), Tatareshty (MD, 
MN15; 1 p3), Kotlovina (UA, probably MN15 or MN16 
according to Nesin & Nadachowski (2001); 1 p3, formerly 
attributed to P. cf. oeningensis by Agadjanian & Erbajeva (1983)), 
and Kamenskoe (UA, age unclear, probably MN15; 1 p3, 
formerly attributed to Prolagus sp. by Topachevsky (1962)). 
Th ese p3 are characterized by: 1) a small, not tilted anteroconid 
shifted towards the lingual side of the tooth; 2) a reduced, 
diamond-shaped metaconid with unfolded enamel, and 3) 
a reduced entoconid. Th us, they are quite diff erent from 
P. bilobus. In the specimens from Tatareshty and Kotlovina, the 
crochet is absent or quite reduced, contrarily to adult specimes 
of P. bilobus. Th e measurements, available only for Tatareshty 
(L × W = 1.95 × 1.93; Tesakov & Averianov 2002) and Tanatary 
(L × W = 1.80 × 1.70; Erbajeva & Shushpanov 1988), indicate 
that the Moldavian specimens are sensibly smaller in size than 
P. bilobus. Th e overall morphology of the p3 of Ukrainian and 
Moldavian materials described above reminds the appearance 
of some populations of P. sorbinii (see Angelone 2007), a 
species distributed in Greece and Italy in the late Miocene 
and earliest Pliocene (Angelone & Rook 2012). Th us, those 
remains are tentatively attributed here to P. aff . sorbinii.

For the sake of completeness, it is worth to mention that 
Tesakov & Averianov (2002) tentatively referred to P. bilobus 
the population from Polgárdi (HU, MN13), a hypothesis 
refuted by Angelone & Čermák (2015) who assigned the 
sample to the new species P. latiuncinatus. 

To conclude, at present we include only the localities of 
Gunderhseim and Raciszyn 1 in the proven P. bilobus distri-
bution, as the remains from Wölfersheim and Kisláng are at 
present not available (see above for details).

Prolagus sp.
(Figs 6; 7)

MATERIAL. — Beremend 26: 1 incomplete lower jaw sin with p3-
m2, IG Lag/Be26/01. Beremend 39: 2 incomplete upper jaws sin 
with P3-M2 and P4-M2, IG Lag/Be39/02, IG Lag/Be39/03; 1 m1 
dex, IG Lag/Be39/04.

MEASUREMENTS. — See Table 3.

STRATIGRAPHIC AND GEOGRAPHIC DISTRIBUTION. — Early Pliocene 
(late Ruscinian, MN15b); Beremend 26 and 39.

DESCRIPTION

p3 (Fig. 6E [in part])
Medium-size. Th e anteroconid is large, triangular in shape, 
not tilted (i.e., with posterior side perpendicular to the 
antero-posterior axis of the tooth), not perfectly central, 
but slightly displaced towards the lingual side of the tooth. 
Th ere are no indentations, undulations, nor convexities on 
the labial and posterior side of the anteroconid. Th e meta-
conid is as large as the anteroconid, hatchet-shaped, with 
undulated labial and posterior sides. Th e metaisthmus is 
narrow, bottleneck-shaped. Th e entoconid is quite thick 
(length > 1/5 L), without enamel hiatus. Th e protoisthmus 

Prolagus bilobus

Prolagus sp.

Prolagus italicus (Montagnola Senese - IT, MN17)
(Arondelli - IT, MN16a)

(Perpignan - FR, MN15)
(Layna - ES, MN15)
(Sète - FR, MN15a)

(Kosyakino - RU, MN14)

(Monte Castellaro - IT, MN13)
(Polgárdi - HU, MN13)

(Sümeg - HU, MN10/11)

Prolagus savagei
Prolagus depereti
Prolagus ibericus
Prolagus michauxi
Prolagus caucasicus
Prolagus sorbinii
Prolagus latiuncinatus
Prolagus pannonicus

Gundersheim (probably 1) - DE (?MN15b), Lt
Gundersheim-Findling - DE (MN15b)
Raciszyn 1 - PL (MN15b)

Beremend 26 - HU (MN15b)

Ht

Ht

Ht

Ht

Ht

Ht

Ht

Ht

Ht - holotype
Lt - lectotype

Lt

2.52.01.5

1.5

2.0

2.5 W

L

L 
[m

m
]

W [mm]

TABLE 2 . — Mandibular measurements of Prolagus bilobus Heller, 1936: 1, Gun-
dersheim-Findling, SMF 1985/165; 2, Gundersheim (probably Gundersheim 1 
sensu Tobien 1980), SMF 1996/156, unpublished material of F. Heller; 3, Rac-
iszyn 1, ZPAL M.10.

Measurements 1 2 3
Lingual height of mandible at p3 4.89 7.13 9.09
Lingual height of mandible at p4 6.50 9.01 12.98
Lingual height of mandible at m2 6.23 8.56 12.25
Length of diastema 5.75 – 11.14
Alveolar length of p3-m3 7.95 9.39 12.04
Mandible width at p4 3.31 4.48 5.82
Mandible width at m2 2.53 3.56 4.29

FIG. 5 . — Comparison of p3 size of Prolagus bilobus Heller, 1936 and Prolagus sp. from Beremend 26 with materials from type localities (type materials or addi-
tional materials) of selected late Miocene-Pleistocene Prolagus species of Europe.
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is very narrow, bottleneck-shaped. Th e crochet is extremely 
feeble, in central position, symmetrical in shape. Th e cen-
trofl exid is straight, parallel to the antero-posterior axis of 
the tooth, with undulated sides, and enlarged at its distal 
end, in correspondence of the crochet. Th e hypoconid is 
small, triangular in shape, with fl attened labial end. Th e 
protoconid is wide in its anterior part, narrowing towards 
the posterior part of the tooth in its distal part. Th e con-
nection protoconid-protoconulid is marked by a spur. Th e 
protoconulid is relatively small, of average width.

p4-m2 (Fig. 6E [in part])
In p4-m1 trigonid and talonid have similar width and both 
show a thickening of the enamel on the posterior side. Th e 
trigonids are of rhomboid shape, longer than the talonids. 
In p4 the trigonid has an anterior step. Th e talonid shows an 
antero-labial fl exid, more marked in p4, less marked in m1 
and even less in m2. Th e three-lobed m2 have trigonid and 
talonid similar to other molariform teeth, plus a triangular-
shaped posterior lobe.

Lower jaw (Fig. 6A-D)
Th e outline is slender in both lateral and ventral views; the 
diastema is long, and its length is almost equal to the alveolar 
one. Th e posterior mental foramen is large, oval, located close 
the ventral edge of mandibular body in the area below m1/
m2. Several accessory foramina are present below p3-p4. Th e 

lower incisor extends below the trigonid of p4. Th e ventral 
margin of the mandible is convex. Th e mylohyoid line is long, 
well-developed, and in ventral view appears located near the 
lingual edge of the mandibular body. Th e coronoid process is 
moderately developed. Th e articular head is strongly convex 
in medio-lateral direction.

P3 (Fig. 7E [in part])
Th e mesial hyperloph is thin, of constant width, without enamel 
hiatus, and covers part of the postcone. Th e mesial hypercone 
is less protruding than the distal one. Th e distal hyperloph, 
however, is very reduced in length. Th e V-shaped hypofl exus 
is short. Para- and mesofl exus have the same depth, and reach 
posteriorly almost the edge of the tooth. Th e lagicone is of 
average size and rounded, the lagiloph has no indentations 
or steps, and the centrocone does not reach the labial end. 

P4 (Fig. 7D [in part], E [in part])
Th e mesial hyperloph is slightly longer than the distal one; 
the length of mesial- and distal hyperloph is similar. Th e 
hypofl exus is V-shaped in its lingual part, then takes a very 
narrow U-shape; in one individual the hypofl exus is con-
nected to the parafossette, in the other, only a very thin 
enamel bridge separates the hypofl exus and the parafossette. 
Th e parafossette is very long, thin, and its anterior part may 
be upturned anteriorly; the mesofossette is C- or V-shaped, 
with the anterior tip slightly longer than the posterior one. 

A

BC D

E

FIG. 6 . — Mandible of Prolagus sp. from the early Pliocene (MN15b) locality Beremend 26: A-E, left mandible (IG Lag/Be26/01) with p3-m2 in (A) ventral, (C) lingual, 
and (D) buccal views; B, rostral view of the mandibular ramus; E, occlusal morphology of p3-m2. Scale bars: A-D,  10 mm; E,  1 mm.
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M1 (Fig. 7D [in part], E [in part])
Th e mesial hyperloph is rather thin, longer than the distal 
one. Th e hypofl exus is rather long (c. 78% of W, c. 88% 
of AA; N = 2), posteriorly curved; in 1 of 2 individuals, a 
round, small fossette is present posteriorly to the labial tip 
of the hypofl exus.

M2 (Fig. 7D [in part], E [in part])
Th e general features are the same as M1, with a relatively 
longer hypofl exus (c. 82% of W, c. 92% of AA; N = 1) and 
no fossette.

Upper jaw (Fig. 7A-C)
Th e hard palate is of average width. Th e posterior edge of the 
incisive foramen reaches the posterior edge of P2. Th e ante-
rior edge of the choanae reaches the half of P4. Th e premolar 
foramen is large, oval, positioned medially to P4. Next to 
the maxillopalatine suture, there is a large palatine foramen, 
posteriorly accompanied by several smaller foramina. Th e 
masseteric spine is short and triangular in shape. Th e infraor-
bital foramen is oval, prolonged only slightly in dorsoventral 
direction. Th e infraorbital canal is short; in relation to the 
wall of P2 alveolus, placed rather dorsally.

TAXONOMIC COMPARISON AND REMARKS

Th e sole Prolagus specimen from Beremend 26, represented by 
an almost complete mandible, is extremely peculiar. Evident 

diff erences can be observed with respect to some late Miocene 
congeneric species (P. sorbinii / P. latiuncinatus), namely 
in its very large triangular anteroconid of p3. Prolagus sp. 
from Beremend diff ers from the Pliocene-Holocene species 
P. caucasicus, P. michauxi, P. ibericus, P. depereti, P. fi garo, 
P. bilobus, P. savagei, P. italicus, and P. sardus, as its anteroconid 
is not displaced towards the lingual side. Moreover, the 
p3 of Prolagus sp. from Beremend 26 diff ers from that in: 
1) P. pannonicus, P. latiuncinatus, P. caucasicus, and P. ibericus 
in having a larger size; (Fig. 5); 2) P. depereti, P. savagei, and 
P. bilobus in having a smaller size (Fig. 5); 3) P. pannonicus and 
P. caucasicus in having a larger and wider p3 anteroconid; and 
4) P. pannonicus, P. latiuncinatus, and P. bilobus in having a 
signifi cantly less developed crochet. 

Surprisingly, Prolagus sp. from Beremend 26 is morphologi-
cally and dimensionally incompatible with the coeval P. bilobus. 
Th e p3 of Prolagus bilobus has an extremely stable morphol-
ogy (see section “Taxonomic comparison and remarks” about 
of P. bilobus). Th is characteristic makes impossible to “fi t” in 
P. bilobus the lower jaw from Beremend 26, which p3 has a 
central, not tilted anteroconid, an extremely small crochet, 
and a medium-sized entoconid. Moreover, the lower jaw of 
Prolagus sp. from Beremend 26 has a diff erent outline with 
respect to P. bilobus, especially in the ventral part (which is 
regularly convex and not angular), and in the size and posi-
tion of the posterior foramen (smaller and positioned further 
posteriorly). Also the measurements of the p3 and of the lower 
jaw of Prolagus sp. from Beremend 26 are incompatible with 
an attribution to P. bilobus. In fact, though pertaining to an 
old individual, the measurements of p3 and lower jaw of Pro-
lagus sp. from Beremend 26 fall below the distribution of adult 
P. bilobus (Fig. 5; Table 3). However, the upper teeth pertaining 
to a jaw excavated from Beremend 39, another karst fi lling of 
the Beremend karst complex, which apparently is coeval to 
Beremend 26, at least judging from the accompanying fauna 
(Pongrácz in litt.; Čermák & Wagner 2013), do not show 
substantial diff erences in morphology and measures compared 
to P. bilobus (cf. Tables 1; 3). Th is taxonomic incongruence 
between materials from coeval and neighbouring fi ssure fi llings 
does not fi nd an explanation for the moment and, though in 
our opinion Prolagus from Beremend 26 represents a distinct 
species, we provisionally keep all the available material from 
Beremend in open nomenclature as Prolagus sp.

It is really tempting to suppose that the p3 and only Prolagus 
specimen from Kisláng (Kretzoi 1954) may be related to Prola-
gus sp. from Beremend 26. Indeed, the geographical proximity 
of the fossil sites, and the age range of the mixed assemblage of 
Kisláng (MN15-MQ1; Mayhew 2012) are compatible with 
this hypothesis. However, the morpho-dimensional features 
of the p3 remain from Kisláng described in literature are too 
unclear to make any taxonomic speculation. Kretzoi (1954: 247) 
provided only indications about the presence of a crochet, and 
hypothesized a taxonomic proximity of the Kisláng specimen 
to Prolagus from Gundersheim. Th is is in contrast with our 
observation about the lower series from Beremend 26 (totally 
diff erent from Gundersheim). We envisage the retrieval of the 
Prolagus materials from Kisláng, in order to solve this open issue.

TABLE 3 . — Cranial and dental measurements of Prolagus sp. from the early 
Pliocene (MN15b) localities Beremend 26 and 39. See Material and methods 
for abbreviations.

Mandible and maxillae Lower teeth Upper teeth
Total height of mandible 21.37 P3 L 1.89
Lingual height 

of mandible at p3
6.46 p3 L 2.04 W 3.30

Lingual height of 
mandible at p4

8.18 W 1.91 AA 2.45

Lingual height of 
mandible at m2

7.92 p4 L 1.76 P4 L 1.50, 
1.59

Length of diastema 8.18 Ltrig 1.05 TH 0.83, 
0.84

Coronar length of p4-m2 6.08 Wtrig 1.93 W 3.13, 
3.18

Alveolar length of p3-m2 9.16 Wtal 1.96 AA 2.68, 
2.68

Mandible width at m2 3.20 m1 L 1.79, 
1.91

PH 1.15, 
1.33

Mandible width at p4 4.34 Ltrig 1.05, 
1.15

M1 L 1.49, 
1.58

Width of articular head 3.95 Wtrig 2.01, 
2.01

W 2.99, 
3.08

Wtal 1.98, 
2.01

AA 2.65, 
2.68

m2 L 2.33 PH 2.35, 
2.36

Wtrig 1.92 M2 L 1.43, 
1.50

Alveolar length of P2-M2 9.54, 
9.68

Wtal 1.83 W 2.85

Length of P2 alveolus 1.95 Wtl 1.31 AA 2.54
Width of P2 alveolus 2.86 PH 2.16, 

2.33
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RESULTS AND DISCUSSION

NOTES ON THE ONTOGENY OF P. BILOBUS 
Mandibles 
Th e available jaws of P. bilobus cover various ontogenetic stages 
(Fig. 4) and show a noticeable size range (Table 2), typical of 
lagomorphs. Several allometric changes distinguish juvenile 
and adult individuals (see Fig. 4): 
– the diastema is relatively shorter (compared to the alveolar 

row length) in the juvenile mandible (SMF1985/165) than 
in the unbroken aged specimen (ZPAL M.10). Th e values of 
MdL are 138% vs 108%, respectively.
– the mandibular body is relatively lower (compared to 

alveolar row length) in the juvenile mandible (SMF1985/165) 
in contrast to that in the adult (SMF 1996/156) and aged 
(ZPAL M.10) ones. Th e values of MH are 70 vs 84 and 89%, 
respectively (to exclude the infl uence of ventral curvature of 
the mandibular body, the height was calculated as the mean 
value of measurements at p3 and m2).
– a relative height increase of the mandibular body is asso-

ciated with the curvature increase of its ventral margin; this 
phenomenon was also observed in the well-known and docu-
mented species Prolagus sardus (Tobien 1935: Fig. 2, p. 272). 

Th e above described ontogenetic variations observed in the 
jaws of P. bilobus are quite standard for the genus. In Prolagus, 
though, also the position of the jaw posterior foramen slightly 
varies during the ontogeny, but in P. bilobus this feature remains 
unchanged in all the available specimens. 

Teeth 
In the genus Prolagus, the morphology of juvenile permanent 
teeth is quite diff erent from the adults of the same species. 
Th is does not just depend by the fact that the cusps may be 
unworn: in fact, especially in p3, the relative size of the cusps, 
their connection, their position, and also their presence, are 
prone to noticeable variations during the ontogeny. Due to 
the progressive inclination of the wear surface (W) and the 
conical shape of the juvenile tooth shaft (L and W), also the 
size ranges of the teeth show a wide variation if juveniles are 
included in the measurements. It has even been observed, 
since the early studies about this taxon, that in some tooth 
positions the measurements cluster in two very distinct clouds, 
one for permanent juvenile teeth and one for adults (López 
Martínez 1974). 

Also in the case of P. bilobus, it is possible to notice the 
remarkable ontogenetic changes in p3. Moreover, in this 
case, thanks to the stable occlusal surface morphology which 
characterizes this species (see “Taxonomic comparison and 
remarks” of P. bilobus) and thanks to a suffi  cient number of 
specimens for both ontogenetic categories (6 conical p3 in the 
initial stage of abrasion = permanent juvenile teeth; and 14 
p3 with prismatic shafts = permanent adult teeth), we were 
able to observe in the occlusal and “radical” parts of the teeth 
the following pattern (young to old):
– the enlargement, deformation, and tilting of the antero-

conid;
– the deformation of the metaconid;

A B C

D E

FIG. 7 . — Maxillae of Prolagus sp. from the early Pliocene (MN15b) locality Beremend 39: A-D, left maxilla (IG Lag/Be39/03) with P4-M2 in (A) ventral, (B) buccal, 
and (C) rostral views; D, occlusal morphology of P4-M2; E, occlusal morphology of P3-M2 in left maxilla (IG Lag/Be39/02). Scale bars: A-C,  5 mm ; D, E, 1 mm.
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– the noticeable thickening of the protoconulid;
– the thickening of the entoconid;
– the appearance or the enlargement of the crochet.
Th e ontogenetic changes observed in P. bilobus can not 

represent a pattern perfectly applicable to other congeneric 
species. However, it would be worth to verify if the patterns 
of ontogenetic trajectories are similar in phylogenetically 
close species.

It is very interesting to notice the extreme ontogenetic dimen-
sional change between the deciduous and the permanent teeth 
of P. bilobus (Fig. 8). Indeed, López Martínez (1974) noticed 
that the relative proportion of the length of d3 and p3 varies 
through time in the species of the genus Prolagus, but this 
observation had no further development in literature. Th irteen 
selected fossil localities ranging in age from the early Miocene 
(MN2b) to the Late Pleistocene with suffi  cient materials of 
d3/p3 were selected to verify and further investigate López 
Martínez’s (1974) remark. Materials from diff erent ages, but 
also from diff erent geographical areas were selected, in order to 
exclude possible biases. It appears (Fig. 8) that in early Miocene 
to early middle Miocene species, Ld3 is larger than Lp3 (mean 
value of the Kd/p: 110-123%), as occurs in Prolagus’ ancestor 
Piezodus Viret, 1929 (see López Martínez 1974). Since the late 
middle Miocene, the size ratio is reversed, i.e., Lp3 is larger 
than Ld3. Moreover, it is remarkable that after the reversal of 
size proportions, the size of d3 not only remains small, but 
also relatively stable. Th e size of p3, on the contrary, though 
showing a general increase, is variable, consequently the size 
diff erences between d3 and p3 are also quite variable. Th e mean 
value of Kd/p ranges from 98% in P. tobieni from the MN7/8 
of Escobosa to 55% in P. bilobus from the MN15b of Gun-
dersheim-Findling, which is the species with the largest d3/p3 
size diff erence among the studied taxa (Fig. 8). Th e percentage 
of size diff erence between d3 and p3 in the analyzed taxa does 
not evidence a gradual trend depending on the geologic age, 
as hypothesized by López Martínez (1974: 142). Of particular 
interest in this sense, is to observe that two distinct species, 
P. tobieni and P. oeningensis, recorded from the same locality 
(Escobosa, Spain), show a quite diff erent Kd/p. It can not be 
excluded that, within a mosaic evolutionary pattern, which is 
commonly observed in Prolagus, the size diff erences between 
d3 and p3 may carry a signal of phylogenetic closeness of spe-
cies within distinct clades. At any rate, this parameter may be 
useful for species discrimination (cf. Álvarez-Sierra et al. 1990: 
16), and it may have a biochronological signifi cance, being 
a real turning point in the evolution of Prolagus similarly to:
– the appearance of the centrofl exid. Th e presence of a 

long centrofl exid became a stable feature of the genus after 
the P. vasconiensis/oeningensis transition, near the early/mid-
dle Miocene boundary. Th e only exception is a conservative 
clade endemic to Spain, whose last representant was P. tobieni 
(still possessing a very incipient centrofl exid), a species which 
survived until the early late Miocene (according to Hordijk & 
van der Meulen 2010).
– the appearance of the mesial hyperloph in P2 coupled 

with the sudden increase of Lp3. Th ese features make a pan-
European, “simultaneous” appearance between MN12 and 

MN13 (Angelone 2007; Angelone & Čermák 2015 with 
references). Th e only known exception is the MN15 P. ibericus, 
an extremely peculiar species whose phylogenetic history is 
quite mysterious and characterized by several “incongruent” 
features compared to coeval ones (fi rst of all the very small 
size), known only from the type locality Layna (NE Spain; 
López Martínez 1989). It must be remarked, though, that in 
spite of all its peculiarities, the Kd/p of P. ibericus is congruent 
with that of coeval species.

EVOLUTIONARY TRENDS IN PROLAGUS P3: 
CENTRAL VS WESTERN EUROPEAN PLIOCENE SPECIES

Size 
Th e dental size (p3) of European prolagids shows a general 
increase trough time, with a few countertrending episodes 
(e.g. P. oeningensis   P. crusafonti; López Martínez 1989) 
and an interesting sudden enlargement in correspondence 
of the MN13 (Angelone 2007). Until Miocene, though, the 
size range of the p3 of coeval Prolagus species is comparable 
(with punctual exception as P. major in the MN6 of Spain; 
López Martínez 1989). During the Pliocene, instead, Pro-
lagus shows a wide range of size (Fig. 5): from quite small 
(e.g. P. ibericus; Layna, MN15) to very large (e.g. P. bilobus; 
Gundersheim-Findling, Raciszyn 1, both MN15b, which is 
the largest continental species of the genus).

Enamel folding and entoconid thickness 
Morphological patterns corresponding to temporal trends were 
individuated in the p3 of western European Plio-Pleistocene 
species, namely the simplifi cation of the enamel folding pat-
tern (particularly the loss of the crochet and the smoothing 
of anteroconid and metaconid folds) and the reduction of 
the entoconid (Angelone 2008a). 

Th e detailed study of P. bilobus and Prolagus sp. from 
Beremend 26 allowed to verify if those trends are shared 
also by Pliocene Prolagus of central Europe. Th e answer is 
negative. Prolagus bilobus and Prolagus sp. from Beremend 
26 do not follow the above listed morphological trends, 
possessing a folded enamel and a thicker entoconid (this 
feature is particularly evident in the former species). In this 
sense, they are similar to P. italicus, whose peculiarities were 
explained by Angelone (2008a) as a consequence of its status 
of peninsular Italian endemic species. Hypothesizing that the 
morphological analogies between P. italicus, P. bilobus, and 
Prolagus sp. from Beremend 26 are common to continental 
isolated species, however, is quite simplistic in our view. In 
fact, the conditions of isolation (geographical extent, dura-
tion, dynamics, and climate) of these species are too diff erent 
to justify a shared common morphological trend in the teeth 
occlusal surface. Possibly, some of the similarities shared by 
P. bilobus, P. italicus, and Prolagus sp. from Beremend 26 
and, consequently, their divergence from Pliocene western 
European species, may derive from a common origin from 
an eastern European stock. In fact, P. italicus, though known 
only from the MN17 of central Italy, stemmed from the 
eastern European species P. sorbinii just after its dispersal 
into Italy, an event occurred in the Messinian (see cladistics 
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analysis in Angelone et al. 2015; palaeobiogeographical and 
taxonomic details in Angelone et al. 2019, 2020). Th ere is no 
available analysis at present to support the origin of P. bilobus 
and Prolagus sp. from Beremend 26 from eastern European 
species, though it can be a palaeobiogeographically sensible 
hypothesis. A defi nitive answer can be obtained only after 
the revision of Pliocene Prolagus species from eastern Europe 
and Anatolia.

Entoconid enamel hiatus 
As stated above, an eastern origin for P. bilobus and Prolagus sp. 
from Beremend 26 can only be hypothesized, but an encour-
aging hint in that sense (waiting for a phylogenetic analysis) 
can be the presence of an enamel hiatus in the entoconid of 
p3. Angelone (2008a) hypothesized a delayed acquisition of 
the enamel hiatus in the Italian P. sorbinii-italicus stock (in 
P. sorbinii the hiatus is absent, whereas in P. italicus only a 
partial hiatus may be present) in contrast to “the European 
lineage” i.e., western European species, which indeed repre-
sent a separate clade; see Angelone et al. 2015), and in which 
the presence of the enamel hiatus can be observed since the 
latest Miocene (MN13, Messinian). However, other studies 
(Čermák & Angelone 2013; Angelone & Čermák 2015; this 
study) documented the absence of entoconid enamel hiatus 
also in the central European taxa P. latiuncinatus (Polgárdi 2, 
MN13), P. bilobus (Gundersheim-Findling, Raciszyn 1, both 
dated to MN15b), and Prolagus sp. (Beremend 26, MN15b). 
Th is evidence reinforces the hypothesis of a south-eastern 
European phylogenetic affi  nity of P. bilobus and Prolagus sp. 
from Beremend 26.

EXPLAINING THE CENTRAL EUROPEAN 
DISTRIBUTION OF PROLAGUS DURING THE PLIOCENE

Th e Pliocene remains of Prolagus recorded at the northern 
border of its geographical range were generally considered to 

be isolated endemic populations, relicts left behind after the 
reduction of the formerly homogenous Miocene distribution 
of the genus, a phenomenon that became quite evident since 
the Pliocene (López Martínez 2001). Nevertheless, in our 
view, there may be an alternative explanation for the Prolagus 
occurrences in the Pliocene of central Europe. 

Palaeoclimatical background
Th e genus Prolagus appeared during the early Miocene 
(MN2b), i.e., towards the end of a period of stable climatic 
conditions (late Oligocene-early Miocene, MP28-MN3, c. 
27-17 Ma; Maridet et al. 2007). In this period, Europe was 
characterized by a homogeneous mammal fauna with high 
interregional taxonomic affi  nities (sensu Raup & Crick 1979). 
Th e situation became increasingly heterogeneous since the 
end of the early Miocene (MN4, c. 17-16.5 Ma). At a larger 
scale, we assist at a general global cooling trend started about 
14 Ma (Zachos et al. 2001). In Europe, an abrupt end of the 
warm period has been recorded at 14-13.5 Ma (Böhme 2003), 
and since the middle Miocene, several cooling and warming 
pulses, as well as several fl uctuations in the precipitation rate 
occurred (Böhme et al. 2008 with references). In particular, 
the transition to a drier climate and a concomitant cooling 
episode (c. 9.7-9.5 Ma) determined the biotic crisis known 
as the Vallesian crisis (but see Casanovas-Vilar et al. 2014). 
Th e climatic trend induced a strong latitudinal diff erentia-
tion in the European climates. In the precipitation regime, a 
quite evident latitudinal diff erentiation between northern and 
southern Europe occurred at c. 8 Ma (Böhme et al. 2008). 
Th e study of European faunal assemblages evidences the 
strong isolation of some regions during the late Miocene. 
Since the latest Miocene and until the fi rst part of the early 
Pliocene (MN13-MN14, c. 6.5-5 Ma), a renewed faunal 
homogeneity shortly occurred in the peri-Mediterranean 
area of Europe (Maridet et al. 2007). 
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Th e early Pliocene is considered to be a period of globally 
warm climate (De Schepper et al. 2014 with references), though 
interrupted by short-lived glacial events (c. 4.9/4.8 Ma, and 
c. 4 Ma). Since the early/late Pliocene transition (3.6 Ma), 
the relatively stable humid conditions which characterized 
Europe during the early Pliocene came to an end. Th e increase 
in coolness and dryness culminated with a global glaciation 
at c. 3.3 Ma (MIS M2; see De Schepper et al. 2009 and Tan 
et al. 2017, both with references). Th e glaciation, though 
intense (comparable to early Quaternary glaciations) was 
short-lived (50 ky) and followed by the mid-Piacenzian Warm 
Period (c. 3.3-3.0 Ma) (Tan et al. 2017). Th ough characterized 
by a climate deterioration if compared to the early Pliocene, 
the interval 3.6- c. 3.0 Ma was “the last sustained interval in 
Earth’s history when global climate was warmer than today” 
(De Schepper et al. 2009). Between c. 3.0-2.7 Ma is recorded 
the onset of the Northern Hemisphere glaciation. Such event, 
contrarily to the quite ephemeral late Eocene to early Plio-
cene glaciations (Lunt et al. 2008), is the forerunner of the 
glacial-interglacial cycles of the Quaternary (Ganopolski & 
Calov 2011). 

Th e Pliocene environmental changes impacted on mam-
malian evolution and dynamics, driving extensive rearrange-
ments of community and faunal structures, including large 
scale migrations and rearrangements of the selection pres-
sure upon the phenotypic design of particular taxa. A short 
period near the early/late Pliocene boundary c. MN15-16) 
represents one of the most dramatic global turning points of 
the late Cenozoic faunal history. Nearly a half of the Neogene 
mammalian taxa disappeared at that time, and almost all the 
elements constituting the modern Quaternary communities 
appeared in that stage as well (Bernor et al. 1996; Rössner & 
Heissig 1999; Reumer & Wessels 2003). Th e aridisation and 
spread of open ground habitats grew particularly pronounced 
at the MN16/17 boundary (c. 2.5 Ma), as attested by the 
loess deposits recognized throughout the northern hemi-
sphere (Rabeder 1981; Rabeder & Verginis 1987; Tedford 
et al. 1991; Shi 1994; Xue et al. 2006).

A focus on Pliocene palaeoecology of central Europe 
with emphasis on the distribution of lagomorphs 
In the Pliocene of Europe, the climatic changes resulted in a 
decoupling of the climatic regime of northern and southern 
Europe. Relatively warmer and arid conditions characterized 
the Mediterranean area, in contrast to the onset of cooler and 
humid conditions in the northern parts of central Europe 
(Popov 2004). Th e plant record indicates that, in the early 
Pliocene (before c. 4 Ma), mixed mesophytic forests and 
broad-leaved deciduous forest prevailed in the studied area 
(Kovar-Eder et al. 2008). Indeed, Pliocene faunas of central 
Europe (documented particularly from the localities Gun-
dersheim-Findling, Węże 1, and Csarnóta 2) contain a large 
proportion of mesophilous lypotyphlan and rodent species 
(>70%; ecogeographical group 1 sensu Popov 2004). Th is is 
indicative for an even and humid climate. Th e other 30% of 
the assemblages is represented by species with relatively wide 
tolerances, adapted to a wide range of biotopes under more 

continental and arid climate (ecogeographical group 2 sensu 
Popov 2004), inhabiting edge habitats such as dry open for-
ests, bushes, dry meadows, etc. In the Mediterranean area, the 
genera of group 1 are absent or are very poorly represented, 
whereas those of group 2 are predominant, together with 
genera characteristic of dry open habitats (mostly dry savanna 
dwellers ecogeographical group 3 sensu Popov 2004). See 
Kretzoi (1956, 1962), Sulimski (1959, 1962, 1964), Kowal-
ski (1960), Repenning (1967), Michaux (1971), Jánossy (1972, 
1986), Van de Weerd & Daams (1978), Van de Weerd (1979), 
Skoczen (1980), Van de Weerd et al. (1982), Reumer (1984, 
1989), Van der Meulen & Van Kolfschoten (1986), Fejfar & 
Storch (1990), Terzea (1997), Şen (1998), Şen et al. (1998), 
Ünay & de Bruijn (1998), Popov (2001, 2003, 2004), Fejfar 
et al. (2006) for details.

Th e lagomorph diversity in the late Ruscinian localities 
(MN15b, i.e., coeval with the Prolagus samples under study) 
of central and south-eastern Europe is quite high (see Kret-
zoi 1962; Sych 1965; Daxner & Fejfar 1967; Fladerer & 
Reiner 1996; Terzea 1997; Dahlmann 2001; Popov 2004; 
Čermák 2007, 2009; Čermák & Angelone 2013; Čermák & 
Wagner 2013). Five species of lagomorphs pertaining to fi ve 
distinct genera (Ochotonoma Şen, 1998, Prolagus, Hypolagus 
Dice, 1917, Pliopentalagus Gureev & Konkova in Gureev, 
1964, Trischizolagus Radulesco & Samson, 1967) are recorded. 
Th e palaeobiogeographical trajectory and the biochronologi-
cal importance as MN15b markers of some of them is well 
documented (Angelone 2008b; Čermák & Wagner 2013). Th e 
most common lagomorph was H. petenyii, which occurred 
in almost all central and south-eastern MN15b European 
localities. Th is species is usually regarded as a forest dweller 
(Fladerer & Reiner 1996). Trischizolagus dumitrescuae Rad-
ulesco & Samson, 1967  and O. csarnotana  generally occur 
together in the Pliocene of Europe. Th eir presence indicates 
a rather dry and hot climate, and the presence of vast areas of 
savanna-steppes (Popov 2004). Most of the available remains 
of T. dumitrescuae are known from the northern part of the 
peri-Paratethyan area, in fossil sites of early Ruscinian age 
(MN14). Western occurrences of T. dumitrescuae are rather 
rare and exclusively limited to the late Ruscinian (MN15b). 
Ochotonoma csarnotana from Beremend 26 (Čermák & Wag-
ner 2013) so far represents the westernmost proven record 
of the species. European occurrences of O. csarnotana are 
limited to south-eastern regions and are closely related to the 
distribution of Ochotonoma in Anatolia (see Čermák 2007 
for details). Th e distribution range of T. dumitrescuae and 
O. csarnotana in central Europe does not exceed latitude 
N46° (occurences in Beremend 26/39 and Csarnóta 2). On 
the  contrary, the distribution range of Pliopentalagus dietrichi 
clearly exceeds this latitude and reaches the Rhine Graben 
(western Germany), together with P. bilobus (co-occurrences 
in Gundersheim-Findling and probably in Wölfersheim). 
Pliopentalagus dietrichi may be considered, by analogy with 
its extant relative Pentalagus furnessi (Stone, 1900), a forest 
dweller inhabiting dense subtropical forests characterized by a 
low cursorial ability. In this framework, it is diffi  cult to guess 
the environmental requirements of P. bilobus and Prolagus sp. 
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from Beremend. Possibly the latter was more related to a dry 
and open habitat, given the ecological requirements of the 
other lagomorphs found in the same assemblage, but the 
former may have pertained to either ecogeographical group 
1 or 2 (sensu Popov 2004).

It is evident that in MN15b a conspicuous number of the 
lagomorph genera reached central Europe, most of them 
from eastern or south-eastern regions. Such appearance of 
lagomorph taxa with very diff erent ecological requirements, 
all together in a short time span, suggests that the onset of 
favourable climatic conditions was not the only and/or pri-
mary driving factor of their coeval dispersal.

Th e post-Miocene fate of Prolagus: 
climate change, palaeogeography, competitive pressure
It is clear from the climatic and ecological frameworks above 
illustrated that, except for the earliest stages (MN2b-MN3), 
Prolagus developed and passed unscathed through periods of 
profound climatic/environmental changes for at least 14 of 
the c. 20 my of its evolutionary history. Actually, Prolagus 
species had a wide range of environmental adaptations. Seve-
ral species lived in subtropical forest or wetland lacustrine 
habitats, nevertheless other species, i.e., P. ibericus from Layna 
(MN15) or Prolagus spp. from the Gargano palaeoarchipelago, 
inhabited arid environments (López Martínez 2001). It is 
also possible that several of those species did not have strict 
ecological requirements. Anyway, Prolagus was quite adapt-
able to diff erent and variable climatic conditions. Th us, it is 
reasonable to suggest that climate change sensu stricto  was 
not the primary reason for the limited distribution of Prolagus 
in the Pliocene of central Europe. 

A diff erent perspective on the distribution of the genus Pro-
lagus in Europe comes from the palaeogeographical approach. 
Until the middle Miocene, the geographic distribution of 
Prolagus was arranged in a roughly latitudinal band (as far 
as the distribution of emerged lands permitted; cf. López 
Martínez 2001 for Prolagus distribution data, and Popov 
et al. 2004 for updated palaeogeographic setting). During the 
late Miocene, the area in which Prolagus was distributed was 
deformed by the Alpine arc in its central part (the radial axis 
of the arc, coinciding with the Rhine graben, was “pushed” 
northwards; see Sue et al. 2007). Th e bending movement may 
have had an eff ect on isolation (the question is how much) 
between western and eastern Prolagus populations, with the 
Alpine arc and the Bohemian Massif acting as physiographic 
barriers. Indeed, signifi cantly increasing diff erences between 
western European Prolagus species and central-eastern European 
ones start to be noticed at least since MN10 (Angelone & 
Veitschegger 2015). 

Th e decline in Prolagus abundance in northern central Europe 
appears evident already since the late Miocene (López Mar-
tínez 2001). Although the mammalian fossil record around 
the Miocene/Pliocene boundary (late MN13 to MN14) is 
extremely rare north of the Alps, Prolagus had probably disap-
peared there since the latest Miocene. Further south, in the 
Pannonian Basin, the genus was still present in the MN13 
(Angelone & Čermák 2015). For sure, Prolagus is absent 

in the Pliocene of central Europe except for MN15b: c. 30 
vertebrate-bearing fossiliferous localities are known between 
MN14-16 (Wagner et al. 2009) and the occurrences of Prolagus 
are exclusively limited to the 6 localities (out of a total of the 
11 available for MN15b). Such chronologically limited occur-
rences are indicative of a dispersal, rather than of a progressive 
Pliocene shrinking of the Miocene distribution area that left 
isolated endemic populations. Th is dispersal most probably 
occurred from south-eastern regions of Europe (e.g. the NW 
peri-Black Sea area), as the main morphological characters 
of central European Pliocene Prolagus here analyzed is quite 
diff erent from those of western European ones. Moreover, 
a dispersal wave from eastern regions fi ts quite well in the 
framework of the above discussed extensive faunal rearrange-
ments occurred during the early Pliocene. 

Th e subsequent, relatively sudden, disappearance of Prolagus 
from central Europe after MN15b can be explained by the 
increase of the competitive pressure related to the continuous 
global climatic degradation during the late Pliocene. In this 
sense, Prolagus met the same fate of Pliopentalagus dietrichi in 
Europe (see Čermák & Wagner 2013). In fact, the Pliocene 
climatic deterioration caused an increase of the aridisation 
and the spreading of open ground habitats in central Europe. 
Th is opened the way for Ochotona  Link, 1795  and Lepus Lin-
naeus, 1758, very well adapted for those landscape settings, 
and the Prolagus “story” in central Europe was over and was 
never repeated again.

CONCLUSIONS

Th is paper fi lls a gap in the study of Pliocene prolagids, until 
now mainly centered on western European species, performing 
a detailed analysis of all available published and unpublished 
Pliocene materials of Prolagus from central Europe.

Most of the record of central European Pliocene Prolagus 
pertains to Prolagus bilobus. Th is species is reported here 
from the MN15b localities of Gundersheim and Raciszyn 1. 
Some materials of P. bilobus had already been revised and its 
diagnosis emended (Čermák & Angelone 2013), however the 
availability of relatively rich materials allowed to defi ne here 
some additional peculiarities in tooth positions other than p3. 
Th e extremely low intraspecifi c variability of the specimens 
of P. bilobus is striking. Th is characteristic allowed to easily 
describe the ontogenetic trajectory of the p3 of P. bilobus. 
From juvenile to adult, the p3 undergoes the enlargement, 
deformation, and tilting of the anteroconid, the deformation 
of the metaconid, a noticeable thickening of the protoconulid, 
the thickening of the entoconid, and the enlargement of the 
crochet. In the mandibles of adult specimens, compared to 
the juveniles, it is possible to observe an enlargement of the 
diastema in relation to the alveolar row length, the heighten-
ing of the mandibular body, and an increase of the curvature 
in the outline of the ventral margin.

Th e study of the ontogenetic development of P. bilobus was 
extended to the deciduous teeth (d3), and the dimensional 
results were compared with Prolagus species from several fossil 
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localities ranging in age from the early Miocene (MN2b) to 
the Middle-Late Pleistocene. In early Miocene-early middle 
Miocene taxa, the d3 is larger than p3, as occurs in Piezodus 
(López Martínez 1974). However, since late middle Miocene, 
the size relationship appears reversed, and the values of d3 
remain quite stable. Th e reversal is not gradual: the d3/p3 
relative length proportion is one of the characters that, in 
the genus Prolagus, change their state at a certain geological 
moment and in a trans-specifi c way, and, in this sense, it may 
have a biochronological value. At any rate, the size diff erence 
between d3/p3 in P. bilobus is clearly the largest among the 
studied taxa. 

New materials from Beremend 26 and 39 (MN15b) revealed 
the presence of a possible new species of Prolagus. A lower 
jaw of an adult individual from Beremend 26 appears clearly 
distinct from other Pliocene-Holocene congeneric species. In 
particular, the diff erences with the coeval P. bilobus are striking. 
Teeth and mandible dimensions fall below the lower range 
of P. bilobus, and also the morphology of p3 is incompatible 
with P. bilobus. Nevertheless, an upper jaw excavated from the 
neighbouring fi ssure fi lling Beremend 39 does not show sub-
stantial diff erences in morphology and measures with P. bilobus. 
Th e two fi llings seem coeval, basing on the biochronological 
indications given by the faunal content. Th ese contradictory 
taxonomic evidences can be solved only by the retrieval of 
additional material, and the prolagids from Beremend 26 and 
39 are provisionally left in open nomenclature as Prolagus sp.

Ukrainian and Moldavian MN15-?16 materials attributed 
by Tesakov & Averianov (2002) to P. bilobus do not match 
the diagnosis of the species and, in our opinion, should be 
provisionally referred to P. aff . sorbinii. Th e material from 
Kisláng (mentioned by Kretzoi 1954) could have shed light 
on the subject. Unfortunately, the material is currently una-
vailable. Th e same fate was suff ered by the Prolagus remains 
from Wölfersheim (faunal list in Tobien 1977; eventually 
reported also by Dahlmann 2001). 

Contrarily to the “traditional” view (López Martínez 2001), 
we hypothesize that central European Prolagus are not relict 
species “left behind” after a progressive reduction of the geo-
graphic distribution of the genus due to climate deterioration 
s.s. occurred during the Pliocene. Prolagus disappeared from 
northern central Europe since the latest Miocene to reappear 
briefl y in the late early Pliocene (MN15b). Th is evidence rather 
indicates a sudden dispersal, most probably from south-eastern 
regions of Europe, as the morphology of P. bilobus and Prola-
gus sp. studied herein exclude close phylogenetic affi  nities with 
western European species. Prolagus is not the only lagomorph 
to appear in central Europe in MN15b: others are e.g. Pli-
opentalagus and Ochotonoma, two taxa of clear eastern origin.

Th e MN15b central and south-eastern Europe lagomorph 
palaeobiogeographic dynamics represent only a tile of the extensive 
faunal rearrangements that characterize the entire Europe during 
the Pliocene. Th e post-Miocene fate of Prolagus in central 
Europe was determined by a combination of palaeogeographic 
and climatic changes which caused extensive rearrangements of 
community and faunal structures that increased the competitive 
pressure on the genus.

Acknowledgements
We would like to express our thanks to László Pongrácz (Györ), 
Katrin Krohmann (SMF), and Adam T. Halamski (ZPAL) and 
M. Borsuk-Białynicka (ZPAL) for providing us the fossil mate-
rial in their care. We are grateful to two anonymous reviewers 
for their valuable comments and critical remarks. Th e study 
was supported by institutional support RVO67985831 of the 
Institute of Geology of the Czech Academy of Sciences. CA 
was supported by: Visiting Professor grant of the President’s 
International Fellowship Initiative of the Chinese Academy 
of Science; Spanish Agencia Estatal de Investigación and the 
European Regional Development Fund of the European 
Union (CGL2016-76431-P); CERCA Program, Generalitat 
de Catalunya; Grant to Department of Science, Roma Tre 
University (MIUR-Italy Dipartimenti di Eccellenza, ART. 1, 
C. 314-337 L. 232/2016). BMS was supported by Xunta de 
Galicia (ED481B 2018/046, Axudas á etapa postdoutoral da 
Xunta de Galicia 2018-Modalidade A). 

REFERENCES

 AGADJANIAN A. K. & ERBAJEVA M. A. 1983. — [Late Cenozoic rodents 
and lagomorphs of the USSR]. Nauka, Moscow, 189 p. (in Russian).

 ÁLVAREZ-SIERRA M. A., DAAMS R., LACOMBA J. I., LÓPEZ-MARTÍNEZ N., 
VAN DER MEULEN A. J., SESÉ C. & DE VISSER J. 1990. — Palae-
ontology and biostratigraphy (micromammals) of the continental 
Oligocene-Miocene deposits of the North-Central Ebro basin 
(Huesca, Spain). Scripta Geologica 94: 1-77.

 ANGELONE C. 2007. — Messinian Prolagus (Ochotonidae, Lago-
morpha, Mammalia) of Italy. Geobios 40: 407-421. https://doi.
org/10.1016/j.geobios.2006.04.004

 ANGELONE C. 2008a. — Prolagus italicus n. sp. (Ochotonidae, Lago-
morpha, Mammalia) a new Pliocene species of peninsular Italy. Geo-
bios 41: 445-453. https://doi.org/10.1016/j.geobios.2007.12.001

 ANGELONE C. 2008b. — Family Ochotonidae (Lagomorpha) and 
its application in biochronology: some case studies from the Plio-
Quaternary of Eurasia. Quaternary International 179: 5-8. https://
doi.org/10.1016/j.quaint.2007.08.019

 ANGELONE C. & ČERMÁK S. 2015. — Two new species of Prolagus 
(Lagomorpha, Mammalia) from the Late Miocene of Hungary: 
taxonomy, biochronology, and palaeobiogeography. Paläon-
tologische Zeitschrift 89: 1023-1038. https://doi.org/10.1007/
s12542-014-0247-z

 ANGELONE C. & ROOK L. 2012. — Late Neogene and Quaternary 
lagomorphs from Tuscany: a revision based on specimens in Basel 
Naturhistorisches Museum and Florence University collections. 
Swiss Journal of Geosciences 131: 127-145. https://doi.org/10.1007/
s13358-011-0035-2 

 ANGELONE C. & SESÉ C. 2009. — New characters for species dis-
crimination within the genus Prolagus (Ochotonidae, Lagomor-
pha, Mammalia). Journal of Paleontology 83: 80-88. https://doi.
org/10.1666/07-067R2.1 https://doi.org/10.1666/07-067R2.1

 ANGELONE C. & VEITSCHEGGER K. 2015. — MN10 Prolagus 
(Ochotonidae, Lagomorpha) from Austria: a new tile for the 
central European palaeogeography of the genus. Neues Jahrbuch 
für Geologie und Paläontologie 275: 1-10. https://doi.org/10.1127/
njgpa/2015/0444

 ANGELONE C., ČERMÁK S. & KOTSAKIS T. 2015. — Th e most ancient 
lagomorphs of Sardinia: an overview. Geobios 48: 287-296. https://
doi.org/10.1016/j.geobios.2015.06.002

 ANGELONE C., MONCUNILL-SOLÉ B. & KOTSAKIS T. 2019. — Con-
tribution of fossil Lagomorpha (Mammalia) to the refi nement 
of the late Miocene-Quaternary palaeobiogeographical setting 



615 

Prolagus in the framework of the Pliocene faunal rearrangements in central Europe

COMPTES RENDUS PALEVOL • 2021 • 20 (28)

of Italy. Comptes Rendus Palevol 18: 1025-1040. https://doi.
org/10.1016/j.crpv.2019.10.002

 ANGELONE C., MONCUNILL-SOLÉ B. & KOTSAKIS T. 2020. — Fossil 
Lagomorpha (Mammalia) of Italy: systematics and biochronol-
ogy. Rivista Italiana di Paleontologia e Stratigrafi a 126: 157-187. 
https://doi.org/10.13130/2039-4942/13014

 AVERIANOV A. O. & TESAKOV A. S. 1998. — Lagomorphs (Mam-
malia, Lagomorpha) from early Pliocene locality of Kosyakino 
of the Northern Caucasus. Paleontological Journal 32: 305-309.

 BERNOR R. L., KOUFOS G. G., WOODBURNE M. & FORTE-
LIUS M. 1996. — Th e evolutionary history and biochronology 
of european and southeastern asian late Miocene and Pliocene 
hipparionine horses, in BERNOR R. L., FAHLBUSCH V. & MITT-
MANN H. W. (eds), Th e evolution of Western Eurasian Neogene 
mammal faunas. Columbia University Press, New York: 307-338.

 BERZI A. 1967. — Lagomorphs from the type Villafranchian of 
Villafranca d’Asti (Italy). Preliminary note. Giornale di Geologia 
35: 137-150.

 BÖHME M. 2003. — Th e Miocene Climatic Optimum: evidence 
from ectothermic vertebrates of Central Europe. Palaeogeogra-
phy, Palaeoclimatology, Palaeoecology 195: 389-401. https://doi.
org/10.1016/S0031-0182(03)00367-5

 BÖHME M., ILG A. & WINKLHOFER M. 2008. — Late Miocene 
“washhouse” climate in Europe. Earth and Planetary Science Let-
ters 275: 393-401. https://doi.org/10.1016/j.epsl.2008.09.011

 BRANDT J. F. 1855. — Beiträge zur näheren Kenntniss der Säugeth-
iere Russlands. Mémoires de l’Académie impériale des sciences de 
St.-Pétersbourg 9: 1-365. 

 CASANOVAS-VILAR I., VAN DEN HOEK OSTENDE L. W., FURIÓ M. & 
MADERN A. P. 2014. — Th e range and extent of the Vallesian 
Crisis (Late Miocene): new prospects based on the micromam-
mal record from the Vallès-Penedès basin (Catalonia, Spain). 
Journal of Iberian Geology 40: 29-48. https://doi.org/10.5209/
rev_JIGE.2014.v40.n1.44086

 ČERMÁK S. 2007. — New fi nds of Ochotonoma csarnotana (Lago-
morpha, Ochotonidae) from the Pliocene of Hungary: a new look 
on the species. Neues Jahrbuch für Geologie und Paläontologie 246: 
247-256. https://doi.org/10.1127/0077-7749/2007/0246-0247

 ČERMÁK S. 2009. — Th e Plio-Pleistocene record of Hypolagus 
(Lagomorpha, Leporidae) from the Czech and Slovak Republics 
with comments on systematics and classifi cation of the genus. 
Bulletin of Geosciences 84: 497-524. https://doi.org/10.3140/
bull.geosci.1104

 ČERMÁK S. & ANGELONE C. 2013. — Revision of the type material 
of the Pliocene species Prolagus bilobus Heller, 1936 (Mamma-
lia, Lagomorpha), with comments on the taxonomic validity of 
P. osmolskae Fostowicz-Frelik, 2010. Bulletin of Geosciences 88: 
45-50. https://doi.org/10.3140/bull.geosci.1369 

 ČERMÁK S. & WAGNER J. 2013. — Th e Pliocene record of Trischiz-
olagus and Pliopentalagus (Leporidae, Lagomorpha, Mammalia) in 
Central Europe, with comments on taxonomy and evolutionary 
history of Leporinae. Neues Jahrbuch für Geologie und Paläontologie 
268: 97-111. https://doi.org/10.1127/0077-7749/2013/0321

 CZÁSZÁR G. & KORDOS L. 2004. — Beremend, Kőfejtő. Pro-
gram, előadáskivonatok, kirándulásvezető, 7. Magyar Őslénytani 
Vándorgyűlés 2004: 51-57.

 DAHLMANN T. 2001. — Die Kleinsäuger der unter-pliozänen Fund-
stelle Wölfersheim in der Wetterau (Mammalia: Lipotyphla, 
Chiroptera, Rodentia). Courier Forschungsinstitut Senckenberg 
227: 1-129. 

 DAHLMANN T. & STORCH G. 1996. — Eine pliozäne (oberruschi-
nische) Kleinsäugerfauna aus Gundersheim, Rheinhessen. 2. 
Insektenfresser: Mammalia, Lipotyphla. Senckenbergiana lethaea 
76: 181-191. https://doi.org/10.1007/BF03042849

 DAXNER G. & FEJFAR O. 1967. — Über die gattung Alilepus Dice, 
1931 und Pliopentalagus Gureev, 1964 (Lagomorpha, Mamma-
lia). Annalen des Naturhistorischen Museums in Wien 71: 37-55.

 DE SCHEPPER S., GROENEVELD J., NAAFS B. D. A., VAN RENT-

ERGHEM C., HENNISSEN J., HEAD M. J., LOUWYE S. & 
FABIAN K. 2009. — Northern Hemisphere Glaciation during 
the Globally Warm Early Late Pliocene. PLoS ONE 8(12): e81508. 
https://doi.org/10.1371/journal.pone.0081508

 DE SCHEPPER S., GIBBARD P. L., SALZMANN U. & EHLERS J. 2014. 
— A global synthesis of the marine and terrestrial evidence for 
glaciation during the Pliocene Epoch. Earth-Science Reviews 
135: 83-102. https://doi.org/10.1016/j.earscirev.2014.04.003

 DICE L. R. 1917. — Systematic position of several tertiary lago-
morphs. University of California Publications, Bulletin of the 
Department of Geology 10: 179-183.

 ERBAJEVA M. A. 1988. — [Cenozoic Pikas (Taxonomy, Systematics, 
Phylogeny)]. Nauka, Moscow, 224 p. (in Russian).

 ERBAJEVA M. A. & SHUSHPANOV K. I. 1988. — [Pliocene pikas of 
Moldavia]. Vestnik Zoologii 4: 55-60. (in Russian).

 FEJFAR O. 1961. — Die plio-pleistozänen Wirbeltierfaunen von 
Hajnáčka und Ivanovce (Slowakei), ČSSR. III. Lagomorpha. Neues 
Jahrbuch für Geologie und Paläontologie, Monatshefte 5: 267-282.

 FEJFAR O. & HEINRICH W.-D. 1983. — Arvicoliden-Sukzession 
und Biostratigraphie des Oberpliozäns und Quartärs in Europa. 
Schriftenreihe für geologische Wissenschaften 19/20: 61-109. 

 FEJFAR O. & STORCH G. 1990. — Eine pliozäne (ober-ruscinische) 
Kleinsäugerfauna aus Gundersheim, Rheinhessen: 1. Nagetiere: 
Mammalia, Rodentia. Senckenbergiana lethaea 71: 139-184. 

 FEJFAR O., HEINRICH W.-D. & LINDAY E. H. 1998. — Updating 
the Neogene Rodent biochronology in Europe. Mededelingen 
Nederlands Instituut voor Toegepaste Geowetenschappen TNO 60: 
533-554.

 FEJFAR O., STORCH G. & TOBIEN, H. 2006. — Gundersheim 4, a 
third Ruscinian micromammalian assemblage from Germany. 
Palaeontographica A 278: 97-111. https://doi.org/10.1127/
pala/278/2006/97

 FLADERER F. A. & REINER G. 1996. — Evolutionary shifts in the 
fi rst premolar pattern of Hypolagus beremendensis (Petényi, 1864) 
(Lagomorpha, Mammalia) in the Plio-Pleistocene of Central 
Europe. Acta Zoologica Cracoviensia 39: 147-160.

 FOSTOWICZ-FRELIK Ł. 2010. — A new species of Pliocene Prolagus 
(Lagomorpha: Ochotonidae) from Poland in the northermost 
record of the genus. Journal of Vertebrate Paleontology 30: 609-
612. https://doi.org/10.1080/02724631003621789

 GANOPOLSKI A. & CALOV R. 2011. — Th e role of orbital forcing, 
carbon dioxide and regolith in 100 kyr glacial cycles. Climate of 
the Past 7: 1415-1425. https://doi.org/10.5194/cp-7-1415-2011

 GUREEV A. A. 1960. — [Lagomorphs (Lagomorpha) from the Oli-
gocene of Mongolia and Kazakhstan]. Trudy Paleontologicheskogo 
Instituta Akademii Nauk SSSR 77: 5-34. (in Russian).

 GUREEV A. A. 1964. — [Fauna of the USSR (Lagomorpha), Vol. 3 
(10)]. Nauka, Moscow & Leningrad. 276 p. (in Russian).

 HELLER F. 1936. — Eine oberpliozäne Wirbeltierfauna aus Rheinhes-
sen. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, 
Abteilung B 76: 99-160.

 HORDIJK K. & VAN DER MEULEN A. J. 2010. — Systematics of 
resident species of Lagopsis and Prolagus (Ochotonidae, Lago-
morpha, Mammalia) from the late early and middle Miocene of 
northeastern Central Spain. Geologica Ultraiectina 333: 17-85.

 JÁNOSSY D. 1972. — Middle Pliocene microvertebrate fauna from 
the Osztramos Loc. 1. (Northern Hungary). Annales historico-
naturales Musei nationalis hungarici 64: 27-50.

 JÁNOSSY D. 1986. — Pleistocene vertebrate faunas of Hungary. Aka-
démiai Kiadó, Budapest, 208 p.

 KOENIGSWALD W. VON & TOBIEN H. 1990. — Important arvi-
colid faunas from the Late Pliocene to Early Holocene in West-
ern Germany (FRG), in FEJFAR O. & HEINRICH W.-D. (eds), 
International symposium evolution, phylogeny and biostratigraphy 
of arvicolids (Rodentia, Mammalia). Czech Geological Survey, 
Prague: 231-254.

 KÖNIG C. D. E. 1825. — Icones Fossilium Sectiles, Centuria Prima. 
G.B. Sowerby, London, 4 p.



616 COMPTES RENDUS PALEVOL • 2021 • 20 (28) 

Čermák S. et al.

 KORDOS L. 1991. — Upper Pliocene paleovertebrate localities, 
Beremend, Villány Mts. Magyarország geológiai alapszevényei 
1991: 1-6.

 KORMOS T. 1930. — Beiträge zur Präglazialfauna des Somlyóberges 
bei Püspökfürdo. Állattani Közlemények 27: 40-62. 

 KOVAR-EDER J., JECHOREK H., KVAČEK Z. & PARASCHIV V. 2008. — 
Th e Integrated Plant Record: An Essential Tool For Reconstruct-
ing Neogene Zonal Vegetation In Europe. Palaios 23: 97-111. 
https://doi.org/10.2110/palo.2006.p06-039r

 KOWALSKI K. 1960. — Cricetidae and Microtidae from the Pliocene 
of Weze (Poland). Acta Zoologica Cracoviensia 5: 447-506.

 KOWALSKI K. 1990. — Stratigraphy of Neogene mammals in Poland, 
in LINDAY E. H., FAHLBUSCH V. & MEIN P. (eds), European Neo-
gene Mammal Chronology. Plenum Press, New York: 193-209.

 KRETZOI M. 1954. — Bericht über die calabrische (villafranchische) 
Fauna von Kislang, Kom. Fejér. Állami Földtani Intézet Évijjelen-
tése az 1953 1: 239-265. 

 KRETZOI M. 1956. — Die altpleistozänen Wirbeltierfaunen des 
Villányer Gebirges. Geologica hungarica, Series palaeontologica 
27: 1-264. 

 KRETZOI M. 1959. — Insectivoren, Nagetiere und Lagomorphen 
der jüngstpliozänen Fauna von Csarnóta im Villáyer Gebirge 
(Südungarn). Vertebrata Hungarica 2: 237-246. 

 KRETZOI M. 1962. — Fauna und Faunenhorizont von Csarnóta. 
Jahresbericht der Ungarischen Geologischen Anstalt 1959: 297-395.

 LINK D. H. F. 1795. — Beiträge zur Naturgeschichte. Rostock und 
Leipzig 2: 1-126.

 LINNAEUS C. 1758. — Systema naturae per Regna tria naturae, secun-
dum Classes, Ordines, Genera, Species. Tomus I. Editio decima, 
reformata. Laurentii Salvii, Holmiæ, 824 p.

 LÓPEZ MARTÍNEZ N. 1974. — Evolution de la lignée Piezodus-
Prolagus (Lagmorpha, Ochotonidae) dans le Cenozoïque d’Europe 
Sud-Occidentale. Unpublished PhD Th esis. Université des Science 
et techniques du Languedoc, Académie de Montpellier, 165 p. 

 LÓPEZ MARTÍNEZ N. 1989. — Revisión sistemática y bioestratigrá-
fi ca de los Lagomorpha (Mammalia) del Terciario y Cuaternario 
inferior de España. Memorias del Museo Paleontológico de la Uni-
versidad de Zaragoza 3: 1-350.

 LÓPEZ MARTÍNEZ N. 2001. — Paleobiogeographical history of Prolagus, 
an European ochotonid (Lagomorpha). Lynx (n.s.) 32: 215-231.

 LÓPEZ MARTÍNEZ N. & THALER L. 1975. — Biogéographie, évolu-
tion et compléments à la systématique du groupe d’Ochotonides 
Piezodus-Prolagus (Mammalia, Lagomorpha). Bulletin de la Société 
géologique de France 17: 850-866. https://doi.org/10.2113/gss-
gfbull.S7-XVII.5.850

 LÓPEZ MARTÍNEZ N., SESÉ BENITO C. & SANZ GARCÍA J. L. 1977. — 
La microfauna (Rodentia, Insectivora y Reptilia) de las fi suras del 
Mioceno medio de Escobosa de Calatañazor (Soria, España). Acta 
Geologica Hispanica 12, 60-68. http://hdl.handle.net/10261/3393

 LUNT D. J., FOSTER G. L., HAYWOOD A. M. & STONE E. J. 2008. — 
Late Pliocene Greenland glaciation controlled by a decline in 
atmospheric CO2 levels. Nature 454: 1102-1105. https://doi.
org/10.1038/nature07223

 MARIDET O., ESCARGUEL G., COSTEUR L., MEIN P., HUGUENEY M. & 
LEGENDRE S. 2007. — Small mammal (rodents and lagomorphs) 
European biogeography from the Late Oligocene to the mid 
Pliocene. Global Ecology and Biogeography 16: 529-544. https://
doi.org/10.1111/j.1466-8238.2006.00306.x

 MASINI F. 1989. — Prolagus sorbinii, a new ochotonid (Mammalia, 
Lagomorpha) from the Messinian of Italy. Bollettino della Società 
Paleontologica Italiana 28: 295-306.

 MAYHEW D. F. 2012. — Revision of the fossil vole assemblage 
(Mammalia, Rodentia, Arvicolidae) from Pleistocene Depos-
its at Kisláng, Hungary. Palaeontology 55: 11-29. https://doi.
org/10.1111/j.1475-4983.2011.01115.x

 MICHAUX J. 1971. — Arvicolinae (Rodentia) du Pliocéne terminal 
et du Quatemaire ancien de France et d’Espagne. Palaeovertebrata 
4: 137-214. https://doi.org/10.18563/pv.4.5.137-214

 NADACHOWSKI A. 1990. — Review of fossil Rodentia from Poland 
(Mamalia). Senckenbergiana Biologica 70: 229-250. 

 NADACHOWSKI A., MARCISZAK A., RZEBIK-KOWALSKA B. & 
GORNIG W. 2015. — Sesja terenowa C. Raciszyn. Fauna kopalna-
Raciszyn 1 (RN1), in KICIŃSKA D., STEFANIAK K. & SZYNK-
IEWICZ A. (eds), Przewodnik sesji terenowych. Materiały 49. 
Sympozjum Speleologicznego, Załęcze Wielkie 22-25.10.2015. 
Sekcja Speleologiczna Polskiego Towarzystwa Przyrodników im. 
Kopernika, Kraków: 50-51.

 NESIN V. A. & NADACHOWSKI A. 2001. — Late Miocene and Plio-
cene small mammal faunas (Insectivora, Lagomorpha, Rodentia) 
of southeastern Europe. Acta Zoologica Cracoviensia 44: 107-135.

 PETÉNYI S. J. 1864. — A beremendi mészkőbánya természetrajz-és 
őslénytanilag Petényi Salamon által leírva, in KUBINYI F. (ed.), 
Petényi S. János Hátrahagyott munkái. Magyar Tudományos 
Akademia, Pest: 35-81.

 POMEL M. 1853. — Catalogue méthodique et descriptif des vertébrés 
fossiles découverts dans le bassin hydrographique supérieur de la 
Loire, et surtout dans la vallée de son affl  uent principal, l’Allier. 
J.-B. Baillière, Paris, 193 p.

 PONGRÁCZ L. 1999. — A beremendi Szőlő-hegy természettudományi 
kutatásának 150 éve. Petényi-emlékkönyv, Beremend, 149 p.

 POPOV V. V. 2001. — Late Pliocene voles (Mammalia: Arvicolidae) 
from Varshets (North Bulgaria). Acta Zoologica Cracoviensia 44: 
143-172.

 POPOV V. V. 2003. — Late Pliocene Soricidae (Insectivora, Mam-
malia) from Varshets (North Bulgaria). Acta Zoologica Cracov-
iensia 46: 43-72.

 POPOV V. V. 2004. — Pliocene small mammals (Mammalia, Lipo-
typhla, Chiroptera, Lagomorpha, Rodentia) from Muselievo 
(North Bulgaria). Geodiversitas 26: 403-491.

 POPOV S. V., RÖGEL F., ROYANOV A. Y., STEININGER F. F., 
SHCHERBA I. G. & KOVÁČ M. 2004. — Lithological–paleogeo-
graphic maps of Paratethys. 10 Maps Late Eocene to Pliocene. 
Courier Forschungsinstitut Senckenberg 250: 1-46.

 RABEDER G. 1981. — Die Arvicoliden (Rodentia, Mammalia) aus 
dem Pliozän und dem ältesten Pleistozän von Niederösterreich. 
Beiträge zur Paläontologie von Österreich 10: 1-373.

 RABEDER G. & VERGINIS S. 1987. — Die plio-pleistozänen löesspro-
fi le von Stranzendorf und Krems (Niederösterreich). Griechische 
Geographische Gesellschaft 1. Panhellenische Geographen-Tagung 
Athen. 9: 285-306. 

 RADULESCO C. & SAMSON P. 1967. — Contribution à la connais-
sance du complexe faunique de Măluşteni–Bereşti (Pléistocène 
inférieur), Roumanie I. Ord. Lagomorpha, Fam. Leporidae. Neues 
Jahrbuch für Geologie und Paläontologie, Monatshefte 9: 544-563.

 RAUP D. M. & CRICK R. E. 1979. — Measurement of faunal simi-
larity in paleontology. Journal of Paleontology 53: 1213-1227.

 REPENNING CH. A. 1967. — Subfamilies and Genera of the Soricidae. 
Classifi cation, historical zoogeography and temporal correlation 
of the shrews. United States Survey Professional Paper 565: 1-74. 
https://doi.org/10.3133/pp565

 REUMER J. W. F. 1984. — Ruscinian and early Pleistocene Soricidae 
(Insectivora, Mammalia) from Tegelen (Th e Nederlands) and 
Hungary. Scripta Geologica 73: 1-173.

 REUMER J. W. F. 1989. — Speciation and evolution in the Soricidae 
(Mammalia: Insectivora) in relation with the paleoclimate. Revue 
Suisse Zoology 96: 81-90. https://doi.org/10.5962/bhl.part.117758

 REUMER J. W. F. & WESSELS W. 2003. — Distribution and migra-
tion of Tertiary mammals in Eurasia. A volume in honour of 
Hans de Bruijn. Deinsea 10, 576 p. 

 ROMAN F. & VIRET J. 1930. — Le Miocène continental de l’Armagnac 
et le gisement burdigalien de La Romieu (Gers), in DE MAR-
GERIE E., BARROIS CH., BERTRAND L., BERTRAND P. & BOUR-
CART J. (eds), Livre Jubilaire de la Société géologique de France 2. 
Société Géologique de France, Paris: 577-604.

 RÖSSNER G. E. & HEISSIG K. 1999. — Th e Miocene Land Mammals 
of Europe. Verlag Dr. Friedrich Pfeil, Munich, 516 p.



617 

Prolagus in the framework of the Pliocene faunal rearrangements in central Europe

COMPTES RENDUS PALEVOL • 2021 • 20 (28)

 ŞEN Ş. 1998. — Pliocene vertebrate locality of Çalta, Ankara, Turkey. 
4. Rodentia and Lagomorpha. Geodiversitas 20: 359-378.

 ŞEN Ş., BOUVRAIN G. & GERAADS D. 1998. — Pliocene vertebrate 
locality of Çalta, Ankara, Turkey. 12. Paleoecology, biogeography 
and biochronology. Geodiversitas 20: 497-510.

 SHI N. 1994. — Th e Late Cenozoic Stratigraphy, Chronology, Palynol-
ogy and Environmental Development in the Yushe Basin, North 
China. Striae 36: 1-90.

 SKOCZEN S. 1980. — Scaptomychini Van Valen, 1967, Urotrichini and 
Scalopini Dobson, 1883 (Insectivora, Mammalia) in the Pliocene 
and Pleistocene of Poland. Acta Zoologica Cracoviensia 24: 411-448.

 STONE W. 1900. — Descriptions of a New Rabbit from the Liu Kiu 
Islands and a New Flying Squirrel from Borneo. Proceedings of the 
Academy of Natural Sciences of Philadelphia 52: 460-463.

 SUE C., DELACOU B., CHAMPAGNAC J.-D., ALLANIC C., TRICART P. & 
BURKHARD M. 2007. — Extensional neotectonics around the 
bend of the Western/Central Alps: An overview. International 
Journal of Earth Sciences 96: 1101-1129. https://doi.org/10.1007/
s00531-007-0181-3

 SULIMSKI A. 1959. — Pliocene Insectivores from Węże (Owadożerne 
z plioceńskiej brekcji kostnej z Wężów). Acta Palaeontologica 
Polonica 4: 119-179.

 SULIMSKI A. 1962. — O nowym znalezisku kopalnej fauny kregow-
ców w okolicy Działoszyna. Przegląd Geologiczny 10: 219-223.

 SULIMSKI A. 1964. — Pliocene Lagomorpha and Rodentia from Węże 
1 (Poland). Acta Palaeontologica Polonica 9: 149-262.

 SULIMSKI A. & SZYNKIEWICZ A. 1994. — Pliocene small mammals 
from Raciszyn 1 (Cracow-Wieluń Upland, Central Poland), in 
Neogene and Quaternary Mammals of the Palearctic: Abstracts of the 
Conference in Honour of Prof. Kazimierz Kowalski. Polish Academy 
of Sciences, Kraków: 69.

 SYCH L. 1965. — Fossil Leporidae from the Pliocene and the Pleis-
tocene of Poland. Acta Zoologica Cracoviensia 10: 1-88.

 SZYNKIEWICZ A. & JAGIEŁŁO M. 2015. — Zjawiska krasowe w rejonie 
Raciszyna, in KICIŃSKA D., STEFANIAK K., SZYNKIEWICZ A. (eds), 
Przewodnik sesji terenowych. Materiały 49. Sympozjum Speleologicznego, 
Załęcze Wielkie 22-25.10.2015. Sekcja Speleologiczna Polskiego 
Towarzystwa Przyrodników im. M. Kopernika, Kraków: 43-50.

 TAN N., RAMSTEIN G., DUMAS C., CONTOUX C., LADANT J.-B., SEP-
ULCHRE P., ZHANG Z. S. & DE SCHEPPER S. 2017. — Exploring the 
MIS M2 glaciation occurring during a warm and high atmospheric 
CO2 Pliocene background climate. Earth and Planetary Science 
Letters 472: 266-276. https://doi.org/10.1016/j.epsl.2017.04.050

 TEDFORD R. H., FLYNN J. L., QIU Z., OPDYKE H. & 
DOENS W. R. 1991. — Yushe basin, China, Paleomagnetically 
calibrated mammalian biostratigraphic standard for the Late Neo-
gene of eastern Asia. Journal of Vertebrate Paleontology 11: 519-526. 
https://doi.org/10.1080/02724634.1991.10011420

 TERZEA E. 1997. — Biochronologie du pliocène du bord Méridional 
du bassin Dacique (Roumanie). Mémoires et Travaux de l’Institut 
de Montpellier 21: 649-660.

 TESAKOV A. S. & AVERIANOV A. O. 2002. — Prolagus (Lagomorpha, 
Prolagidae) from the Pliocene of Moldova and Ukraine. Paleonto-
logical Journal 36: 80-86.

 TOBIEN H. 1935. — Über die pleistozänen und postpleistozänen 
Prolagusformen Korsikas und Sardiniens. Berichte der naturfor-
schenden Gesellschaft zu Freiburg im Breisgau 34: 253-344. 

 TOBIEN H. 1977. — 7. Fauna, in BOENIGK W., BRELIE G., BRUN-
NACKER K., KEMPF E. K., KOČÍ A., SCHIRMER W., STADLER G., 
STREIT R. & TOBIEN H. (eds), Jungtertiär und Quartär im Horloff -
Graben, Vogelsberg. Geologische Abhandlungen Hessen 75: 65-68.

 TOBIEN H. 1980. — Säugerfaunen von der Grenze Pliozän/Pleis-
tozän in Rheinhessen. 1. Die Spaltfüllungen von Gundersheim 
bei Worms. Mainzer geowissenschaftliche Mitteilungen 8: 209-218.

 TOPACHEVSKY V. O. 1962. — [On the Geological Age of Early 
Alluvial deposits of the Lower Dnieper Valley]. Geologicheskii 
zhurnal 22: 106-109 (in Ukrainian).

 ÜNAY E. & DE BRUIJN H. 1998. — Plio-Pleistocene rodents and 
lagomorphs from Anatolia. Mededelingen Nederlands Instituut 
voor Toegepaste Geowetenschappen TNO 60: 431-466.

 VAN DER MEULEN A. & VAN KOLFSCHOTEN T. 1986. — Review of 
the Late Turolian to Early Biharian mammal faunas from Greece 
and Turkey. Memoria Società Geologia Italiana 31: 201-211. 

 VAN DE WEERD A. 1979. — Early Ruscinian rodents and lago-
morphs (Mammalia) from the lignites near Ptolemais (Macedonia, 
Greece). Proceedings of the Koninklijke Nederlandse Akademie van 
Wetenschappen, Series B Physical Sciences 82: 127-168.

 VAN DE WEERD A. & DAAMS R. 1978. — Quantitative composition 
of rodent faunas in the Spanish Neogene and palaeoecological 
implications. Proceedings of the Koninklijke Nederlandse Akademie 
van Wetenschappen, Series B Physical Sciences 81: 448-473.

 VAN DE WEERD A., REUMER J. W. F. & DE VOS J. 1982. — Pliocene 
mammals from Apolakkia Formation (Rhodes, Greece). Proceed-
ings of the Koninklijke Nederlandse Akademie van Wetenschappen, 
Series B Physical Sciences 85: 89-112.

 VIRET J. 1929. — Les faunes de mammifères de l’Oligocène supé-
rieur de la Limagne bourbonnaise. Annales de l‘Université de Lyon, 
nouvelle série 1 47: 1-327.

 WAGNER R. 1829. — Über die Knochenbrekzie in Sardinien und die 
darin gefundenen Th iere, so wie über einige andere hieher gehörige 
Erscheinungen. Archiv für die gesammte Naturlehre 15: 10-31. 

 WAGNER J., ČERMÁK S., HORÁČEK I., FEJFAR O. & MIHEVC A. 2009. — 
New mammalian fossil records refi ning a view on Early/Late 
Pliocene faunal turnover in Central Europe. Journal of Vertebrate 
Paleontology 29 (Supl. 3): 197A.

 WIBLE J. R. 2007. — On the Cranial Osteology of the Lagomor-
pha. Bulletin of Carnegie Museum of Natural History 39: 213-
234. https://doi.org/10.2992/0145-9058(2007)39[213:OTC
OOT]2.0.CO;2

 XUE X., ZHANG Y. & YUE L. 2006. — Paleoenvironments indi-
cated by the fossil mammalian assemblages from red clay-loess 
sequence in the Chinese Loess Plateau since 8.0 Ma B.P. Sci-
ence in China Series D 49: 518-530. https://doi.org/10.1007/
s11430-006-0518-y

 ZACHOS J. C., PAGANI M., SLOAN L. C., THOMAS E. & BIL-
LUPS K. 2001. — Trends, rhythms, and aberrations in global 
climate 65 Ma to present. Science 292: 686-693. https://doi.
org/10.1126/science.1059412

Submitted on 21 February 2020;
 accepted on 25 May 2020;
published on 28 June 2021.


