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Severi varieties and Brill–Noether theory of
curves on abelian surfaces

By Andreas Leopold Knutsen at Bergen, Margherita Lelli-Chiesa at Pisa and
Giovanni Mongardi at Milan

Abstract. Severi varieties and Brill–Noether theory of curves on K3 surfaces are well
understood. Yet, quite little is known for curves on abelian surfaces. Given a general abelian
surface S with polarizationL of type .1; n/, we prove nonemptiness and regularity of the Severi
variety parametrizing ı-nodal curves in the linear system jLj for 0 � ı � n � 1 D p � 2 (here
p is the arithmetic genus of any curve in jLj). We also show that a general genus g curve
having as nodal model a hyperplane section of some .1; n/-polarized abelian surface admits
only finitely many such models up to translation; moreover, any such model lies on finitely
many .1; n/-polarized abelian surfaces. Under certain assumptions, a conjecture of Dedieu and
Sernesi is proved concerning the possibility of deforming a genus g curve in S equigener-
ically to a nodal curve. The rest of the paper deals with the Brill–Noether theory of curves
in jLj. It turns out that a general curve in jLj is Brill–Noether general. However, as soon as
the Brill–Noether number is negative and some other inequalities are satisfied, the locus jLjr

d

of smooth curves in jLj possessing a gr
d

is nonempty and has a component of the expected
dimension. As an application, we obtain the existence of a component of the Brill–Noether
locus Mr

p;d
having the expected codimension in the moduli space of curves Mp. For r D 1,

the results are generalized to nodal curves.

1. Introduction

Sections ofK3 surfaces have been investigated at length; yet, comparably little is known
about curves lying on an abelian surface. If .S; L/ is a general primitively polarizedK3 surface,
the proof of nonemptiness and regularity of the Severi variety parametrizing ı-nodal curves in
the linear system jmLj with 0 � ı � dim jmLj is due to Mumford for m D 1 (cf. [36, Appen-
dix]), and Chen [7] in the general case. The main result concerning the Brill–Noether theory
of linear sections of S is due to Lazarsfeld [32], who proved that a general curve in the lin-
ear system jLj is Brill–Noether general; furthermore, no curve in jLj possesses any linear
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2 Knutsen, Lelli-Chiesa and Mongardi, Severi varieties

series with negative Brill–Noether number. Lazarsfeld’s theorem provided an alternate proof
of the Gieseker–Petri Theorem, thus highlighting the vast potential of specialization toK3 sec-
tions. Indeed, this technique proved useful in many contexts, such as Voisin’s proof of Green’s
Conjecture for a general curve of any given genus [48, 49], higher rank Brill–Noether theory
[19,33], the proof of transversality of some Brill–Noether loci [18,33] and the study of rational
curves on hyperkähler manifolds of K3Œn�-type [9].

Our aim is to initiate the study of curves on abelian surfaces and provide a first application
by exhibiting components of the Brill–Noether locus having the expected codimension in the
moduli space of curves. Further applications to generalized Kummer manifolds will appear
in [27]. The main issue is that, unlike K3 surfaces, abelian surfaces are irregular; in particular,
vector bundles techniques à la Lazarsfeld on abelian surfaces do not work as nicely as on K3
surfaces (cf., e.g., Remark 5.12 and Example 5.15).

From now on, the pair .S; L/will be a general .1; n/-polarized abelian surface; following
[31], we denote by ¹Lº the continuous system parametrizing curves in the linear system jLj and
in all of its translates by points of S , and by p WD nC1 the arithmetic genus of any curve in ¹Lº.

For fixed ı � 0, we consider the Severi varieties VjLj;ı.S/ and V¹Lº;ı.S/ parametrizing
integral ı-nodal curves in jLj and ¹Lº, respectively; they are locally closed in jLj (resp. ¹Lº)
and have expected codimension ı. Recently, Dedieu and Sernesi [11] proved that any integral
curve C 2 ¹Lº deforms to a nodal curve of the same geometric genus, unless the normalization
of C is trigonal. However, the nonemptiness problem for V¹Lº;ı.S/ is still open and we solve
it by proving the following:

Theorem 1.1. Let .S; L/ be a general polarized abelian surface with L of type .1; n/.
Then, for any integer ı such that 0 � ı � p � 2 D n � 1, the Severi variety V¹Lº;ı.S/ (respec-
tively, VjLj;ı.S/) is nonempty and smooth of dimension p � ı (resp., p � ı � 2).

Note that the bound on ı is also necessary since dim jLj D p � 2. The condition of being
smooth of the expected dimension is often referred to as being regular.

Given Theorem 1.1, it is natural to investigate the variation in moduli of nodal curves
lying on abelian surfaces. In other words, one is interested in the dimension of the locus Ag;n
parametrizing curves in Mg that admit a nodal model (of arithmetic genus p D nC 1) which
is a hyperplane section of some .1; n/-polarized abelian surface. A simple count of parameters
shows that this dimension is at most gC1 (Section 4) and we prove that the bound is effective:

Theorem 1.2. For any n � 1 and 2 � g � p D nC 1, the locus Ag;n of curves in Mg

admitting a .p � g/-nodal model as a hyperplane section of some .1; n/-polarized abelian
surface has a component of dimension g C 1.

In particular, a general curve in such a component occurs as the normalization of a nodal
hyperplane section of only finitely many .1; n/-polarized abelian surfaces.

Analogous results for smooth curves on K3 surfaces are due to Mori and Mukai [36–38]
and there have been recent advances in the case of nodal curves [8,26]. On the contrary, nothing
was known so far for (even smooth) curves lying on abelian surfaces, except in the principally
polarized case.

Another relevant question is whether any genus g curve in ¹Lº can be deformed equi-
generically to a nodal curve in ¹Lº (classically known for plane curves [2,4,50] and is currently
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Knutsen, Lelli-Chiesa and Mongardi, Severi varieties 3

being studied for curves on other surfaces [11]). An affirmative answer would imply that Severi
varieties provide essential information about equigeneric families of curves in ¹Lº. We show
that this is indeed the case for g � 5, thus proving that [11, Conjecture C] holds for curves of
genus at least 5 in the primitive class of a general .1; n/-polarized surface:

Theorem 1.3. Let .S; L/ be a general polarized abelian surface of type .1; n/. If g � 5,
then the locus of curves in ¹Lº with geometric genus g lies in the Zariski closure of the Severi
variety V¹Lº;p�g.S/.

The theorem also holds for .S; L/ a general primitively polarized K3 surface, cf.
Remark 5.6.

Henceforth, we focus on the Brill–Noether theory of curves in jLj. We denote by jLjr
d

the Brill–Noether loci parametrizing smooth curves C 2 jLj carrying a linear series of type gr
d

.
We also recall the Brill–Noether number �.p; r; d/ WD .r C 1/.r � d/ � rp.

Theorem 1.4. Let .S; L/ be a general polarized abelian surface with L of type .1; n/,
and fix integers r � 1 and d � 2. Then the following hold:

(i) For a generalC 2 jLj, the Brill–Noether varietyGr
d
.C / is equidimensional of dimension

�.p; r; d/ if �.p; r; d/ � 0, and empty otherwise.

(ii) If d � r.r C 1/ and �r.r C 2/ � �.p; r; d/ < 0, then the Brill–Noether locus jLjr
d

has
an irreducible componentZ of the expected dimension p�2C�.p; r; d/; furthermore,Z
can be chosen so that, if C 2 Z is general, thenGr

d
.C / has some zero-dimensional com-

ponents parametrizing linear series that define birational maps to P r as soon as r � 2.

(iii) The locus jLjr
d

is empty if �.p; r; d/ < �r.r C 2/.

In particular, this proves that a general curve in the linear system is Brill–Noether general,
in analogy with Lazarsfeld’s famous result. However, contrary to theK3 case, there are subloci
in jLj which parametrize curves carrying linear series with negative Brill–Noether number.
Paris [40] had already proved, by completely different methods (Fourier-Mukai transforms),
parts (i), under the additional technical hypothesis d ¤ p � 1, and (iii) (however, we obtain
(iii) even for torsion free sheaves on singular curves, cf. Theorem 5.7, and a stronger bound
in Theorem A.1). We believe that the totally new result (ii) concerning negative Brill–Noether
numbers is the most striking. First of all, it prevents both the gonality and the Clifford index of
smooth curves in jLj from being constant (cf. Remark 7.10); this is a major difference between
the abelian and the K3 world. Secondly and most importantly, it has quite a strong implication
for the geometry of the Brill–Noether loci Mr

p;d
in the moduli space of smooth irreducible

genus p curves Mp. In stating it, we let G r
p;d

be the scheme parametrizing pairs .ŒC �;g/ with
ŒC � 2Mp and g 2 Gr

d
.C /, and denote by � W G r

p;d
!Mp the natural projection.

Theorem 1.5. If d � r.r C 1/ and�r.r C 2/ � �.p; r; d/ < 0, then the Brill–Noether
locus Mr

p;d
has an irreducible component M of the expected dimension 3p � 3C �.p; r; d/.

Furthermore, M coincides with the image under � of an irreducible component G of G r
p;d

of the
same dimension as M such that, if .C;g/ 2 G is general and r � 2, then g defines a birational
map to P r .
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4 Knutsen, Lelli-Chiesa and Mongardi, Severi varieties

Steffen [45] proved that, as soon as �.p; r; d/ < 0, the codimension in Mp of any com-
ponent of Mr

p;d
is bounded from above by ��.p; r; d/. However, the problem concerning

nonemptiness of Mr
p;d

and existence of components having the expected dimension is highly
nontrivial and has a complete answer only for r D 1; 2. For arbitrary r the picture is well under-
stood only if �.p; r; d/ D �1;�2: in the former case Mr

p;d
is an irreducible divisor [17] and

in the latter case every component of Mr
p;d

has codimension two (see [13]). For very negative
values of �.p; r; d/, there are plenty of examples of Brill–Noether loci exceeding the expected
dimension, e.g., constructed by considering multiples of linear series or complete intersec-
tion curves. On the other hand, for slightly negative values of �.p; r; d/, Steffen’s dimensional
estimate is still expected to be effective [17]. Sernesi [44], followed by other authors, most
recently Pflueger [41], proved the existence of components of Mr

p;d
of the expected dimension

under certain assumptions on p; r; d . However, (infinitely) many components detected by our
Theorem 1.5 were heretofore unknown (cf. Remark 7.12).

We spend a few more words on Theorem 1.4. In the range r < p � 1 � d , the result is
optimal, in the sense that (ii) and (iii) yield that jLjr

d
¤ ; if and only if �.p; r; d/ � �r.r C 2/.

Indeed, the inequality �.p; r; d/ � �r.r C 2/ implies the condition d � r.r C 1/ in (ii) in pre-
cisely this range. On the other hand, for r � p � 1 � d , the situation is more complicated and,
as soon as r � 2, the condition �.p; r; d/ � �r.r C 2/ is no longer sufficient for nonempti-
ness of jLjr

d
(cf. Examples 5.13–5.15). In fact, we prove a stronger necessary condition in the

Appendix (cf. Theorem A.1).
For r D 1, Theorem 1.4 is clearly optimal and can be generalized to nodal curves. Let

jLj1
ı;k

be the Brill–Noether locus parametrizing nodal curves C 2 VjLj;ı.S/ such that the nor-
malization of C carries a g1

k
. We prove the following:

Theorem 1.6. Let .S; L/ be a general polarized abelian surface with L of type .1; n/.
Let ı and k be integers satisfying 0 � ı � p � 2 D n � 1 and k � 2, and set g WD p � ı. Then
the following hold:

(i) jLj1
ı;k
.S/ ¤ ; if and only if

(1.1) ı � ˛.p � ı � 1 � k.˛ C 1// with ˛ D

�
g � 1

2k

�
:

(ii) Whenever nonempty, jLj1
ı;k

is equidimensional of dimension min¹g � 2; 2.k � 2/º and
a general element in each component is an irreducible curve C with normalization eC of
genus g such that dimG1

k
.eC/ D max¹0; �.g; 1; k/ D 2.k � 1/ � gº.

(iii) There is at least one component of jLj1
ı;k

where, for C and eC as in (ii), the Brill–Noether
variety G1

k
.eC/ is reduced; furthermore, when g � 2.k � 1/ (respectively g < 2.k � 1/),

any (resp. a general) g1
k

on eC is base point free and has simple ramification1) and all
nodes of C are non-neutral2) with respect to it.

This means that, for fixed ı � 0, the gonality of the normalization of a general curve in
VjLj;ı.S/ is that of a general genus g curve, i.e., b.g C 3/=2c. However, for all k satisfying

1) We say that a g1
k

on a smooth curve C has simple ramification if all effective divisors in it are supported
in at least k � 1 distinct points. If the g1

k
is base point free, this is equivalent to saying that the morphism to P1

induced by the g1
k

is a simple covering (with terminology going back at least to [20]), or has simple ramification.
2) A node on a curve C is non-neutral with respect to a g1

k
on the normalizationeC if the two points oneC

mapping to the node on C do not belong to the same divisor of the g1
k

. Otherwise, the node is said to be neutral.
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Knutsen, Lelli-Chiesa and Mongardi, Severi varieties 5

condition (1.1), there are 2.k � 1/-dimensional subloci in VjLj;ı.S/ of curves whose normal-
ization has lower gonality k. Parts (ii) and (iii) of Theorem 1.6 imply that eC enjoys properties
of a general curve of gonality min¹k; b.g C 3/=2cº with respect to pencils.

Following ideas of [9], Theorem 1.6 will be used in [27] in order to construct rational
curves in the generalized Kummer variety KŒk�1�.S/, and item (iii) will be relevant in this
setting, e.g., in the computation of the class of the rational curves. By (ii), these curves will
move in a family of dimension precisely 2k � 4. This is the expected dimension of any family
of rational curves on a .2k � 2/-dimensional hyperkähler manifold [43], whence (cf. [1, proof
of Corollary 4.8]) the constructed families of rational curves deform to a general projective
.2k � 2/-dimensional hyperkähler manifold deformation equivalent to a generalized Kummer
variety and are therefore of particular interest.

Finally, we remark that the dimensional statement in (ii) extends to curves of geometric
genus g in jLj with arbitrary singularities (cf. Theorem 5.3), as well as to K3 surfaces (cf.
Remark 5.6).

1.1. Methods of proof. Most results are proved by degeneration to a .1; n/-polarized
semiabelian surface .S0; L0/, which is constructed starting with a ruled surface R over an
elliptic curve E by identifying two sections �1 and �0 with a translation by a fixed nontorsion
point e 2 E, as in [25].

The proof of Theorem 1.1 relies on the construction of curves in S0 that are limits of
ı-nodal curves on smooth abelian surfaces, which becomes a simple combinatorial problem.

Concerning Theorems 1.4 and 1.6, the statements yielding necessary conditions for non-
emptiness of the Brill–Noether loci are based on variations of vector bundle techniques à la
Lazarsfeld and follow from a more general result providing necessary conditions for the exis-
tence of torsion free sheaves on curves on abelian surfaces (cf. Theorem 5.7 and its stronger
version Theorem A.1 in the Appendix).

The remaining parts of Theorems 1.4 and 1.6 (except for the fact that item (ii) in the latter
holds on every component of jLj1

ı;k
) are again proved by degeneration to S0. For ı D 0, the

limit curves in S0 are n-nodal curves X 2 jL0j obtained from the elliptic curve E along with
n D p � 1 points P1; : : : ; Pn 2 E, by identifying each Pi with its e-translate. In order to prove
Theorem 1.6 for ı D 0 by degeneration, one has to determine whether such an X lies in M

1

p;k;
the theory of admissible covers translates the problem into a question about the existence of
a g1

k
on E identifying any pair of points corresponding to a node of X . This can be easily

answered using intersection theory on the ruled surface Sym2.E/. The situation for ı > 0 is
slightly more involved combinatorially, but the idea is the same.

The proof of Theorem 1.4 is more demanding. A first obstacle in understanding whether
a limit curve X � S0 as above defines a point of M

r

p;d lies in the fact that linear series of
type gr

d
on smooth curves might tend to torsion free (not necessarily locally free) sheaves

on X . Furthermore, even determining the existence of degree d line bundles onX with enough
sections is hard. In order to cope with this problem, we further degenerate X (forgetting the
surface) to a curve X0 with p � 1 cusps, that is, we let e approach the zero element of E.
Line bundles on X0 then correspond to linear series on E having at least cuspidal ramification
at n points P1; : : : ; Pn. The Brill–Noether Theorem with prescribed ramification [15, 16] at
some general points then yields (i). In order to obtain (ii), we prove the existence of a family
(having the expected dimension) of birational maps � W E ! P r such that the images �.E/
are nondegenerate curves of degree d with p � 1 cusps (corresponding to special points of E
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6 Knutsen, Lelli-Chiesa and Mongardi, Severi varieties

as �.p; r; d/ < 0). This is done by resorting to Piene’s duality [42] for nondegenerate curves
in P r : with any nondegenerate curve Y � P r of normalization f W eY ! Y one associates
a dual curve Y _ � .P r/_ defined as the image of the dual map f _ W eY ! .P r/_, which sends
a point P 2 eY to the osculating hyperplane of Y at f .P / (for r > 2 the dual curve should not
be confused with the dual hypersurface, which is the closure of the image of the Gauss map).
Thanks to the duality theorem [42, Theorem 5.1], one may try to construct the dual map ��

and then recover �. This strategy proves successful since cusps of Y transform into ordinary
ramification points of Y _, hence the existence of �� can be more easily achieved than that
of �.

The proof of Theorem 1.2 does not use degeneration, but specialization to the smallest
Severi varieties (namely, those parametrizing curves of geometric genus 2), where the result
is almost trivial. Since these are contained in the closure of the Severi varieties parametrizing
curves with fewer nodes, it is not hard to deduce the result in general. The universal Severi
variety over a suitable cover of the moduli space of .1; n/-polarized abelian surfaces plays an
important role.

Finally, Theorem 1.3, as well as Theorem 1.6 (ii) for all components of the Brill–Noether
loci, follow from a bound on the dimension of any family of curves with arbitrary singulari-
ties whose normalizations possess linear series of type g1

k
(cf. Theorem 5.3). This is obtained

by bounding the corresponding family of rational curves in the generalized Kummer variety
KŒk�1�.S/ through Mori’s bend-and-break and recent results by Amerik and Verbitsky [1].
This is a nice sample of the rich interplay between the theory of abelian (and K3) surfaces and
hyperkähler manifolds.

1.2. Plan of the paper. In Section 2 we introduce the degeneration used in the proof
of the main results. In Section 3, Severi varieties and their degenerations are investigated and
Theorem 1.1 is proved. Theorem 1.2 is obtained in Section 4. The rest of the paper is devoted
to Brill–Noether theory. More precisely, in Section 5 we compute the expected dimension
of the Brill–Noether loci jLjr

ı;d
(cf. Proposition 5.1) and provide a necessary condition for

their nonemptiness (cf. Theorem 5.7). Furthermore, we bound the dimension of any family of
curves in jLj with arbitrary singularities such that their normalizations possess linear series of
type g1

k
(cf. Theorem 5.3); this proves Theorem 1.3, by Dedieu and Sernesi’s result mentioned

above, and Theorem 1.6 (ii). The rest of the proof of Theorem 1.6 unfolds Section 6, while
Theorems 1.4 and 1.5 are finally accomplished in Section 7. A stronger necessary condition
for nonemptiness of jLjr

d
in the range r � p � 1 � d � 0 is obtained in Theorem A.1 in the

Appendix. Both the statement and its proof are somewhat technical and are based on the fact
that in this range the analogues of Lazarsfeld-Mukai bundles on K3 surfaces are forced to
have nonvanishing H 1. This phenomenon does not occur on K3 surfaces and highlights the
additional complexity of abelian surfaces.

2. The degenerate abelian surface .S0; L0/

In this section we introduce the degenerate abelian surface used in the proof of the main
results. This degeneration is studied in [25] and [24] when n is either 1 or an odd prime. By
arguments analogous to those in [24], we obtain degenerate abelian surfaces for any integer
n � 1; the assumption that n is an odd prime is indeed unnecessary for our purposes.
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Knutsen, Lelli-Chiesa and Mongardi, Severi varieties 7

Definition 2.1. A proper flat family of surfaces f W S ! D over the disc D will be
called a degeneration of .1; n/-polarized abelian surfaces if

(i) S is smooth,

(ii) the fiber St over any t ¤ 0 is a smooth abelian surface,

(iii) the fiber S0 over 0 is an irreducible surface with normal crossing singularities,

(iv) there is a line bundle L on S such that LjSt is a polarization of type .1; n/ for every
t ¤ 0.

The special fiber S0 will be called a degenerate .1; n/-polarized abelian surface and the
line bundle L0 WD LjS0 a limit of polarizations of type .1; n/.

We fix notation. Given an elliptic curve E, we denote by e0 the neutral element with
respect to its group structure. To distinguish the sum in E as a group from the sum of points
in E as divisors, we denote the former by ˚ and the latter by C. The group law is defined in
such a way that

(2.1) P CQ � e0 � P ˚Q for all P;Q 2 E:

We use the notation e˚n, n 2 Z, e 2 E, for the sum e ˚ � � � ˚ e of e repeated n times,
and e˚0 D e0 by convention. We also write e D e1 	 e2 when e1 D e ˚ e2. Analogously, for
any divisor D D

P
niPi , ni 2 Z, Pi 2 E, we define D ˚ e WD

P
ni .Pi ˚ e/.

Proposition 2.2. Fix an integer n � 1 and let E be the elliptic curve defined as
E WD C=.ZnC Z�/, where � lies in the upper complex half-plane H. For a point e 2 E, let
R denote the P1-bundle P .OE ˚N / over E, with N D OE .ne � ne0/. Then the surface S0
obtained by gluing the section at infinity �1 and the zero-section �0 of R with translation by
e 2 E is a degenerate abelian surface. Furthermore, S0 carries a line bundle L0 which is the
limit of polarizations of type .1; n/ and satisfies ��L0 � �0 C nF , where � W R! S0 is the
normalization map and F denotes the numerical equivalence class of the fibers of R over E.

Proof. Consider the codimension-one boundary component of the Igusa compactifica-
tionA�.1; 1/ of the moduli space of principally polarized abelian surfacesA.1; 1/whose points
correspond to period matrices of the form 

1 0 0 �2

0 1 �2 �3

!
;

where �3 2 H and �2 2 C. By [24, Chapter II, Section 3, Chapter II, Section 5B], there is
a degenerate principally polarized abelian surface A0 associated with such a matrix coinciding
with the surface S0 in our statement when n D 1, � WD �3 and e WD Œ�2� 2 E. We denote the
corresponding family as in Definition 2.1 by ' W A! D and the line bundle on A by LA.
One can choose D such that A and A0 WD '�1.D n ¹0º/ have the forms A0 D GneA0 and
A D GneA, where G is a discrete group acting freely and properly discontinuously on some
smooth, analytic spaces eA0 and eA (cf. [24, Chapter II, Section 3A] and choose D inside U��1).
The case n D 1 now follows from [24, Chapter II, Proposition 5.18], where the class of ��L0
is computed.
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8 Knutsen, Lelli-Chiesa and Mongardi, Severi varieties

Let now n > 1. Denote by A0 the degenerate principally polarized abelian surface
constructed starting from the elliptic curve E 0 WD C=.ZC Z�=n/ and using as gluing param-
eter the point e0, which is the image of e under the isomorphism ˛ W E ! E 0 induced by
˛.z/ D z=n. We consider the degenerating family ' W A! D centered at A0 constructed
above. As in [24, pp. 237–238, proof of Theorem 4.3 (i)], one finds a subgroup Gn < G of
finite index (GnnG ' Zn) such that f 0 W S 0 WD GnneA0 ! D� is a family of .1; n/-polarized
abelian surfaces with a level structure. This reflects the fact that, given any abelian surface S
with polarization L of type .1; n/ and having fixed a level structure on it, there exists a unique
isogeny � W S ! A with kernel isomorphic to Zn such that A is an abelian surface endowed
with a principal polarization L0 and ��L0 D L (cf. [6, Proposition 4.1.2 and Remark 3.1.5]).
Since Gn is a subgroup of G, it still acts freely and properly discontinuously on eA and the
quotient space S D GnneA is smooth. We obtain in this way a degenerating family f W S ! D
which extends f 0 and, by construction, the fiber of f over 0 is the surface S0 in the statement.
If � W S ! A is the map given by taking the quotient with respect to GnnG, the line bundle
L0 is obtained by restricting ��LA to S0.

We make some remarks on S0 and its normalization R. One has KR � ��0 � �1,
whence the surface S0 has trivial dualizing bundle. The ruling of R makes it possible to iden-
tify both �1 and �0 with E. On the singular surface S0, a point x 2 �1 ' E is identified with
x ˚ e 2 �0 ' E. It is easy to verify that L20 D 2n.

Let W WD ��H 0.S0; L0/ � H
0.R; ��L0/ be the subspace of sections that are pull-

backs of sections of L0. Then jW j WD P .W / D ��jL0j � j��L0j is the linear subsystem of
curves that are inverse images of curves in jL0j under the normalization �. These are curves
C 2 j��L0j satisfying

(2.2) C \ �0 D .C \ �1/˚ e

as divisors on E ' �1 ' �0.

Lemma 2.3. The restriction map yields an isomorphism

(2.3) r W H 0.OR.�
�L0//

'
�! H 0.O�1.�

�L0//˚H
0.O�0.�

�L0//

such that s 2 W if and only if r.s/ D .s1; s0/ with s1 D T �e .s0/, where Te denotes the trans-
lation by e 2 E. In particular, we obtain isomorphisms

(2.4) H 0.S0; L0/ ' W

ˆe
'
��! H 0.OE .�

�L0//;

where ˆe is the restriction map and its inverse is given by s 7! r�1.s; T �e .s//.

Proof. (See also the proofs of [24, Chapter II, Proposition 5.45] and [25, Proposi-
tion 4.2.5].) Since ��L0 � �1 � �0 � ��1 C nF � KR C �0 C nF , we have

hi .��L0 � �1 � �0/ D 0

for i D 0; 1, which yields (2.3). The claim about the sections in W is just a reformulation of
condition (2.2). The isomorphisms in (2.4) are then immediate.

The lemma yields in particular that dim jW j D deg OE .�
�L0/ � 1 D n � 1 D dim jLt j.
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Knutsen, Lelli-Chiesa and Mongardi, Severi varieties 9

Remark 2.4. As in [25, Theorem 4.2.6], one can show that, as soon as n � 5 and e 2 E
is not 2-torsion, the line bundle L0 is very ample and defines an embedding of S0 into the
translation scroll

S0 WD
[
x2E

L.x; x ˚ e/;

where E � Pn�1 is an elliptic normal curve. This surface has degree 2n and is smooth outside
the double curve E. In this case, one has L0 ' OS0.1/.

3. Severi varieties on abelian surfaces

This section is devoted to the study of limits of nodal curves on the degenerate abelian
surface .S0; L0/. We will prove Theorem 1.1 and lay the ground for the proofs of the existence
statements in Theorems 1.6 and 1.4. First of all, we recall some background material on Severi
varieties. Let S be a projective irreducible surface with normal crossing singularities and let
jLj be a base point free, complete linear system of Cartier divisors on S whose general element
is a connected curve L of arithmetic genus p D pa.L/ with at most nodes as singularities,
located at the singular locus of S . Following [31], we denote by ¹Lº the connected component
of Hilb.S/ containing jLj.

Let ı be a nonnegative integer. We denote by VjLj;ı.S/ the locally closed subscheme
of jLj parametrizing curves C 2 jLj having only nodes as singularities, exactly ı of them
(called the marked nodes) off the singular locus of S , and such that the partial normalizationeC at these ı nodes is connected (i.e., the marked nodes are non-disconnecting nodes). We set
g WD p � ı D pa.eC/. We likewise denote by V¹Lº;ı.S/ the analogous subscheme of ¹Lº.

As customary, VjLj;ı.S/ and V¹Lº;ı.S/ will be called regular if they are smooth of
codimension ı in jLj and ¹Lº, respectively.

If S is smooth, these varieties are classically called Severi varieties of ı-nodal curves. We
keep the same name in our more general setting. Many results proved for smooth S go through.
In particular, the proofs of [31, Propositions 1.1 and 1.2] yield:

Proposition 3.1. If !S is trivial, then V¹Lº;ı.S/ is always regular when nonempty.

Remark 3.2. If S is a smooth abelian surface, then ¹Lº is fibered over the dual surface
OS and each fiber is a translate of the central fiber jLj (cf. [31]). This induces a corresponding

fibration of V¹Lº;ı.S/ over OS having central fiber equal to VjLj;ı.S/; any other fiber is the
Severi variety of ı-nodal curves in a translate of jLj and is naturally isomorphic to VjLj;ı.S/.
In particular, the regularity of V¹Lº;ı.S/ (ensured by Proposition 3.1) implies that of VjLj;ı.S/
and all of its translates.

From now on, .S; L/ will be a general smooth .1; n/-polarized abelian surface. We let
.S0; L0/ be the degenerate abelian surface from Proposition 2.2 and R the normalization of
S0, fibered over E with fiber class F .

We introduce some notation. Let l � 1 be an integer. A sequence ¹F1; : : : ; Flº of l dis-
tinct fibers on R algebraically equivalent to F is called a special l-sequence if

Fi \ �1 D .Fi�1 \ �1/˚ e for all i D 2; : : : ; l:
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10 Knutsen, Lelli-Chiesa and Mongardi, Severi varieties

A sequence ¹P1; : : : ; Plº of l distinct points on �1 ' E is called a special l-sequence if

Pi D Pi�1 ˚ e for all i D 2; : : : ; l I

in other words, the sequence is ¹P;P ˚ e; P ˚ e˚2; : : : ; P ˚ e˚.l�1/º. By definition, the
union of the fibers in a special l-sequence of fibers intersects �1 along a special l-sequence
of points. Conversely, any such sequence of points uniquely determines a special sequence
of fibers. The pair of points P0 WD P 	 e 2 �1 and PlC1 WD P ˚ e˚l 2 �0 will be called
the pair of points associated with the special l-sequence of fibers or points. We consider
P0 C PlC1 as a point in Sym2.E/; then, P0 C PlC1 naturally lies on the curve

ce;lC1 WD ¹x C .x ˚ e
˚lC1/ 2 Sym2.E/ W x 2 Eº:

More precisely, in view of the above considerations, the following holds:

Lemma 3.3. A special l-sequence of fibers determines and is determined by a point
on ce;lC1.

Figure 1 below, where the arrows between two points indicate a shift by˚e on �0, shows
a special 5-sequence of fibers ¹F1; : : : ; F5º with corresponding special 5-sequence of points
¹P1; : : : ; P5º. The associated pair of points on E ' �1 ' �0 is ¹P0; P6º. (Recall that the
identification of the two sections �1 and �0 with E is made through the fibers F .)

σ

σ

F F FF2 3 4 5F1

0

0 1 2 3 4 5

1 2 3 4 5 6

P P P P P P

P P P P P P

Figure 1. A special 5-sequence of fibers ¹F1; : : : ; F5º and points ¹P1; : : : ; P5º.

In order to study VjLj;ı.S/, we will investigate the Severi variety VjL0j;ı.S0/, where
.S0; L0/ is the degenerate abelian surface from Proposition 2.2. Henceforth, we assume that
e 2 E is a nontorsion point. We set

VjW j;ı.R/ WD �
�VjL0j;ı.S0/ � jW j WD �

�
jL0j:

We summarize some important properties of members of jW j and VjW j;ı.R/, following from
the fact that ��L0 � F D 1:

� Every member of jW j has a unique (irreducible) component that is a section of R! E

and is thus isomorphic toE; we will refer to this component as the horizontal component.

� The horizontal component cannot contain any special l-sequence of points on �1, for
any l � 2.

� VjW j;ı.R/ parametrizes precisely the members of jW j containing exactly ı disjoint fibers
algebraically equivalent to F , intersecting the horizontal component outside �1 and �0,
and such that the horizontal component intersects �1 (and �0) transversally.
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Knutsen, Lelli-Chiesa and Mongardi, Severi varieties 11

For a curve C 2 VjW j;ı.R/ with horizontal component � , we will now describe the inter-
section points of � with �1 and �0.

As soon as C contains a special l-sequence of fibers not contained in any special
.l C 1/-sequence, with associated pair .P0; PlC1/, the curve C , and more precisely its
horizontal component � , passes through the points P0 2 �1 and PlC1 2 �0 by the gluing
condition (2.2). We call such a pair of points a distinguished pair of points on � of the first
kind. On the other hand, if a point P 2 � \ �1 is not associated to any special l-sequence of
fibers contained in C with l � 1, then � must pass through P ˚ e 2 �0 and we call the pair
.P; P ˚ e/ a distinguished pair of points on � of the second kind.

Figure 2 below shows a curve C in jW j containing the special 5-sequence of fibers in
Figure 1, with horizontal component � . Its image �.C / in S0 is also shown. The distinguished
pair of points on � of the first kind is .P0; P6/.

σ

σ

F F FF2 3 4 5F1

0

Γ

ν

R

S0
ν(Γ)

C

(C)ν

0

6

0

6

P

P

P

P

Figure 2. A curve in jW j containing the special 5-sequence of fibers in Figure 1 and its image by �
in S0.

By the above argument, with any curve C 2 VjW j;ı.R/ we can associate an n-tuple of
nonnegative integers .˛0; : : : ; ˛n�1/ by setting

˛0 WD #¹distinguished pairs of points on the horizontal component � �C of the second kindº

and

˛l WD #¹special l-sequences of fibers in C not contained in any .l C 1/-sequenceº; l � 1:

Since the union of fibers in each special l-sequence intersects �1 in l points and C also has to
pass through the distinguished point P0 2 �1, we have

(3.1) n D #¹C \ �1º D
n�1X
jD0

.j C 1/ j̨ :

Furthermore, the number ı of fibers contained in C is given by

(3.2) ı D

n�1X
jD1

j j̨ ;
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12 Knutsen, Lelli-Chiesa and Mongardi, Severi varieties

while

(3.3)
n�1X
jD0

j̨ D #¹distinguished pairs of points on � (of first and second kind)º:

Remark 3.4. With the above notation, the case ı D 0 corresponds to the n-tuple
.n; 0; : : : ; 0/.

For l � 0 and any point P 2 �1, we define the divisor

Dl.P / WD

lX
iD0

.P ˚ e˚i / D P C .P ˚ e/C � � � C .P ˚ e˚l/:

The following lemma is a straightforward consequence of the above discussion along with
Lemma 2.3, which implies that a curve C 2 jW j is uniquely determined by its intersection
with �1 ' E.

Lemma 3.5. A curve C in VjW j;ı.R/ determines and is completely determined by an
n-tuple of nonnegative integers .˛0; : : : ; ˛n�1/ fulfilling (3.1) and (3.2), along with a set of
˛l � n distinct points ¹Pl;1; : : : ; Pl;˛l º on �1 ' E for each l D 0; : : : ; n � 1, such that the
following is satisfied:

(3.4)
X

0�l�n�1
1�j�˛l

Dl.Pl;j / 2 jOE .�
�L0/j; where E ' �1:

We denote by eV .˛0; : : : ; ˛n�1/ the subset of curves in VjW j;ı.R/ with associated vector
.˛0; : : : ; ˛n�1/ satisfying conditions (3.1) and (3.2). We define the following locally closed
subset of jL0j:

V.˛0; : : : ; ˛n�1/ WD ¹X D �.C / 2 jL0j W C 2 eV .˛0; : : : ; ˛n�1/º:
For any C in eV .˛0; : : : ; ˛n�1/, the images under � of the intersection points of the horizontal
component � � C with the ı fibers contained in C are the marked nodes of X D �.C / as
a curve in VjL0j;ı.S0/. In Figure 2 the marked nodes of X , coming from the one specific
special 5-sequence of fibers depicted, are circled.

We set p WD nC 1 and g WD p � ı. Note that p is the arithmetic genus of all curves
in jL0j. From (3.1)–(3.3), we have

(3.5) g D 1C #¹distinguished pairs of points on � � C º:

Lemma 3.6. Under conditions (3.1) and (3.2), the following hold:

(i) V.˛0; : : : ; ˛n�1/ fills up one or more components of VjL0j;ı.S0/ of the expected dimen-
sion n � 1 � ı D g � 2.

(ii) V¹L0º;ı.S0/ is regular (i.e., smooth of the expected dimension g) at any point of the
set V.˛0; : : : ; ˛n�1/.

Remark 3.7. In the statement of the lemma we are implicitly using the fact that
dim¹L0º D dim jL0j C 2. We refer to [24, Chapter II, Section 5C] for an explanation of the
two extra dimensions.
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Knutsen, Lelli-Chiesa and Mongardi, Severi varieties 13

Proof of Lemma 3.6. Given a member C 2 eV .˛0; : : : ; ˛n�1/, we denote, for all l with
l D 0; : : : ; n � 1, as in Lemma 3.5, by ¹Pl;j º1�j� j̨

the points on �1 ' E in the distin-
guished pairs on the horizontal component � � C . Then we have injective maps

V.˛0; : : : ; ˛n�1/
f
�! Sym˛0.E/ � � � � � Sym˛n�1.E/

h
�! Symn.E/

given by
X D �.C / 7! ¹Pl;j º 7!

X
Dl.Pl;j /:

The target space of f is irreducible of dimension
P
˛l D n � ı D dim jW j C 1 � ı, and the

image of f equals h�1jOE .��L0/j by (3.4). We make the following:

Claim 3.8. The set h�1jOE .��L0/j is nonempty and

h�1jOE .�
�L0/j ¤ Sym˛0.E/ � � � � � Sym˛n�1.E/:

Granting this, and using that jOE .��L0/j is a divisor in Symn.E/, we can conclude
that the image of the injective map f is nonempty and equidimensional of codimension one
in Sym˛0.E/ � � � � � Sym˛n�1.E/. Therefore, also V.˛0; : : : ; ˛n�1/ is nonempty and part (ii)
is a direct consequence of Proposition 3.1. Furthermore, since any curve in VjL0j;ı.S0/ lies in
V.ˇ0; : : : ; ˇn�1/ for some ˇi , it follows that V.˛0; : : : ; ˛n�1/ is the union of some irreducible
components of VjL0j;ı.S0/ of dimension n � 1 � ı D g � 2, proving (i).

It remains to verify Claim 3.8. It is enough to show that, given any pointD WD
P
Dl.Pl;j /

in the image of h and any other divisor D0 of degree n on E, we can find a point P 2 E such
that

(3.6) h.¹Pl;j ˚ P º/ D
X

Dl.Pl;j /˚ P D D ˚ P 2 jD
0
j:

But this follows from the fact that any complete linear system of degree n on E contains
elements supported at only one point, so that we in particular may find a point P 2 E such that

nP � D0 C ne0 �D;

or equivalently by (2.1), condition (3.6) is satisfied. This concludes the proof.

Remark 3.9. The proof of Claim 3.8 also shows that

h�1jAj ' h�1jOE .�
�L0/j

for all A 2 Picn.E/, where the isomorphism is given by translation.

Using (3.5), we obtain the following result:

Lemma 3.10. Let X D �.C / be a curve in V.˛0; : : : ; ˛n�1/, with � ' E the horizon-
tal component of C . Let � W eX ! X denote the partial normalization eX of X at its ı marked
nodes. Then the restriction of � to ��1.�.�// is an isomorphism and the stable model X
of eX is obtained equivalently via the morphism s W eX ! X contracting all components but
��1.�.�// or via the morphism ' W � ! X identifying each distinguished pair of points. In
particular, X has arithmetic genus g.
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14 Knutsen, Lelli-Chiesa and Mongardi, Severi varieties

The maps in the lemma can be summarized in the following commutative diagram:

� �

��

'

  

C

�

��

�.�/ � X

��1.�.�//

��

'

OO

� eX
�

OO

s
{{

X .

The two steps in ' W �
�
�! �.�/ ' ��1.�.�//

s
�! X consists of first identifying all distin-

guished pairs of points of the second kind and then identifying all distinguished pairs of points
of the first kind.

In Figure 3 below we show the curve X D �.C / from Figure 2, which has ˛5 > 0. The
normalization � separates the images of the fibers F1; : : : ; F5 from �.�/, except for the inter-
sections at the distinguished pair of pointsP0 andP6. In the stable equivalence class, all images
of the fibers are contracted, and the points P0 and P6 are identified.

normalization

ν(Γ)
X

X

= 60

6

0

0

6

P P

P

P

P

P

X

stable equivalence

µ

s

Figure 3. The curve X D �.C / from Figure 2, its normalizationeX and stable model X .

We return to the family f W S ! D in Definition 2.1 and Proposition 2.2, with e 2 E
nontorsion. Let H be the component of the relative Hilbert scheme containing P .f�L/ and
let V�

¹Lº;ı
! D� D D n ¹0º be the relative Severi variety of ı-nodal curves in H , with fiber

over t 2 D� equal to V¹Lt º;ı.St /.

Lemma 3.11. Assume that VjL0j;ı.S0/ ¤ ; and let X0 be a point of VjL0j;ı.S0/. Then
X0 sits in the closure of V�

¹Lº;ı
in H and V�

¹Lº;ı
dominates D. In particular, for general t 2 D,

the Severi variety V¹Lt º;ı.St / is nonempty and regular.
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Proof. This is proved as in [9, Lemma 1.4]; regularity is immediate from Proposi-
tion 3.1.

Now we can prove the first main result of the paper.

Proof of Theorem 1.1. By Lemma 3.6 there is a component of VjL0j;ı.S0/ obtained
by taking any n-tuple of nonnegative integers .˛0; : : : ; ˛n�1/ that fulfills (3.1)–(3.2). For
instance, take ˛0 D n � ı � 1, ˛ı D 1 and ˛i D 0 for i ¤ 0; ı. Hence, the statement follows
from Lemma 3.11 and Remark 3.2.

Lemma 3.11 also yields the existence of a partial compactification of V�
¹Lº;ı

containing
the curves in V¹L0º;ı.S0/:

Corollary 3.12. Let f W S ! D be as in Definition 2.1 and Proposition 2.2. Then there
is an f -relative Severi variety �¹Lº;ı W V¹Lº;ı ! D with fibers V¹Lt º;ı.St / for all t 2 D,
such that V¹Lº;ı is smooth of pure dimension nC 2 � ı. Moreover, each component of V¹Lº;ı
dominates D.

Proof. The same argument as in [9, Lemma 1.4] proves that every component of a Severi
variety on a single surface belongs to a component of V¹Lº;ı of dimension one more, thus
dominating D. (We remark that the nodes of a curve lying on the singular locus of S0 smooth
when S0 smooths, cf., e.g., [7, 21].) Smoothness of V¹Lº;ı follows since all fibers are smooth
by Proposition 3.1.

4. Variation of curves in moduli

In this section we will prove Theorem 1.2.
For n � 3, let A.1; n/ be the fine moduli space of abelian surfaces with polarization of

type .1; n/ and level structure of canonical type; for n D 2, we define A.1; 2/ as the moduli
space of abelian surfaces with polarization of type .1; 2/ and a suitable level structure that
makes it a fine moduli space. It is well known that dimA.1; n/ D 3. For n � 2, we consider the
universal family of abelian surfaces �n W Sn ! A.1; n/. There exists a line bundle Ln on Sn
whose restriction to the fiber of �n over a point .S; L; ˛/ 2 A.1; n/ is the .1; n/-polarization L
(and ˛ is a level structure). For any 0 � ı � n � 1, let Vn;ı be the universal Severi variety along
with the projection �n;ı W Vn;ı ! A.1; n/ with fibers V¹Lº;ı.S/. As in the proof of Corol-
lary 3.12, one shows that the scheme Vn;ı is equidimensional of dimension nC 4 � ı D g C 3
(possibly with more components). We have a moduli map  n;ı W Vn;ı !Mg mapping a curve
to the class of its normalization and we set Ag;n WD im n;ı , as in the introduction. The fibers
of  n;ı restricted to any component of Vn;ı are at least two-dimensional, due to the possibility
of moving a curve by translation on each single surface. In fact, Theorem 1.2 will follow if we
prove that a general fiber of  n;ı restricted to some component of Vn;ı has dimension 2.

First of all, we remark that for g D 2 the map  n;n�1 restricted to any component of
Vn;n�1 has two-dimensional fibers (and is thus dominant). This can be proved as follows. Let
.S; L/ be a .1; n/-polarized abelian surface and let ŒC � 2 V¹Lº;n�1.S/. The universal prop-
erty of the Jacobian J.eC/ of the normalization eC of C yields an isogeny � W J.eC/! S . We
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16 Knutsen, Lelli-Chiesa and Mongardi, Severi varieties

denote by L1 the principal polarization on J.eC/, by . OS; OL/ the dual abelian surface and by
O� W OS ! J.eC/ the dual isogeny, which satisfies O��.L1/ ' OL. The kernel of O� is a maximal
totally isotropic subgroup of the kernelK. OL/ ' Zn ˚ Zn of the isogeny � OL W

OS ! S induced
by OL (cf. [6, Proposition 6.3.5]) and is isomorphic to the kernel of � (cf. [6, Proposition 6.3.5]).
In order to conclude, it is then enough to remark that J.eC/ has finitely many subgroups of order
n and that any component of V¹Lº;n�1.S/ is two-dimensional by Proposition 3.1.

By standard deformation theory, see, e.g., [44, Section 1], the regularity of V¹Lº;ı.S/
implies that the nodes of any curve ŒC � 2 V¹Lº;ı.S/ can be smoothed independently; in par-
ticular, for any 0 � ı0 � ı, the Severi variety V¹Lº;ı.S/ is contained in the Zariski closure of
V¹Lº;ı 0.S/ in ¹Lº. As a consequence, there is a partial compactification of Vn;ı :

(4.1) Vn;ı WD

n�1[
jDı

Vn;j :

Pick any component V
�
n;n�1 of Vn;n�1. Then, for each 0 � ı < n � 1, choose compo-

nents V
�

n;ı
of Vn;ı such that

V
�
n;n�1 � V

�

n;n�2 � � � � � V
�

n;1 � V
�

n;0;

where we let V
�

n;ı be the partial compactification of V
�

n;ı
induced by (4.1). The next result

proves Theorem 1.2.

Theorem 4.1. A general fiber of the map . n;ı/jV�
n;ı

is two-dimensional.

Proof. As in [8, 46] one can prove the existence of a scheme

Wn;ı WD ¹.C;N / W C 2 V
�

n;ı 0
for some ı0 � ı and N is a subset of ı of the nodes of C º:

The scheme V
�

n;ı
can be identified with a dense open subset of Wn;ı . We also have an extended

moduli map Q n;ı W Wn;ı !Mg , mapping a pair .C;N / to the class of the partial normaliza-
tion of C at N (where Mg is the Deligne–Mumford compactification of Mg ). The result will
follow if we prove that a general fiber of Q n;ı is at most two-dimensional. Take a general curve
C 2 V

�
n;n�1 and choose a subset N of ı of its nodes. Then .C;N / 2 Wn;ı . By the result in

genus two, the fiber over Q n;ı..C;N // is (at most) two-dimensional, and the result follows by
semicontinuity.

We remark that, as in theK3 case, the following very interesting questions are still open:

Question 4.2. For a general .1; n/-polarized abelian surface .S; L/, is the Severi variety
V¹Lº;ı.S/ irreducible? Is the universal Severi variety Vn;ı irreducible?

5. Linear series on curves on abelian surfaces

5.1. The Brill–Noether loci. Given a surface S (possibly having normal crossing sin-
gularities), the moduli morphism

(5.1)  S;¹Lº;ı W V¹Lº;ı.S/!Mg
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Knutsen, Lelli-Chiesa and Mongardi, Severi varieties 17

assigns to a curve C 2 V¹Lº;ı.S/ the isomorphism class of the stable model C of its partial
normalization eC at its ı marked nodes. We sometimes simply write  to ease notation.

Having fixed two integers r � 1 and d � 2, one defines the Brill–Noether locus

Mr
g;d WD ¹ŒC � 2Mg W G

r
d .C / ¤ ;º:

This coincides with Mg if and only if the Brill–Noether number

�.g; r; d/ WD g � .r C 1/.g � d C r/

is nonnegative; if �.g; r; d/ < 0, the codimension of Mr
g;d

inside Mg is at most ��.g; r; d/
by [45].

If .S; L/ is a (possibly degenerate) .1; n/-polarized abelian surface, we define the scheme

¹Lºrı;d WD ¹C 2 V¹Lº;ı.S/ W  .C/ 2M
r

g;d º;

where M
r

g;d is the Zariski closure of Mr
g;d

in Mg . We also set

jLjrı;d WD ¹Lº
r
ı;d \ jLj:

When ı D 0, we simplify notation and denote by jLjr
d

and ¹Lºr
d

the Brill–Noether loci of
smooth curves in jLj and ¹Lº, respectively.

Proposition 5.1. Let .S; L/ be a possibly degenerate .1; n/-polarized abelian surface.
The expected dimension of every irreducible component of jLjr

ı;d
(respectively ¹Lºr

ı;d
) equals

min¹g � 2; g � 2C �.g; r; d/º (resp. min¹g; g C �.g; r; d/º).

Proof. Consider the moduli morphism  in (5.1). Let Z be an irreducible component
of jLjr

ı;d
such that  .Z/ is a component of M \  .V /, where M and V are irreducible com-

ponents of M
r

g;d and V¹Lº;ı.S/, respectively. If s is the dimension of a general fiber of  jV ,
then

dimZ � dim .Z/C s � dim .V / � codim
Mg

M C s(5.2)

D dimV � codim
Mg

M

� dimV Cmin¹�.g; r; d/; 0º:

The statement for jLjr
ı;d

then follows because dimV D g � 2. The proof for ¹Lºr
ı;d

is very
similar.

Remark 5.2. When r D 1, the scheme jLj1
ı;k

is called the k-gonal locus. This case
is quite special. For instance, if �.g; 1; k/ < 0, the Brill–Noether locus M1

g;k
is known to be

irreducible of the expected dimension 2g C 2k � 5 [3, 20]. Furthermore, a curve C lies in
jLj1

ı;k
if and only if the partial normalization eC of C at its ı marked nodes is stably equivalent

to a curve that is the domain of an admissible cover of degree k to a stable pointed curve of
genus 0 (cf. [23, Theorem 3.160]).

When r D 1 and .S; L/ is general, we can bound the dimension of the k-gonal locus
from above, even for curves with arbitrary singularities.
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18 Knutsen, Lelli-Chiesa and Mongardi, Severi varieties

Theorem 5.3. Let .S; L/ be a polarized abelian surface such that ŒL� 2 NS.S/ has no
decomposition into nontrivial effective classes. Assume that V � ¹Lº is a nonempty reduced
scheme parametrizing a flat family of irreducible curves of geometric genus g whose nor-
malizations possess linear series of type g1

k
. Let eC be the normalization of a general curve

parametrized by the family. Then

(5.3) dimV C dimG1k.
eC/ � 2k � 2:

In particular,

(5.4) dimV � min¹g; 2k � 2º:

Proof. Possibly after shrinking V and diminishing k, we may without loss of generality
assume that all linear series of type g1

k
in question are base point free. Let C ! V be the univer-

sal family. Normalizing C , and possibly after restricting to an open dense subscheme of V , we
obtain a flat familyeC ! V of smooth, irreducible curves possessing linear series of type g1

k
(cf.

[47, Theorem 1.3.2]) and a natural morphism Symk.eC=V /! Symk.S/, where Symk.eC=V / is
the relative symmetric product. Any g1

k
on the normalization of a curve in the family defines

a rational curve inside Symk.eC=V /. All such curves are mapped to distinct, rational curves
in Symk.S/ (cf., e.g., [9, Section 2]); moreover, as the linear series are base point free, none
of the curves are contained in the singular locus Sing.Symk.S//. Via the Hilbert–Chow mor-
phism � W Hilbk.S/! Symk.S/ we obtain a flat family of rational curves in Hilbk.S/ of
dimension dimV C dimG1

k
.eC/, with eC as in the statement. Any rational curve is contracted

by the composed morphism † ı �, where † W Symk.S/! S is the summation map, whence
it lies in some fiber KŒk�1�x .S/ WD .† ı �/�1.x/ � Hilbk.S/, x 2 S , which is well known to
be a smooth hyperkähler manifold of dimension 2.k � 1/ (all KŒk�1�x .S/ are isomorphic and
called generalized Kummer varieties). At the same time, having fixed a curve ŒC � 2 V and a g1

k

on its normalization, one obtains a rational curve in any fiber of † ı � by suitably translating
C in S . Hence we get a flat family of rational curves inKŒk�1�.S/ WD KŒk�1�e0 .S/ of dimension
dimV � 2C dimG1

k
.eC/. Let H � RatCurvesn.KŒk�1�.S// (with notation as in [28, p. 108])

denote the irreducible component containing this family. By [43, Corollary 5.1], we have

(5.5) dimH � dimKŒk�1�.S/ � 2 D 2k � 4:

Let X � KŒk�1�.S/ be the closure of the locus covered by the members of H and a its codi-
mension inKŒk�1�.S/. Pick a general point � 2 X and letH� � H be the subfamily of curves
passing through � . Then

(5.6) dimH� D dimH C 1 � .2k � 2 � a/ � a � 1;

using (5.5). Denote by X� � X the closure of the locus covered by the members of H� . For
general � 0 2 X� , let H�0;� � H� denote the subfamily of curves passing through � 0. We have
dimH�0;� D dimH� C 1 � dimX� by computation similar to (5.6).

Claim 5.4. We have dimH�0;� D 0.

Granting this, we get

(5.7) dimX� D dimH� C 1 � a;
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Knutsen, Lelli-Chiesa and Mongardi, Severi varieties 19

using (5.6). On the other hand, X� is birational to a subvariety of a general fiber of the rational
quotient of the desingularization ofX , whence dimX� � a by [1, Theorem 4.4]. It follows that
equality holds in (5.7), whence also in (5.6) and (5.5). Hence

2k � 4 D dimH � dimV � 2C dimG1k.
eC/;

proving (5.3). Inequality (5.4) is immediate, since dimV � g by [11, Proposition 4.16].
We are left with proving Claim 5.4. To this end, consider the incidence scheme

I WD ¹.P;Z/ W P 2 SuppZº � S �KŒk�1�.S/;

with its two projections

I
˛ //

ˇ

��

KŒk�1�.S/

S .

The map ˛ is finite of degree k. LetR � KŒk�1�.S/ denote a rational curve determined by a g1
k

on eC . The map ˇ is generically one-to-one on ˛�1.R/ and ˇ.˛�1.R// D ˇ�.˛�1.R// D C .
If the claim were false, then by Mori’s bend-and-break technique R would be alge-

braically equivalent to a curve R0 � X� having either a nonreduced component R.0/0 passing
through both � and � 0 or two distinct components R.1/0 and R.2/0 passing through � and � 0,
respectively (see [29, proof of Lemma 1.9]). Since �; � 0 62 Exc�\KŒk�1�.S/, the support of the
zero schemes parametrized by R.j /0 , for j D 0; 1; 2, spans a curve on S , so that ˇ.˛�1.R.j /0 //

is a curve on S . Hence ˇ�.˛�1.R0// � C 2 ¹Lº contains either a nonreduced component or
two distinct components, a contradiction.

Using the fact that the condition on L is open in the moduli space of polarized abelian
surfaces, and combining with Proposition 5.1, we obtain the following:

Corollary 5.5. Let .S; L/ be a general .1; n/-polarized abelian surface. If ¹Lº1
ı;k
¤ ;,

then each component has dimension min¹g; 2k � 2º and the normalization eC of a general
curve therein satisfies dimG1

k
.eC/ D max¹0; �.g; 1; k/º.

The above corollary proves Theorem 1.6 (ii). In the next section, we will provide an
independent proof of (ii) for one component of jLj1

ı;k
by degeneration, which also yields part

(iii) of the theorem. As a further consequence, we can prove Theorem 1.3.

Proof of Theorem 1.3. Let Vg � ¹Lº be any component of the locus parametrizing irre-
ducible curves of geometric genus g. Then dimVg D g by [11, Proposition 4.16]. Therefore,
by Theorem 5.3, a general curve parametrized by Vg has nontrigonal normalization as soon
as g � 5. By [11, Proposition 4.16], it must therefore be nodal.

Remark 5.6. Theorem 5.3 stills holds with basically the same proof if one replaces
.S; L/ with a general primitively polarized K3 surface. As a consequence, the same applies
to Corollary 5.5 and Theorem 1.3; in particular, the former implies that [9, Theorem 0.1 (ii)]
holds on any component of the k-gonal locus, and the latter improves [11, Proposition 4.10].
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20 Knutsen, Lelli-Chiesa and Mongardi, Severi varieties

5.2. Necessary conditions for nonemptiness of Brill–Noether loci. The next result
proves Theorem 1.4 (iii), as the condition on ŒC � 2 NS.S/ is open in the moduli space of abel-
ian surfaces.

Theorem 5.7. LetC be a reduced and irreducible curve of arithmetic genus p D pa.C /
on an abelian surface S such that ŒC � 2 NS.S/ has no decomposition into nontrivial effective
classes. Assume that C possesses a torsion free rank one sheaf A such that deg A D d and
h0.A/ D r C 1. Then one has

(5.8) �.p; r; d/ � �r.r C 2/

or, equivalently,

(5.9) .r C 1/d � r.p � 1/:

In the case where C is a smooth curve and A is a line bundle, this result is one of the two
statements in the main theorem of [40]. The proof we present here is slightly simpler. We need
the following variant of standard results (cf. [32]).

Lemma 5.8. Let F be a sheaf of positive rank on a smooth projective surface X that is
generically generated by global sections and such that h2.F ˝ !X / D 0. Then:

(i) c1.F / is represented by an effective nonzero divisor.

(ii) If F is nonsimple (i.e. it has nontrivial endomorphisms), then c1.F / can be represented
by a sum of two effective nonzero divisors.

Proof. We first prove (i). Let T .F / be the torsion subsheaf of F ; set F0 WD F =T .F /.
Then c1.F / D c1.F0/C c1.T .F // and c1.T .F // is represented by a nonnegative linear
combination of the codimension-one irreducible components of the support of T .F /, if any.
Moreover, F0 is torsion free of positive rank and, being a quotient of F , is globally generated
off a codimension-one set and satisfies h2.F0 ˝ !X / D 0. We may therefore assume that F is
torsion free.

Let F 0 denote the image of the evaluation mapH 0.F /˝OX ! F , which is generically
surjective by assumption. We have c1.F / D c1.F 0/CD, where D is effective and is zero if
and only if the evaluation map is surjective off a finite set. The sheaf F 0 is torsion free of posi-
tive rank and generated by its global sections. By a standard argument as in [32, p. 302], c1.F 0/
is represented by an effective divisor, which is zero if and only if F 0 is trivial. We are now done,
unless F 0 is trivial and D is zero, which means that we have an injection F 0 ' ˚OX ! F

with cokernel supported on a finite set. But this implies h2.F ˝ !X / D h2.˚!X / > 0, a con-
tradiction.

We next prove (ii). If F is nonsimple, then by standard arguments as in, e.g., [32, proof
of Lemma 1.3], there exists a nonzero endomorphism � W F ! F dropping rank everywhere.
The sheaves N WD im � and M WD coker � have positive ranks, and, being quotients of F , are
generically globally generated and satisfy

H 2.N ˝ !X / D H
2.M ˝ !X / D H

2.F ˝ !X / D 0:

Hence, by (i), both c1.N / and c1.M/ are represented by an effective nonzero divisor. Since
c1.F / D c1.N /C c1.M/, the result follows.
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Proof of Theorem 5.7. Let A0 denote the globally generated part of A, that is, the image
of the evaluation mapH 0.A/˝OC !A. Then h0.A0/D h0.A/ and deg A0 � deg A, whence
it suffices to prove the statement for A0. We may thus assume that A itself is globally generated.

We consider A as a torsion sheaf on S . By, e.g., [22, Lemma 2.2], the kernel of the eval-
uation map is a vector bundle, whose dual we denote by EC;A. This gives the exact sequence

0 ����! E_C;A ����! H 0.A/˝OS
evS;A
����! A ����! 0:

This sequence and its dual trivially yield

rk EC;A D r C 1; c1.EC;A/ D ŒC �; c2.EC;A/ D d; �.EC;A/ D p � d � 1;(5.10)

h0.E_C;A/ D 0 and h0.EC;A/ � r C 1;(5.11)

EC;A is globally generated off C :(5.12)

By (5.10)–(5.12), along with Lemma 5.8 (ii) and our assumptions on ŒC �, we have that EC;A is
simple. A simple vector bundle E on an abelian surface must satisfy

(5.13)
1

2
c1.E/

2
� rk E � �.E/:

(Indeed, by Serre duality, 1 D h0.E ˝ E�/ D h2.E ˝ E�/ D 1
2
.�.E ˝ E�/C h1.E ˝ E�//;

moreover, h1.E ˝ E�/ � 2, cf., e.g., [6, proof of 10.4.4, p. 296], whence (5.13) follows by
Riemann–Roch.) The desired inequality (5.8) now follows from (5.10).

As a consequence, we obtain a result in the spirit of [9, Theorem 3.1].

Theorem 5.9. Let C be an integral curve of arithmetic genus p D pa.C / on an abel-
ian surface S such that ŒC � 2 NS.S/ has no decomposition into nontrivial effective classes.
Assume that the normalization of C possesses a gr

d
. Let g be the geometric genus of C and set

ı D p � g. Then

(5.14) �.p; ˛r; ˛d C ı/ � �˛r.˛r C 2/; i.e., ı � ˛.r.g � d˛ � 1/ � d/;

where ˛ D ˛.p; r; d; ı/ WD b r.g�1/Cd.r�1/
2rd

c.

Proof. Let � W eC !C be the normalization ofC . There exists a line bundleA 2 Picd .eC/
such that h0.eC ;A/ � r C 1. Then, for any positive integer l , the sheaf Al WD ��.A

˝l/ is tor-
sion free of rank one on C with

h0.Al/ D h
0.A˝l/ � lr C 1 and deg Al D deg.A˝l/C ı D ld C ı:

We have �.Al/ � �.p; lr; ld C ı/. Theorem 5.7 then yields

(5.15) �.p; lr; ld C ı/ D l2r.d � r/ � l.gr C r � d/C ı � �lr.lr C 2/

or, equivalently,
l2rd � l.gr � r � d/C ı � 0:

This quadratic polynomial attains its minimum for l0 D
gr�r�d
2rd

. Inequality (5.15) therefore
holds for the closest integer to l0, which is ˛. This proves (5.14).

 - 10.1515/crelle-2016-0029
Downloaded from PubFactory at 08/12/2016 03:20:18PM by margherita.lelli@unipi.it

via Margherita Lelli-Chiesa



22 Knutsen, Lelli-Chiesa and Mongardi, Severi varieties

Remark 5.10. For ı D 0, condition (5.14) reduces to (5.8) again. Also note that (5.14)
is equivalent to the condition that �.p; lr; ld C ı/C lr.lr C 2/ � 0 for all integers l � 0, as
seen in the last proof. Since �.p; lr; ld C ı1/ � �.p; lr; ld C ı2/whenever ı1 � ı2, it follows
that for fixed p, r and d , there is an integer ı0 � 0 such that (5.14) is satisfied if and only
if ı � ı0.

Remark 5.11. In the case r D 1, setting d D k, condition (5.14) reads like (1.1). Thus
Theorem 5.9 proves the “only if” part of Theorem 1.6 (i). However, Theorem 5.9 does not
require the curves to be nodal, whence (1.1) is also necessary for the nonemptiness of V as in
Theorem 5.3.

Remark 5.12. We spend a few words on the optimality of Theorem 5.7. The result
is optimal for r D 1 because the condition d � r.r C 1/ is automatically fulfilled. It turns
out that the theorem is optimal even for r < p � 1 � d . Indeed, in this range the inequality
�.p; r; d/ � �r.r C 2/ is also sufficient for nonemptiness of jLjr

d
, as it implies the condition

d � r.r C 1/ in Theorem 1.4 (ii).
However, the result is not optimal when we have 0 � p � 1 � d � r , as shown by

Examples 5.13–5.15 below. In the Appendix we will see that the bound (5.8) in Theorem 5.7
can be considerably improved for 0 � p � 1 � d � r (cf. Theorem A.1) as in this range the
bundles EC;A are forced to have nonvanishing H 1 by (5.10) and (5.11). This behavior never
occurs on K3 surfaces, where Lazarsfeld–Mukai bundles have vanishing H 1. This stronger
version of Theorem 5.7 is postponed until the Appendix, since it is a bit technical and neither
the result nor its proof are used in the rest of the paper.

Example 5.13. For r D 2, d D 4 and p D 6, inequality (5.8) is satisfied. However, any
smooth curve of genus at least 4 possessing a g24 is hyperelliptic and thus jLj24 D jLj

1
2 D ;

because �.6; 1; 2/ < �3.

Example 5.14. For r D 3, d D 7 and p D 10, inequality (5.8) is satisfied. Assume the
existence of a curve C 2 jLj37. Since jLj36 D jLj

1
2 D ;, any g37 on C would define a bira-

tional map C ! X � P3, where X is a nondegenerate space curve of degree 7, contradicting
Castelnuovo’s bound.

Example 5.15. This example is of particular interest, since it highlights yet another
major difference with the K3 setting. Let r D 2, d D 5 and p D 7. Then the bound (5.8) is
satisfied and any g25 on a curve C 2 jLj25 should be base point free since jLj24 D jLj

1
2 D ;. We

conclude that jLj25 D ; because the arithmetic genus of any plane quintic curve is 6.
On the other hand, Theorem 1.6 (i) will show that the locus jLj11;2 is nonempty, that is,

there is a nodal curve C in jLj whose normalization has genus 6 and possesses a g12 , whence
also a g24 . Pushing the latter down to C , we see that C possesses a torsion free sheaf A with
d D deg A D 5 and r D h0.A/ � 1 D 2.

This phenomenon does not occur on K3 surfaces: if C is an irreducible curve on a K3
surface S and A is a torsion free sheaf on C of degree d , then .C;A/ can be deformed to
a pair .C1; A1/ such that C1 � S is a smooth curve and A1 2 Grd .C1/ with r D h0.A/ � 1
(cf. [22, Proposition 2.5]).
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6. k-gonal loci on abelian surfaces

The aim of this section is to study the k-gonal loci jLj1
ı;k

and prove the remaining part
of Theorem 1.6. We again use the degenerate abelian surface .S0; L0/ and the same notation
as in Section 3.

Let X D �.C / 2 V.˛0; : : : ; ˛n�1/ and let X be the stable model of the partial normal-
ization of X at its ı marked nodes. We identify the horizontal component � � C with E and
define the scheme:3)

G1k.X/ WD ¹g 2 G
1
k.E/ W dim g.�P �P˚e˚l/ � 0 for all distinguished pairs .P; P˚e˚l/º:

Definition 6.1. We define V k.˛0; : : : ; ˛n�1/ to be the closed subset of V.˛0; : : : ; ˛n�1/
consisting of curves X D �.C / such that G1

k
.X/ ¤ ;.

The following holds:

Lemma 6.2. Let X D �.C / be a curve in V.˛0; : : : ; ˛n�1/. The following conditions
are equivalent:

(i) X lies in jL0j1ı;k .

(ii) X admits a morphism of degree � k onto P1.

(iii) X lies in V k.˛0; : : : ; ˛n�1/.

In particular, V k.˛0; : : : ; ˛n�1/ fills up one or more components of jL0j1ı;k .

Proof. By definition, (i) holds if and only if X is stably equivalent to a curve that is
the domain of an admissible cover of degree � k to a stable pointed curve of genus 0 (cf.
[23, Theorem 3.160]). By the definition of admissible cover [23, Definition 3.149], the domain
of such an admissible cover has to be obtained from the normalization eX of X by attaching to
it a rational bridge for every pair of points mapping to a node ofX . Moreover, the restriction of
the cover to the component eX has to identify any such pair of points and thus factors throughX .
As a consequence, (i) is equivalent to (ii). Finally, the equivalence between (ii) and (iii) is clear
by Lemma 3.10.

We now translate nonemptiness of V k.˛0; : : : ; ˛n�1/ into a problem of intersection the-
ory on Sym2.E/. First of all, we recall that the variety Pic2.E/ is isomorphic to E: indeed,
fixing any point e 2 E, we obtain distinct line bundles OE .x C e/ for all x 2 E. Moreover,
q W Sym2.E/! E ' Pic2.E/ is a ruled surface with fiber over a point x 2 E given by the
linear system jx C ej, which is of type g12 . We denote the class of the fibers by f , and the fiber
over a point x 2 E by fx . For each y 2 E one defines a section of q by setting

sy WD ¹x C y W x 2 Eº:

Let s be its algebraic equivalence class. Since for y ¤ y0 the sections sy and sy0 intersect
transversally in the point y C y0, we have s2 D 1. In particular, one hasKSym2.E/ � �2sC f .

3) If g D .A; V / is a gr
d

on a smooth curve, we will denote by dim g the dimension of PV . For any point P
on the curve we set g.�P / WD .A.�P /; V \H0.A.�P ///.
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Now, we recall the definition of some curves in Sym2.E/, already introduced in Sec-
tion 3. Having fixed a positive integer l and a point y 2 E, we set

cy;l WD ¹x C .x ˚ y
˚l/ 2 Sym2.E/ W x 2 Eº:

For fixed l , these curves are all algebraically equivalent as y varies. Clearly ce0;l D � ' E,
the diagonal in Sym2.E/; the Riemann–Hurwitz formula thus yields ce0;l � f D 4. Also note
that cy;l � s D 2, the two intersection points of cy;l with the section sy equal to y C y˚l and
y	l C y. This gives

cy;l � � � 4s � 2f:

The Brill–Noether variety G1
k
.E/ is irreducible of dimension 2k � 3. To each g1

k
, call

it g, on E we associate a curve

Cg WD ¹x C y 2 Sym2.E/ W g.�x � y/ � 0º

in Sym2.E/. To compute the class of this curve, note that Cg �� D 2k again by Riemann–
Hurwitz, and that Cg � s D k � 1 since there is a unique element of g containing a fixed point
x 2 E. Hence

Cg � .k � 2/sC f DW Ck :

(Equivalently, the class of Cg can be found by specializing g to a g12 plus .k � 2/ fixed points.)
We have that Ck � cy;l D 2k.

Lemma 6.3. For general y 2 E, the following are satisfied:

(i) No curve cy;l is contained in a curve Cg.

(ii) For general g, the curve Cg intersects each cy;l transversally in 2k distinct points; in
addition, none of these 2k points is fixed varying g.

(iii) For general g, the nonreduced divisors in g do not contain any x C x0 2
S
l�1 cy;l .

Proof. By moving y, each cy;l moves in a one-dimensional family containing the dia-
gonal � obtained for y D e0. Since � is not contained in any Cg, (i) follows. Similarly, it
suffices to prove the first statement in (ii) for the intersection with � of a Cg, which are the
ramification points of g. Hence the first part of (ii) follows, and the last part is proved in the
same way.

To prove (iii), note that the nonreduced divisors in g are finitely many, given by the
ramification, and there are finitely many pairs x C x0 2 Sym2.E/ contained in these divisors,
whence in particular only finitely many of the form x C .x ˚ e˚l/ for some e 2 E and l � 1.
Then the assertion follows for general y 2 E.

We can now prove the following, letting e 2 E (from Proposition 2.2) be a general point
in order to apply the last lemma:

Proposition 6.4. If (3.1), (3.2) and

(6.1) j̨ � 2k for all 0 � j � n � 1

hold, then the variety V k.˛0; : : : ; ˛n�1/ is nonempty and all irreducible components of jL0j1ı;k
contained in V k.˛0; : : : ; ˛n�1/ have dimension equal to min¹2k � 4; g � 2º. Furthermore, for
a general curve X D �.C / 2 V k.˛0; : : : ; ˛n�1/, the scheme G1

k
.X/ is reduced of dimension

max¹0; �.g; 1; k/º.
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Proof. We consider the following incidence variety, which is nonempty by (6.1) and
Lemma 6.3 (ii):

I WD
°
.g; ¹xl;j º0�l�n�1

1�j�˛l

/ W g 2 G1k.E/; xl;j D Pl;j C .Pl;j ˚ e
˚.lC1// distinct points

of Cg \ ce;lC1

±
:

Since a general fiber of the projection p W I ! G1
k
.E/ is finite and reduced by Lemma 6.3 (ii),

the scheme I itself is reduced. Let

q W I ! Sym˛0.E/ � � � � � Sym˛n�1.E/

and
� W I ! Symn.E/

map a point .g; ¹xl;j ºl;j / 2 I to ¹Pl;j º and OE .
P
l;j Dl.Pl;j //, respectively. By proceeding

as in the proof of Lemma 3.6, one verifies that ��1jOE .��L0/j has codimension one in I .
Indeed, given ¹Pl;j º 2 Sym˛0.E/ � � � � � Sym˛n�1.E/ such that all divisors

xl;j D Pl;j C .Pl;j ˚ e
˚.lC1// 2 ce;lC1

belong to the same curve Cg, with g 2 G1
k
.E/, then for any point P 2 E also the divisors

.Pl;j˚P /C.Pl;j˚e
˚.lC1/˚P / all belong to the same curve Cg0 with g0 2 G1

k
.E/, that is,

.g0; ¹xl;j˚P ºl;j / 2 I . More precisely, this shows that ��1jOE .��L0/j ' ��1jAj, where the
isomorphism is given by translation, for all line bundles A 2 Picn.E/ (cf. Remark 3.7) and
in particular ��1jOE .��L0/j is reduced. By Lemma 3.5, the scheme q.��1jOE .��L0/j/ is
contained in f .V .˛0; : : : ; ˛n�1//, where f is the injection in the proof of Lemma 3.6. Then
Definition 6.1 and Lemma 6.2 imply that q.��1jOE .��L0/j/ equals f .V k.˛0; : : : ; ˛n�1//
and ��1jOE .��L0/j is isomorphic to the scheme G 1

k
.V k.˛0; : : : ; ˛n�1// parametrizing pairs

.X;g/ with X D �.C / 2 V k.˛0; : : : ; ˛n�1/ and g 2 G1
k
.X/.

When g > 2.k � 1/, this shows that V k.˛0; : : : ; ˛n�1/ is nonempty and equidimensional
of dimension 2k � 4; moreover, for a general X 2 V k.˛0; : : : ; ˛n�1/ the variety G1

k
.X/ is

reduced and zero-dimensional. When g � 2.k � 1/, one has

V k.˛0; : : : ; ˛n�1/ D V.˛0; : : : ; ˛n�1/

and G1
k
.X/ is reduced of dimension

2k � 4 � .g � 2/ D �.g; 1; k/

for a general X 2 V.˛0; : : : ; ˛n�1/. The fact that V k.˛0; : : : ; ˛n�1/ is the union of irreducible
components of V k

jL0j;ı
.S0/ follows from Lemma 6.2.

Recall Corollary 3.12 and the notation therein. We have an f -relative Severi variety
�jLj;ı W VjLj;ı ! D, where VjLj;ı WD V¹Lº;ı\P .f�L/, with fibers VjLt j;ı.St /. One can define
the relative k-gonal loci ¹Lº1

ı;k
� V¹Lº;ı and jLj1

ı;k
� VjLj;ı in the obvious way, by extend-

ing the moduli map (5.1) to the whole of V¹Lº;ı . Clearly, one has

¹Lº1ı;k D V¹Lº;ı and jLj1ı;k D VjLj;ı if g � 2.k � 1/:

Moreover, the same argument as in the proof of Proposition 5.1 shows that the expected dimen-
sions of ¹Lº1

ı;k
and jLj1

ı;k
are min¹2k � 1; g C 1º and min¹2k � 3; g � 1º, respectively. We

therefore have the following.
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26 Knutsen, Lelli-Chiesa and Mongardi, Severi varieties

Proposition 6.5. Assume that V0 is a component of jL0j1ı;k of the expected dimension
min¹2k � 4; g � 2º. Then V0 is contained in an irreducible component V of jLj1

ı;k
dominating

D and of dimension dimV0 C 1.

Corollary 6.6. Let .˛0; : : : ; ˛n�1/ satisfy (3.1), (3.2) and (6.1) and let t 2 D� be gen-
eral. Then:

(i) jLt j1ı;k has a component Vt of the expected dimension min¹2.k � 2/; g � 2º such that
the limit of Vt when St tends to S0 is a component of V k.˛0; : : : ; ˛n�1/.

(ii) For a general curve Ct in Vt with normalization eC t , the variety G1
k
.eC t / is reduced of

dimension max¹0; �.g; 1; k/º.

(iii) A general g1
k

in any component ofG1
k
.eC t / is base point free and has simple ramification.

(iv) The ı nodes of Ct are non-neutral with respect to a general g1
k

in any component
of G1

k
.eC t /.

Proof. From Proposition 6.4, we know that any component of V k.˛0; : : : ; ˛n�1/ has
dimension min¹2.k � 2/; g � 2º. Then Proposition 6.5 yields (i). The last statement of Propo-
sition 6.4 implies (ii).

Statements (iii) and (iv) are proved by degeneration to a general curve X D �.C / in
V k.˛1; : : : ; ˛n/. Let � W eX ! X denote the normalization of X at its ı marked nodes. By
Lemmas 3.10 and 6.2, the stable model X of eX is obtained from the horizontal component
� ' E of C identifying g � 1 pairs of points in a general g D g1

k
on E, which is what the

map ' W � ! X in Lemma 3.10 does. Being general, g is base point free and therefore defines
a degree k morphism to P1, which factors as

g W �
'
�! X

g
�! P1:

By generality of g, the ramification of g is simple, and by Lemma 6.3 (iii), the nonreduced
fibers of g do not contain any pair of points identified by '. Hence the fibers of g are all
supported in at least k � 1 distinct points. By deformation, the same holds for a general g1

k
in

any component of G1
k
.eC t /, which proves (iii).

To prove (iv), let s W eX ! X be the contraction of all components except for ��1.�.�//
(this can be identified with �.�/), as in Lemma 3.10 (and Figure 3). Under g ı s W eX ! P1,
no pairs of points that are inverse images of the marked nodes on X are identified. This
proves (iv).

We can now finish the proof of Theorem 1.6.

Proof of Theorem 1.6. We can assume that ı � p � 2 and p � 3. The only if part of (i)
is Theorem 5.9. The rest follows from Corollaries 5.5 and 6.6 and the following lemma.

Lemma 6.7. Let n; k be integers with n � 2, k � 2 and let 0 � ı � p � 2 satisfy (1.1).
Then there are integers j̨ such that (3.1), (3.2) and (6.1) hold.

Proof. The proof proceeds by induction on ı0.n; k/ � ı � p � 2, with ı0.n; k/ the
minimal integer ı satisfying (1.1) for fixed n and k (see Remark 5.10). It can be written explic-
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itly in the following way: we first define

m D m.n; k/ WD max¹l 2 Z W kl.l C 1/ � nº;

and

t D t .n; k/ WD max¹l 2 Z W km.mC 1/C l.mC 1/ � nº; i.e., t D

�
n

mC 1

�
�mkI

then there is an integer � such that

n D km.mC 1/C t .mC 1/C �;

and we notice that 0 � t < 2k and 0 � � � m. An easy computation gives

ı0.n; k/ WD km.m � 1/C tmC � D

�
mn

mC 1

�
�mk:

We first provide integers j̨ satisfying (6.1), (3.1) and (3.2) for ı0.n; k/. If � D 0, let

j̨ D

8̂<̂
:
2k for j D 0; : : : ; m � 1;

t for j D m;

0 for j > m:

If t D 0 and � > 0, let

j̨ D

8̂̂̂̂
<̂
ˆ̂̂:
2k for j D 0; : : : ; m � 2;

2k � 1 for j D m � 1;

1 for j D m � 1C �;

0 otherwise:

Finally, if t > 0 and � > 0, let

j̨ D

8̂̂̂̂
<̂
ˆ̂̂:
2k for j D 0; : : : ; m � 1;

t � 1 for j D m;

1 for j D mC �;

0 otherwise:

The induction step consists in showing that, as soon some integers j̨ satisfy (6.1),
(3.1) and (3.2) for ı D ı1 < p � 2, there are integers ˛0j satisfying (6.1), (3.1) and (3.2) for
ı D ı1 C 1. Let h be the largest integer such that ˛h > 0. If ˛h � 2, we set

˛0j D

8̂<̂
:

j̨ � 2 if j D h;

1 if j D 2hC 1;

j̨ otherwise:

If ˛h D 1, pick the largest integer h1 < h such that ˛h1 > 0. (This h1 exists, since otherwise
n D hC 1 by (3.1) and ı1 D h D n � 1 by (3.2), a contradiction.) We then set

˛0j D

8̂<̂
:

j̨ � 1 if j D h or j D h1;

1 if j D hC h1 C 1;

j̨ otherwise:

One can easily check that these integers satisfy the desired properties.
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28 Knutsen, Lelli-Chiesa and Mongardi, Severi varieties

Remark 6.8. The fact that there is one component of jLj1
ı;k

satisfying (ii) in Theo-
rem 1.6 also follows from Corollary 6.6 and Lemma 6.7. Corollary 5.5 is only needed to prove
that (ii) holds on all components of jLj1

ı;k
.

7. Linear series of type gr
d

with r � 2 on smooth curves

In this section, we will investigate the varieties jLjr
d

and ¹Lºr
d

for r � 2, as defined
in Section 5. For convenience, the Severi varieties V¹Lº;0.S/ and VjLj;0.S/ will be denoted by
¹Lºsm and jLjsm, respectively; the same notation will be used for the degenerate abelian surface
.S0; L0/. Similarly, in the f -relative setting (cf. Corollary 3.12) we set

¹Lºsm WD V¹Lº;0 and jLjsm WD VjLj;0 D V¹Lº;0 \ P .f�L/:

When S is smooth, we consider the schemes and morphisms

G rd .jLj/! jLjsm and G rd .¹Lº/! ¹Lºsm

with fiber over a smooth curve C equal to Gr
d
.C /.

We proceed again by degeneration to the surface S0 and consider irreducible curves
X 2 V.n; 0; : : : ; 0/ D jL0jsm; such an X is stable as it is obtained from an irreducible curve
� ' E lying onR, by identifying n D p�1 pairs of points .P1; P1˚e/; : : : ; .Pp�1; Pp�1˚e/.
We consider the Brill–Noether variety

Grd .X/ WD ¹g 2 G
r
d .E/ W dim g.�Pi � Pi ˚ e/ D dim g.�Pi / D dim g.�Pi ˚ e/ D r � 1

for i D 1; : : : ; p � 1º:

Since r � 2, it follows that Gr
d
.X/ is non-compact and is open but not necessarily dense in the

generalized Brill–Noether locus Gr
d
.X/, which is defined as

Gr
d
.X/ WD ¹.B; V / W B 2 J

d
.X/; V 2 G.r C 1;H 0.B//º;

where J
d
.X/ is the compactified Jacobian parametrizing torsion free sheaves of rank 1 and

degree d on X (cf, e.g., [23, §5.A] for background). Set theoretically, one has

Gr
d
.X/ WD ¹g 2Grd�m.E/ W 0 � m � p � 1; there is ¹i1; : : : ; ip�1�mº � ¹1; : : : ; p � 1º with

dim g.�Pik�Pik˚e/D dim g.�Pik /D dim g.�Pik˚e/D r�1

for 1 � k � p � 1 �mºI

note that a linear series g 2 Gr
d�m

.E/ as above lies in the Brill–Noether varietyGr
d
.eX/, whereeX is the normalization of X at the m points ¹P1; : : : ; Pp�1º n ¹Pi1 ; : : : ; Pip�1�mº.

By moving X 2 ¹L0ºsm, we obtain the scheme

G rd .¹L0.e; p/º/ WD ¹g 2G
r
d .E/ W there exist distinct points P1; : : : ; Pp�1 2 E with

dim g.�Pi�Pi˚e/D dim g.�Pi /D dim g.�Pi˚e/D r�1

for i D 1; : : : ; p � 1º;

where we use the notation L0.e; p/ in order to remember both the gluing parameter e and
the number of pairs of points we identify. Notice that the definition of G r

d
.¹L0.e; p/º/ makes

sense even when e is a torsion point. The variety G r
d
.jL0.e; p/j/ is defined in the same way

with the further requirement that P1 ˚ � � � ˚ Pp�1 is constant (indeed, when e is not a tor-
sion point, we have to impose that P1 C � � � C Pp�1 2 jOE .��L0.e; p//j). Analogously, one
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defines the generalized Brill–Noether varieties G
r

d .¹L0.e; p/º/ and G
r

d .jL0.e; p/j/. Note that,
being open in G

r

d .jL0.e; p/j/, the scheme G r
d
.jL0.e; p/j/ has expected dimension

expdim G rd .jL0.e; p/j/ D p � 2C �.p; r; d/:

We denote by jL0.e; p/j
r

d the image in jL0.e; p/jsm of the natural projection

�0 W G
r

d .jL0.e; p/j/! jL0.e; p/jsm � jL0.e; p/j;

and by jL0.e; p/jrd the image via �0 of G r
d
.jL0.e; p/j/. Note that jL0.e; p/j

r

d is closed in
jL0.e; p/jsm but not in jL0.e; p/j.

If e is not a torsion point, we look at the family of .1; n/-polarized abelian surfaces
f W S ! D with central fiber S0 constructed in Section 2.

Proposition 7.1. If G r
d
.jL0.e; p/j/ has an irreducible component of the expected dimen-

sion p � 2C �.p; r; d/ whose general point defines a birational map to P r , then the same
holds for G r

d
.jLt j/ with t 2 D general.

Analogously, if jL0.e; p/jrd has an irreducible component

Z � V.n; 0; : : : ; 0/ D jL0.e; p/jsm

of the expected dimension min¹p � 2; p � 2C �.p; r; d/º, then the same holds for jLt jrd with
t 2 D general.

Proof. We use the existence of a scheme s W G
r

d .jLj/! D with general fiber equal
to G r

d
.jLt j/ and central fiber G

r

d .jL0.e; p/j/, along with a projection

� W G
r

d .jLj/! jLjsm D VjLj;0:

The image of � defines a scheme t W jLjr
d
! D with general fiber given by jLt jrd and central

fiber equal to jL0.e; p/j
r

d . As in the proof of Proposition 5.1, one shows that the expected
dimension of jLjr

d
is min¹p � 1; p � 1C �.p; r; d/º, and similarly the expected dimension of

G
r

d .jLj/ is p � 1C �.p; r; d/.
Because G r

d
.jL0.e; p/j/ (respectively, jL0.e; p/jrd ) is open (not necessarily dense) in

G
r

d .jL0.e; p/j/ (respectively, jL0.e; p/j
r

d ), the hypotheses yield that the central fiber of s
(respectively, t ) is nonempty with a component of dimension equal to expdim G

r

d .jLj/ � 1

(respectively, expdim jLjr
d
� 1). The dimensional statement thus follows from upper semicon-

tinuity (as both t and s are locally of finite type). The statement concerning birationality is
a straightforward consequence of the fact that birational linear series form an open subscheme
of G

r

d .jLj/.

In order to study jL0.e; p/jrd and G r
d
.jL0.e; p/j/ for a general e 2 E, we perform a fur-

ther degeneration, namely, we let e approach the neutral element e0 2 E. This method proves
helpful:

Lemma 7.2. If G
r

d .jL0.e0; p/j/ has an irreducible component of the expected dimen-
sion whose general element is birational, the same holds for G

r

d .jL0.e; p/j/ with e 2 E gen-
eral. The dimensional statement still holds if one replaces G

r

d .jL0.e0; p/j/ and G
r

d .jL0.e; p/j/

with jL0.e0; p/jrd and jL0.e; p/jrd , respectively.
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Proof. The statement follows from the existence of a scheme G
r

d � G
r
d
.E/ �E of

expected dimension p C �.p; r; d/ such that the fiber of the second projection

G
r

d ! E

over a point e 2 E coincides with G
r

d .jL0.e; p/j/.

The study of the Brill–Noether locus jL0.e0; p/jrd translates into a problem of linear
series with prescribed ramification; we recall some basic theory, first developed by Eisenbud
and Harris in [15,16]. LetC be a smooth irreducible curve of genus g; fix g D .A; V / 2 Gr

d
.C /

and P 2 C . The vanishing sequence a.g; P / D .a0.g; P /; : : : ; ar.g; P // of g at P is obtained
by ordering increasingly the set ¹ordP �º�2V while the ramification sequence of g at P is
defined as

b.g; P / WD a.g; P / � .0; 1; : : : ; i; : : : ; r/:

We say that g has ordinary (or simple) ramification at P if b.g; P / D .0; 0; : : : ; 0; 1/.
Having fixed m ramification sequences b1; : : : ; bm and m points P1; : : : ; Pm 2 C , one

defines the variety of linear series with ramification at least bi in Pi as

Grd .C; .Pi ; b
i /miD1/ WD ¹g 2 G

r
d .C / W b.g; Pi / � b

i for i D 1; : : : ; mºI

this has expected dimension equal to the adjusted Brill–Noether number

�.g; r; d/ �

mX
iD1

rX
jD0

bij :

Note that the condition g 2 G r
d
.¹L0.e0; p/º/ is equivalent to the existence of p � 1 points

P1; : : : ; Pp�1 such that
b.g; Pi / D .0; 1; : : : ; 1/I

in particular, g should lie in the variety Gr
d
.E; .Pi ; .0; 1; : : : ; 1//

p�1
iD1 /, which has expected

dimension equal to
�.1; r; d/ � r.p � 1/ D �.p; r; d/:

If g is base point free and defines a birational map �jgj W E ! P r , we are requiring that the
curve �jgj.E/ has p � 1 cusps at the images of the points Pi .

Remark 7.3. Every linear series g of type gr
d

on a smooth curve C of genus g satisfiesX
P2C

rX
jD0

bj .g; P / D .r C 1/d C .r C 1/r.g � 1/

by the Plücker formula (cf. [15]). Applying this to the elliptic curve E, we obtain precisely
condition (5.9) as necessary condition for nonemptiness of Gr

d
.E; .Pi ; .0; 1; : : : ; 1//

p�1
iD1 /.

We first deal with the cases where �.p; r; d/ � 0.

Theorem 7.4. Let P1; : : : ; Pp�1 2 E be general. Then

Grd .E; .Pi ; .0; 1; : : : ; 1//
p�1
iD1 / ¤ ;

if and only if �.p; r; d/ � 0. Moreover, as soon as it is nonempty,Gr
d
.E; .Pi ; .0; 1; : : : ; 1//

p�1
iD1 /

has the expected dimension �.p; r; d/, and a general g 2 Gr
d
.E; .Pi ; .0; 1; : : : ; 1//

p�1
iD1 / satis-

fies b.g; Pi / D .0; 1; : : : ; 1/ for i D 1; : : : ; p � 1.
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Proof. The dimension statement is [16, Theorem 1.1]. Furthermore, nonemptiness is
equivalent to .�1;:::;1;0/p ¤ 0 in the cohomology ringH�.G.r; d/;Z/ (cf. [23, Theorem 5.42]).
Note that this condition is the same as the one ensuring existence on a general pointed curve
ŒC; P � 2Mp�1;1 of a gr

d
with a cusp at P (cf. [23, Theorem 5.42]) and, by the Littlewood–

Richardson rule, it is equivalent to

.p � 1 � d C r/C

rX
jD1

.p � d C r/ � p � 1;

that is, �.p; r; d/ � 0 (cf. [23, Corollary 5.43]).
Let g 2 Gr

d
.E; .Pi ; .0; 1; : : : ; 1//

p�1
iD1 / be general. If we had b.g; Pk/ > .0; 1; : : : ; 1/ for

some k, then g would lie in the variety G1 WD Grd .E; .Pi ; .0; 1; : : : ; 1//i¤k; .Pk; b.g; Pk///;
this is a contradiction as

dim G1 D �.p; r; d/C r �

rX
jD0

bj .g; Pk/ < dimGrd .E; .Pi ; .0; 1; : : : ; 1//

by [16, Theorem 1.1].

Corollary 7.5. If �.p; r; d/ � 0, then G r
d
.jL0.e0; p/j/ dominates jL0.e0; p/j; further-

more, every irreducible component of G
r

d .jL0.e0; p/j/ dominating jL0.e0; p/j lies in the
closure of G r

d
.jL0.e0; p/j/ and has the expected dimension p � 2C �.p; r; d/. In particular,

if X 2 jL0.e0; p/jsm is general, then Gr
d
.X/ is dense in Gr

d
.X/ and

dimGr
d
.X/ D �.p; r; d/:

If instead �.p; r; d/ < 0, then jL0.e0; p/j
r

d has codimension at least 1 in jL0.e0; p/j.

Proof. The scheme G r
d
.jL0.e0; p/j/ is a fiber of the map

G rd .¹L0.e0; p/º/! Picp�1.E/ ' E

sending a linear series g to the line bundle OE .P1 C � � � C Pp�1/. By varying the points
P1; : : : ; Pp�1 2 E, Theorem 7.4 then ensures the existence of an irreducible component of
G r
d
.jL0.e0; p/j/ dominating jL0.e0; p/jwhen �.p; r; d/ � 0 and implies that any such compo-

nent has the expected dimension. If instead �.p; r; d/ < 0, then jL0.e0; p/jrd has codimension
at least 1 in jL0.e0; p/j.

We claim that Gr
d
.X/ is dense in Gr

d
.X/ if X 2 jL0.e0; p/jsm is general; this would

conclude the proof. If g 2 Gr
d
.X/ nGr

d
.X/, then g 2 Gr

d�m
.eX/, where eX is a partial normal-

ization of X at m points, say Pp�m; : : : ; Pp�1 2 E. In other words,

g 2 Grd�m.E; .Pi ; .0; 1; : : : ; 1//
p�1�m
iD1 /:

As P1; : : : ; Pp�1�m 2 E are general, Theorem 7.4 yields that Gr
d�m

.E; .Pi ; .0; 1; : : : ; 1// is
nonempty as soon as �.p �m; r; d �m/ � 0 and, if nonempty, it has the expected dimension
�.p �m; r; d �m/. The inequality �.p �m; r; d �m/ < �.p; r; d/ yields our claim.

The proof of Theorem 1.4 (i) is now straightforward.
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Proof of Theorem 1.4 (i). Combine Corollary 7.5 with Lemma 7.2 and Proposition 7.1.
Since the projection p W G

r

d .jLj/! D is not proper (indeed, it factorizes through the map
VjLj;0 D jLjsm ! D and jLjsm is open in P .f�L/), in order to prove the emptiness state-
ment one should also verify that, if a component G of G

r

d .jLj/ dominates jLt j for a general
t 2 D, then it also dominates jL0j and hence contains a component of G r

d
.jL0.e; p/j/. This

follows because a component Z of jLjr
d

(where jLjr
d

denotes the closure of jLjr
d

in P .f�L/)
containing the whole jLt j for a general t 2 D also contains the whole jL0.e; p/j.

We will now focus on the cases where �.p; r; d/ < 0. Under the further assumption
that d � r.r C 1/, we will construct a component of G r

d
.jL0.e0; p/j/ of the expected dimen-

sion. This is done by means of the duality for nondegenerate curves in P r , first discovered by
Piene [42]; we recall the main results and refer to [12, 30, 42] for details.

Let Y � P r be a nondegenerate curve of degree d and denote by f W eY ! Y the normal-
ization map. The dual map f _ W eY ! .P r/_ assigns to a point P 2 eY the osculating hyper-
plane of Y at f .P /; the image Y _ WD f _.eY / is then called the dual curve of Y . Let g be the
base point free linear series oneY defining f and, for any pointP 2 eY , let k1.P /; : : : ; kr.P / be
the unique nonnegative integers such that the ramification sequence of g at P can be rewritten
as

b.g; P / D

 
0; k1.P /; : : : ;

iX
jD1

kj .P /; : : : ;

rX
jD1

kj .P /

!
:

With this notation, if P is a simple cusp, that is, b.g; Pi / D .0; 1; : : : ; 1/ for i D 1; : : : ; p � 1,
then k1.P / D 1 and ki .P / D 0 for i ¤ 1. Analogously, a point Q of ordinary ramification
satisfies ki .Q/ D 0 for i ¤ r and kr.Q/ D 1.

By setting ki D
P
P2eY ki .P /, we obtain an r-tuple of nonnegative integers .k1; : : : ; kr/

associated with g. The r-tuple .k�1 ; : : : ; k
�
r / is defined analogously starting from the linear

series g� on eY corresponding to f _. Having fixed our notation, we recall the duality theorem
[42, Theorems 3.2 and 5.1].

Proposition 7.6. The following hold:

(i) If eY has genus 1, then the dual curve Y _ has degree d� WD rd �
Pr�1
iD1.r � i/ki .

(ii) For any point P 2 eY and 1 � i � r , one has k�i .P / D krC1�i .P /.

(iii) .f _/_ D f .

Remark 7.7. Notice that our indices are rescaled in comparison with Piene’s ones. Con-
cerning (ii), [42, Theorem 5.1] only states that k�i D krC1�i ; the fact that such equality holds
pointwise can be easily deduced either from Piene’s proof or from [30, proof of Theorem 19].

Assume now that g 2 Gr
d
.E/ is base point free and defines a birational map

� W E ! X � P r ;

where X has degree d and p � 1 cusps. Also assume that, outside of the points P1; : : : ; Pp�1
mapping to the cusps of X , the linear series g has only ordinary ramification; by Remark 7.3,
g has a points Q1; : : : ;Qa of ordinary ramification, where a WD .r C 1/d � r.p � 1/. Notice
that a general g 2 G r

d
.jL0.e0; p/j/ is expected to satisfy our assumptions. Our hypotheses on g

yield k1 D p � 1, kr D a and ki D 0 for 2 � i � r � 1. By Proposition 7.6, the dual curveX_
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of such an X would have degree d� D rd � .r � 1/.p � 1/ and g� would have a ordinary
cusps at the pointsQ1; : : : ;Qa and ordinary ramification at P1; : : : ; Pp�1. The existence of g�

can be proven more easily than that of g:

Theorem 7.8. Let p � 1 � r.r C 2/ and �.p; r; d/ � �r.r C 2/ and let the elliptic
curveE be general. Then G r

d
.jL0.e0; p/j/ is nonempty with at least one irreducible component

G of the expected dimension. A general g 2 G is birational and has p � 1 ordinary cusps and
only ordinary ramification elsewhere.

Proof. By duality, it is enough to prove existence of a component G � of the scheme
G r
d�
.jL0.e0; aC 1/j/ such that a general g� 2 G � is birational and has a ordinary cusps and

p � 1 ordinary ramification points. Easy computations yield

�.aC 1; r; d�/ D �..r C 1/d � r.p � 1/C 1; r; rd � .r � 1/.p � 1//

D p � 1 � r.r C 2/:

Hence, as soon as p � 1 � r.r C 2/, Corollary 7.5 already implies that all components of
G r
d�
.jL0.e0; aC 1/j/ dominating jL0.e0; aC 1/j have the expected dimension

a � 1C �.aC 1; r; d�/ D .r C 1/d � .r � 1/.p � 1/ � 1 � r.r C 2/

D p � 2C �.p; r; d/:

However, in order to find a component G � whose general element defines a birational
map, has a ordinary cusps and only ordinary ramification elsewhere, we proceed by degenera-
tion to a rational curve with aC 1 cusps as in [14]. Let y1; : : : ; yaC1 be aC 1 general distinct
points on P1 and denote by X0 the rational curve having aC 1 cusps at the points yi and no
other singularities. Since �.aC 1; r; d�/ � 0, the Brill–Noether variety

Grd�.X0/ WD ¹g 2 G
r
d�.P

1/ W dim g.�2yi / D dim g.�yi / D r � 1; i D 1; : : : ; aC 1º

is nonempty of the expected dimension �.aC 1; r; d�/, cf. [14]. Since a cusp is locally smooth-
able and the points yi are general, there is a flat family of curves X ! B over a one-dimen-
sional base B with central fiber X0 and general fiber Xb having a cusps as singularities, so
that the normalization of Xb is a general elliptic curve Eb . We consider the relative scheme
s W G r

d�
.X/! B with fiber over a general b 2 B given by Gr

d�
.Xb/ and central fiber equal

to Gr
d�
.X0/. Since Gr

d�
.X0/ is dense in G

r

d�.X0/ by [14, Theorem 4.5], the central fiber of
s has dimension equal to expdim G r

d�
.X/ � 1 and hence every component of G r

d�
.X/ domi-

nating B has the expected dimension. By [14, Theorem 3.1], a general g0 2 G
r
d�
.X0/ defines

a birational map and has aC 1 ordinary cusps at y1; : : : ; yaC1 and only ordinary ramification
elsewhere. In order to prove the same properties for a general g in a general fiber G �.Xb/, one
proceeds exactly as in [14, Propositions 5.5, 5.6 and 5.7]. This proves the existence of a distinct
points z1; : : : ; za on a general elliptic curve Eb such that Gr

d�
.Eb; .zi ; .0; 1; : : : ; 1//

a
iD1/ has

the expected dimension and a general gr
d

in any of its components has the desired properties. As
we assume that E is general, we can replace Eb with E. Since Gr

d�
.E; .zi ; .0; 1; : : : ; 1/

a
iD1/

has the expected dimension, by varying the points zi we obtain an irreducible component of
G r
d�
.¹L0.e0; p/º/, and hence of G r

d�
.jL0.e0; aC 1/j/ as in the statement.

Now, we set p0 WD max¹p W �.p; r; d/ � �r.r C 2/º, that is,

p0 D 1C
.r C 1/d � a0

r
with 0 � a0 � r � 1:
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By definition, G r
d
.¹L0.e0; p

0/º/ � G r
d
.¹L0.e0; pº/ for all p such that �.p; r; d/ � �r.r C 2/.

Furthermore, the codimension of G r
d
.¹L0.e0; p C 1/º/ in G r

d
.¹L0.e0; p/º/ is at most r � 1.

Therefore, as soon as G r
d
.¹L0.e0; p

0/º/ has an irreducible component of the expected dimen-
sion, then the same holds for G r

d
.¹L0.e0; p/º/ for any p < p0. The inequality p0�1 � r.rC2/

can be written as
d � r.r C 1/C .a0 � r/=.r C 1/

and this is equivalent to the requirement d � r.r C 1/ because 0 � a0 � r � 1.

Corollary 7.9. Let d � r.r C 1/ and �r.r C 2/ � �.p; r; d/ < 0 and let the elliptic
curveE be general. Then G r

d
.jL0.e0; p/j/ is nonempty with at least one irreducible component

G of the expected dimension p � 2C �.p; r; d/ such that a general g 2 G defines a birational
map to P r . In particular, jL0.e0; p/jrd has an irreducible component of the expected dimension,
too.

We can now conclude the proofs of Theorems 1.4 and 1.5.

Proof of Theorem 1.4 (ii), (iii). The condition �.p; r; d/ � �r.r C 2/ is necessary for
nonemptiness of jLjr

d
by (5.8). Under the further assumption that d � r.r C 1/, Corollary 7.9,

Lemma 7.2 and Proposition 7.1 ensure the existence of a component Z as in (ii).

Proof of Theorem 1.5. Let S be a general abelian surface with polarization L of type
.1; n/, where n D p � 1, and let  W jLjsm !Mp be the moduli map. By Theorem 1.4 (ii),
jLjr

d
has an irreducible component Z of the expected dimension p � 2C �.p; r; d/. Let M be

an irreducible component of Mr
p;d

such that  .Z/ is an irreducible component of M\ .jLj/.
The dimensional statement for M follows because all inequalities in (5.2) must be equali-
ties. We consider an irreducible component G1 of G r

d
.jLj/ mapping finitely onto Z such that,

for a general .C;g/ 2 G1, the linear series g defines a birational map to P r ; the existence
of such a G1 is ensured by Proposition 7.1, Lemma 7.2 and Theorem 7.8. One finds an irre-
ducible component G of G r

p;d
such that G1 D G �M Z and easily verifies the desired properties

for G .

Remark 7.10. Theorem 1.4 (i)–(ii) implies that, in contrast to the K3 case, neither the
gonality nor the Clifford index of smooth curves in jLj is constant.

Indeed, by (i), a general curve in jLj has the gonality and Clifford index of a general
genus p curve, namely,

kgen WD

�
p C 3

2

�
and cgen WD

�
p � 1

2

�
;

respectively. At the same time, by (ii), there are smooth curves in jLj carrying linear series of
type g1

k
with k D bpC1

2
c, whence their gonality is at most bpC1

2
c and their Clifford index at

most �
p C 1

2

�
� 2 D

�
p � 3

2

�
:

We can be more precise. Any smooth curve C satisfies gonC �3 � CliffC � gonC �2,
with equality on the right if the curve carries only finitely many pencils of minimal degree [10].
Theorem 1.6 for ı D 0 then implies that, if p is even, then there is a codimension-two family of
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smooth curves in jLj of gonality kgen � 1 and Clifford index cgen � 1. If instead p is odd, then
there is a codimension-one family of smooth curves in jLj of gonality kgen � 1 and Clifford
index cgen � 1, and a codimension-three family of gonality kgen � 2 and Clifford index cgen � 2.

Remark 7.11. The inequality

d � r.r C 1/

implies that any p with �r.r C 2/ � �.p; r; d/ < 0 satisfies

expdim jL0.0; p/jrd � expdim jL0.0; p0/jrd D p
0
� 2C �.p0; r; d/ � 0I

in fact, this condition is clearly necessary for the existence of a component of jL0.0; p/jrd
having the expected dimension.

Remark 7.12. Components of Mr
p;d

of the expected dimension under certain condi-
tions on p; r; d such that �.p; d; r/ < 0 have been constructed by various authors following
the foundational works of Sernesi [44] and Eisenbud–Harris [15] (see [5, 34, 35, 39]), most
recently by Pflueger [41].

One can explicitly check that the inequalities d � r.r C 1/ and �.p; r; d/ � �r.r C 2/
appearing in our Theorem 1.5 are weaker than the ones appearing in the above cited papers
for infinitely many triples .p; r; d/. This is for instance the case when we have r � 4 and
r2 C 2r � 2 � p � r2 C 7r C 7. Thus, in these cases the component of Mr

p;d
detected by

Theorem 1.5 was heretofore unknown.
We also remark that our method of proof by degeneration to cuspidal elliptic curves and

by means of Piene’s duality is completely different, and in many ways simpler, than Eisenbud
and Harris’ limit linear series and Sernesi’s original approach of attaching rational curves.

A. Appendix: A stronger version of Theorem 5.7

We will prove a strengthening of Theorem 5.7 for r � p � 1 � d . In this range the
bundles EC;A have nonvanishing H 1 and the existence of stable extensions yields a stronger
bound than (5.8). Also note the slightly stronger assumption on ŒC �, which is no longer an open
condition in the moduli space of polarized abelian surfaces, but holds off a countable union of
proper closed subsets.

Theorem A.1. LetC be a reduced and irreducible curve of arithmetic genuspD pa.C /
on an abelian surface S such that ŒC � generates NS.S/. Assume that C possesses a globally
generated torsion free rank one sheaf A such that deg A D d � p � 1, h0.A/ D r C 1 and
r � p � 1 � d . Set  WD b r

p�1�d
c if d < p � 1. Then one has

�.p; r; d/C r.r C 2/(A.1)

�

´
1
2
r.r C 1/; if d D p � 1;

.p � 1 � d/.r C 1 � 1
2
.p � 1 � d/. C 1//; if r � p � 1 � d > 0:

The proof needs the following technical result.
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Proposition A.2. Let E be a vector bundle on an abelian surface S satisfying:

(i) Œc1.E/� generates NS.S/,

(ii) E is generically globally generated,

(iii) H 2.E/ D 0.

Let N � 0 be an integer such that, for i D 1; : : : ; N; there exists a sequence of “universal
extensions”

(A.2) 0! O
˚hi
S ! Ei ! Ei�1 ! 0;

where E0 WD E , hi WD h1.Ei�1/ and the coboundary map H 1.Ei�1/! H 2.O
˚hi
S / ' Chi is

an isomorphism (this condition is empty for N D 0).
Then each Ei is stable with respect to any polarization and satisfies H 2.Ei / D 0.

Proof. We proceed by induction on i .
Let i D 0. Then H 2.E0/ D H

2.E/ D 0 by assumption (iii). Assume that E0 D E is not
stable. Consider any destabilizing sequence

(A.3) 0!M! E ! Q! 0;

where M and Q are torsion free sheaves of positive rank; this gives c1.E/ D c1.M/C c1.Q/.
For any ample line bundle H on S , we have that c1.M/:H > 0 because M destabilizes E ,
and c1.Q/:H > 0 by Lemma 5.8, because H 2.Q/ D 0 and Q is globally generated off a
codimension-one set by (A.3) and assumptions (ii)-(iii). This contradicts assumption (i).

Now assume that i > 0 and Ei�1 is H -stable with H 2.Ei�1/ D 0. The fact that
H 2.Ei / D 0 is an immediate consequence of (A.2) and the coboundary map being an iso-
morphism. If Ei is not H -stable, then we have a destabilizing sequence

(A.4) 0!M! Ei ! Q! 0;

with M and Q torsion free sheaves of positive rank. Let M0 denote the image of the composition
M! Ei ! Ei�1 of maps from (A.4) and (A.2). Then we have a commutative diagram with
exact rows and columns:

0

��

0

��

0

��

0 //K //

��

O
˚hi
S

//

��

K 0 //

��

0

0 //M //

��

Ei //

��

Q //

��

0

0 //M0 //

��

Ei�1 //

��

Q0 //

��

0

0 0 0

defining K , K 0 and Q0. Since K 0 is globally generated, we have c1.K/:H D�c1.K
0/:H � 0.

Hence c1.M0/:H D c1.M/:H � c1.K/:H � c1.M/:H > 0, as M destabilizes Ei . In partic-
ular, as M0 is torsion free, we have rk M0 > 0.
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If rk Q0 > 0, then rk M0 < rk Ei�1. As Ei�1 is H -stable, we must have

c1.M
0/:H

rk M0
<
c1.Ei�1/:H

rk Ei�1
:

In particular, 0 < c1.M0/:H < c1.Ei�1/:H , so that c1.Q0/:H > 0. But then

c1.E/ D c1.Ei�1/ D c1.M
0/C c1.Q

0/

with both c1.M0/:H > 0 and c1.Q0/:H > 0, contradicting hypothesis (i).
Hence we have rk Q0 D 0 and c1.Q0/, if nonzero, is represented by the effective cycle of

the one-dimensional support of Q0. Then c1.Q/:H D c1.K 0/:H C c1.Q0/:H � 0 and strict
inequality follows from Lemma 5.8 because h2.Q/ D h2.Ei / D 0 and Q is globally generated
off the one-dimensional support of Q0, as K 0 is globally generated. As M destabilizes Ei , we
get that c1.E/ D c1.Ei / D c1.M/C c1.Q/ with both c1.M/:H > 0 and c1.Q/:H > 0, again
contradicting hypothesis (i).

Proof of Theorem A.1. Consider the vector bundle E0 WD EC;A from the proof of The-
orem 5.7, which satisfies conditions (i)–(iii) of Proposition A.2. Moreover, (5.10) and (5.11)
imply

h1 WD h
1.EC;A/ D h

0.EC;A/ � �.EC;A/ � r C 2C d � p > 0:

Therefore, we have a “universal extension”

0! O
˚h1
S ! E1 ! E0 ! 0;

where the coboundary map H 1.E0/! H 2.O
˚h1
S / ' Ch1 is an isomorphism.

If h2 WD h1.E1/ > 0, we can iterate the construction. Hence, there is an integer N > 0

and a sequence of universal extensions as in (A.2), where the coboundary maps

H 1.Ei�1/! H 2.O
˚hi
S / ' Chi

are isomorphisms and, by Proposition A.2, all Ei are stable withH 2.Ei / D 0 for i D 0; : : : ; N .
(We do not claim that there is a maximal such N ; indeed, it may happen that the process does
not terminate, i.e. all hi > 0, in which case any N > 0 fulfills the criteria.)

By (A.2) and properties (5.10) of E0, we have

rk EN D r C 1C h1 C � � � C hN ;(A.5)

c1.EN / D ŒC �;

�.EN / D �.E0/ D p � 1 � d DW � � 0:

Since EN is stable, it is simple, whence (5.13) and (A.5) yield

(A.6) p � 1 � � rk EN :

The sequence (A.2) and coboundary mapsH 1.Ei�1/! H 2.O
˚hi
S / being isomorphisms yield

hiC1 D h
1.Ei / � 2hi � h

0.Ei�1/ D 2h
1.Ei�1/ � h

0.Ei�1/ D hi � �; i � 1:

In particular, we obtain that

(A.7) hi � h1 � .i � 1/� � r C 1 � i�; i D 1; : : : ; N:
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Hence, the procedure of taking extensions goes on at least until i DN , for anyN � 1 satisfying

(A.8) N� � r:

Note that if N satisfies (A.8), then inequalities (A.6) increase in strength as N increases.
By (A.5) and (A.7) we have

rk EN D

NX
iD1

hi C r C 1 �

NX
iD0

.r C 1 � i�/ D .N C 1/.r C 1/ � �

NX
iD0

hj

D .N C 1/.r C 1/ �
N.N C 1/�

2
D .N C 1/

�
r C 1 �

N�

2

�
:

Hence, we obtain from (A.6) with i D N that

p � 1 � �.N C 1/

�
r C 1 �

N�

2

�
or, equivalently,

�.p; r; d/C r.r C 2/ � �N

�
r C 1 �

�.N C 1/

2

�
:

If � > 0, the strongest inequality is obtained by using the largest N satisfying (A.8),
which is N D  WD b r

�
c. This proves (A.1) if � > 0.

If � D 0, the left-hand side of (A.1) is simply d D p � 1, so we may assume that r � 2.
The torsion free sheaf A0 WD A˝OC .�P / for a general P 2 C is still globally generated
and satisfies deg A0 D d � 1 DW d 0 and r 0 WD h0.A0/ � 1 D r . Since 1 D p � 1 � d 0 < r 0;
this falls into the lower line of (A.1), which easily rewrites as the desired inequality

�.p; r; d/C r.r C 2/ �
1

2
r.r C 1/:

Remark A.3. We do not know if the stronger condition (A.1) is optimal, although it gets
rid of the cases occurring in Examples 5.13 and 5.14. One can easily verify that the inequality
d � r.r C 1/ is stronger than (A.1) in this range. We must however recall that our Theorem 1.4
yields the existence of birational linear series on smooth curves; it is plausible that nonbira-
tional linear systems, as well as torsion free sheaves on singular curves (cf. Example 5.15),
may cover a wider value range of p, r and d . We also remark that the torsion free sheaves in
the quoted example satisfy equality in (A.1).

Remark A.4. The fact that bundles EC;A with h1.EC;A/ > 0 do indeed exist when
0 � p � 1 � d � r follows from Theorem 1.4 (ii). This shows that additional complexity arises
for abelian surfaces in comparison withK3 surfaces, where the analogous bundles always have
vanishing H 1.
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