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Abstract. Rational curves on Hilbert schemes of points on K3 surfaces and generalised Kummer
manifolds are constructed by using Brill-Noether theory on nodal curves on the underlying surface.
It turns out that all wall divisors can be obtained, up to isometry, as dual divisors to such rational
curves. The locus covered by the rational curves is then described, thus exhibiting algebraically
coisotropic subvarieties. This provides strong evidence for a conjecture by Voisin concerning the
Chow ring of irreducible holomorphic symplectic manifolds. Some general results concerning the
birational geometry of irreducible holomorphic symplectic manifolds are also proved, such as a non-
projective contractibility criterion for wall divisors.

0. Introduction

Rational curves play a pivotal role in the study of the birational geometry and the Chow ring
of algebraic varieties. The present paper concerns a speci�c class of varieties, namely, irreducible
holomorphic symplectic (IHS) manifolds and, more precisely, Hilbert schemes of points on K3 surfaces
and generalised Kummer manifolds (cf. �1), and is focused on some special rational curves arising
from the Brill-Noether theory of normalisations of curves lying on K3 and abelian surfaces. In order
to treat the two cases simultaneously, we introduce the following notation: we set ε = 0 (respectively,

ε = 1) when S is a K3 (resp., abelian) surface, and we denote by S
[k]
ε the Hilbert scheme of k points

on S when ε = 0 and the 2k-dimensional generalised Kummer variety on S when ε = 1.
In the last few years, some classical results concerning (−2)-curves on K3 surfaces have been

generalised to higher dimension and in particular it was shown that rational curves fully control the
birational geometry of IHS manifolds. More precisely, Ran [Ra] proved that extremal rational curves
can be deformed together with the ambient IHS manifold, and this was exploited by Bayer, Hassett
and Tschinkel [BHT] in order to determine the structure of the ample cone. The same result was
independently obtained by the third named author [Mo1] using intrinsic properties of IHS manifolds
and a deformation invariant class of divisors, the so-called wall divisors (cf. De�nition 2.2), which
contains all divisors dual to extremal rays. This class of divisors was also studied by Amerik and
Verbitsky [AV], who investigated �bres of extremal contractions. Indeed, the MBM classes in [AV]
turn out to be precisely the dual curve classes to wall divisors, cf. Remark 2.4.

By results of Bayer and Macrì [BM1, BM2] and Yoshioka [Yo3], moduli spaces of stable objects
in the bounded derived category of a K3 or abelian surface S provide examples of deformations of

S
[k]
ε and the space of stability conditions can be used towards computing their ample cones.
In this paper we use Brill-Noether theory of nodal curves on abelian and K3 surfaces in order to

exhibit rational curves in S
[k]
ε and describe, in many cases, the locus they cover. Our construction

proceeds as follows. Let (S,L) be a general primitively polarized K3 or abelian surface of genus

p := pa(L) and let C ∈ |L| be a δ-nodal curve whose normalization C̃ has a linear series of type
g1k+ε. Existence of a family of such curves having the expected dimension (and satisfying certain
additional properties) has been proved in [CK, KLM] under suitable conditions on the triple (p, k, δ),

cf. Theorem 3.1. Any pencil of degree k + ε on C̃ de�nes a rational curve in S
[k]
ε , whose class is

Rp,δ,k := L− (p− δ + k − 1 + ε)rk,
1
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in terms of the canonical decomposition N1(S
[k]
ε ) ≃ N1(S) ⊕ Z[rk], cf. (8) and Lemma 3.3. In

particular, its Beauville-Bogomolov square is easily computed to be

q(Rp,δ,k) = 2(p− 1)− (p− δ + k − 1 + ε)2

2(k − 1 + 2ε)
,

cf. (18). An important additional feature of the rational curves obtained in this way is that they

move in a family of dimension precisely 2k − 2 in S
[k]
ε and thus survive in all small deformations of

S
[k]
ε that keep Rp,δ,k algebraic.
We prove the following result concerning the dual (in the sense of the lattice duality induced by

the Beauville-Bogomolov form) divisor Dp,δ,k to the class Rp,δ,k.

Theorem 0.1. (cf. Theorem 4.1) The divisor Dp,δ,k is a wall divisor if and only if q(Rp,δ,k) < 0.

Wall divisors will be introduced in Section 2; a rough idea of them is that they determine the

structure of the ample cone of S
[k]
ε and they are related also to birational transformations of S

[k]
ε .

By comparison with [BM2, Yo3], we show that for every isometry orbit of wall divisors there exist
p, δ and k such that Dp,δ,k is an element of that orbit, cf. Proposition 4.6. This is rather striking,

as it shows that the birational geometry of S
[k]
ε and its deformations can be recovered from classical

Brill-Noether theory of curves on the underlying surfaces, at least when the monodromy group is
maximal. By work of Bayer, Macrì and Yoshioka [BM2, Yo3], these divisors are associated to walls
in the manifold of Bridgeland stability conditions, but there was no reason to believe that they could
be constructed by classical means, even up to deformation. We mention that some wall divisors have
also been recently constructed by Hassett and Tschinkel [HT3], using a di�erent approach.

Under opportune assumptions on the number of nodes (small with respect to the arithmetic genus),

we explicitly construct the locus in S
[k]
ε covered by our rational curves of class Rp,δ,k. When Dp,δ,k

is a wall divisor this locus may be described abstractly using only lattice theoretic properties, as in
[BM1, Yo3] and in the more recent [HT3]. However, our constructions only rely on the de�nition of
our curves of class Rp,δ,k and are thus very concrete.

The �rst type of construction goes as follows. Let M be the component of the moduli space of
(Gieseker) L-stable torsion free sheaves on S with Mukai vector v = (2, c1(L), χ+2(ε−1)) (cf. Remark
1.4 for the de�nition) containing the Lazarsfeld-Mukai bundle associated with the pushforward to a
δ-nodal curve in S of a g1k+ε on its normalization. As soon as χ := p− δ − k + 3− 5ε ≥ 2δ + 2, we

construct a variety P → M × S[δ] which is generically a projective bundle. The �bre of P over a
point ([E ], τ) ∈ M× S[δ] is the projectivization of the space of global sections of E vanishing along

τ . We then de�ne a rational map g : P 99K S[k]
ε and denote by T the closure of the image of g,

which is an irreducible component of the locus covered by curves of class Rp,δ,k. We show that g is
birational, thus obtaining the following:

Theorem 0.2. (cf. Theorem 6.1) Let (S,L) be a very general primitively polarized K3 or abelian
surface of genus p ≥ 2. Let k ≥ 2 and 0 ≤ δ ≤ p− ε be integers such that

max{2δ + 2, 4ε} ≤ χ := p− δ − k + 3− 5ε ≤ δ + k + 1.

Then, there is a subscheme T ⊂ S
[k]
ε birational to a Pχ−2δ−1-bundle on a holomorphic symplectic

manifold W of dimension 2(k + 1 + 2δ − χ). Furthermore, the lines contained in any �bre of the
rational projection T 99KW have class Rp,δ,k.

When q(Rp,δ,k) < 0 and hence the dual divisor Dp,δ,k is a wall divisor by Theorem 0.1, the
contractibility of T can be studied by means of Theorem 0.5 below.

In the case where δ = 0 and Rp,δ,k has the minimal possible Beauville-Bogomolov square, namely,

−(k+3− 2ε)/2, we use Theorem 0.2 in order to construct a Lagrangian k-plane Pk ⊂ S
[k]
ε such that

Rp,δ,k is the class of its lines, cf. Example 6.5 and Proposition 6.6. This agrees with Bakker's result
[Ba, Thm. 3] stating that, in the case ε = 0, a primitive class generating an extremal ray is the
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line in a Lagrangian k-plane if and only if its square is −(k + 3)/2, and suggests that the analogous
statement should hold for ε = 1. Note that very few examples of Lagrangian planes are explicitly
described in the literature, cf. [Ba, Ex. 8, 9, 10].

Our rational curves have applications to the Chow ring of IHS manifolds, too. In the recent paper
[Vo], Voisin stated the following:

Conjecture 0.3. (cf. [Vo, Conj. 0.4]) Let X be a projective IHS manifold of dimension 2k and
let Sr(X) be the set of points in X whose orbit under rational equivalence has dimension at least r.
Then Sr(X) has dimension 2k − r.

The above sets Sr(X) are countable unions of closed algebraic subsets of X and endow the Chow
group CH0(X) of 0-cycles with a �ltration S• which is conjecturally connected with the Bloch-
Beilinson �ltration and its splitting predicted by Beauville [Be2]. The question about non-emptiness
of Sr(X) is still open and related to the existence problem for algebraically coisotropic subvarieties
of X. If X has dimension 2k and σ is its symplectic form, a subvariety Y ⊂ X of codimension r is
algebraically coisotropic if there exist a (2k−2r)-dimensional variety B and a surjective rational map

Y 99K B such that σ|Y is the pullback of a two-form on B. The subvarieties T ⊂ S
[k]
ε of Theorem

0.2 are algebraically coisotropic by construction and they are components of Sr(S
[k]
ε ) of dimension

2k − r, with r := χ − 2δ − 1 (cf. Corollary 6.2). Starting from T and then applying the natural

rational map S[k+ε]×S[l−k] 99K S[l+ε], one obtains a component of Sr(S
[l]
ε ) for any l ≥ k. We use this

observation in Theorem 6.3 in order to construct components of Sr(S
[k]
ε ), with k �xed, for several

values of r.
Our second construction of uniruled subvarieties of S

[k]
ε is obtained by considering the Severi

variety V{L},δ parametrizing curves with precisely δ nodes in the continuous system {L} (which is
the linear system |L| up to translations) with δ big enough. In particular, the assumptions on δ are

set to ensure that the normalization C̃ of any curve in V{L},δ has a linear series of type g1k+ε, where
k ≥ 2 is a �xed integer. For any integer k′ satisfying suitable conditions, the surjectivity of the

Abel map Symk′+ε(C̃) → Pick
′+ε(C̃) yields that a general line bundle in Pick

′+ε(C̃) is non-special

and hence the symmetric product Symk′+ε(C̃) is generically a Pr-bundle over Pick
′+ε(C̃), where

r := k′+ ε− p+ δ. By varying δ and k′ satisfying r = k′+ ε− p+ δ, we exhibit (2k− r)-dimensional

components of Sr(S
[k]
ε ) for any r, except r = k when ε = 1. More precisely, we prove the following:

Theorem 0.4. (cf. Theorem 6.4) Let (S,L) be a general primitively polarized K3 or abelian surface
of genus p ≥ 2 and �x an integer k ≥ 2. Then for any integer r such that 1 ≤ r ≤ k − ε, and any

integer k′ such that r + ε ≤ k′ ≤ min{k, p + r − ε}, the set Sr(S
[k]
ε ) has an irreducible component

Wr,k′ satisfying the following:

(i) dimWr,k′ = 2k − r;
(ii) Wr,k′ is birational to a Pr-bundle and hence algebraically coisotropic;
(iii) the class of the lines in the Pr-�bres is L− [2(k′ + ε)− r − 1]rk;
(iv) the maximal rational quotient of the desingularization of Wr,k′ has dimension 2(k − r).

Point (iv) positively answers, in the case of S
[k]
ε , a question by Charles and Pacienza (cf. [CP,

Question 1.2]) concerning existence of subvarieties of an IHS manifold whose maximal rational quo-
tients have the minimal possible dimension.

For ε = 0, examples of (2k − r)-dimensional components of Sr(S
[k]
ε ) for any r were already

provided in [Vo, �4.1 Ex. 1 and Lemma 4.3] by considering �bres of the Hilbert-Chow morphism

µk : S[k] → Symk(S). However, our components Wr,k′ are not contained in the exceptional locus of
µ and are covered by rational curves whose classes are often ample, and thus provide much stronger
evidence for Conjecture 0.3.

In developing techniques towards proving the above theorems, we obtain some general results on
IHS manifolds. First of all, in Proposition 2.13 we provide a criterion to tell whether a deformation
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of S
[k]
ε is isomorphic to S

′[k]
ε for some surface S′. This appears to be related to ideas from [Ad] and

[MW]. Secondly, we prove that wall divisors can be contracted under general assumptions:

Theorem 0.5. (cf. Theorem 2.5) Let X be a projective IHS manifold and let D be a wall divisor
on X. Then one of the following holds:

• There exists a curve R dual to D such that rational curves of class R cover a divisor in X
and a birational map X 99K Y contracting R. Moreover Y is singular symplectic.

• For a general deformation (X ′, D′) of (X,D), there is a birational map X ′ 99K X ′′ with X ′′

IHS and a contraction X ′′ → Y that contracts all curves dual to D′.

In the �rst item of the theorem, R is a negative curve covering a divisor E, hence running a
minimal model for KX + E will contract R at some step. The second item only holds for general
deformations because we must remove the closed locus inside the deformation space of pairs (X,R)
where the deformation of R is not in the boundary of the Mori cone. Notice that the second item,
which states contractibility after a deformation and a birational map, also applies when the locus
covered by R is not divisorial, while the �rst item is stronger in the divisorial case.

This result holds in particular for general non-projective deformations of (X,D), where a proof of
the contraction theorem was, as yet, unavailable.

The paper is organized as follows. Section 1 contains background material concerning IHS mani-

folds and in particular varieties of the form S
[k]
ε . In Section 2 we recall known results on the birational

geometry of IHS manifolds and use them to prove Theorem 0.5. We then specialize to deformations

of S
[k]
ε and prove that −(k + 3− 2ε)/2 is a lower bound for the self-intersection of a primitive gen-

erator of an extremal ray of the Mori cone, cf. Proposition 2.11; the result is new for ε = 1, while it
had already appeared in [BHT, Mo1] for ε = 0.

Section 3 summarises the results from [CK, KLM] concerning the Brill-Noether theory of nodal
curves on symplectic surfaces. Classes Rp,δ,k are computed. Proposition 3.6 proves the existence of
a family of rational curves of class Rp,δ,k having the expected dimension and surviving in any small

deformation of S
[k]
ε that keeps the class algebraic. In Section 4 we prove Theorem 0.1 and exhibit a

collection of wall divisors that we later show to be essentially �complete� in Proposition 4.6.
Section 5 proves several results concerning vector bundle techniques associated with nodal curves,

which are essential in the proof of Theorem 0.2. We believe that these results are of independent
interest, due to the recent activity in the study of nodal curves on K3 and abelian surfaces. In
particular, Proposition 5.3 extends a result by Pareschi [Pa, Lemma 2] to possibly nodal curves on
symplectic surfaces; Proposition 5.5 and Lemma 5.6 describe properties of general (stable) sheaves.

The main results Theorems 0.2, and 0.4 are �nally proved in Section 6.

Note. After this paper was completed, a paper by H. Y. Lin [Li] appeared on the arXiv, where
the author also constructs components of the locus Sr for generalised Kummer manifolds. Our
constructions are di�erent from Lin's and the spirit of the two papers is quite distant.

Acknowledgements

We are grateful to C. Ciliberto and K. O'Grady for interesting conversations on this topic. More-
over, we thank the Max Planck Institute for mathematics and the Hausdor� Center for Mathematics
in Bonn, the University of Bonn and the Universities of Roma La Sapienza, Roma Tor Vergata and
Roma Tre, for hosting one or more of the authors at di�erent times enabling this collaboration. The
second named author was supported by the Centro di Ricerca Matematica Ennio De Giorgi in Pisa
and the third named author by �Firb 2012, Spazi di moduli ed applicazioni�.

1. Generalities on IHS manifolds

A compact Kähler manifold X is called hyperkähler or irreducible holomorphic symplectic (IHS) if
it is simply connected and H0(Ω2

X) is generated by a symplectic form.
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The symplectic form implies the existence of a canonical quadratic form q( ) onH2(X,Z), called the
Beauville-Bogomolov form, and of a constant c, the Fujiki constant, such that for every α ∈ H2(X,Z)
one has:

(1) q(α)n = c · α2n,

where dim(X) = 2n. We will denote by b( , ) the bilinear form associated with q. This endows
H2(X,Z) with the structure of a lattice of signature (3, b2(X) − 3) and provides an embedding of
H2(X,Z) in H2(X,Q) as the usual lattice embedding L∨ ↪→ L⊗Q. For any D ∈ H2(X,Z) denote
by div(D) the positive generator of the ideal b(D,H2(X,Z)); then the elements D/ div(D), with D
running among all primitive elements in H2(X,Z), generate H2(X,Z). The quadratic form and the
symplectic form also allow to de�ne a period domain for IHS manifolds, much as in the case of K3
surfaces, as follows. For any lattice L, one de�nes the period domain

ΩL := {ω ∈ P(L⊗ C) | q(ω) = 0, b(ω, ω) > 0}.
Any isometry f : H2(X,Z) → L is called a marking and there is a natural map, the period map
P, sending a marked IHS manifold (X, f) to P(X, f) := [f(σX)] ∈ ΩL, where σX is any symplectic
form on X. Let ML be the moduli space of deformation equivalent marked IHS manifolds with H2

isometric to L. The period map P : ML → ΩL is surjective [Hu1, Thm. 8.1] and it is a local
isomorphism [Be1, Thm. 5].

There are singular analogues of IHS manifolds, called symplectic varieties. A compact normal
variety X is symplectic if it has a unique (up to scalars) nondegenerate symplectic form on its

smooth locus and a resolution of singularities π : X̃ → X such that the pullback of this form is

everywhere de�ned, but possibly degenerate and X̃ is simply connected. (Note that these conditions

do not depend on the choice of X̃). Therefore, if the pullback of the two-form is nondegenerate, X̃
is IHS and we say that π is a symplectic resolution. Symplectic varieties share many properties with
IHS manifolds, especially when they admit a symplectic resolution. In this case it is indeed possible
to de�ne a quadratic form on their second cohomology group and the following results hold.

Theorem 1.1. (Namikawa [Na, Thm. 2.2]) Let π : X̃ → X be a symplectic resolution of a

projective symplectic variety X. Then the Kuranishi spaces Def(X) and Def(X̃) are both smooth

and of the same dimension. There exists a natural map π∗ : Def(X̃) → Def(X) that is a �nite
covering. Moreover, X has a �at deformation to an IHS manifold. Any smoothing of X is an IHS

manifold obtained as a �at deformation of X̃.

The following results deals with the space of locally trivial deformations, which are deformations
of the manifold that do not change its topological structure, that is, they preserve singularities.

Theorem 1.2. (Kirchner) Let X be a normal symplectic variety admitting a symplectic resolution
of singularities and such that codim(SingX) ≥ 4. Let Def(X)lt denote the Kuranishi space of locally
trivial deformations of X. Then there is a well de�ned period map P : Def(X)lt → ΩL, where
L ≃ H2(X,Z), having generically injective tangent map.

Proof. Locally trivial deformations are parametrized by a locally closed subset of Def(X). The latter
is smooth by Theorem 1.1. As Def(X)lt might not be smooth for some X, we can suppose that
Def(X)lt is smooth after replacing X with a small locally trivial deformation. Therefore, [Ki, Cor.
3.4.2] applies and �rst order locally trivial deformations are parametrised by H1(X \ SingX,Ω1

X) ≃
H1,1(X), where H1,1(X) is the pure algebraic part of the mixed Hodge structure on H2(X). Now
[Ki, Thm. 3.4.4] provides the period map from H1(X \ SingX,Ω1

X) with injective tangent map as
stated above. �
Remark 1.3. Keep notation as in Theorem 1.2, and let R1, . . . , Ri be the curve classes that span

the classes of curves contracted by the resolution of singularities X̃ → X. Then, the proof of the

theorem implies that �rst order locally trivial deformations of X are parametrised by H1,1(X̃) ∩
⟨R1, . . . , Ri⟩⊥ ≃ H1,1(X).
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Very few examples of IHS manifolds are known. The present paper will focus on the two in�nite
families of examples introduced by Beauville [Be1], namely, Hilbert schemes of points on K3 surfaces
and generalised Kummer manifolds. Let S be a K3 or abelian surface. Throughout the paper we
will let

(2) ε = εS :=

{
1 if S is abelian,

0 if S is K3.

It was proved by Beauville [Be1] that the Hilbert scheme S[k+ε] of 0-dimensional subschemes of S
of length k + ε , where k ≥ 2, inherits a symplectic form from S and is smooth. This uses in an
essential way general results on Hilbert schemes of surfaces proven by Fogarty [Fo]. When S is K3,

it is simply connected and thus an IHS manifold of dimension 2k. When S is abelian, S[k+1] is
not simply connected, but any �bre of the Albanese map Σk : S[k+1] → AlbS[k+1] ≃ S is a 2k-
dimensional IHS manifold Kk(S), which is called a generalised Kummer manifold. We recall that

Σk is the composition of the Hilbert-Chow morphism µk : S[k+ε] → Symk+ε(S) and the summation
map + : Symk+ε(S) → S.

In order to handle the two families simultaneously, we set

(3) S[k]
ε :=

{
Kk(S) if ε = 1 (i.e., S is abelian),

S[k] if ε = 0 (i.e., S is K3).

Note that dimS
[k]
ε = 2k in both cases, even though S

[k]
1 $ S[k+1]. By abuse of notation, in the latter

case we will still use the same symbol µk and the same name for the restriction of the Hilbert-Chow

morphism to S
[k]
1 .

There are natural embeddings

NS(S) ↪→ Pic(S[k]
ε ),(4)

N1(S) ↪→ N1(S
[k]
ε ).(5)

Here N1 denotes the group generated by classes of integral curves. The former is given by associating
with the class of a prime divisor D in S the divisor

(6)
{
Z ∈ S[k]

ε | Supp(Z) ∩D ̸= ∅
}

and the latter is given by �xing a set of general points {x1, . . . , xk+ε−1} ⊂ S and associating with
the class of an e�ective curve C ⊂ S the class of the curve{

Z ∈ S[k]
ε |xk+ε ∈ Supp(Z) ∩ C, {x1, . . . , xk+ε−1} ⊂ Supp(Z)

}
.

The exceptional divisor∆k of the Hilbert-Chow morphism µk has class 2ek and one has an orthogonal
decomposition with respect to b( , ):

H2(S[k]
ε ,Z) ≃ H2(S,Z)⊕⊥ Z[ek],

such that b( , ) restricts to the usual cup product on S and q(ek) = −2(k − 1 + 2ε). The above
isometry restricts to the embedding (4) on the algebraic part, whence

(7) Pic(S[k]
ε ) ≃ NS(S)⊕ Z[ek].

Under the embedding H2(S
[k]
ε ,Z) ↪→ H2(S

[k]
ε ,Q) given by lattice duality, H2(S

[k]
ε ,Z) is generated by

H2(S,Z) and rk := ek/2(k − 1 + 2ε). Here rk is the class of a general rational curve lying in the
exceptional divisor ∆k of the Hilbert-Chow morphism, that is, rk is the inverse image under µk of a
cycle in Symk+ε(S) supported at precisely k − 1 + ε points. Hence, div(ek) = 2(k − 1 + 2ε) and

(8) N1(S
[k]
ε ) ≃ N1(S)⊕ Z[rk].
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Any smooth Kähler deformation of S
[k]
ε is called a manifold of Kummer type if ε = 1 and of K3[k]

type if ε = 0.

Remark 1.4. The manifold S
[k]
ε can also be de�ned by means of moduli spaces of stable sheaves on

the underlying surface. There is a natural map Coh(S) → H2∗(S,Z) sending a sheaf F to its Mukai
vector

(9) v(F) := ch(F)
√
td(S) = (rkF , c1(F), χ(F) + (ε− 1) rkF).

We recall that the Mukai vector of a sheaf F on a symplectic surface S is the discrete invariant that
one has to �x when constructing moduli spaces of stable sheaves; it is de�ned as

v(F) := (rk(F), c1(F), χ(F) + rk(F)(ε− 1)) ∈ H0(S,Z)⊕H2(S,Z)⊕H4(S,Z).

In order to construct a moduli space of sheaves, one needs also a choice of a polarization L and,
for most choices of primitive v (see [Yo1, Thm. 0.1]), a general ample L gives a smooth irreducible
moduli space M(v) of Gieseker L-stable torsion free sheaves with Mukai vector v. Moreover, the

�bre of M(v) under the Albanese map is deformation equivalent to S
[k]
ε .

If v := (1, 0, 1 − 2ε − k), every element [F ] ∈ M(v) can be written as F = H0 ⊗ IZ with

H0 ∈ Pic0(S) and [Z] ∈ S[k+ε]. Hence, one has M(v) ≃ S[k] in the K3 case, while in the abelian
case Kk(S) is the �bre over 0 of the Albanese map of M(v), cf. [Yo2, Thm. 0.1].

For k ≥ 2, we have a canonical Hodge isometry

H2(S[k]
ε ,Z) ≃ H2(S,Z)⊕⊥ Z[ek] ≃ v⊥ ⊂ H2∗(S,Z) = Λ := U⊕4 ⊕ E8(−1)⊕2−2ε,

such that ek is sent to (1, 0, k − 1 + 2ε) and the second cohomology of S is sent back to itself, cf.
[Yo2, Thm. 0.2]. In particular, one has

(10)
v + ek

2
∈ Λ and

v − ek
2(k − 1 + 2ε)

∈ Λ.

2. Birational geometry and wall divisors of IHS manifolds

Having trivial canonical bundle, IHS manifolds are minimal in the sense of MMP. Therefore, maps
between IHS manifolds are rather rigid, as the following shows:

Proposition 2.1. Let X and X ′ be two IHS manifolds and let f : X 99K X ′ be a birational map.
Then the following hold:

(i) The manifolds X and X ′ are deformation equivalent and H2(X,Z) ≃ H2(X ′,Z) as Hodge
structures.

(ii) The map f has indeterminacy locus of codimension at least 2.
(iii) If X is projective, there exists a klt divisor D such that the map f is a sequence of �ips

obtained by running the minimal model program for the pair (X,D).

Proof. Item (i) is the content of [Hu1, Thm. 4.6], and (ii) is proved in [Hu1, Rem. 4.4] and holds true
for all manifolds with nef canonical divisor. For (iii), any (su�ciently small) multiple of an e�ective
divisor on a IHS manifold is klt (see [HT2, Rem. 12]). Therefore, if we take an ample divisor A on
X ′ and set D = ϵf∗(A), for ϵ << 1, we have a klt pair (X,D). As A is ample and f is well de�ned
on divisors, D is positive on all curves C such that Locus(R+[C])1 is a divisor. Therefore, by running
the MMP for (X,D) we do not encounter any divisorial contraction. As f∗D is ample, (X ′, A) is a
minimal model for (X,D). �

1We recall that the locus of V ⊂ N1(X) is the closure of the locus in X covered by curves of class lying in V , that

is, Locus(V ) := {x ∈ Γ ⊂ X : [Γ] ∈ V }.
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We remark that a termination of all log-minimal models for IHS manifolds has recently been proven
in [LP, Thm. 4.1], however we only need that there exists a log-minimal model which terminates.

Being well-de�ned on divisors, any birational map between two IHS manifolds induces a pullback
map between their second cohomology groups. This allows to de�ne a birational invariant called the
birational Kähler cone of an IHS manifold X. We recall that the positive cone CX is the connected
component containing a Kähler class of the cone of positive classes inside H1,1(X,R). It contains the
Kähler cone KX , which is the cone containing all Kähler classes. The birational Kähler cone BKX

is the union ∪f−1KX′ , where f runs through all birational maps between X and any IHS manifold
X ′. If X is projective, then the closure of the algebraic part of the birational Kähler cone is just
the movable cone, that is, the closure of the cone of divisors whose linear systems have no divisorial
base components.

We recall that an isomorphism H2(X,Z) ≃−→ H2(Y,Z), where X and Y are two IHS manifolds,
is called a parallel transport operator if it is induced by the parallel transport in the local system
R2π∗Z along a path of smooth deformations π : X → D over a disc D such that X and Y are two
�bres. The group of parallel self-operators is called the monodromy group and denoted Mon2(X).

De�nition 2.2. ([Mo1, Def. 1.2]) Let X be an IHS manifold and let D be a divisor on X. Then D
is called a wall divisor if q(D) < 0 and f(D)⊥ ∩ BKX = ∅ for all Hodge isometries f ∈ Mon2(X).
The set of wall divisors on X is denoted by WX .

The ample cone is one of the connected components of CX − ∪D∈WX
D⊥, which was proven in

[Mo1, Prop. 1.5]. Indeed, wall divisors are closely related to extremal rays of the Mori cone, as was
analyzed independently in [BHT] and [Mo1]. In particular, dual divisors to generators of rational
extremal rays of negative square are wall divisors by [Mo1, Lemma 1.4]. Notice that the extremal
rays needed to determine the Kähler cone are indeed rational since the part of the Mori cone of
curves of negative square is locally a �nite rational polyhedron [HT2, Cor. 18]. The analogy runs
deeper:

Proposition 2.3. Let D be a divisor and let R be the primitive class D/ div(D) ∈ H2(X,Z) ⊂
H2(X,Q). Then D is a wall divisor if and only if there exists a Hodge isometry f ∈ Mon2(X) such
that f(R) generates an extremal ray of the Mori cone on some IHS manifold X ′ birational to X.

Proof. Let D be a wall divisor. As q(D) < 0, we have D⊥ ∩ CX ̸= ∅. Therefore, if X is projective,
there is a Hodge isometry f ∈ Mon2(X) such that f(D)⊥ ∩ BKX ̸= ∅ by [Ma, Thm. 6.18 (2)]. If X
is not projective, the same result is a direct consequence of [Hu1, Cor. 5.2 and Rem. 5.4], where the
cycle Γ in the mentioned results is of parallel transport and acts as a Hodge isometry on H2(X,Z).
By de�nition of wall divisor, f(D)⊥ supports a component of the boundary of BKX . Up to taking
a di�erent birational model X ′ of X, we can suppose f(D)⊥ ∩ KX ̸= ∅. As q(D) < 0, there exists
a divisor B ∈ CX such that D pairs negatively with B. As B is big and the B negative part of
the ample cone is locally rationally polyhedral by [HT2, Prop. 13], we can also suppose that f(D)⊥

supports a face of this cone (again, if needed, by changing birational model). This implies that R is
an extremal ray.

The converse is the content of [Mo1, Lemma 1.4] (see also [BHT, Prop. 3]). �
Remark 2.4. The above result is also implied by [BHT, Cor. 6] and can be used in order to give an
equivalent de�nition of wall divisors, i.e., divisors dual to extremal rays up to the action of parallel
transport Hodge isometries. In other words, the MBM classes de�ned in [AV] are exactly the classes
of curves dual to wall divisors.

A di�erent characterisation of wall divisors can be given in terms of contractions:

Theorem 2.5. Let R be a primitive rational curve on a projective IHS manifold X such that the
dual divisor D is a wall divisor. Then one the following cases occurs:

(i) Locus(R+[R]) contains a divisor of class a multiple of D. Furthermore, there exists a bira-
tional map f : X 99K Y with Y singular symplectic such that f contracts R.
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(ii) For a general small deformation (Xt, Rt) of (X,R) the locus Locus(R+[Rt]) is not a divisor
and there exists an IHS manifold X ′

t along with a birational map ft : Xt 99K X ′
t and a

morphism X ′
t → Yt contracting ft(Rt).

Proof. Let X ′′ be an IHS manifold deformation of X such that the parallel transport R′′ of R is an
e�ective rational curve generating the algebraic classes of H2(X

′′,Z) (cf. [Mo1, Thm. 1.3] for the
existence of such an X ′′). Let D′′ be the dual divisor to R′′.

Suppose that Locus(R+[R′′]) has codimension one (thus, the same holds for Locus(R+[R]) by
semicontinuity) and let bD′′ be the class of its closure. As we deform back to X, the divisor bD′′

deforms to bD, which is thus e�ective and is contained in Locus(R+[R]). As D · R < 0, the MMP
for the pair (X,D) yields the existence of a birational map f as in item (i).

Let us suppose now that Locus(R+[R′′]) has codimension at least two and show that we fall in
case (ii). Under this assumption X ′′ contains no e�ective divisor. Then, by the wall and chamber
decomposition of the positive cone given in [Ma, �5], the closure of the birational Kähler cone of X ′′

coincides with its positive cone. On the other hand, as the curve R′′ is e�ective, the Kähler cone is
the intersection of the positive cone with the half space of real (1, 1)-classes intersecting R′′ positively.
By the de�nition of the birational Kähler cone, this yields the existence of an IHS manifold Z ′′ along
with a birational map X ′′ 99K Z ′′, the indeterminacy locus of which is Locus(R+[R′′]). In particular,
the class −R′′ is e�ective on Z ′′ as proved in [Hu2, Cor. 2.4]. We now deform X ′′ (hence, also X) to
a projective IHS manifold where the class of R′′ is still e�ective; this is possible as, by [BHT, Prop.
3], all small deformations of X where D stays of type (1, 1) have R or −R e�ective and projective
deformations are dense. In particular, we can choose a projective deformation X ′′′ where the parallel
transport of R is e�ective and extremal; indeed, up to changing birational model, R is an extremal
ray on all deformations (X0, R0) belonging to the Zariski open set where CX0 = BKX0 . Therefore,
the Contraction Theorem yields a contraction X ′′′ → Y ′′′ and the conclusion follows from the next
lemma. �

Lemma 2.6. Let Z be a projective IHS manifold and let R be a curve generating an extremal ray
such that Locus(R+[R]) has codimension at least 2. Let Z → Y be the contraction of this extremal
ray. Then for all small locally trivial deformations Yt of Y there is a symplectic resolution Zt → Yt
contracting exactly Locus(R+[Rt]), where (Zt, Rt) is a small deformation of (Z,R).

Proof. By [Wi, Thm. 1.3], the singular locus of Y has codimension at least four. Let Yt be a
locally trivial small deformation of Y . Then Yt has the same Beauville-Bogomolov form of that of
Y (and also the same second Betti number) and it has a symplectic resolution Zt, which is a small
deformation of Z by Theorem 1.1. Remark 1.3 ensures that the deformation [Rt] of [R] is algebraic.
As R is extremal, small deformations [Rt] of its class are represented by curves Rt [BHT, Prop. 3]; the
Rigidity Lemma then implies that Rt is contracted by Zt → Yt. By Remark 1.3, b2(Z) = b2(Y ) + 1.
Hence, b2(Zt) = b2(Yt) + 1 and the map contracts precisely Locus(R+[Rt]). �

Remark 2.7. The �rst item of Theorem 2.5 is slightly stronger than [Ma, Prop. 6.1] as it ensures
that exceptional divisors, as de�ned in [Ma, Def. 5.1], are contractible, up to birational equivalence.
This should be regarded as the higher dimensional analogue of the contractability of e�ective divisors
with self-intersection −2 on K3 surfaces. Notice that, when R is reducible, the contraction does not
necessarily have relative Picard rank one. The contraction map f : X 99K Y is a composition of �ops
and divisorial contractions and therefore is only rational. The second item of the proposition cannot
be strengthened and in particular it might not hold for (X,R). Indeed, one has to take into account
the action of the subgroup Wexc of Mon2 generated by the re�ections on reduced and irreducible
exceptional divisors. The general deformations in the statement are precisely those manifolds where
Wexc is the identity. Note that this set strictly contains the open set of manifolds with an irreducible
Hodge structure and it is Zariski open as the set of generators of Wexc is �nite up to the monodromy
action.
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Wall divisors on S
[k]
ε can be determined lattice-theoretically using results of Yoshioka [Yo3] and

Bayer and Macrì [BM1]. In the following, we use the same notation as in Remark 1.4.

Remark 2.8. In [BM1] and [Yo3], Bayer, Macrì and Yoshioka determine a decomposition of the
space of stability conditions Stab0(S, v) given by walls and chambers. Any stability condition σ in
a chamber gives a smooth moduli space M(v, S, σ) of stable objects in Db(S) with Mukai vector v,
whereas most conditions lying on a wall give a singular space and conditions on nearby chambers
give its symplectic resolution. (For our purposes, the so-called �fake walls� as in [BM1, Def. 2.20(a)]
do not matter.) Moreover, for every σ in a chamber of Stab0(S, v), [BM1, Thm 1.2] gives a map
from Stab0(S, v) to the positive part of the movable cone BKM(v,S,σ), and every chamber lands

in BKM(v,S,σ). By Proposition 2.3, this implies that all non-fake walls of Stab0(S, v) are dual to
wall divisors and, up to the action of Wexc (de�ned in Remark 2.7), we obtain all wall divisors of
M(v, S, σ) in this way. By Remark 1.4 along with the fact that Gieseker stability lies in Stab0(S, v)
for any v, the ordinary moduli spaces of Gieseker stable sheaves with Mukai vector v is obtained as

M(v, S, σ) for a σ ∈ Stab0(S, v). In particular, S
[k]
ε is the Albanese �bre of some M(v, S, σ).

Theorem 2.9. Let D be a divisor of S
[k]
ε with q(D) < 0 and let T ⊂ Λ := H2∗(S,Z) be the saturated

lattice generated by v := (1, 0, 1− 2ε− k) and D. Then D is a wall divisor if and only if there is an
s ∈ T such that

(i) 0 ≤ q(s) < b(s, v) ≤ (q(v) + q(s))/2; or,
(ii) ε = 0, q(s) = −2 and 0 ≤ b(s, v) ≤ q(v)/2.

Proof. Remark 2.8 implies that all wall divisors of S
[k]
ε correspond to walls in the space Stab0(S, v).

For ε = 0 we can thus apply [BM1, Thms. 5.7 and 12.1] with a := s and b := v−s; our inequalities
are equivalent to imposing that both a and b are in the positive cone of T (cf. [BM1, Def. 5.4]), i.e.,
q(a) ≥ 0 and b(v, a) > 0 and the same for b.

For ε = 1 the statement follows from[Yo3, Prop. 1.3]. Indeed, the conditions in [Yo3, Def. 1.2]
can be rephrased by asking that a := s and b := v − s are in the positive cone of T as before. The
additional condition b(s, v)2 > q(v)q(s) in [Yo3, Prop. 1.3] is equivalent to the requirement that T
is inde�nite, which is implied by q(D) < 0. �

Remark 2.10. A lattice T as in the above theorem can contain several elements s satisfying (i)
and (ii), and abstractly isometric lattices can even correspond to di�erent kinds of wall divisors, as
the following example illustrates (cf. also [HT3, Sec. 4]). Let k − 1 + 2ε = 2rt, where r and t are
relatively prime integers. Let S be a symplectic surface and let M be the moduli space of stable
sheaves with Mukai vector v := (r, 0,−t). Let Γ ∈ H1,1(M,Z) be the image of (r, 0, t) under the
natural Hodge isometry H2(M,Z) ≃ v⊥ ⊂ H2∗(S,Z). The saturated lattice generated by v and Γ is
isometric to U and contains no elements s such that q(s) = 0 and b(s, v) = 1, unless either r or t are
1. Note that v+Γ

2r and v−Γ
2t satisfy the conditions of the above theorem, and hence Γ is a wall divisor.

The lattice U is also associated with the exceptional divisor ∆k of S
[k]
ε , but in the saturated lattice

generated by v and ek there is an element s such that b(s, v) = 1 and q(s) = 0. However, isometric
lattices as in Theorem 2.9 give rise to isometric wall divisors.

Theorem 2.9 enables us to extend to manifolds of Kummer type a result obtained by Bayer, Hassett
and Tschinkel, and independently by the third author, in the case of manifolds of K3[k] type.

Proposition 2.11. Let R be a primitive generator of an extremal ray of the Mori cone of a manifold

X deformation of S
[k]
ε . Then q(R) ≥ −(k + 3− 2ε)/2.

Proof. For ε = 0 this is the content of [Mo1, Cor. 2.7] or [BHT, Prop. 2].
Let ε = 1 and q(R) < 0. Then the dual divisor D to R, namely, R = D/ div(D), is a wall divisor

by Proposition 2.3. As wall divisors are invariant under deformation, we can assume X = S
[k]
1 for
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some abelian surface S. Let T, v, s be as in Theorem 2.9. Let a := GCD(q(v), b(s, v)). We have
aD = b(s, v)v − q(v)s and div(D) = q(v)/a. Then we have

q(D) = (q(v)2q(s)− q(v)b(s, v)2)/a2 ≥

≥ 4q(v)2q(s)− q(v)3 − q(v)q(s)2 − 2q(v)2q(s)

4a2
≥ −q(v)

3

4a2
= −(k + 1) div(D)2

2
,

where we have used the inequality b(s, v) ≤ (q(v) + q(s))/2. �
The above statement in the K3 case is part of a conjecture by Hassett and Tschinkel [HT1, Conj.

1.2], who predicted that the class R of a primitive 1-cycle in a manifold of K3[k]-type is e�ective if
and only if the inequality in Proposition 2.11 holds. Counterexamples to the if part are known, cf.
[BM2, Rem. 10.4] and [CK, Rem. 8.10]. The analogous conjecture for manifolds X of Kummer type
was stated only in the four-dimensional case [HT1, Conj. 1.4]. Proposition 2.11 shows that the only
if part holds independently of the dimension of X; on the other hand, the if part fails as soon as
dimX > 4, as the following example shows.

Example 2.12. Let S be an abelian surface with an order four symplectic group automorphism
φ. Such an automorphism induces an automorphism φ of order four on all the generalised Kum-
mer manifolds arising from S. There exists a primitive non-e�ective class F ⊂ NS(S) such that

φ(F ) = −F and F 2 = −2, cf. [Fu, Table 15]. This class gives a 1-cycle class in N1(S
[k]
1 ) that is

orthogonal to any φ-invariant ample class (hence, it is not e�ective) and has square −2. This shows
that the inequality in Proposition 2.11 is not su�cient for the e�ectivity of a 1-cycle.

We now state a criterion for determining whether a projective manifold of K3[k] or Kummer type

is isomorphic to S
[k]
ε for some S.

Proposition 2.13. Let X be a projective manifold of K3[k] or Kummer type. Then X is isomorphic

to S
[k]
ϵ for some S if and only if there is a birational map f : S

[k]
ε 99K X and f∗[D] ∈ e⊥k for some

nef divisor D ∈ NS(X).

Proof. The only if part is trivial and we prove the converse implication.
We �rst claim that BK

S
[k]
ϵ

∩ e⊥k = K
S
[k]
ϵ

∩ e⊥k , that is, all movable divisors on e⊥k are nef. Granting

this, the divisor class f∗[D] ∈ NS(S
[k]
ϵ ) lies in the image of (4) and is movable, hence nef. Let us

take an ample class A ∈ Pic(X) and consider the ample class D + sA (for small s). The pullback

under f of D + sA is ample on S
[k]
ε , as this class cannot be ek-negative (it stays movable) and the

limit of these classes as s goes to zero is nef. Thus, X ≃ S
[k]
ε by the global Torelli Theorem [Ma,

Thms. 1.2 and 1.3].
It remains to prove the claim. Let E ∈ C

S
[k]
ϵ

be a divisor such that b(E, ek) = 0. In particular, the

class [E] lies in the image of the restriction of (4) to the closure of the positive cone CS and we will
denote by ES an e�ective divisor on S representing its preimage. Let us assume that [E] is not nef.

Any irreducible curve Γ ⊂ S
[k]
ϵ such that Γ · E < 0 is not contained in ∆k. The image of such a Γ

under the projection to S of the incidence variety

(11) I :=
{
(P, [Z]) ∈ S × S[k]

ϵ |P ∈ Supp(Z)
}

is an e�ective curve ΓS ⊂ S, whose class is sent to [Γ] by (5). Since ES · ΓS < 0, the divisor ES is
not nef. In the abelian case this is impossible and hence [E] is nef and we are done. Let us show
that in the K3 case [E] is not movable. Let R ⊂ S be a (−2)-curve such that ES ·R < 0 and denote

by DR ⊂ S[k] the corresponding uniruled divisor de�ned as in (6). Then b(E,DR) < 0, whence E is
not movable by [Ma, Prop. 5.6]. �

Remark 2.14. In the above proposition the condition that X is birational to S
[k]
ε is equivalent to

asking that there is a parallel transport Hodge isometry between the two manifolds, cf. [Ma, Thm.
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1.3]. If S is K3, there is a topological way of recognizing a parallel transport Hodge isometry, cf.
[Ma, Cor. 9.5]. By the computation of the monodromy group in the Kummer case [Mo2, Thm. 2.3],
it is highly expected that a similar characterisation holds if S is abelian.

We end this section with a result that will be used in the proof of Theorem 0.2.

Proposition 2.15. Let X be a holomorphic symplectic manifold, i. e., there is an étale cover

X̃ := Πi∈IMi → X, where every Mi is either IHS or abelian. For every subset J ⊂ I, denote by

FJ the image in X of a general �bre of the projection X̃ → Πj∈JMj. Let P be a projective variety
along with a morphism q : P → X that is generically a Pr-bundle, for an integer r ≥ 1.

Assume that g : P 99K Y is a rational map to an IHS manifold Y such that:

(i) dimY = 2r + dimX;
(ii) g is well-de�ned in codimension one;
(iii) g is injective on general �bres of q;
(iv) for all J ̸= ∅, the map g is generically injective when restricted to q−1(FJ);
(v) the image of g is an irreducible component of the locus covered by the rational curves of class

[g(ℓ)], where ℓ is a line in a �bre of q.

Then g is generically �nite.

Proof. Our proof consists in showing that the symplectic form on Y pulls back to a non-zero two-
form on P and that this two-form degenerates only along �bres of q. Therefore, the statement will
follow, by contradiction, from assumption (iv).

Let T denote the closure of the image of g and h : T̃ → T be its desingularization. We consider

the maximal rationally connected �bration π : T̃ 99K B of T . We denote by g̃ : P 99K T̃ the rational
map induced by g and assume that a general �bre of g (or, equivalently, of g̃) has dimension α. As T
is a component of the locus covered by rational curves of class [g(l)] by assumption (v), we can apply
[AV, Thm. 4.4] along with assumption (i) and obtain that a general �bre F of π has dimension equal
to codimY T = r + α and g̃−1(F ) has dimension r + 2α. By hypothesis (iii), the locus q(g̃−1(F )) is
2α-dimensional.

Let σ be a symplectic form on Y . As in [AV, Pf. of Thm. 4.4], one shows that the form h∗(σ|T ) is
degenerate precisely on the �bres of π, which are rationally connected and hence have no two-forms.
By de�nition of g̃, the two-form g∗(σ|T ) coincides with g̃

∗(h∗(σ|T )) where the latter is de�ned. Since
g∗(σ|T ) is well-de�ned in codimension one by assumption (ii), it extends to a two-form on P that is

degenerate along g̃−1(F ). On the other hand, any form on P is the pullback of a form on X and
forms on X can be degenerate only along the FJ 's. Therefore, if α > 0, then the closure of q(g̃−1(F ))
coincides with FJ for some J ⊂ I. However, this contradicts assumption (iv). �

3. Curves on symplectic surfaces and their pencils

For a polarized surface (S,L), we denote by {L} the continuous system of L, that is, the con-
nected component of Hilb(S) containing the linear system |L|. If S is a K3 surface, then |L| = {L}.
If S is an abelian surface, then {L} is obtained translating curves in |L| by points of S, whence
dim{L} = dim |L|+2. We denote by V|L|,δ(S) (respectively, V{L},δ(S)) the Severi variety parametriz-

ing irreducible curves in {L} (resp. |L|) with precisely δ nodes, and by {L}1δ,d (resp. |L|1δ,d) the

Brill-Noether locus parametrizing those nodal curves C whose normalization C̃ carries a linear series

of type g1d, that is, a pair (A, V ) where A is a line bundle of degree d on C̃ and V is a 2-dimensional

space of global sections of A. We denote by G1
d(C̃) the Brill-Noether variety parametrizing all linear

series of type g1d on C̃. It has expected dimension max{ρ(g, 1, d), 0}, where g is the genus of C̃, and
ρ(g, r, d) := g − (r + 1)(g − d+ r) is the classical Brill-Noether number.

We also recall that the rami�cation of a base point free (that is, globally generated) g1d is said
to be simple if the rami�cation of the induced covering map onto P1 is, and a node of C is called

non-neutral with respect to the g1d if its two preimages in C̃ are not identi�ed by the covering map.
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We will make use of the following result (recall the convention (2)):

Theorem 3.1. Let (S,L) be a general polarized K3 or abelian surface of genus p := pa(L). Let δ
and k be integers satisfying 0 ≤ δ ≤ p− 2ε and k + ε ≥ 2. Then the following hold:

(i) {L}1δ,k+ε ̸= ∅ if and only if

(12) δ ≥ α
(
p− δ − ε− (k − 1 + 2ε)(α+ 1)

)
,

where

(13) α =
⌊ p− δ − ε

2(k − 1 + 2ε)

⌋
;

(ii) whenever non-empty, {L}1δ,k+ε is equidimensional of dimension min{p− δ, 2(k− 1 + ε)} and

a general element in each component is an irreducible curve C with normalization C̃ of genus

g := p− δ such that dimG1
k+ε(C̃) = max{0, ρ(g, 1, k + ε) = 2(k − 1 + ε)− g};

(iii) there is at least one component Yδ,k+ε of {L}1δ,k+ε where, for C and C̃ as in (ii), when

g ≥ 2(k − 1 + ε) (respectively g < 2(k − 1 + ε)), any (resp. a general) g1k+ε on C̃ is base
point free and has simple rami�cation and all nodes of C are non-neutral with respect to it.
Furthermore, when S is abelian, for general C in this component the Brill-Noether variety

G1
k+1(C̃) is reduced.

Proof. This is [KLM, Thm. 1.6] when S is abelian and [CK, Thm. 0.1], combined with [KLM, Rem.
5.6], when S is K3. �
Remark 3.2. (i) The condition (12) is equivalent to

(14) ρ(p, l, (k + ε)l + δ) + εl(l + 2) ≥ 0 for all integers l ≥ 0.

Indeed, the left hand side of (14) attains its minimum for l = α as in (13) and (12) is a rewrite of
(14) with l = α.

(ii) The condition (12) is also necessary for the existence of an irreducible curve C ∈ {L} with

partial normalization C̃ of arithmetic genus g := p− δ carrying a g1k+ε, regardless of its singularities.
This follows from [KLM, Thm. 5.9 and Rem. 5.11] in the abelian case and [CK, Thm. 3.1] in the
K3 case, by remarking that the proofs go through replacing the normalization of the curve with a
partial normalization, as remarked in [CK, Rem. 3.2(b)]. We will however not use this fact in the
present paper.

Let g be a linear series of type grk+ε on the normalization C̃ of a curve C ⊂ S, that is, g = (A, V ),

where A is a line bundle of degree k + ε and V ⊆ H0(A) is an (r + 1)-dimensional subspace. If g is
base point free, we have a natural rational map

(15) ιg : Pr := P(V ) 99K S[k+ε]

obtained from the composition P(V ) ⊆ |A| ⊂ Symk+ε(C̃) → Symk+ε(C) ⊂ Symk+ε(S), whose image
does not lie in the exceptional locus ∆k of the Hilbert-Chow morphism. Thus, g de�nes a rational
r-fold inside the Hilbert scheme S[k+ε]. In particular, when r = 1, we obtain a rational curve.

When S is an abelian surface, the Albanese map Σk restricted to the image of ιg is constant,
because otherwise we would get a rational subvariety in S. Therefore, up to translating the curve C,
we may assume that (15) lands into the generalised Kummer variety Kk(S). Let us now specialise

to the case r = 1, denote by ν : C̃ → C the normalization map, and let RC,ν∗g ⊂ S
[k]
ε be the rational

curve image of ιg, recalling (3). (The same construction can be performed for any linear series on a
partial normalization of C.)

Lemma 3.3. Let C ∈ {L}1δ,k+ε be a curve whose normalization possesses a linear series g of type

g1k+ε with simple rami�cation and such that all nodes of C are non-neutral with respect to it.
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Then the class of the rational curve RC,ν∗g in H2(S
[k]
ε ,Z) with respect to the decomposition (8) is

(16) Rp,δ,k := L− (p− δ + k − 1 + ε)rk

and its dual divisor class is

(17) Dp,δ,k := L− (p− δ + k − 1 + ε)

2(k − 1 + 2ε)
ek,

Proof. In the K3 case, this is [CK, Lemma 2.1]. The proof in the abelian case is similar. �

In particular, one has:

(18) q(Rp,δ,k) = 2(p− 1)− (p− δ + k − 1 + ε)2

2(k − 1 + 2ε)
.

Observe that, for �xed values of k and p, the minimum in (18), as well as the maximal �slope�
p− δ + k − 1 + ε of the class Rp,δ,k, is reached for a curve with the minimal number of nodes.

Remark 3.4. Under the same hypotheses as in Lemma 3.3, one may rewrite (16) as

q(Rp,δ,k) = 2
(
ρ+ εα(α+ 2) + ε− 1

)
− β2

2(k − 1 + 2ε)
,

with α as in (13),

ρ := ρ(p, α, (k + ε)α+ δ) and β := (2α+ 1)(k − 1 + 2ε)− p+ δ + ε.

In particular, we have −(k − 1 + 2ε) < β ≤ k − 1 + 2ε, and (12), or equivalently (14) with l = α,
says that ρ+ εα(α+2) ≥ 0. From these inequalities one reobtains the bound from Proposition 2.11:

q(Rp,δ,k) ≥ −k + 3− 2ε

2
,

with equality if and only if

p = α(α+ 1)(k − 1 + 2ε) + ε and δ = α(α− 1)(k − 1 + 2ε)

(see also [CK, Cor. 3.4]).

Proposition 2.11 yields the following extension of [CK, Cor. 8.6] to Kummer manifolds.

Corollary 3.5. Assume that NS(S) ≃ Z[L]. Let n ∈ Z>0 and set p := n(n + 1)(k − 1 + 2ε) + ε

and δ := n(n− 1)(k − 1 + 2ε). Then the rational curves in S
[k]
ε obtained from the component Yδ,k of

Theorem 3.1 generate extremal rays of S
[k]
ε .

We also have:

Proposition 3.6. The rational curves in S
[k]
ε obtained from any component of the relative Brill-

Noether variety G1
k({L}1δ,k+ε) parametrizing pairs (C, g) such that C ∈ {L}1δ,k+ε and g is a g1k+ε on

the normalization of C move in a family of rational curves of dimension precisely 2k − 2.

Any small deformation Xt of X0 = S
[k]
ε keeping the class of the rational curves algebraic contains

a (2k− 2)-dimensional family of rational curves that are deformations of the rational curves in S
[k]
ε .

Proof. Any irreducible family of rational curves in S
[k]
ε containing our family yields, by the incidence

(11), a family of pairs (C, g) with C ∈ {L} and g a linear series of type g1k+ε on the normalization of
C. By [KLM, Thm. 5.3], the rational curves will therefore move in a family of dimension precisely
2k − 2, which is the expected dimension of any family of rational curves on a (2k)-dimensional IHS
manifold [Ra, Cor. 5.1]. Hence, as a consequence of [Ra, Cor. 3.2-3.3], the rational curves will
deform to any Xt as in the statement, cf. [BHT, Pf. of Prop. 3]. �
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4. Examples of wall divisors

Let (S,L) be a general abelian or K3 surface, and �x integers p, k and δ satisfying all inequalities
in Theorem 3.1, in particular (12). Let Rp,δ,k be as in Lemma 3.3; in particular, its class is given by
(16). Denote by Dp,δ,k its dual divisor (class).

Theorem 4.1. The divisor Dp,δ,k is a wall divisor if and only if q(Rp,δ,k) < 0.

Proof. We only need to prove the �if� part. By Proposition 3.6, the family of rational curves with

class Rp,δ,k has a component of dimension 2k − 2 and deforms in all small deformations Xt of S
[k]
ε

where the class Rp,δ,k remains algebraic. Let (Xt, Rt) be a very general such deformation. The class
Rt spans N1(Xt), hence it is extremal. As it has negative square, its dual is a wall divisor. Since

wall divisors are invariant under deformation, Dp,δ,k is a wall divisor on S
[k]
ε , too. �

Remark 4.2. If Dp,δ,k is a wall divisor, we can recover the lattice T associated with it in Theorem
2.9. Set a := GCD(2k − 2 + 4ε, g + k − 1 + ε), ab := g + k − 1 + ε and ac := 2k − 2 + 4ε. The
saturation of the lattice generated by v and Dp,δ,k is T := ⟨v, w⟩, where w = b

c(v− ek)+L− v. Note
that q(w) = 2δ− 2+2ε and b(w, v) = g− k+1− 3ε. The element w does not necessarily satisfy the
inequalities (i) or (ii) in Theorem 2.9 for s. However, this occurs in some special cases, e.g., in the
examples below.

Example 4.3. Let p = 2k−2+5ε and δ = 0. Then q(Rp,δ,k) = −k+3−2ε
2 and the lattice T associated

with Rp,δ,k is isometric to
(

−2 + 2ε k − 1 + 2ε
k − 1 + 2ε 2k − 2 + 4ε

)
, cf. Remark 4.2.

Example 4.4. Let p = 2k − 2 + 5ε − a, a ≤ k − 1 + 2ε, and δ = 0. Then q(Rp,δ,k) < 0 and the

lattice T associated with Rp,δ,k is isometric to
(

−2 + 2ε k − 1 + 2ε− a
k − 1 + 2ε− a 2k − 2 + 4ε

)
, cf. Remark 4.2.

Example 4.5. Let p = 2k − 2 + 5ε and 0 ≤ δ ≤ k−1+2ε
2 . Then q(Rp,δ,k) < 0 and the lattice T

associated with Rp,δ,k is isometric to
(

2δ − 2 + 2ε k − 1 + 2ε
k − 1 + 2ε 2k − 2 + 4ε

)
, cf. Remark 4.2.

Proposition 4.6. Let k ≥ 2 be an integer and set ε = 0 (respectively, ε = 1). Let v := (1, 0, 1−2ε−k)
and let s ∈ Λ = U⊕4 ⊕ E8(−1)⊕2−2ε be an element satisfying the inequalities (i) or (ii) in Theorem
2.9. Let T = ⟨v, s⟩. Then there exists a primitively polarized K3 (resp. abelian) surface (S,L) of
genus p and an integer 0 ≤ δ ≤ p− 2ε such that p, δ, k satisfy (12) and the following hold:

(a) the divisor Dp,δ,k is a wall divisor;
(b) the saturation of the lattice generated by v and Dp,δ,k in Λ is isometric to T .

Proof. As soon as {L}1δ,k+ε is non-empty, we obtain that also {L}1δ+1,k+ε is non-empty, as the

condition (12) is satis�ed and Theorem 3.1(i) applies. By a direct computation using the classes
of Dp,δ,k and Dp,δ+1,k, if the saturation of the lattice generated by Dp,δ,k and v is isometric to(

2δ − 2 + 2ε b
b 2k − 2 + 4ε

)
, the saturation of the lattice generated by Dp,δ+1,k and v is isometric to(

2δ + 2ε b− 1
b− 1 2k − 2 + 4ε

)
, for some b ∈ Z. One readily checks that if inequality (12) is satis�ed for a

triple (p, δ, k), then it is also satis�ed for the triple (p− 1, δ, k). Therefore, if (S,L) has genus p and
{L}1δ,k+ε is non-empty, then {L′}1δ,k+ε is non-empty for every primitively polarized (S′, L′) of genus

p − 1 by Theorem 3.1(i). By direct computation again, if the corresponding lattice in the genus p

case is
(

2δ − 2 + 2ε b
b 2k − 2 + 4ε

)
, the lattice in the genus (p−1) case is

(
2δ − 2 + 2ε b− 1

b− 1 2k − 2 + 4ε

)
.

These remarks along with Example 4.3 give us all possible isometry classes of lattices T as in the
statement. �
Remark 4.7. As explained in Remark 2.10, the above proposition does not give all wall divisors up
to the monodromy action. However, when k − 1 + 2ε is a prime power, we have that T determines
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and is determined by the monodromy orbit of D as all isometries of H2(S
[k]
ε ) can be extended to

isometries of Λ �xing v. Hence the above proposition gives a full list of wall divisors up to monodromy
in these cases.

5. Lazarsfeld-Mukai bundles associated with nodal curves

In this section, we will analyze the structure of Lazarsfeld-Mukai bundles associated with linear
series on the normalization of a nodal curve, with the aim of using their moduli spaces to produce
interesting subvarieties of IHS manifolds in the next section. The main result of this section is
Proposition 5.5, which characterizes the cohomology of Lazarsfeld-Mukai bundles twisted by ideal
sheaves of points.

Let C be a nodal curve on an abelian or K3 surface S such that its normalization C̃ possesses a
complete g1k+ε, that is, a globally generated line bundle A of degree k + ε such that h0(A) = 2. We

denote by ν : C̃ → C the normalization map, and by N the 0-dimensional subscheme of the nodes
of C. By standard facts (cf., e.g., [FKP, Prop. 3.2]), ν∗A is a torsion free sheaf of rank one on C
that fails to be locally free precisely at N .

Let f : S̃ → S be the blow up of S at N , so that we have a commutative diagram

(19) C̃ ⊂

ν

�� φ
��>

>>
>>

>>
> S̃

f
��

C ⊂ S

We denote by E
C̃,A

and EC,ν∗A the so-called Lazarsfeld-Mukai bundles associated with the line bundle

A on C̃ and the torsion free sheaf ν∗A on C, respectively; the duals of these bundles are the kernels
of the evaluation maps regarding A and ν∗A as torsion sheaves on the surfaces, that is, we have the
following short exact sequences:

(20) 0 // E∨
C̃,A

// H0(C̃, A)⊗O
S̃

ev
S̃,A // A // 0,

and

(21) 0 // E∨
C,ν∗A

// H0(C, ν∗A)⊗OS

evS,ν∗A // ν∗A.

The right arrow in (21) might be non-surjective, as ν∗A is not necessarily globally generated (cf.

Lemma 5.1). Pushing forward (20) to S̃ and using the isomorphisms H0(C̃, A) ≃ H0(C, ν∗A) and
f∗OS̃

≃ OS , one shows that

(22) E∨
C,ν∗A ≃ f∗(E∨

C̃,A
).

The following result establishes when (21) is exact on the right. (Recall the de�nition of neutral
nodes from the beginning of �3.)

Lemma 5.1. Let C be a nodal curve and denote by ν : C̃ → C the normalization map. Let A be

a complete, base point free pencil on C̃. Then the sheaf ν∗A is globally generated except precisely at
the nodes of C that are neutral with respect to |A|.

Proof. We can assume that C has only one node P , since the general case is analogous using partial

normalizations. Let ϕ|A| : C̃ → P1 be the morphism de�ned by |A|.
Assume that P is a neutral node with respect to |A|. Then ϕ|A| factors through a morphism

ϕ : C → P1 having the same degree as ϕ|A|. Having set A′ := ϕ∗OP1(1), one has ν∗A′ ≃ A and
ν∗A ≃ ν∗ν

∗A′ ≃ A′ ⊗ ν∗OC , hence ν∗A sits in the following short exact sequence:

0 −→ A′ −→ ν∗A −→ OP → 0.



WALL DIVISORS AND ALGEBRAICALLY COISOTROPIC SUBVARIETIES OF IHS MANIFOLDS 17

Since h0(C, ν∗A) = h0(C̃, A) = h0(C,A′) = 2, the sheaf ν∗A cannot be globally generated.
Conversely, assume that ν∗A is not globally generated at P , that is, the evaluation map

ev : H0(ν∗A)⊗OC −→ ν∗A

is not surjective. Since A is globally generated and ν is a �nite map, we have a surjection

H0(ν∗A)⊗ ν∗OC̃
≃ H0(A)⊗ ν∗OC̃

� ν∗A.

Using the standard short exact sequence

0 −→ OC −→ ν∗OC̃
−→ OP −→ 0,

one can easily show that the cokernel A1 of ev sits in a short exact sequence

0 −→ A1 −→ ν∗A −→ OP −→ 0.

In particular, A1 is a line bundle and ν∗A1 = A. Hence, the morphism ϕ|A| factors through a

morphism ϕ|A1| : C → P1, which means that P is a neutral node with respect to |A|. �

The above lemma implies that if C is a general curve of the nice component Yδ,k+ε in Theorem

3.1 and |A| is a general g1k+ε on C̃, then ν∗A is globally generated and the short exact sequence (21)
is exact on the right. By dualizing it, we obtain:

(23) 0 // H0(C, ν∗A)
∨ ⊗OS

// EC,ν∗A
// ext1(ν∗A,OS) // 0,

where ext1(ν∗A,OS) is a rank one torsion free sheaf on C. This de�nes a subspace

V ≃ H0(C, ν∗A)
∨ ∈ G(2,H0(S, EC,ν∗A))

such that the evaluation map V ⊗ OS → EC,ν∗A is injective, drops rank along C and has rank 0
exactly at the nodes of C. As a consequence, every section in V vanishes along a 0-dimensional
subscheme of length k + ε+ δ always containing the subscheme N of the δ nodes of C.

We want to understand whether the pair (C, ν∗A) univocally determines the subspace V ; this
is equivalent to computing the dimension of Hom(EC,ν∗A, ext

1
OS

(ν∗A,OS)). To achieve this goal we
need some technical results.

For any torsion free rank one sheaf A on C we denote by AD the dual sheaf homOC
(A,OC). We

prove the following:

Lemma 5.2. Let F be any rank one torsion free sheaf on a curve C ⊂ S, where S is a K3 or abelian
surface. Then one has:

(24) ωC ⊗FD ≃ ext1OS
(F ,OS).

Assume furthermore that F is the cokernel of an injective map V ⊗ OS → E, where E is a rank
two bundle on S and V ∈ G(2,H0(S, E)). If Z is a zero-dimensional scheme that is the vanishing
locus of s ∈ V , one obtains the isomorphisms:

(25) F ≃ ωC ⊗ JZ/C

and

(26) ext1OS
(F ,OS) ≃ homOC

(JZ/C ,OC).

Proof. Applying homOS
(F ,−) to the short exact sequence

(27) 0 // JC/S
α // OS

// OC
// 0,

we obtain

0 = homOS
(F ,OS) // homOS

(F ,OC) // ext1OS
(F ,JC/S)

α′
// ext1OS

(F ,OS).



18 ANDREAS LEOPOLD KNUTSEN, MARGHERITA LELLI-CHIESA, AND GIOVANNI MONGARDI

Since α and α′ are given by multiplication with the local equation of C and F is supported precisely
at C, the map α′ is zero. Hence, we get

homOC
(F ,OC) ≃ homOS

(F ,OC) ≃ ext1OS
(F ,JC/S) ≃ ext1OS

(F ,OS(−C)) ≃ ext1OS
(F ,OS)⊗OS(−C),

and (24) is obtained by tensoring with OS(C).
Concerning the second part of the statement, we set L := det E and consider the following com-

mutative diagram:

(28) 0

��
0

��

OS

i
��

0 // OS
s //

��

E //

≃
��

L⊗ JZ/S
//

��

0

0 // V ⊗OS
//

��

E // F //

��

0

OS

��

0

0

The short exact sequence of ideals

0 // JC/S
// JZ/S

// JZ/C
// 0

yields the isomorphism JZ/C ≃ JZ/S ⊗OC . Hence, (25) is obtained by restricting the vertical exact
sequence on the right in (28) to C and using that i is given by multiplication with the local equation
of C. Combining (25) and (24), we obtain (26). �

We now extend [Pa, Lemma 2] to possibly nodal curves on K3 or abelian surfaces (cf. also [LC2,
Pf. of Prop. 3.2] concerning other types of irregular surfaces). In the statement of the next result,
the map µ0,A is the Petri map given by nultiplication of sections

µ0,A : H0(C̃, A)⊗H0(C̃, ω
C̃
⊗A∨) −→ H0(C̃, ω

C̃
),

and we use the well-known fact that

(29) kerµ0,A ≃ H0(C̃, ω
C̃
⊗ (A∨)⊗2)

by the base point free pencil trick.

Proposition 5.3. Let C be a nodal curve on a K3 or abelian surface S and denote by ν : C̃ → C the

normalization map. Let A be a globally generated line bundle on C̃ satisfying h0(C̃, A) = 2. Then
there is a natural short exact sequence

(30) 0 // O
C̃

// E∨
C̃,A

⊗ ω
C̃
⊗A∨ // ω

C̃
⊗ (A∨)⊗2 // 0

whose coboundary map Q : H0(C̃, ω
C̃
⊗ (A∨)⊗2) → H1(C̃,O

C̃
) coincides, up to multiplication by a

non-zero scalar factor, with the composition of the Gaussian map

µ1,A : kerµ0,A −→ H0(C̃, ω⊗2

C̃
)
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and the dual of the Kodaira-Spencer map

κ : H1(C, ν∗OC̃
)∨ ≃ T[C]V{L},δ // T

[C̃]
Mpg(C) ≃ H0(C̃, ω⊗2

C̃
)∨,

via the canonical isomorphism H1(C, ν∗OC̃
) ≃ H1(C̃,O

C̃
).

Proof. The exact sequence (30) is obtained as [Pa, (4)] since ωS ≃ OS .
We denote by N ′

C/S the equisingular normal sheaf of C in S, de�ned by the short exact sequence

0 // TC // TS |C // N ′
C/S

// 0,

where TC is the tangent sheaf of C and TS |C is the restriction of the tangent bundle of S to C.
Similarly, we denote by Nφ the normal sheaf to the morphism φ in (19), which is de�ned by the
normal sequence

(31) 0 // T
C̃

// φ∗TS // Nφ ≃ ω
C̃

// 0,

where the isomorphism on the right follows from the triviality of ωS . We recall that N ′
C/S ≃ ν∗Nφ ≃

ωC ⊗ (ν∗OC̃
)D by, e.g., [Se, Lemma 3.4.15] and [Ta, p. 111]. In particular, we have:

(32) T[C]V{L},δ ≃ H0(C,N ′
C/S) ≃ H0(C̃,Nφ) ≃ H1(C, ν∗OC̃

)∨.

Applying ν∗ to (31) and using the isomorphism ν∗ωC̃
≃ ωC ⊗ (ν∗OC̃

)D, we obtain the exact
sequence

0 // ν∗(ω
∨
C̃
) // TS ⊗ ν∗OC̃

// ωC ⊗ (ν∗OC̃
)D // 0,

and its dual

(33) 0 // ω∨
C ⊗ (ν∗OC̃

) // ΩS ⊗ (ν∗OC̃
)D // (ν∗(ω

∨
C̃
))D // 0.

The right exactness of the latter is due to the fact that ext1OC
((ν∗OC̃

)D,OC) = 0, which can easily
be veri�ed using the standard exact sequence

0 −→ OC −→ ν∗OC̃
−→ ON −→ 0.

Tensoring (33) with ωC , we obtain

(34) 0 // ν∗OC̃
// ΩS ⊗ ωC ⊗ (ν∗OC̃

)D // ωC ⊗ (ν∗(ν
∨
C̃
))D ≃ ν∗(ω

⊗2

C̃
) // 0,

where the last isomorphism follows from [BP, Lemma 4.6]. By construction, the �rst coboundary
map of (34) is κ∨.

We now follow [Pa, Pf. of Lemma 1]. Tensoring the derivation operator d : O
C̃
→ ω

C̃
with the

evaluation map ev
C̃,A

: H0(A)⊗O
C̃
→ A, we obtain a map H0(A)⊗O

C̃
→ ω

C̃
⊗A, whose restriction

to ker ev
C̃,A

≃ A∨ is O
C̃
-linear. Tensoring the restricted map with ω

C̃
⊗ A∨, we obtain a map of

O
C̃
-modules

(35) s : ω
C̃
⊗ (A∨)⊗2 // ω⊗2

C̃
,

whose associated map at the global section level is the Gaussian map µ1,A, recalling (29).
Similarly, tensoring the pullback under f of the derivation operator d : OS → ΩS with the

evaluation map ev
C̃,A

: H0(A) ⊗ O
S̃

→ A, we obtain a map H0(A) ⊗ O
S̃

→ f∗ΩS ⊗ A, whose

restriction to E∨
C̃,A

is O
S̃
-linear. Tensoring the restricted map with ω

C̃
⊗ A∨, we obtain a map of

OC-modules

(36) t : E∨
C̃,A

⊗ ω
C̃
⊗A∨ // f∗ΩS ⊗ ω

C̃
.
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The sequences and maps (30), (34), (35) and (36) combine into:

0 // ν∗OC̃
// ν∗(E∨

C̃,A
⊗ ω

C̃
⊗A∨) //

ν∗t

��

ν∗(ωC̃
⊗ (A∨)⊗2) //

ν∗s

��

0

0 // ν∗OC̃
// ΩS ⊗ ωC ⊗ (ν∗OC̃

)D // ν∗(ω
⊗2

C̃
) // 0

and the result follows. �

We are now ready to prove the following:

Proposition 5.4. If C is a general element of the component Yδ,k+ε in Theorem 3.1(iii) and |A| is
a general g1k+ε on C̃, then

dimHom(EC,ν∗A, ext
1
OS

(ν∗A,OS)) = 1.

Proof. By (24), we have Hom(EC,ν∗A, ext
1(ν∗A,OS)) ≃ H0(E∨

C,ν∗A
⊗ ωC ⊗ (ν∗A)

D) and, by (23)

tensored with E∨
C,ν∗A

, the latter contains H0(E∨
C,ν∗A

⊗ EC,ν∗A) ≃ C, where the isomorphism follows

from the fact that EC,ν∗A is simple when (S,L) is general as in Theorem 3.1 (this is standard, cf.,
e.g., [Pa, CK, KLM], and follows from the fact that {L} does not contain reducible or non-reduced
members).

If S is K3 the result is well-known and due to the fact that h1(OS) = 0 yields h1(E∨
C,ν∗A

) = 0 by

(21). It remains to treat the case where S is abelian. We have ωC ⊗ (ν∗A)
D ≃ ν∗(ωC̃

⊗A∨) by [BP,
Lemma 4.6]. Hence, by (22), there is a natural morphism

E∨
C,ν∗A

⊗ ωC ⊗ (ν∗A)
D ≃ f∗(E∨

C̃,A
)⊗ ν∗(ωC̃

⊗A∨) // ν∗(E∨
C̃,A

⊗ ω
C̃
⊗A∨),

which is injective as the left hand side is torsion free on C and the map is an isomorphism outside
of N . In particular, we get an inclusion

H0(C, E∨
C,ν∗A ⊗ ωC ⊗ (ν∗A)

D) ⊆ H0(C, ν∗(E∨
C̃,A

⊗ ω
C̃
⊗A∨)) ≃ H0(C̃, E∨

C̃,A
⊗ ω

C̃
⊗A∨),

and thus it is enough to prove the injectivity of the �rst coboundary map Q of (30).

If ρ(p − δ, 1, k + 1) ≥ 0, then Theorem 3.1 yields kerµ0,A ≃ H0(C̃, ω
C̃
⊗ (A∨)⊗2) = 0 and Q is

automatically injective.
If ρ(p − δ, 1, k + 1) < 0, then dimkerµ0,A = −ρ(p − δ, 1, k + 1) because, by Theorem 3.1(iii), A

de�nes an isolated and reduced point of G1
k+1(C̃). By Proposition 5.3, we need to show that κ∨◦µ1,A

is injective, or equivalently, µ∨1,A ◦ κ is surjective. Since A is a pencil, then the map µ1,A is injective
and its dual sits in the following short exact sequence:

0 // T[C̃]M
1
g,k+1

// T[C̃]Mg

µ∨
1,A // NM1

g,k+1/Mg
|
[C̃]

// 0,

cf. [ACG, pp. 807�824]. By Theorem 3.1, Yδ,k+1 has codimension −ρ(p − δ, 1, k + 1) in the Severi
variety V{L},δ(S), hence the image of the natural map ψ : V{L},δ(S) → Mg is transversal to M1

g,k+1

around [C]. This forces µ∨1,A ◦ κ to be surjective. �

We now �x notation that will be used in the construction of a component of the locus in S
[k]
ε

covered by rational curves of class Rp,δ,k.
Let C and A be as in Proposition 5.4. Since ν∗A is globally generated in this case (by Theorem

3.1 and Lemma 5.1), the Mukai vector (cf. Remark 1.4) of the Lazarsfeld-Mukai bundle EC,ν∗A is

(37) vp,δ,k := v(EC,ν∗A) = (2, c1(L), χ+ 2(ε− 1)), with χ := χ(EC,ν∗A) = p− δ − k + 3− 5ε.
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If Pic(S) ≃ Z[L], which holds o� a countable union of proper closed subvarieties of the moduli space
of pairs (S,L), then EC,ν∗A is stable with respect to the polarization L (as in, e.g., [KLM, Proposition
A.2]).

Let M be the moduli space of Gieseker L-stable torsion free sheaves on S with Mukai vector vp,δ,k
as in (37) that contains EC,ν∗A. We recall (cf. Remark 1.4) that, since Pic(S) ≃ Z[L], then vp,δ,k is
primitive and M is an IHS manifold of dimension:

(38) dimM = 2p− 4χ+ (1− ε)8,

with χ as in (37).
Every torsion free sheaf [E ] ∈ M satis�es h2(E) = 0 because of Serre duality and the inequality

µL(E) > 0. Furthermore, as soon as h0(E) ≥ 2, then for all V ∈ G(2,H0(E)) the evaluation map
ev : V ⊗ OS → E is injective. Indeed, if this were not the case, its kernel would be isomorphic to
OS(−D) for an e�ective divisor D and we would �nd a short exact sequence:

0 −→ OS(D) −→ E −→ det E(−D)⊗ Iξ −→ 0,

where ξ ⊂ S is a 0-dimensional subscheme. As det E is indecomposable and h2(E) = 0, then D = 0
and this contradicts the fact that V is generated by 2 linearly independent sections of E .

The following two results determine properties of M that will play a fundamental role in our

construction of uniruled subvarieties of S
[k]
ε . They can also be seen as applications of Proposition

5.4 to moduli spaces of stable sheaves on S and are therefore interesting in themselves.

Proposition 5.5. Let p, δ, k be integers such that (12) is satis�ed and let v and χ be as in (37).
Then the elements of M satisfy the following properties:

(i) If χ ≥ 2δ + 2, then h1(E) = h1(E ⊗ Iτ ) = 0 for a general pair ([E ], τ) ∈ M× S[δ].
(ii) If χ < 2δ + 2, the locus

X :=
{
([E ], τ) ∈ M× S[δ] | h0(E ⊗ Iτ ) ≥ 2

}
is non-empty, with an irreducible component X0 whose general point satis�es h0(E ⊗ Iτ ) = 2
and h1(E ⊗ Iτ ) = 2 + 2δ − χ. Furthermore, X0 is birational to a component of the relative
Brill-Noether variety

G1
k+ε

(
V k+ε
{L},δ

)
:=

{
([C], g) | [C] ∈ V k+ε

{L},δ, g ∈ G1
k+ε(C̃), with C̃ the normalization of C

}
,

having the expected dimension 2(k − 1 + ε).

Proof. Recall that M contains EC,ν∗A with C and A as in Proposition 5.4. Let X ⊂ M × S[δ]

parametrize pairs ([E ], τ) such that h0(E ⊗ Iτ ) ≥ 2. Trivially, X coincides with M× S[δ] as soon as
χ ≥ 2δ + 2. If instead χ < 2δ + 2, then X is a closed subscheme which can be de�ned using �tting
ideals and its expected codimension is 2(2δ − χ+ 2), whence its expected dimension is 2(k− 1 + ε).
Furthermore, X is non-empty because ([EC,ν∗A], N) lies in it.

Let G be the family of triples ([E ], τ, V ) with ([E ], τ) ∈ X and V ∈ G(2,H0(E ⊗ Iτ )), and let

p : G → X × S[δ] be the natural projection. Existence of G follows from existence of a moduli
space of OS-stable coherent systems; indeed, since M parametrizes torsion free sheaves of rank 2
and indecomposable �rst Chern class, then any pair ([E], V ) with [E] ∈ M and V ∈ G(2,H0(E)) is
automatically an OS-stable coherent system (proceed as in [LC1, �3]).

Since ([EC,ν∗A], N,H
0(C, ν∗A)

∨) lies in G, then for a general element ([E ], τ, V ) ∈ G the evaluation
map ev : V ⊗OS → E is injective and drops rank along a δ-nodal curve Γ, which is singular precisely
at the support of τ . Furthermore, the cokernel B of ev is torsion free of rank 1 on Γ and is not

locally free exactly along Sing(Γ). We set B1 := ext1(B,OS). If η : Γ̃ → Γ is the normalization map,

we can write B1 = η∗A1 for some A1 ∈ Pick+ε(Γ̃). From the short exact sequence

(39) 0 −→ V ⊗OS −→ E −→ B −→ 0,
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we get that H0(A1)
∨ ≃ H0(B1)

∨ ≃ H1(B) � V and hence g = (A1, V
∨) de�nes a g1k+ε on Γ̃. We

thus obtain a rational map h : G 99K G1
k+ε(V

k+ε
{L},δ). Our hypotheses, along with Theorem 3.1, ensure

that (C, ν∗A) lies in a component Z of the image of h of dimension:

(40) dim Z = dim V k+ε
{L},δ +max{0, ρ(p− δ, 1, k + ε)} = 2(k − 1 + ε).

On the other hand, Proposition 5.4 implies that h is generically injective and hence, for a general
([E ], τ) ∈ X, we have:

(41) dim Z = dim X + 2(h0(E ⊗ Iτ )− 2).

If χ ≥ 2δ + 2, then X = M× S[δ] and (38), (40) and (41) yield:

(42) 2(k − 1 + ε) = dimZ ≥ dimM+ dimS[δ] + 2(χ(E ⊗ Iτ )− 2) = 2(k − 1 + ε);

thus, equality holds and a general ([E ], τ) ∈ M× S[δ] satis�es h1(E) = h1(E ⊗ Iτ ) = 0.
If instead χ < 2δ + 2, then expdimX = 2(k − 1 + ε) and, by (40) and (41), one obtains dimX =

expdimX and h0(E ⊗ Iτ ) = 2 for a general ([E ], τ) ∈ X. �

Lemma 5.6. Under the same hypotheses as in Proposition 5.5, assume moreover that S is abelian
and χ ≥ 4. Then a general [E ] ∈ M satis�es h1(E ⊗ L0) = 0 for all L0 ∈ Pic0(S).

Proof. It is enough to show that the locus F := {[E ] ∈ M|h1(E) ̸= 0} has codimension greater than
two in M. We perform a parameter count as in [LC3, Prop. 4.2 and �7]. Let G1 be the parameter
space of extensions

(43) 0 −→ OS −→ E ′ β−→ E −→ 0,

with [E ] ∈ F . Since Hom(E ,OS) = 0 for all E ∈ M, the �bre of the natural map π1 : G1 → F over
[E ] is isomorphic to P(H1(E)). A sheaf E ′ as in (43) is stable; let v′ := vp,δ,k + (1, 0, 0) be its Mukai
vector and denote by π2 : G1 → M(v′) the natural projection mapping (43) to [E ′]. The �bre of π2
over [E ′] is the Quot-scheme QuotS(E ′, P ), where P is the Hilbert polynomial of E . The following
upper bound for the dimension of QuotS(E ′, P ) at [β : E ′ → E ] is well-known:

dim[β]QuotS(E ′, P ) ≤ dimHom(OS , E) = h0(E).

It follows that:

dimM− 2χ = dimM(v′) ≥ dim Imπ2 ≥ dimF − χ− 1,

and codimMF ≥ χ− 1 > 2 as soon as χ ≥ 4. �

The next lemma concerns moduli spaces of rank-2 Gieseker stable torsion free sheaves on S.

Lemma 5.7. Let S be an abelian or K3 surface and let M be the moduli space of rank-2 Gieseker
stable torsion free sheaves on S with primitive Mukai vector v = (2, c1, χ+ 2(ε− 1)). For every
[E ] ∈ M, denote by S(E) the cokernel of the injection E ↪→ E∨∨ and by lE its length. Then every
irreducible component of the locus

(44) Mq := {[E ] ∈ M| lE = q}

has codimension at least q in M.

Proof. Assume that Mq is non-empty. One de�nes a map α : Mq → M(vq), where vq := v+(0, 0, q),
which maps [E ] ∈ M to [E∨∨] ∈ M(vq). The �bre of α over a general vector bundle F ∈ Imα is
isomorphic to the Quot-scheme QuotS(F, q) of zero dimensional quotient sheaves of F of length q;
by [OG, Prop. 6.0.1], this Quot-scheme has dimension at most 3q. Hence,

(45) dimM− 4q = dimM(vq) ≥ dim Imα = dimMq −QuotS(F, q) ≥ dimMq − 3q,

and this concludes the proof. �



WALL DIVISORS AND ALGEBRAICALLY COISOTROPIC SUBVARIETIES OF IHS MANIFOLDS 23

6. Algebraically coisotropic subvarieties of IHS manifolds

We are now ready to prove our results concerning existence of uniruled subvarieties of S
[k]
ε . Let

(S,L) be a very general primitively polarized K3 or abelian surface of genus p, in the sense that it
satis�es Theorem 3.1 and Pic(S) ≃ Z[L]. For p, δ, k satisfying (12), let [C] ∈ Yδ,k+ε be general and
let A be a general complete g1k+ε on its normalization.

Let M be the moduli space M(vp,δ,k) as in the previous section, with [EC,ν∗A] ∈ M. Assume

χ ≥ 2δ + 2 and set X := M× S[δ]. We denote by P the parameter space for triples ([E ], τ, [s]) with
([E ], τ) ∈ X and [s] ∈ P(H0(E ⊗ Iτ )). The existence of P follows from the existence of a moduli
space of α-stable coherent systems (cf. [He]), where α ∈ Q[t] is any �xed polynomial with positive
leading coe�cient. Indeed, it is not di�cult to show that if E is L-stable and the polynomial α
is small enough, then the coherent system (E ⊗ Iτ , s) is α-stable for every [τ ] ∈ S[δ] and for every
s ∈ P(H0(E ⊗ Iτ )). There is a natural forgetful map q : P → X. For any ([E ], τ, [s]) ∈ P , the section
s vanishes along a �nite set because otherwise we would have Hom(det E , E∨∨) ̸= 0 and this would
contradict the µL-stability of E . Hence, we have a short exact sequence:

(46) 0 // OS
s // E // det E ⊗ IWs

// 0,

where Ws is a 0-dimensional subscheme of S of length k + ϵ+ δ containing τ . This provides a short
exact sequence

(47) 0 // ηs // OWs
// Oτ

// 0,

de�ning ηs, which is a torsion sheaf whose support is contained in that of Ws.
If E is locally free, the scheme Ws is a local complete intersection as it is the zero scheme of s. It

follows that ext2OS
(OWs ,OS) ≃ OWs by, e.g., [Fr, p. 36]. Applying the functor homOS

(−,OS) to (47)
we therefore obtain a surjection

OWs
// ext2OS

(ηs,OS),

which yields the existence of a subscheme Zs ⊂ Ws of length k + ε such that ext2OS
(ηs,OS) ≃ OZs .

This de�nes a rational map

(48) g′ : P 99K S[k+ε]

mapping a point ([E ], τ, [s]), with E locally free, to Zs. We want to extend g′ in codimension 1.
Pick a sheaf [E ] ∈ M that is not locally free and such that S(E) (de�ned in Lemma 5.7) has

length one, i.e., S(E) ≃ OP for some P ∈ S. A section s of E gives a section s′ of E∨∨ and, having
denoted by Ws′ the vanishing locus of s′, one has a short exact sequence:

0 −→ OP −→ OWs −→ OWs′ −→ 0.

If both [E ] ∈ M1 (cf. (44)) and s ∈ H0(E) are general, then Ws′ does not contain P and P is a
general point on S. Indeed, H0(E) is not contained in H0(E∨∨ ⊗ IP ) as soon as H1(E∨∨ ⊗ IP ) = 0;
the vanishing follows from the fact that a general [F ] ∈ M(v(E∨∨)) is generically generated by global

sections. For s ∈ H0(E ⊗Iτ ) with τ ∈ S[δ] such that P ̸∈ Supp(τ), we get OWs = OWs′ ⊕OP , whence
Ws is a local complete intersection, and we may �nd a subscheme Zs ⊂Ws of length k+ ε as before
and set g′([E ], τ, [s]) = Zs also in this case.

We set
M◦ :=

{
[E ] ∈ M \ ∪q≥2Mq |h1(E∨∨ ⊗ IP ) = 0 if S(E) ≃ OP

}
,

with Mq as in (44); then M◦ is open in M and its complement has codimension at least two by
Lemma 5.7. We de�ne

X◦ := {([E ], τ) ∈ X | [E ] ∈ M◦, Supp(τ) ∩ Supp(S(E)) = ∅} ;
the complement of X◦ in X has codimension at least two. Let P◦ be the open subscheme of
q−1(X◦) ⊂ P consisting of those triples ([E ], τ, s) such that either E is locally free, or the vanishing
locus Ws′ as above does not contain the singular locus of E . Then, the complement of P◦ in P has
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codimension at least two and, by the above discussion, the rational map g′ in (48) is well-de�ned on
the whole P◦. We denote by

(49) g : P◦ // S[k+ε]

the restriction of g′ to P◦.
We prove the following result.

Theorem 6.1. Let (S,L) be a very general primitively polarized K3 or abelian surface of genus
p ≥ 2. Let 0 ≤ δ ≤ p− 2ε and k ≥ 2 be integers satisfying

(50) max{2δ + 2, 4ε} ≤ χ := p− δ − k + 3− 5ε ≤ δ + k + 1.

Then the morphism g is generically injective. In particular, the locus Locus(R+Rp,δ,k) ⊂ S
[k]
ε ,

with Rp,δ,k as in (16), has an irreducible component that is birational to a Pχ−2δ−1-�bration on a
holomorphic symplectic manifold of dimension 2(k + 1 + 2δ − χ).

Proof. First of all, note that when χ ≥ 2δ+2, condition (12) is equivalent to χ ≤ δ+ k+1. Indeed,
the latter inequality is a rewrite of (14) with l = 1; on the other hand, if 2δ + 2 ≤ χ ≤ δ + k + ε,
then δ ≤ k+ ε− 2 and α = 1 in (12). Hence, (50) ensures that the hypotheses of Proposition 5.5 are
satis�ed and a general �bre of q : P◦ → X◦ is isomorphic to Pχ−2δ−1. We denote by T the closure
of the image of the morphism g in (49). The proof proceeds by steps.

STEP I: The morphism g is injective when restricted to a general �bre of the projection q.
Let Z = g(([E ], τ, [s])) ∈ T with ([E ], τ) ∈ X◦ general, and denote byWs the zero scheme of s. The

�bre of g|q−1([E],τ) over Z is contained in P(Hom(E ,det E ⊗ IWs)). This projective space is a point

because Hom(E ,det E ⊗ IWs) ≃ H0(E ⊗ E∨) ≃ C by stability, exact sequence (46) and Proposition
5.5(i), which yields h1(E) = 0.

STEP II: The map g is generically injective when restricted to a general �bre of the projection
p1 : P◦ → S[δ]. If δ = 0, then g is injective.

Let Z = g(([E1], τ, [s1])) ∈ T with ([E1], τ, [s1]) ∈ P◦ general; in particular, Supp(τ) is disjoint from
Supp(Z) and E1 satis�es h1(E1⊗L0) = 0 for all L0 ∈ Pic0(S) by Lemma 5.6. By contradiction, assume
the existence of ([E2], τ, [s2]) ∈ P◦ with E2 ̸≃ E1 such that g(([E2], τ, [s2])) = Z. In particular, one has
Ws1 =Ws2 . We remark that det E1 ̸≃ det E2 because otherwise we would have h1(det Ei ⊗ IWsi

) > 1

and, by considering the long exact sequence in cohomology associated with (46) for E1, we would get
a contradiction with h1(E1) = 0. We tensor (46) for E1 with (det E1)∨ ⊗ det E2, thus obtaining:

0 → (det E1)∨ ⊗ det E2 −→ E1 ⊗ (det E1)∨ ⊗ det E2 −→ det E2 ⊗ IWs −→ 0.

This yields the contradiction H1(E1 ⊗ (det E1)∨ ⊗ det E2) ≃ H1(det E2 ⊗ IWs) ̸= 0.

STEP III: The map g is generically injective when restricted to a general �bre of the projection
p2 : P◦ → M◦ ⊂ M.

Let Z = g(([E ], τ1, [s1])) ∈ T for a general ([E ], τ1, [s1]). By contradiction, assume the existence of

a subscheme τ2 ∈ S[δ] di�erent from τ1 and a section s2 ∈ H0(E ⊗Iτ2) such that g(([E ], τ2, [s2])) = Z.
The evaluation map ev : ⟨s1, s2⟩ ⊗ OS → E is injective and drops rank along an integral curve
Γ ∈ {L} of geometric genus ≤ p − k − ε (indeed, Γ is singular along Z). If B is the cokernel

of ev, then B1 := ext1(B,OS) = n∗A1, where n : Γ̃ → Γ is a partial normalization of Γ with

pa(Γ̃) = p − k − ε − h for some h ≥ 0 and A1 a complete g1δ−h on Γ̃. As a consequence, there is a

subscheme τ ′1 ⊂ τ1 of length δ − h and a rational curve R′ in S[δ−h] passing through [τ ′1]. Starting

from R′, one easily constructs a rational curves in S[δ] passing through τ1 in contradiction with the
generality of τ1.

STEP IV: The map g is generically �nite.
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This follows from the previous steps and Proposition 2.15, which can be applied because the
complement of P◦ in P has codimension at least two and X is holomorphic symplectic.

STEP V: Let Pi = P(H0(Ei ⊗ Iτi)) for i = 1, 2 with ([E1], τ1), ([E2], τ2) ∈ X◦ distinct points such
that h1(Ei) = 0 for i = 1, 2. Then g does not identify P1 and P2.

By contradiction, assume that g(P1) = g(P2). As g|Pi is injective for i = 1, 2 by Step I, it is easy
to verify that, if ℓ1 ⊂ P1 is a general line, then ℓ2 := g−1(g(ℓ1)) ∩ P2 is a line, too. By generality,
ℓ1 = PV1 corresponds to a pair (C1, ν∗A1), where C1 is a δ-nodal curve and A1 is a g1k+ε on its
normalization. Having set ℓ2 = PV2, the evaluation map V2 ⊗OS → E2 drops rank along a curve C2

singular along τ2. Then, C1 = C2 as both coincide with the image in S of the incidence variety

I :=
{
(Z,P ) ∈ g(ℓ1)× S ⊂ Sk+ε × S |P ∈ Supp(Z)

}
.

As a consequence, τ2 = τ1 and E2 ≃ EC,ν∗A1 ≃ E1.

STEP VI: The morphism g is generically injective.
By contradiction, assume that for a general Z ∈ T there exist at least two distinct points

([E1], τ1), ([E2], τ2) ∈ X◦ such that Z ∈ g(P1) ∩ g(P2), where Pi = P(H0(Ei ⊗ Iτi)); we may as-
sume that h1(E1) = h1(E2) = 0. The previous step then implies that g(P1) ̸= g(P2). We denote by

π : T̃ 99K B the maximal rational quotient of the desingularization T̃ of T , and by Z̃ the inverse

image of Z in T̃ . Since a general �bre of π is irreducible and π−1(π(Z̃)) contains the strict transforms

of both g(P1) and g(P2), then dimπ−1(π(Z̃)) ≥ χ− 2δ > codimS[k+ε] T ; this contradicts [AV, Thm.
4.4] (when ε = 1, in order to apply the mentioned result, one needs to pass to the �bers of the
Albanese map and use that g(P1) ∪ g(P2) is contained in such a �ber).

When ε = 0, Step VI concludes the proof. If ε = 1, consider the composition of g with the
Albanese map Σk : S[k+1] → S. Since Σk ◦ g is constant when restricted to any �bre of q, it induces
a morphism F : X◦ → S that factors, by the universal property of the Albanese variety, through a
map f : Alb(X) → S. One can easily show that both F and f are surjective. The inverse image

g−1(S
[k]
ε ) ⊂ P◦ is generically a Pχ−2δ−1-bundle on the inverse image (albX |X◦)−1(ker f), where albX

is the Albanese map of X. Since Alb(X) is the product of copies of S and S∨, the same holds for
any connected component of ker f . Therefore, any component of (albX |X◦)−1(ker f) is holomorphic
symplectic of dimension equal to dimX − 2 = 2(k + 1 + 2δ − χ), and the statement follows. �

We now give a �rst application to Conjecture 0.3.

Corollary 6.2. With the same hypotheses and notation as in Theorem 6.1, set r := χ − 2δ − 1.

Then, Sr(S
[k]
ε ) has a (2k− r)-dimensional component which is an algebraic coisotropic subvariety of

S
[k]
ε covered by curves of class Rp,δ,k.

Proof. This follows directly from Theorem 6.1 and [Vo, Thm. 1.3], which states that a closed
subvariety of an IHS manifold X contained in Sr(X) has codimension at least r. �

Starting from the closure of Im g ⊂ S[k+ε], with g as in (49), and then applying the natural rational

map S[k+ε] × S[l−k] 99K S[l+ε], one obtains subvarieties of S
[l]
ε for any l ≥ k. We use this observation

in order to construct subvarieties of S
[k]
ε , with k �xed, of codimension r for several values of r:

Theorem 6.3. Let (S,L) be a very general primitively polarized K3 or abelian surface of genus
p ≥ 2 and �x an integer k ≥ 2.

Then, for any integer r satisfying

(51) 1 ≤ r ≤ min

{
2k − 5− p− 5ε

2
,
p− 5ε

2
+ 1

}
,
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and

(52) p ≥ 9 if (ε, r) = (1, 1); p ≥ 11 if (ε, r) = (1, 2),

there is an algebraically coisotropic subvariety of codimension r in S
[k]
ε that is a component of Sr(S

[k]
ε )

and is birational to a Pr-bundle over a holomorphic symplectic manifold.
More precisely, for any integer δ satisfying

(53) max

{
0,
p− 5ε+ 2− r − k

3

}
≤ δ ≤ p− 5ε+ 2− 2r

4
, and δ > 0 if r ≤ 2 and ε = 1,

there is such a subvariety Σr,δ whose lines have class L− [2(p− 2δ − 2ε)− r + 1]rk.

Proof. We note that if δ and k are integers satisfying the conditions in Theorem 6.1, then, for
any integer l ≥ k, the image of Im g × S[l−k] ⊂ S[k+ε] × S[l−k] under the natural rational map
S[k+ε] × S[l−k] 99K S[l+ε] has the same codimension r as Im g ⊂ S[k+ε]. The intersection of this
image with any �bre of the Albanese map is birational to a Pr-bundle over a holomorphic symplectic
manifold and the coe�cients in the class of the lines with respect to the canonical decomposition (8)
remain unchanged. Hence, Theorem 6.1 yields that for any pair of integers (δ, k′) such that

(54) 2 ≤ k′ ≤ k

and

(55) max{2δ + 2, 4ε} ≤ p− 5ε− δ − k′ + 3 ≤ δ + k′ + 1, δ ≥ 0

there is a subscheme of codimension r := p − 5ε − 3δ − k′ + 2 satisfying the desired conditions.
Rewriting (54) and (55) in terms of r instead of k′ yields, respectively,

(56)
p− 5ε+ 2− r − k

3
≤ δ ≤ p− 5ε+ r

3

and

(57)
1

2
max{0, 4ε− r − 1} ≤ δ ≤ p− 5ε+ 2− 2r

4
,

One easily veri�es that these two conditions are equivalent to (53). It only remains to prove that for
each r satisfying (51) and (52), the conditions (53) are non-empty.

The inequality r ≤ 2k − 5− p−5ε
2 ensures that

p− 5ε+ 2− r − k

3
≤ p− 5ε+ 2− 2r

4
− 3

4
,

thus guaranteeing that the interval
[
p−5ε+2−r−k

3 , p−5ε+2−2r
4

]
contains an integer. The condition

r ≤ p−5ε
2 +1 is equivalent to p−5ε+2−2r ≥ 0 and thus guarantees that the above interval contains

a non-negative integer. We are therefore done, except for the cases ε = 1 and r ≤ 2, where the
requirement is that δ > 0 by (53), that is, that p− 5ε+ 2− 2r ≥ 4, which is precisely (52). �

We now perform a di�erent construction in order to exhibit uniruled subvarieties of S
[k]
ε of any

allowed codimension, except codimension k for ε = 1. This provides very strong evidence for Con-
jecture 0.3.

Theorem 6.4. Let (S,L) be a general primitively polarized K3 or abelian surface of genus p ≥ 2
and �x an integer k ≥ 2. Then for any integer r such that 1 ≤ r ≤ k − ε there is an algebraically

coisotropic subvariety of codimension r in S
[k]
ε that is a component of Sr(S

[k]
ε ) and is birational to a

Pr-bundle; furthermore, the maximal rational quotient of it desingularization has dimension 2(k−r).
More precisely, for any integer k′ such that r+ε ≤ k′ ≤ min{k, p+r−ε}, there is such a subvariety

Wr,k′ whose lines have class L− [2(k′ + ε)− r − 1]rk.
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Proof. For any r and k′ as in the statement, set g := k′− r+ ε and δ := p− g. Note that 2ε ≤ g ≤ p.
Since ρ(g, 1, k + ε) ≥ 0, the Brill-Noether locus {L}1δ,k+ε coincides with the g-dimensional Severi
variety V{L},δ of genus g nodal curves. For any component V of V{L},δ, we denote by C → V the

universal family and by C̃ → V the simultaneous desingularization of all curves in C (the latter

exists, as V is smooth). Let Symk′+ε(C̃) → V be the relative (k′ + ε)-symmetric product, with

�bre over a point [C] ∈ V equal to Symk′+ε(C̃), where C̃ is the normalization of C. By surjectivity

of the Abel map Symk′+ε(C̃) → Pick
′+ε(C̃), the line bundle O

C̃
(x1 + · · · + xk′+ε) is non-special if

x1, . . . , xk′+ε ∈ C̃ are general . Therefore, dim |O
C̃
(x1 + · · · + xk′+ε)| = k′ + ε − g = r ≥ 1 and

Symk′+ε(C̃) is generically a Pr-bundle over a dense, open subset of Pick
′+ε(C̃), which has dimension

g. It follows that Symk′+ε(C̃) is generically a Pr-bundle over a scheme of dimension g+dimV = 2g.
Consider the natural composed morphism

f : Symk′+ε(C̃) → Symk′+ε(C) → Symk′+ε(S).

We �rst prove that f is generically injective. Clearly, for each curve [C] ∈ V with normalization C̃, the

restriction of f to Symk′+ε(C̃) is generically injective. Hence, it is enough to show that, if [Z] ∈ Imf is
general, then the scheme Z is contained in a unique curve parametrized by V . A general [Z] ∈ Imf
consists of k′ + ε general points on a general curve C0 parametrized by V . For a general point
x1 ∈ C0, the set {[C] ∈ V | x1 ∈ C} has codimension one in V , as C0 is not a common component
of all curves parametrized by V . Proceeding inductively, assume that for a �xed 1 ≤ j ≤ g − 1
we have chosen j distinct points x1, . . . , xj ∈ C0 such that the set {[C] ∈ V | x1, . . . , xj ∈ C} has
codimension j in V . Again, as C0 is not a component of any curve in this set di�erent from C0, for
a general xj+1 ∈ C0 the set {[C] ∈ V | x1, . . . , xj+1 ∈ C} has codimension j + 1 in V . It follows
that dim{[C] ∈ V | x1, . . . , xg ∈ C} = 0 for general points x1, . . . , xg ∈ C0. Hence, for general points
x1, . . . , xg+1 ∈ C0, we have {[C] ∈ V | x1, . . . , xg+1 ∈ C} = {C0}, and the generic injectivity of f
follows since k′ + ε = g + r ≥ g + 1.

The image of f does not lie in the singular locus of Symk′+ε(S). Hence, its inverse image under

the Hilbert-Chow morphism is a (k′ + ε + g)-dimensional subvariety of S[k′+ε] that is birational

to a Pr-bundle. As above, the natural rational map S[k′+ε] × S[k−k′] 99K S[k+ε] maps Im f to a
codimension r subvariety of S[k+ε]. Since the Albanese map is constant on each rational subvariety

of S[k+ε], we obtain a subvariety Wr,k′ ⊂ S
[k]
ε of codimension r that is birational to a Pr-bundle and

the maximal rational quotient of the desingularization of Wr,k′ has dimension 2(k− r) by [AV, Thm.
4.4]. The coe�cients in the class of the lines in the Pr-�bres of Wr,k′ with respect to the canonical
decomposition (8) are the same as the ones of Rp,δ,k′ = Rp,p+r−k′−ε,k′ = L − [2(k′ + ε) − r − 1]rk′ .
This concludes the proof. �

We conclude with an interesting example, where Theorem 6.1 provides an immersion Pk ↪→ S
[k]
ε .

Example 6.5. By Remark 3.4, when δ = 0 the class Rp,0,k has the minimal possible self-intersection
(i.e., q(Rp,0,k) = −(k + 3 − 2ε)/2) if and only if α = 1 and p = 2(k − 1) + 5ε. We assume these
numerical conditions are satis�ed and show, by explicit construction, that Rp,0,k is the class of a line

moving in a Pk ⊂ S
[k]
ε . Note that in this case dimM = 2ε and condition (50) is satis�ed. With

the same notation introduced just before Theorem 6.1, P◦ = P and any component of g−1(S
[k]
ε ) is

isomorphic to PH0(E) for some vector bundle [E ] ∈ M. We consider the restricted morphism

g := g|PH0(E) : Pk = PH0(E) // S
[k]
ε ⊆ S[k+ε],

which is injective by Theorem 6.1 and, more precisely, an embedding by the result below.

Proposition 6.6. Let (S,L) be a general primitively polarized symplectic surface of genus p =
2(k − 1) + 5ε for an integer k ≥ 2. Then the map g is an embedding. In particular, the class Rp,0,k

is the class of a line in a Pk ⊂ S
[k]
ε .
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Proof. It is enough to show that for all [s] ∈ PH0(E) the di�erential

dg[s] : T[s]P(H0(E)) → T[Z]S
[k+ε]

is injective, where Z is the zero scheme of s. First of all, we recall the isomorphisms

T[s]PH0(E) ≃ Hom(C,H0(E)/⟨s⟩) ≃ H0(E)/⟨s⟩

and T[Z]S
[k+ε] = H0(NZ/S), and use them in order to describe dg[s]. Given t ∈ H0(E)/⟨s⟩, the

evaluation map ev : ⟨t, s⟩ ⊗ OS → E is injective and drops rank along a curve Γt ∈ {L} containing
Z. We denote by B the cokernel of ev, which is supported on Γt. Since h2(E) = h1(E) = 0 by
Proposition 5.5, we obtain isomorphisms:

(58) ⟨t, s⟩ ≃ H1(B) ≃ H0(B1)
∨,

where B1 := ext1OS
(B,OS). By (26), one has B1 = homOΓt

(IZ/Γt
,OΓt). Let σs, σt ∈ H0(B1) denote

the duals of the images of s and t under (58), and consider the following short exact sequence:

0 // OΓt

σs // homOΓt
(IZ/Γt

,OXt)
αt // homOΓt

(IZ/Γt
,OZ) // 0.

Then we have 0 ̸= H0(αt)σt ∈ H0(homOΓt
(IZ/Γt

,OZ)) = H0(NZ/Γt
) ↪→ H0(NZ/S), where the last

inclusion is given by taking cohomology in

(59) 0 // NZ/Γt

ιt //// NZ/S
// NΓt/S |Z // 0.

By construction, dg[s](t) = H0(ιt) ◦H0(αt)σt ∈ H0(NZ/S).

We are now able to prove the injectivity of dg[s]. Let t, t
′ ∈ H0(E)/⟨s⟩ such that dg[s](t) = dg[s](t

′).

We �rst assume that Γt ≃ Γt′ . Since h
1(E) = 0, then the natural map h : G(2,H0(E)) → G1

k+1(|L|) is
injective; indeed, any V ∈ G(2,H0(E)) de�nes a short exact sequence like (39) and and it is enough
to tensor it with E∨ in order to conclude that P(Hom(E , B)) is a point. Since h(⟨s, t⟩) = h(⟨s, t′⟩) =
(Γt,OΓt(Z)), we have ⟨s, t⟩ = ⟨s, t′⟩, that is, t′ = λt for some λ ∈ C. Then, σλt = λσt ̸= σt
unless λ = 1. Therefore, we can assume Γt′ ̸≃ Γt; it is then clear from (59) that the section
H0(ιt′) ◦H0(αt′)σt′ ∈ H0(NZ/S) does not lie in the image of H0(ιt). This concludes the proof. �
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