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Parameter Extraction of Two diode Solar PV model 

using Fireworks algorithm  
Abstract 

The double diode model for photovoltaic (PV) modules is currently less adopted than one-diode 

model because of the difficulty in the extraction of its seven unknown parameters 

02,01, III PV , sR , pR , 1a and 2a , which is a serious inverse problem. This paper proposes application of the 

Fireworks Algorithm (FWA) for the accurate identification of these unknown parameters in such a way to 

solve effectively this modeling problem. In particular, firstly, the FWA has been comprehensively tested 

with two different technologies of Mono-Crystalline (SM55 & SP70) and Multi-Crystalline 

(Kyocera200GT) PV modules. In addition, further statistical and error analysis for three different panels 

are exclusively carried out to validate the suitability of proposed methodology. The results of proposed 

algorithm are benchmarked with popular Genetic Algorithm and Particle Swarm Optimization (PSO) 

methods. Fitness convergence curves or FWA method for SM55, SP70 and Kyocera200GT produce very 

less objective function as 2.2498E-07, 2.85765E-08 and 4.0075E-08 respectively. This illustrates the wise 

and accurate validation of FWA method. Calculated curve-fit via FWA in agreement to datasheet curve 

strongly suggest the FWA can constitute the core of suitable optimization code for two diode PV 

parameter extraction.  

Keywords: Fireworks Algorithm (FWA); Parameter estimation; Two diode model; Genetic Algorithm 

(GA). 

1. Introduction 

Energy scarcity motivated researchers around the globe to think for pollution free, and cost 

effective energy alternative. Presently 40.4% of world’s energy demand is met by coal, however, its 

continuous depletion, hazardous effluent emission and limited stock availability turned world’s attention 

towards renewable energy resources. Among the various types, Solar Photovoltaic (PV) is the most 

promising one, due to its significant advantages such as zero emission, zero noise and easy maintenance 

[Sudhakar Babu T et al., 2015]. Further it is an excellent choice for remote area electrification since 

extension of existing power grid can be too expensive.  

One of the major hurdles faced by the PV researchers is solar PV cell modeling. This occur due to 

(i) non-linear current-voltage characteristic of PV [Mohammed Azharuddin, S et al.,2014], (ii) complex 

parameter identification and (iii) generating PV array characteristics under partial shaded condition is 
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tedious. Therefore PV cell modeling is given higher importance. Moreover, an accurate solar PV cell 

model is always helpful in predicting the system performance precisely. Among many ways, the most 

common and the convenient form are via electrical equivalent circuit where two main modeling methods 

exist: (i) One-diode model and (ii) Two diode model. One diode model also called 5 parameter model [De 

Soto et al., 2006, Antonino Laudani et al., 2014a] require 5 unknown parameters and is widely accepted 

for its simplicity. However, the one diode model fails to include the recombination loss occur in the 

depletion region. Thus, for precise PV cell modeling two diode models is preferred. Though it requires 7 

parameters to model, the complexity can be easily justified in view of high accuracy. In addition, it is true 

that, the closeness of the predicted PV characteristics depend on accuracy of cell model parameter values. 

However, the non-linearity present impose difficulty towards the extraction of model parameters that 

cannot be overtaken as done for one diode model by means of reduced forms [Antonino Laudani et al  , 

2014 a, Antonino Laudani et al., 2014 b]. Therefore, identification of double diode model paremeters of  

PV module is a fundamental topic for researchers and various researchers worked on different methods to 

provide solution.  

Owing to problem solving capability, many researchers followed optimization technique in 

literature for solar PV parameter extraction. Genetic Algorithm (GA) method is first proposed in 

[J.A.Jervase et al., 2001] for PV parameter extraction problem; however the results produced show 

relatively high percentage of errors. Alternatively authors in [Meiying Ye et al., 2009, Hung Wei et al., 

2011] used Particle Swarm Optimization (PSO) method but similar to GA, this method also suffers from 

premature convergence problem. Avoiding the above problem Simulated Annealing (SA) method 

intended for extraction of solar PV parameters is implemented in [K. M. El-Naggar et al., 2012].  Since 

the performance of SA is highly dependent on cooling schedule it is extremely difficult to obtain better 

results without proper tuning. In [M.F. AlHajri et al., 2012] a new pattern search heuristic algorithm is 

used. Even though obtained results are comparatively good, the method exhibit large complexity in 

exploration of search space. Authors Diego Oliva et al., in 2014 proposed Artificial Bee Colony (ABC) 

optimization technique. The bee behavior based on hunt for food is derived and implemented for solar PV 

parameter estimation. However, due to its slower convergence the algorithm is less chosen.  Artificial Bee 

Swarm Optimization (ABSO) a class ABC method yields better convergence in comparison to the ABC 

however, it show sluggish performance when applied for PV parameter extraction [Alireza Askarzadeh et 

al., 2013b].  The method of tuning music based on the available memory is used for the PV parameter 

extraction process in [Alireza Askarzadeh et al., 2012]. This harmony based optimization uses three 

important parameters, such as pitch adjusting rate, bandwidth and harmony memory to find global 

optimum. The selection of initial parameters and requirement of large memory space impose constraints 
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on computational time.  Bird Mating Optimization (BMO) technique, a recently devised metaheuristic 

algorithm, imitating metaphorically the mating strategies of bird species is proposed in [A.Alireza et al., 

2013a]. Though, BMO method seems to be simple, the complexity arises when perceptive different 

species are used. The authors in [A.Alireza et al., 2013a] implemented chaos optimization technique for 

PV parameter estimation; but this method suffers from parameter selection. In paper [Rajasekar N et al., 

2013], Bacterial Foraging Algorithm (BFA) is implemented for extracting solar PV characteristics from 

datasheet value but, high computational burden limits its usage. The Differential Evolution (DE) method 

is another heuristic algorithm adopt the characteristics of GA is applied for PV parameter extraction in 

[Kashif Ishaque et al b., 2011]. The method show very good convergence however involvement of more 

parameters makes DE less preferred [Kashif Ishaque et al c., 2011].  

To sum up, the methods implemented solar PV for parameter estimation have the following 

drawbacks: (1) large convergence time (2) prone to errors and (3) complexity. Therefore as an alternative 

method in this paper, a new optimization technique named FireWork Algorithm (FWA) is proposed for 

solving solar PV parameter extraction problem. FW algorithm [Y. Tan et al., 2010, Fireworks Algorithm. 

2015] is relatively a new global optimization method inspired by the phenomenon of fireworks explosion, 

where fireworks and sparks are analogous to solutions to a given problem, and an explosion can be 

viewed as a search in the solution space around the firework. With proper balance between exploration 

and exploitation process, the FW algorithm finds better solution for the given optimization problem. 

Further numerical experiments on various set of benchmark functions showed that, the FWA method 

converge to a global optimum at a much faster rate than conventional algorithm [Fireworks Algorithm. 

2015]. To know the suitability of FWA for PV parameter extraction problem, numerical simulations are 

performed with FWA method and other optimized model parameter. To know the veracity, FireWork 

(FW) results are compared with timeworn GA and PSO method. In addition, a comprehensive analysis is 

made between methods employing two diode models. Moreover to demonstrate the superiority of FW 

method error between actual and simulated values is plotted.  

The remaining section of the paper is organized as follows: Section 2 expounds the modeling of 

the solar PV. Section 3 describes the steps involved in application of FW method for PV parameters 

estimation problem. Discussions on results obtained are elaborated in section 4. In addition, comparative 

studies of FW method with three different PV panels are analyzed in section 5. Conclusions are presented 

at last. 

2. Modelling of PV module 
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It is advisable to model a solar PV system before proceeding into the installation part of it; since it is 

helpful to better understand the behavior of solar panel under varying atmospheric conditions. Therefore 

for accuracy reasons two diode models is preferred. Moreover, actually it brings out the exact behavior of 

PV cell characteristics.  It comprises of a current source pvI in parallel with two diodes 1D and 2D  

connected to series ( SR ) and shunt resistances ( PR ). Diode 1D indicates diffusion process while diode 2D  

gives idea about the space charge region of the junction, series resistance sR represents initial losses 

caused by current flow and contacts leads, and shunt resistance pR stands for modeling the reverse 

saturation current. The schematic representation of two diode model is shown in Fig.1.  
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Fig.1. Schematic of Two diode model. 

Applying, Kirchhoff’s Current rule (KCL) the PV cell terminal current for double diode model is given 

by  
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Where, 

pvI
 
is the current generated by PV cell, 

01I , 02I are the leakage currents of diodes D1 and D2 respectively. 

1TV , 
2TV are the thermal voltages of PVmodule and is given by 








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



q

T
B

ksN

 

sN is the number of cells connected in series 

q is the electron charge (1.602 x 10
-19

C) 

 Bk is the Boltzmann constant 1.38 x 10
-23

J/K 

T is the temperature of p-n junction in Kelvin. 

21 , aa  
ideality factors of diodes D1 and D2 respectively.  
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The current generated by the PV cell ( pvI ) depends on temperature and irradiation factor. Hence the PV 

current is calculated as 

     
nG

G
dTikscnIpvI )( 

                                     

(2) 

Where scnI is the short circuit current at STC (Standard Test Conditions), ik is the current 

temperature coefficient, G is the irradiation to which the panel is exposed, nG is the irradiation of solar 

panel at STC,i.e.1000Wm
2
 and nTTdT  whereT is the surface temperature of panel and nT is the 

temperature at STC i.e., 25°C.The value of 
02

,01 II are considered to be equal to avoid computational 

complexity in iteration. Although the values are arrived via iteration, it is meaningful to validate the 

leakage current analytically to reduce the iteration time.  
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(3)  

where 

vk is the voltage temperature coefficient,  

ocV is the open circuit voltage 

For precision the values of ocV  and mpV  are modified following guidelines given in [Rajasekar N et 

al., 2013] and are calculated using the following: 
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(5) 

Where  , are the panel coefficients that vary with temperature and irradiation values. 

Proper definition of the objective function is very important for accurate extraction of parameter values 

which ensures that the model behaves exactly the same as the real PV panel. Therefore, the following 

section discusses about the formulation of objective function. Power obtained from PV panel is DC and is 

expressed as 
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VIP
                (6) 

Differentiating the above equation with respect to voltage on both sides, we get 
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Fig.2. P-V curve for different irradiations. 

From the Power curve shown in Fig.2 it can be inferred that, the derivative of power with respect to 

voltage at Maximum Power Point (MPP) is equal to zero. Applying this condition we get  

     
0 I
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On rearranging the above equation results in a new objective function where it is a minimization function, 
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The term 
),( mpmp IVdV

dI

 can be obtained by differentiating the basic current equation of double diode model 

with respect to voltage and is given below,     
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3. Optimization Technique  

 Fireworks algorithm (FWA) developed by Tan.Y and Zhu.Y is a recent arrival in the field of 

optimization technique that falls under the class of global optimization algorithms. This stochastic 

optimization technique is capable of solving non-linear, complex numerical computation with high 

accuracy. Further various works on solving practical optimization problems with FWA method can be 

found in literature [K Sangeetha et al., 2016,K. Srikanth Reddy et al., 2016,Qing Zhang et al., 2016, 

Debkalpa Goswami et al., 2015]. In this method, number of fireworks (particles) is generated in the 

search space and a stochastic explosion process is initiated for each firework. On the completion of 

explosion process, a shower of sparks is generated around the local space of exploded firework. Both the 

fireworks as well as the newly generated sparks represent the potential solutions to the optimization 

problem. Since FWA algorithm makes use of Gaussian mutation operator it enhances the local search 

capability and creates randomness in control variable. Moreover the key feature of this algorithm is its 

ability to properly balance between exploration as well as exploitation process. This behavior is quite 

suitable for parameter estimation problem; since the method has to confine its search by exploration 

followed by exploitation process. The steps involved in Fireworks algorithm implementation for PV 

parameter estimation are detailed below: 

Step1: Initialization of Fireworks: Specify iteration count as 1000 and Initialize twenty Fireworks 

{ 21,,, aaRR Ps } at different locations of search space. Specify the boundary limits for 21 &,, aaRR Ps  

as 22.0  sR , 500200  pR , 21 1  a & 21 2  a  where other parameters like PVIII &, 0201 are 

calculated manually. The representation of sample 5 fireworks inside the search space is represented in 

Fig.3 (a).  

Step 2: Spark and Amplitude Evaluation: For every individual set of 21 &,, aaRR Ps perform spark 

evaluation to know the quality of Firework based on equation (11). To understand the goodness of sparks 

generated, perform amplitude evaluation. The firework performing spark and amplitude evaluation is 

represented in Fig.3 (b). If the amplitude of sparks is less, then it is an indication that firework reached the 

position closer to global optimal region and vice versa if the amplitude is high (i.e) Firework is far away 

from optimal location. Therefore, Good and bad explosion are identified with the number of sparks 

generated and amplitude in the search space. For instance, highly populated sparks with less amplitude 

around the Firework indicate good explosion and less dense indicate bad explosion. In present case 

objective function having lesser error and larger error indicates good and bad explosion respectively. For 

the given objective function )(xf the Fireworks nxxxx ....,, 321 undergo spark evaluation based on the 

following equation. 
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Where ‘ m ’ is the control parameter responsible for number of sparks generated, ‘ maxy ’ is the 

maximum objective function, ‘ i ’ corresponds to iteration number and ‘ ’ is the constant used here to 

avoid zero division error. To restrict the spark evaluation within limits, constraints are introduced in spark 

evaluation as follows. 
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Where ‘ a ’ and ‘b ’ are constants used for spark evaluation. In order to exemplify the spark 

evaluation, the amplitude evaluation in contrast to spark evaluation is carried out. (i.e)., For good 

explosion the firework amplitude is smaller and for a bad explosion the amplitude explosion is higher.  
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(13) 

Where ‘ mA ’ is the minimum explosion amplitude and ‘ maxy ’ is the minimum objective function 

for )....3,2,1( ni  . 

Step 3: Identification of Location for Fireworks: Since the target function of parameter estimation is a 

minimization function, each firework is made to undergo a dimensionality test to effectively locate the 

Firework nearest to least objective function. Map the location of spark for inside the search space using 

the following equation. 

  
)%( minmaxmin
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(14) 

Step 4: Specific Spark Evaluation: To improve diversity in Fireworks, specific spark evaluation is 

carried out at random manner using Gaussian distribution.  

)1,1(gaussaing 
                                                   

(15) 
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This additional process emphasizes to identify the strength of sparks indicating optimal location 

of Firework. To differentiate the spark evaluation to specific spark evaluation; in a group of five 

fireworks two firework undergoing specific spark evaluation is shown in Fig. 3(c).   

FW(1)

FW(2)
FW(3)

FW(5)

FW(4)

FW(3) FW(3)

FW(5)

FW(3)*

(a) Initialization of particles in search space (b) Spark and Amplitude evaluation (c) Specific spark evaluation

(d) Re-location of particles using distance evaluation (e) FireWorks identified for next iteration

FW(1)

FW(2)

FW(5)
FW(3)*

FW(4)

 

Fig.3. Movement of Firework in search space for one dimensional problem. 

Step 5: Identification of Global Location: Reserve the best Firework (Gbest, *)(x ) with least objective 

function for further iterations and remaining (n-1) Fireworks undergo distance evaluation to find their 

new locations in subsequent iteration as shown in Fig.3(d). The distance between Fireworks is calculated 

as follows. 
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Where ‘ K ’ corresponds to current locations of individual sparks where, the probability of 

Firework corresponding to different location is defined in the following. 
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Fig.4. Flowchart for FWA implemented for parameter estimation 

The distance calculation may involve Euclidean distance, angular distance or Manhattan distance 

to calculate distance of Firework for next iteration. Fireworks new position after the 1
st
 iteration is 

represented in Fig.3(e). Two important steps that suit Firework to be a choice for non-linear problems are 

(i) Spark evaluations in first stage followed by specific spark evaluation create necessary randomness for 

the successful implementation of Firework method over existing methods. Surprisingly this reason has 
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given overwhelming results on achieving lesser objective function value (ii) Further the method 

predominantly avoids premature convergence via Gaussian distribution. The above factors influence the 

use of FW method parameter extraction problem. The flowchart for FWA implemented parameter 

estimation is shown in Fig.4. 

4. Results and discussions: 

In order to test the effectiveness of Fireworks based solar PV parameter extraction three panels such as 

KC200GT, SM55, SP70 of various make with entirely different characteristics having different materials 

Multi crystalline, mono crystalline are considered for the study. The usage of different panel types and its 

current market share is presented in Fig.5. Since the efficiency and market share of multi crystalline and 

mono crystalline type panels are comparatively high, the authors validated their method only with 

aforementioned type panels.  

45%
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Thin-Flim

Organic  PV 

Materials

 

Fig.5.Usage of different types of solar panels. 

To provide thorough evaluation, data corresponding to the above mentioned panels are taken 

from manufacturer's datasheet and I-V curves are matched with the simulation results obtained using 

FWA method. Further, to know the quality of the curve fit between FWA values to the experimental data, 

statistical analysis is carried out by measuring Individual Absolute Error (IAE) and Relative Error (RE) 

values. The IAE and RE values are calculated by using the mentioned formula. 

Individual Absolute Error (IAE) = 
estimatedmeasured II                                (19)

 

Relative Error (RE) = 
measured

calculatedmeasured

I

II 
                                   (20) 
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To implement FW steps for parameter estimation, a dedicated software program is developed in 

MATLAB Two diode model parameter values obtained via FWA method is first substituted in the built-in 

simulation model and numerical simulations are performed for three panels under study. Simulations are 

carried out using 2.4 GHz INTEL i3 processor personal computer with 2.0 GB RAM and results are 

compared with GA and PSO method. Further to achieve better performance FWA parameters are tuned 

and their values are 20ˆ,40ˆ,8.0,8.0,50,20  mAbamn . 

The computed parameter values that correspond to 1000W/m
2
 irradiation are provided in Table 1. To 

investigate the closeness of the parameter values, the identified parameters are compared with some of the 

published results available in literature [Kashif Ishaque et al.,2011a, , and K. Ishaque et al., 2011 b, 

Kashif Ishaque et al.,2011 c].  

Table 1.Extracted model parameter values employing FWA, GA, PSO for different panels. 

Parameters 

SM55 KC200GT SP70 

FWA 

[K. Ishaque 

et al., 

2011b] 

FWA 

[Kashif 

Ishaque et 

al.,2011a] 

FWA 

[Kashif 

Ishaque et 

al.,2011c] 

I01 (A) 2.35E-08 2.232E-10 1.11E-08 4.218e-10 1.87E-10 4.206E-10 

I02(A) 2.35E-08 2.232E-10 1.11E-08 4.218e-10 1.87E-10 4.206E-10 

Rs (Ω) 0.54741 0.47 0.303 0.32 0.502444 0.51 

Rp (Ω) 410.55 144.3 343.10 160.5 264.9071 91 

a1 1 1.0 1 1 1 1.5 

a2 1.2 1.2 1.2 1.2 1.2 1.5 

IPV 3.45 3.45 8.21 8.21 4.7 4.7 

 

From the comparison, it is evident that except 0201,, IIRP other parameters are in very close agreement 

with the parameters available in existing literature for the same panels under study.  The deviation in 

0201,, IIRP values could be attributed due to the following: (i). Ideally, to achieve high Fill Factor (FF) 

panels are designed to have high Rp [Solanki, C.S et al., 2015]. Further high Rp value ensures shifts the I-

V curve towards the MPP without much change in scoc IV &  values. On comparison, I-V curves of FWA 

method with the results presented in [Kashif Ishaque et al.,2011a, and, Kashif Ishaque et al.,2011 c] it is 

clear that the curve plotted with [Kashif Ishaque et al.,2011a] deviates around MPP due to low PR  value. 

Also, Ps RR & value is arrived via mathematical relation while, remaining five parameters are calculated 
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analytically which is not an accurate validation moreover, RMSE value arrived in [K. Ishaque et al., 2011 

b] was high and the algorithm was struck to local convergence.  But, in this work Ps RRaa &,2,1 are 

computed via optimization procedure resulted in better convergence with very less RMSE. In order to 

demonstrate the variation that occur in I-V characteristics due to the difference in PR  values, the authors 

have simulated the double diode model with FW identified parameter and literature values. For 

understanding, the authors have represented the FW results as ‘proposed’, literature model as ‘Kashif 

model’ and datasheet values as ‘datasheet’ in the Fig.6. From the figure it is seen that the results with 

existing literature produce deviation in I-V characteristics and consequently accuracy is comprised. On 

the other hand, FW model is highly accurate and matches with larger area in I-V curve with very less 

error.  (ii). For simplicity, the values of 01I  and 02I  are computed analytically but the diode ideality 

factor ‘ 2,1 aa ’ influencing 01I  and 02I  are arrived via iteration in FW method whereas, all these values in 

[Kashif Ishaque et al.,2011 c] are arrived analytically. However the differences that exist between 

methods of less significant in terms of PV cell modeling. This illustrates the viability of proposed method 

to double diode parameter estimation.  

In order to check the quality of curve fit with the experimental data GA, PSO, FWA results are 

analyzed via statistical tools (i.e) IAE and RE. The computed error values for SM55, Kyocera 200GT and 

SP70 panel that corresponds to GA, PSO and FWA methods are presented in Table.2, 3&4 respectively. 

Further for brevity, experimental voltage (Vt) and (It) current values are presented along with 

simulated/calculated (Ical) one.  
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Fig.6. Comparison of I-V characteristics between datasheet, Kashif model and FWA method for             

(a) Kyocera KC200GT panel (b) SM55 panel and (c) SP70 panel. 

Table 2. Computation of IAE and RE of FWA, GA and PSO methods for Kyocera kc200gt (Multi 

crystalline) PV module. 

Measur 

ement 

 

EXP 
FWA GA PSO 

Vt It Ical IAE RE I cal IAE RE Ical IAE RE 

1 0.0000 8.1983 8.2066 0.0082 0.0010 8.2161 0.0095 0.0012 8.2131 0.0147 0.0008 

2 0.5438 8.1770 8.2066 0.0296 0.0036 8.2161 0.0095 0.0012 8.2131 0.0361 0.0008 

3 2.0268 8.1556 8.1947 0.0392 0.0048 8.2161 0.0214 0.0026 8.2131 0.0575 0.0022 

4 3.0155 8.1556 8.1829 0.0273 0.0033 8.1968 0.0139 0.0017 8.2020 0.0464 0.0023 

5 4.0042 8.1449 8.1711 0.0262 0.0032 8.1968 0.0257 0.0031 8.1909 0.0460 0.0024 

6 5.2401 8.1342 8.1592 0.0250 0.0031 8.1871 0.0279 0.0034 8.1909 0.0567 0.0039 

7 7.0198 8.1235 8.1474 0.0239 0.0029 8.1774 0.0300 0.0037 8.1687 0.0452 0.0026 

8 8.1073 8.1128 8.1237 0.0108 0.0013 8.1774 0.0537 0.0066 8.1687 0.0559 0.0055 

9 12.0127 8.0915 8.1000 0.0085 0.0011 8.1484 0.0484 0.0059 8.1466 0.0551 0.0057 

10 13.9901 8.0594 8.0763 0.0169 0.0021 8.1387 0.0624 0.0077 8.1355 0.0761 0.0073 

11 16.0169 8.0487 8.0526 0.0039 0.0005 8.1194 0.0667 0.0082 8.1244 0.0757 0.0088 

12 17.5000 8.0273 8.0290 0.0016 0.0002 8.1194 0.0904 0.0111 8.1133 0.0860 0.0104 

13 18.0438 8.0166 8.0290 0.0123 0.0015 8.1097 0.0807 0.0100 8.1022 0.0856 0.0090 

14 19.0325 7.9959 7.9653 0.0306 0.0038 8.1000 0.1347 0.0166 8.1022 0.1063 0.0169 

15 21.0099 7.8356 7.8596 0.0240 0.0031 8.0807 0.2211 0.0274 8.1022 0.2666 0.0299 

16 22.0480 7.5632 7.5816 0.0184 0.0024 8.0807 0.4991 0.0618 7.9865 0.4233 0.0507 

17 24.2232 7.1124 7.1326 0.0202 0.0028 8.0516 0.9191 0.1141 7.6583 0.5459 0.0686 

18 26.0523 6.5866 6.4988 0.0878 0.0135 7.8871 1.3883 0.1760 7.3256 0.7391 0.1129 

19 26.9915 6.0557 6.0860 0.0303 0.0050 7.6065 1.5205 0.1999 6.6895 0.6338 0.0902 
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20 28.5240 5.3658 5.3990 0.0331 0.0061 6.6097 1.2107 0.1832 5.6598 0.2940 0.0461 

21 29.0184 4.3217 4.3985 0.0769 0.0175 6.1452 1.7466 0.2842 4.9856 0.6640 0.1178 

22 30.0565 3.6527 3.6359 0.0168 0.0046 4.9258 1.2899 0.2619 3.8956 0.2429 0.0667 

23 31.2924 2.5352 2.5599 0.0247 0.0096 3.0523 0.4924 0.1613 2.9568 0.4216 0.1342 

24 32.0339 1.3756 1.3895 0.0139 0.0100 1.6469 0.2574 0.1563 1.9865 0.6109 0.3005 

25 32.9237 0.1496 0.1492 0.0004 0.0029 0.1533 0.0041 0.0267 0.8956 0.7460 0.8334 

 

Table 3.Computaion of IAE and RE of FWA, GA and PSO methods for SM55 (Mono crystalline) PV 

module. 

Measur 

ement 

EXP FWA GA PSO 

Vt It Ical IAE RE I cal IAE RE Ical IAE RE 

1 0 3.4367 3.4514 0.0147 0.0043 3.4541 0.0027 0.0008 3.4617 0.0250 0.0030 

2 1 3.4367 3.4457 0.0090 0.0026 3.4541 0.0084 0.0024 3.4530 0.0163 0.0021 

3 2 3.4367 3.4457 0.0090 0.0026 3.4450 0.0008 0.0002 3.4486 0.0119 0.0008 

4 3 3.4367 3.4400 0.0033 0.0010 3.4450 0.0050 0.0014 3.4442 0.0075 0.0012 

5 5 3.4315 3.4343 0.0028 0.0008 3.4312 0.0031 0.0009 3.4398 0.0083 0.0016 

6 6 3.4264 3.4286 0.0022 0.0006 3.4266 0.0020 0.0006 3.4355 0.0091 0.0020 

7 6.8 3.4264 3.4229 0.0035 0.0010 3.4220 0.0008 0.0002 3.4355 0.0091 0.0037 

8 7 3.4264 3.4229 0.0035 0.0010 3.4220 0.0008 0.0002 3.4355 0.0091 0.0037 

9 9 3.4264 3.4171 0.0092 0.0027 3.4083 0.0089 0.0026 3.4267 0.0003 0.0028 

10 12 3.4160 3.4114 0.0046 0.0013 3.3899 0.0215 0.0063 3.4092 0.0068 0.0007 

11 13.5 3.4057 3.4000 0.0057 0.0017 3.3670 0.0330 0.0098 3.3917 0.0140 0.0025 

12 14 3.3954 3.4000 0.0046 0.0014 3.3532 0.0468 0.0140 3.3786 0.0168 0.0063 

13 14.4 3.3954 3.3943 0.0011 0.0003 3.3440 0.0502 0.0150 3.3698 0.0256 0.0073 

14 15.4 3.3649 3.3657 0.0008 0.0002 3.3165 0.0492 0.0148 3.3392 0.0257 0.0079 

15 16 3.2157 3.2166 0.0009 0.0003 3.2798 0.0633 0.0193 3.3392 0.1235 0.0367 

16 16.3 3.0874 3.0815 0.0059 0.0019 3.2523 0.1708 0.0525 3.3129 0.2255 0.0698 

17 17 2.8856 2.8789 0.0067 0.0023 3.1609 0.2820 0.0892 3.2867 0.4010 0.1241 

18 17.5 2.5564 2.5652 0.0088 0.0034 3.0615 0.4963 0.1621 2.9875 0.4311 0.1414 

19 17.6 2.1863 2.1965 0.0102 0.0046 3.0406 0.8441 0.2776 2.6580 0.4717 0.1736 

20 18.3 1.8256 1.8298 0.0042 0.0023 2.8118 0.9820 0.3492 2.3652 0.5396 0.2264 

21 19.8 1.4365 1.4165 0.0200 0.0141 1.9317 0.5152 0.2667 1.8965 0.4600 0.2531 

22 20 0.9898 0.9865 0.0033 0.0033 1.7294 0.7429 0.4296 1.3680 0.3782 0.2789 

23 20.9 0.6103 0.6235 0.0132 0.0212 0.8677 0.2442 0.2814 0.9987 0.3884 0.3757 

24 21 0.2364 0.2351 0.0013 0.0055 0.7448 0.5097 0.6843 0.4560 0.2196 0.4844 

25 21.7 0.0000 0.0010 0.0010 1.0000 0.0010 0.0000 0.0000 0.3125 0.3125 0.9968 

 

Table 4.  Computation of IAE and RE values of FWA, GA and PSO methods for SP70 (Mono 

crystalline) PV module. 
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Measur 

ement 

EXP FWA GA PSO 

Vt It I cal IAE RE I cal IAE RE Ical IAE RE 

1 0 4.67821 4.68843 0.0102 0.0022 4.7095 0.0210 0.0045 4.6914 0.0132 0.0006 

2 0.4 4.6791 4.68843 0.0093 0.0020 4.7095 0.0210 0.0045 4.6914 0.0123 0.0006 

3 1 4.6791 4.68843 0.0093 0.0020 4.7095 0.0210 0.0045 4.6914 0.0123 0.0006 

4 2.1 4.67463 4.68843 0.0138 0.0029 4.7018 0.0134 0.0028 4.6914 0.0167 0.0006 

5 2.5 4.67463 4.68101 0.0064 0.0014 4.6942 0.0132 0.0028 4.6914 0.0167 0.0022 

6 3.1 4.67015 4.67359 0.0034 0.0007 4.6942 0.0206 0.0044 4.6836 0.0135 0.0021 

7 3.5 4.67015 4.67359 0.0034 0.0007 4.6942 0.0206 0.0044 4.6836 0.0135 0.0021 

8 4 4.67015 4.67359 0.0034 0.0007 4.6872 0.0136 0.0029 4.6836 0.0135 0.0021 

9 4.5 4.67003 4.67045 0.0004 0.0001 4.6865 0.0161 0.0034 4.6759 0.0059 0.0012 

10 5 4.67003 4.67045 0.0004 0.0001 4.6789 0.0084 0.0018 4.6759 0.0059 0.0012 

11 5.5 4.66935 4.67359 0.0042 0.0009 4.6789 0.0053 0.0011 4.6759 0.0066 0.0005 

12 6.6 4.66935 4.67025 0.0009 0.0002 4.6588 0.0115 0.0025 4.6759 0.0066 0.0012 

13 7.4 4.66567 4.66361 0.0021 0.0004 4.6588 0.0049 0.0010 4.6682 0.0025 0.0010 

14 8 4.66567 4.65875 0.0069 0.0015 4.6636 0.0049 0.0010 4.6682 0.0025 0.0020 

15 8.5 4.5632 4.5689 0.0057 0.0012 4.6588 0.0899 0.0193 4.6682 0.1050 0.0213 

16 9.4 4.4462 4.4358 0.0104 0.0023 4.6521 0.2163 0.0465 4.6605 0.2143 0.0482 

17 10.6 4.2256 4.1968 0.0288 0.0069 4.6483 0.4515 0.0971 4.6605 0.4349 0.0995 

18 11 3.76598 3.75624 0.0097 0.0026 4.6407 0.8844 0.1906 4.3568 0.5908 0.1378 

19 12 3.3652 3.3894 0.0242 0.0071 4.6330 1.2436 0.2684 3.8956 0.5304 0.1299 

20 12.8 3.0652 3.08952 0.0243 0.0079 4.6254 1.5359 0.3321 3.5689 0.5037 0.1343 

21 13.6 2.6362 2.6532 0.0170 0.0064 4.6177 1.9645 0.4254 2.9999 0.3637 0.1156 

22 14.8 1.8856 1.8652 0.0204 0.0109 4.5566 2.6914 0.5907 2.3658 0.4802 0.2116 

23 19 1.3895 1.3489 0.0406 0.0301 2.8700 1.5211 0.5300 1.8957 0.5062 0.2884 

24 20.9 0.7562 0.7325 0.0237 0.0324 0.6708 0.0617 0.0919 1.3635 0.6073 0.4628 

25 21.4 0.049254 0.0653 0.0160 0.2457 0.0120 0.0533 4.4417 0.5658 0.5165 0.8846 

 

From the tabulated values, it can be inferred that, when each point on I-V curve exactly match it 

attribute to lower IAE and RE values.  Further, the value of Individual Absolute Error values is the lowest 

for all the cases with FWA method.  On the other hand, GA and PSO method introduce larger error 

between measured and calculated values; additionally these methods on an average produce individual 

absolute error of 0.34995 and 0.207503 respectively. In case of FWA method a close accuracy of 

0.014065 is maintained. The error value is an indication that the I-V curves are expected to have in poor 

curve fit. The reason for large error in GA, PSO can be due to the fact that both methods do not involve 

any exploitation in control variables.  

To further substantiate the performance of FWA method, the convergence characteristics are plotted 

for KC200GT, SM55 and SP70 panels along with GA and PSO method. The convergence curve indicates 
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that FW method converges to the optimal value of 2.24 e-7, 4.0075 e-8 and 2.87e-8 for KC200GT, SM55 

and SP70 panels respectively. Further, it is an indication that precise closeness is maintained between 

simulated and experimental data. It is been envisaged that GA method has involved large parameters and 

complex computation procedure in PV parameter estimation. Moreover, the GA method has failed to 

create randomness between iterations. While in case of PSO method, the velocity updation between 

particles is highly dependent to the initialization of parameters. Although it is an acceptable truth that 

PSO is one of the exceptional tools to solve non-linear problems however the improper particle updation 

made the PSO to end at local convergence. Further, the FWA method handles two stages of computation 

to create diversity in particles. Hence the scope for convergence to minimal error is always present in the 

Firework updation. This reason has made the FWA to converge faster with lesser iterations compared to 

GA and PSO method. The convergence characteristics for Kyocera200GT, SM55 and SP70 panels for 

PSO, GA and FWA methods are represented in Fig.7. (a), (b)& (c) respectively. The key reason behind 

the slower convergence is: GA method uses more steps with large population size while PSO method 

require more tuning to converge at optimal value. From the figure it is seen that on an average GA and 

PSO method take 3.611 sec and 1.71 sec respectively to arrive at optimal solutions. With simple steps and 

fewer parameters to tune FWA method converged to low objective function within 0.7596 sec.  
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Fig.7. Convergence curve for GA, PSO and FWA methods for (a) Kyocera KC200GT, (b) SM55, (c) SP70 PV panels. 

To confine with to date results the final convergence value is compared with recent Flower Pollination 

Algorithm proposed by D.F.alam et al., in 2015. Alike to FWA method, Flower Pollination algorithm 

perform dual stage search to arrive optimal PV parameter value. In this method, the probability to create 

randomness via local search is very less. Since the probability switch in FPA method allows only 10-20% 

of initial population to undergo local pollination hence only pollens are restricted to search locally. As a 

consequence FPA method has higher error value on parameter estimation. In FWA method, the Firework 

undergoing spark evaluation will also undergo specific spark evaluation to identify the optimal regions for 

global convergence. This feature is absent in recently proposed methods like FPA and Differential 

Evolution methods. 

In order to test the curve fit accuracy of GA, PSO and FWA methods, I-V curve for PV modules 

Kyocera200GT, SM55 and SP70 is plotted in Fig.8., Fig.9. and Fig.10. respectively. To plot the 

characteristics, the actual current value at 25 instances from manufacturer data sheet is utilized and 

verified with the simulated data’s. From the figure it is observed that, FWA method has closer 

resemblance with actual values and attribute to exact reproduction of I-V curve whereas, PSO and GA 

methods induce higher percentage of error when compared to FWA method. Notably, the slope of the I-V 

characteristics highly deviated due to the improper optimization in PV parameters.  
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Fig.8. Comparison of I-V characteristics between actual and obtained data of FWA, GA and PSO method 

for KyoceraKC200GT(Multi-crystalline) 
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Fig.9. Comparison of I-V characteristics between actual and obtained data of FWA, GA and PSO method 

for SM55 (Mono crystalline) 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

0

0 .5

1

1 .5

2

2 .5

3

3 .5

4

4 .5

5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5

C
u

rr
en

t 
[A

]

No.of instances

Datasheet

FWA

GA

PSO

 

Fig.10. Comparison of I-V characteristics between actual and obtained data of FWA, GA and PSO 

method for SP70 (Mono crystalline) 

 

5. Comparative Study: 

To further emphasize the importance of FWA method a quantitative comparison is made with GA 

and PSO methods on six different parameters: (a) Root Mean Square Error, (b) Individual Absolute Error 

(c) Relative Error, (d) Convergence speed, (e) Occurrence of local convergence and (f) Parameter 

dependency. Wheel chart portraying the performance of the methods based on the above performance 

criteria is presented in Fig.11. The chart can be understood in the following way, the method occupying 

lower radius in the circle indicate that it deliver optimal performance and is more suitable for PV 

parameter estimation while, the method with higher radii show high complexity and  protrude to high 

relative error in I-V characteristics. Thus from Fig.11., it can be summarized that FWA method is the best 

alternatives for existing methods. 
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Fig.11. Wheel chart based performance comparison of FWA, GA &PSO methods. 

In addition to quantitative comparison, a qualitative comparison is also made between methods 

available in literature and presented in table.5. Further it is an essential assessment to know the validity of 

any optimization method. The detailed summary given in Table .5 indicates that FWA method takes 

fewer steps produce high curve fit accuracy in shorter time. As most valued benefit, the randomness in 

control variable in FWA method is always present as a notable merit. Further, converging to lower RMSE 

at the initial stage of computation is the key success of FWA method.  

 

 

  Table 5. Qualitative comparison of different methods employed in PV parameter estimation 

S. 

no 
Parameter/ Method 

Genetic 

Algorithm 

Particle Swarm 

Optimization 

Harmony 

Search 

Bird Mating 

Optimizer 

Fire Works 

Algorithm 

1 Convergence speed less Moderate Moderate Moderate High 

2 Accuracy in Curve fit Less Less High High High 

3 Parameter dependency High High Moderate Moderate Less 

4 
occurrence of local 

convergence 
High High High High Less 

5 
Randomness in control 

variables 
less Less Moderate Moderate High 

6 Step involved Moderate Moderate Moderate Moderate Less 
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6. Conclusion: 

In this paper a new Fireworks algorithm for solar PV parameter estimation is proposed and the 

following conclusions are arrived. 

(i) It is seen that the exploration and exploitation ability in Fireworks algorithm have a strong impact in 

reducing the probabilities of premature convergence. 

(ii) To reduce computational complexity only four parameters ( Ps RRaa ,,, 21 ) are obtained iteration wise 

and the other values are calculated manually.  

(iii) The generated code via FWA method applied to KC200GT, SM55 and SP70 panels produces near 

accurate I-V characteristics in agreement to panel data sheet.  

(iv) Convergences of panels Kyocera KC200GT, SM55 and SP70 via FWA starting at lower value have 

influenced FWA to attain faster convergence at 0.75 sec while GA and PSO methods took 3.6 sec and 

1.7 sec respectively.  

(v) Performance comparison of FWA with GA and PSO methods, the Fireworks algorithm has acquired 

superior performance with accurate curve fit in P-V characteristics.  
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