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Abstract—Internet of Vehicles (IoVs) is evolving as a new theme
of research and development from vehicular ad hoc networks
(VANETs). Unlike VANETs, IoVs is composed of smart objects
equipped with a powerful multi-sensor platform, communications
technologies, computation units, IP-based connectivity to the
Internet and to other vehicles creating as a result a social network
called Social IoVs (SIoVs). Ensuring the required trustiness
among communicating peers is an important task in such
heterogeneous networks, especially for safety-related applications
where the margin of error is extremely undesired. Most the
safety applications are a kind of decision aided system, and
final decision is always taken by humans. Thus, in addition
to securing inter-vehicle communication, the driver/passengers
honesty factor must be also considered. With the appearance of
5G technology it became possible to connect SIoVs to any other
network including Online Social Networks (OSNs). In this paper,
we took advantage of this possibility to connect SIoVs and OSN,
for the purpose of estimating the drivers and passengers honesty
based on their OSN profiles. Furthermore, we also compare
the current vehicles location with their estimated path based
on their historical movement. Events such as soccer games,
festivities, and emergency cases are also taken into account
the path estimation. Afterward, we combined the SIoV, path-
based and OSN-based trusts to compute the overall trust about
the different vehicles and their drivers/passengers. As result,
our proposal called TAKASHI offers a trust-aware social In-
vehicle and inter-vehicle communication architecture for SIoVs
considering also the human honesty factor based of Online Social
Networks. Conducted simulation show that......

Index Terms—TAKASHI; VANET; Social Internet of Vehicles;
Human factor; Trust.

I. INTRODUCTION

Vehicular Adhoc Networks (VANETs) are considered as a
main component of the Cooperative Intelligent Transportation
Systems (C-ITS). Various kinds of applications came up with
the appearance of these networks, most of them based on
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inter-vehicle communication [1]. Furthermore, many of these
applications represent a decision-aided system. Hence, the
final decision will be taken by a human being, and the system
has no idea about how honest is this person.

In VANET, a vehicle is mainly considered as a node to
disseminate messages among vehicles. In the IoV paradigm,
each vehicle is considered as a smart object equipped with a
powerful multi-sensor platform, communications technologies,
computation units, IP-based connectivity to the Internet and to
other vehicles either directly or indirectly [2]. In addition, a
vehicle in IoV is envisioned as a multi-communication model,
enabling the interactions between intra-vehicle components,
vehicles and vehicles, vehicles and road, and vehicles and
people. IoV enables the acquistion and processing of large
amount of data from versatile geographical areas via intelligent
vehicles computing platforms to offer various categories of
services for road safety and other services to drivers and
passengers [3].

Furthermore, Social Internet of Vehicles (SIoVs) are a sub-
set of socially-aware networks [4]–[6]. They took advantage
of the shared applications, destinations, or target to build up
a temporal social community among vehicles. Besides, this
social aspect of the vehicles is also the base of fully distributed
vehicular cloud [7]. On the other hand, with the appearance
of 5G technology accessing all internet service can be done
anytime and anywhere [8]. In addition, vehicles path can be
easily estimated through the use its historical moving paths
and its driver’s social interactions and hobbies. For example,
a daily worker would likely go every day at 8am to work
and comeback home at 5pm out of weekends and holidays, if
his car is being detected in a different far location the SIoV
system can trigger a possible stolen vehicle alert an alert or
for instance, text the vehicle’s owner.

Relying on the assumption that all passengers and vehicles
are honest and collaborative can lead to undesired situation.
For instance, EYES application [9] is a decision-aided overtak-
ing system helping the driver to take the right decision. Thus,
SIoV security together with the passengers’honesty must be
taken into account in designing a global SIoV communication
system [10], [11].

Many solutions have been proposed to secure inter-
vehicle communication, and they are generally classified into
cryptography-based [12], trust-based [13], [14], these latters
are known to be less energy and time consuming compared to
the cryptography-based ones. However, there was also some
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works combining both types pf solutions [15], [16].
In this paper, we propose a novel SIoV communication

architecture that takes advantage of Online Social Networks
(OSNs) to enhance the SIoV trust establishment by the human
and location-related honesty consideration. We used the group-
trust metric adopted by Advogato1 attempting to determine
the maximum set of trusted peers while minimizing the
influence of unreliable dishonest peers [17]. Afterwards, an
honesty-related classification (good, bad, or compromised)
is associated to every node (driver/passenger) and vehicle
location depending on the Advogato classification of this node
(either trusted or distrusted) and the location tracking system
respectively.

Simultaneously, the inter-vehicle trust is also estimated, then
combined with the RSUs and Trusted Authorities recommen-
dations. Finally, the Advogato results are also used to identify
honest and dihonest drivers/passengers. Using this strategy,
the aim is not just to reduce both the detection errors ratios
and also the ratio of doubtful nodes that the inter-vehicle trust
could not classify the to either trusted or distrusted peers, but
also to prevent unwanted situations such as stolen vehicles.

The rest of this paper is organized as follows: in section II,
we present some background in VANET, IoV, VSNs, OSNs,
and trust establishment in both kind of networks. Afterward, in
section III, we present an overview of our proposal, followed
by its details in section IV. TAKASHI’s dishonesty detection
process is the discussed in section V. Before concluding our
paper in sectionVII, we describe in section VI our simulation
environment followed by the discussion the obtained results.

II. STATE OF THE ART

Various solutions have adopted trust modeling to enhance
the inter-vehicle communication for VANET, Social VANET,
IoV, and SIoV context. We hover in this section the main
features of the socially-aware networking as well as the
existing trust-based solutions in these domains.

A. Social trust and socially-aware networking

The proliferation of handheld devices requires mobile carri-
ers to provide instant connectivity. Moreover, the movements
of the users is generally related to their social behaviors and
relationships, and the mobility patterns of mobile devices
carried by these users are strongly depend on their move-
ments. Thus, mobile networks nowadays are more and more
human centric. As result, the new field called socially-aware
networking (SAN) has emerged [18]. This new paradigm of
social-awareness is applicable to many types of inter-node
interaction-based networks such as ad hoc networks, mobile
social networks, opportunistic networks). By taking advantage
of nodes’ social properties, Socially Aware Networks can
present better networking platform to new applications and
services. Furthermore, it makes easy the convergence of human
society and cyberphysical systems.

Figure 1 represents a global overview of socially-aware
networking concepts and its different layers. For our case we

1http://www.advogato.org/

Fig. 1: Socially-aware networking overview.

focus mainly on the red rectangle representing security and
privacy protocols using online networks.

Notice that introducing online social networks in VANETs
differs from the vehicular social networks approach where a set
of vehicles located in the same geographical area, and typically
going to the same destinations, can share some application,
purposes, or services, thereby forming a temporal inter-vehicle
social network.

B. Trust in Online Social Networks (OSNs)

As mentioned above, trust establishment has proved its
efficiency at enhancing the security of different types of
networks. Many proposals have been developed for OSNs as
well [19], [20]. The general trust establishment proposals for
OSNs are based either on the Advogato trust metric [17], or
PageRank solutions [21].

Besides the graph-based logical structure of OSNs, fig-
ure 2 summarizes the application-oriented structure of trust
establishment in Online social networks. Generally, trust for
OSNs can be classified using three complementary phases: (i)
trust information collection, (ii) trust evaluation, and (iii) trust
information dissemination. To identify how honest and trustful
is a profile owner, social trust is based on a scalar estimation
using the personal profile information, which includes user
identity and interactions with other users. Once this social trust
is estimated, it will be provided to the end users in different
manners and for different purposes.

C. Trust in VANET and Internet of Vehicles (IoV)

In VANET context, trust management schemes are generally
classified as entity-based, data-based, and hybrid models fol-
lowing the targeted adversary which can be dishonest entities,
malicious messages, or both [13], [22].
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Fig. 2: Trust establishment in OSNs.

Works in [23], [24] represent entity-based trust models,
authors of [23] try to revoke nodes by sending falsified
messages and fake information, respectively, using different
techniques. Haddadou et al. [24] chose to associate a credit
value to each neighbor vehicle which will increase or decrease
depending on the concerned neighbor’s messages credibility.
Hence, this credit will be quickly decreased when replaying
or injecting new messages.

As for the data-based approaches, Gurung et al. [25] adopted
three metrics to classify received messages into either legal
or malicious messages; these metrics are content similarity,
content conflict, and routing path similarity. However, in
addition to its high time complexity, this solution does not take
into account the high level of mobility associated to VANETs,
nor the case of node sparsity.

Our previous hybrid models [26], [27] focus mainly on
facing Denial of service and coalition attacks in VANETs using
the standardized messaging service. However, the additional
traffic generated by the recommendation requests/responses
might affect some safety-related applications.

On the other hand, few solutions addressing trust issues is
IoV have been recently published [28].

In [29] authors propose a trust-aware cluster-based anomaly
detection scheme for intelligent vehicles, this proposal modi-
fies the Affinity Propagation Clustering technique to generate
the most trustworthy cluster head based on the inter-vehicle
communications. They also adopt an RSU-enhanced reputation
provision scheme where a Central Arbitrator (CA) collects
evidences from sparse RSUs. Then, a reputation system is
established to evaluate global and history reputation from
accumulated data. While ensuring a reduced error ratios in
detecting malicious vehicles, the whole detection process is an
infrastructure-based process. However, this cannot be always
insured in highly dynamic environment like IoV.

Hussain et al. [30] proposed a trust model collecting ev-
idence from IoV infrastructures then store them in vehicles
Tamper-Proof Devices (TPD), then start inter-vehicle trust-
based communication. The main limitation of this approaches
is the fact that vehicles behaviour may change. Thus, store trust
information should not be static over time. In addition, authors
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Fig. 3: VANET trust vs OSN trust.

did not evaluate the performance in a realistic environment
implementing the different VANETs low layers features.

Unlike the existing trust models, Gai et al. [31] propose a
Trust Management system for SIoV called RTM where each
node stores its own reputation information rated by others dur-
ing past transactions. They introduced a CA server is to ensure
the integrality and the undeniability of the trust information.
However, besides the additional cost of the introduced server,
this scheme does not work in rural scenario or low density
cases, and same as all existing proposals, the human honesty
factor is not considered.

D. Trust computation in Vehicular Networks and Online So-
cial Networks

Establishing trust in any network involves the inheritance
of this network’s features. Therefore, due to the distributed
nature of vehicular networks, every vehicle locally evalu-
ates its neighbors trustiness. This trust computation can be
done either in a scalar way, using the piggybacked opinions
within exchanged messages, or through clustered and group-
based collaboration among vehicles located in a same area
[13]. Differently from this situation, trust in online social
networks requires having a sink or a third trusted party that
is responsible for evaluating the different peers. This sink
can either handle the whole task of trust computation, or
it can distribute such task among secondary sinks, which
are typically community leaders. Hence, by introducing the
community context, trust computation is now based on a group
instead of scalar information [4]. Figure 3 summarizes the
difference between VANET and OSN trust computations.

III. TACASHI OVERVIEW

Establishing SIoV trut with the incorporation of the human
honesty factor should be achieved by relying on third trusted
authorities as intermediaries for this information, since the
latter are the only ones having the possibility to trace/track
vehicles identity together with their drivers/owners. Account-
ing for the vehicles’ identity is not a problem as every vehicle
should have a valid certificate and a set of pseudonyms
provided by the trusted authority. However, matching the
driver identity and social account with the vehicle identity
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involves the use of other intermediate tools such as digital
fingerprint, eyes and voice recognition systems, or a subscriber
identification module (SIM), thus imposing more requirements
onto the system.

Due to the high cost of smart vehicles, and to the probable
lack of RSUs in rural environments, Android-based platforms
including smartphones and tablets have recently emerged as
an alternative solution to provide vehicular communications2.
This way, any trusted third authority can be reached using
different cellular network technologies. This new research area
is know as Heterogeneous Vehicular Networking [32].

Figure 4 represents an overview of our proposed SIoV archi-
tecture in which, besides passengers, vehicles,roadside units,
and trusted authorities we also involve online social networks.
These latter are accessed through a trusted middelware such as
network operator, RSUs, or Trusted Authorities like city hall.

A. TACASHI Actors

TAKASHI architecture involves five main actors which are
the person registered as the vehicle owner, the passengers
within the vehicle represented by their connected devices, the
vehicles themselves, RoadSide Units and Trusted authorities,
and the Online Social Network accounts connected to the
driver and passengers devices. In addition, a path prediction
algorithm [33] is also used to estimate and judge the current
vehicles locations

B. Used Notations

The following table summarize the main used notations and
there meanings:

TABLE I: Used notations.

Notation Meaning
X Integer Value

k = Tt(x) Public key
PW Password
IDi Identifier of the node ’i’
H() Hash function

Tr(i, j) Global Inter-vehicle trust
DirectT (i, j) Inter-vehicle direct trust
IndirectT (i, j) Inter-vehicle indirect trust
RR(RSU, j) RoadSide Unit recommendation
TAD(j)) Trusted Authority’s Decision

IV. TACASHI’S TRUST ESTABLISHMENT

As mentioned in the previous sections, our proposal involves
drivers honesty (see figure 5), vehicles honesty (see figure 6),
and vehicles-location related honesty (see figure 7). before
detailing in the following sections how these factors are
computed, the next section presents the proposed in-vehicle
inter-device secure communication process.

2The SmartCarPhone project, http://www.grc.upv.es/SmartCarPhone/
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Fig. 4: Proposed Social Internet of Vehicles Architecture.

A. In-vehicle inter-devices authentication process

In order to enable OSN-based trust while preserving
drivers/owners privacy, department of motor vehicles (DMV)
initializes the OBU by performing a number of operations.
First the driver enters its anonymized OSN account and DMV
registers it against the user. DMV also issues a number of
pseudonyms {IDa

1 , ID
a
2 , ..., ID

a
n} to a user ’a’.

In-vehicle device/passengers in TAKASHI are required to
pass the authentication process before accessing the different
network operations. If these devices fait to be authenticated
they are directly classified as compromised devices as shown
in figure 5.

We assume that all the devices in a network have
identity(IDi) and get the secure token from Trusted Authority
(TA), this token is assumed to be received through a secure
channel.

All the nodes compute the public key (x, Tk(x)) and private
key k using Chaotic Maps based Chebyshev polynomials
which are known to be less energy consuming than RSA and
ECC [34] .

Consider the communication between devices A and B
with their identities IDa and IDb and their public and
private key pairs are {(x, Tka(x)), ka} and {(x, Tkb(x)), kb}
respectively.

Let node A wants to securely communicate with node B, it
initiates the authentication request as follows:

1) The device ’A’ selects a prime number ’p’ and compute
the value of Tp(x).

2) The node ’A’ sends the message ma = {Ha, Ca} to
node ’B’.

3) After getting the message ma = {Ha, Ca} from node
’A’, ’B’ decrypts Ca with the key k = Tt(x) received
from TTP, and compares the value of ’PW’ from de-
crypted message with its obtained ’PW’ value from TTP.
If there is a match, then node ’B’ concludes that ’A’ is
an authenticated node.

4) Afterwards, it checks the message integrity by comput-
ing the hash value and compares it with Ha, if there
is a match, then ’B’ concludes that the message is not
altered during the communication.

5) Now node ’B’ selects the big prime value ’b’ and
compute the values of Tb(x), Ks, Hb, and Cb.

6) The node ’B’ sends the message mb = {Hb, Cb, Tb(x)}
to node ’A’.

7) After getting the message mb = {Hb, Cb, Tb(x)} from
node ’B’, ’A’ computes the value of Ks = Tpb(x) =
Tp(Tb(x)) by using Tb(x) from message mb. Then Node
’A’ decrypts Cb with the key Ks and compares the
value of ’PW’ from decrypted message with its obtained
’PW’ value from TTP. If there is a match, then node ’A’
concludes that ’B’ is an authenticated node.

8) Afterwards, it checks the message integrity by comput-
ing the hash value and compares it with Hb, if there
is a match, then ’B’ concludes that the message is not
altered during the communication.

9) Finally, both the nodes ’A’ and ’B’ agree on identical
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session key Ks and further communication is encrypt
and decrypt by session key Ks.

Detailed algorithm is shown figure 8.

B. Inter-vehicle trust

Inter-vehicle trust is composed of two main metrics which
are the direct and indirect trusts.

The interaction-based trust (DirectT (i, j)) of the vehicle j
evaluated by another vehicle i is the ratio of honest actions
#H(i, j) to the total number of actions (both honest and
dishonest #All(i, j)). Therefore, the interaction-based trust is
calculated in the following way:

DirectT (i, j) =
#H(i, j)

#All(i, j)
·
[
1− 1

H(i, j) + 1

]
(1)

From equation 1, we can see that 1 − 1
H(i,j)+1 increases

in respect of the increased number of honest actions, in such
way that, several honest actions are needed to increase the
interaction-based trust.

In our proposal, the inter-vehicle exchanged opinions (In-
direct trust) are sent together with the unencrypted part of
exchanged data messages. To favor the opinions sourced
by vehicles considered as trusted, received recommendation
(opinion) sourced by a vehicle k concerning the behavior of
the vehicle j (IndirectTk(i, j)) are combined with respect
to the honesty level of the recommender k as described in
equation 2:

IndirectTk(i, j) =
[
DirectT (i, k) ·Recom(k, j)

] 1
2 (2)

Then, the different vehicles’ recommendation about vehicle
j are combined together to find the global vehicles’ recommen-
dation value for that vehicle RV (i, j) following equation 3:

IndirectT (i, j) =
[ k∏
|Recom|

IndirectTk(i, j)
] 1

|Recom| (3)

C. RoadSide Units Trust

Simultaneously with the different inter-vehicle interaction,
whenever a vehicle joins the communication range of an RSU,
it sends its different neighbors overall trust to this roadside
unit. Afterwards, the RSU combines all vehicles reports to
build a quasi global evaluation of the behavior of vehicles
moving around.

Following Equation 4, the roadside units computes its
opinion regarding any vehicle j through the combination of
the reports delivered by the other vehicles.

RR(RSU, j) =
[ i∏

n

Tr(i, j)
] 1

n (4)

In this equation, n represents the number of vehicles having
previously evaluated the vehicle j

Algorithm 1 Location related Trust Classification

1: if Similarity(Predicted Position(HistPath, Location, Time,
ID), Current Location(ID)) ≈ 1 then

2: Location Trust(ID)← Good;
3: else
4: if Similarity(Position(Emergency Services),

Current Location(ID)) ≈ 1 then
5: Location Trust(ID)← Compromised;
6: else
7: if Similarity(Position(Registered Events),

Current Location(ID)) ≈ 1 then
8: Location Trust(ID)← Compromised;
9: else

10: Location Trust(ID)← Bad;
11: end if
12: end if
13: end if

Fig. 9: Capacity assignment example.

D. Location related Trust

E. Social Networks trust using Advogato trust metric identi-
fying trustable people

Various networking social aspects have been studied by an
online free software developers community called Advogato.
This community launched in 1999, has adopted a group-trust
metric trying to determine the largest set of honest peers while
minimizing the influence of unreliable dishonest ones [17].
Advogato uses a social graph to represent the network different
peers and relations. Each peer in the graph is a user’s account.
Whereas, a directed edge represents a relation (also called
’certification’).

The ’Advogato’ trust metric stands on the network flow. it
first assigns a ’capacity’ Ci to every peer i, which represents
a nonincreasing function of the distance separating the peer
i and the seed, as returned by the the considered searching
(breath-first algorithm). For instance, ’advogato.org’ assigns a
’800’ capacity for the seed, then 200 for the following two
levels, 50 for peers belonging to the third level, and so on
(see figure 9).

Each node A is then divided into two sides, A- and A+,
with a capacity-1 edge from A to the sink, and a capacity
of(Ci-1) edge from A- to A+. Finally, the certification of A
to B becomes an infinite-capacity edge from A+ to B- (see
figure 10).

To find the maximum flow [35], Advogato is based on
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Fig. 8: In-vehicle Device-to-device secure communication.

Fig. 10: Conversion into a single source, single sink.

the Ford-Fulkerson algorithm (see figure 11). Since Ford-
Fulkerson selects the shortest increasing path from the current
node to the seed, any node having a flow from x- to x+
possesses also a flow from x- to the sink. Ford-Fulkerson takes
O(|f + ||E|), where f is the maximum flow. In this graph, f+
is the number of accepted peers.

Concerning the trusted accounts identification, an adversary

Fig. 11: Network flow computation.

model should be defined first. Then, the minimum cut is cre-
ated to distinguish between trusted, doubted, and compromised
accounts, as shown in figure 12. The graph’s minimum cut is
the one (a partition of the nodes of a graph into two or more
- k-cut - disjoint subsets that are joined by at least one edge)
that is minimal in some sense (trust value in our case) [36],
[37].

We note that the Advogato trust metric has a wide range of
applicability, meaning that edges and connections can be de-
fined in a different ways, including for instance communities,
friendship, shared posts, comments, or likes.
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Fig. 12: Nodes classification.

V. TACASHI’S DISHONESTY DETECTION PROCESS

In addition to the direct and recommendation-based trust,
TAKASHI involves also the driver’s honesty factor based on
their OSN profiles, this information is received through the
trusted middelware which is for our case the trusted authority,
deployed RSUs, or even network operators. Furthermore,
vehicles-location-related honesty is also taken into account in
the overall trust evaluation.

If a vehicle has already demonstrated its honesty, and
thereby benefits from an high trust value, there is no need to
take the driver’s honesty factor into account, and vice versa.
Thus, nodes requiring the human honesty factor as comple-
mentary data should be only those nodes whose behaviour is
unclear/compromised.

Depending on the online social networks trust computed
through the Advogato trust metric, the trusted authority
matches, for each vehicle identity, an honesty factor called
’Honesty Human Factor’ (HHF), which refers to the Human
Trust Factor of the current driver, a factor that varies within the
range of [−0.5,−0.2] for the drivers judged bad, [−0.2, 0] for
the drivers judged compromised, and [0,+0, 2] for the drivers
judged good.

In addition, using a path prediction algorithm [33] and based
of algorithm 1 the Location-Related Honesty factor (LRH) is
also considered. Similar to the HHF, LRH varies in the range
of [−0.5,−0.2] for the positions judged bad, [−0.2, 0] for the
positions compromised, and [0,+0, 2] for the positions judged
good.

Once the soliciting vehicles receive the HHF and LRH for
neighbors they have concerns about, the trust computation will
follow algorithm 2:

Where Tr(i, j) is the global inter-vehicle trust, RV (i, j)
is the recommendation coming from a nearby vehicle,
RR(RSU, j) is the recommendation requested and received
from a nearby RoadSide Unit, and finally, RT (TA, j) is the
trusted authority evaluation about the vehicle j’s honesty.

In this equation, we test the trust evaluation Tr(i, j) after
every update to keep it within the range [0, 1].

Using this strategy, the number of dubious nodes will be
reduced. Thus, a decision about vehicles trustiness can be
made. This latter is made using the different vehicles reports

Algorithm 2 The overall inter-vehicle trust computation

1: if There is RSU Or traffic is delay-sensitive then
2: Tr(i, j) =

[
DirectT (i, j) ·RV (i, j)

] 1
2 ;

3: else
4: if There is an RSU And the exchanged traffic is

partially delay-sensitive then
5: Tr(i, j) =

[
DirectT (i, j) ·RR(j)

] 1
2 ;

6: else
7: if There is an RSU And the exchanged traffic

delay-tolerant then
8: Tr(i, j) = TAD(j);
9: else

10: if j is a dubious node (i.e, 0.4 ≥ Tr(i, j) ≥
0.6) then

11: Tr(i, j) = Tr(i, j)+HHF (j)+LRH(j);
12: end if
13: end if
14: end if
15: end if

to generate a blacklist of the detected misbehaving vehicles
following equation 5.

RSUBlacklist = ∀j,

Card(j/ Tr(i, j) ≤ 0.5)

Card(RC(j))
≥ DThreshold (5)

Where DThreshold represent the threshold besides which
a vehicle is blacklisted. This threshold is compared with the
ratio of negative reports about a vehicle j to the total number
of reports.

The Trusted Authority’s recommendations are in fact deci-
sions that must be followed by the different sub-levels (RSUs
and vehicles). It makes a decision TAD(j) about a vehicle j.
TA decisions are used only for non-sensitive delay applications
as they involve all the lower levels evaluations which implies
additional computation delays. Therefore, the trusted authority
decision is computed following equation 6.

TAD(j) =
[ i∏

n

RR(RSUi, j)
] 1

n (6)

In this equation, n represents the number of RSUs having
previously evaluated the vehicle j

VI. PERFORMANCE EVALUATION

Our proposal is implemented in NS-2.35 simulator. In
addition, we used the same dataset as in [38]. This dataset
called Epinions [39] has 131,828 nodes (users) and 841,372
edges (honest or malicious), we also consider that 30% of the
edges represent a distrust relationship, and they are towards
the 10% and 20% vehicles considered as dishonest. Hence,
we considered in every case 10% of false evaluation (false
positives). We selected the first 400 nodes that have more than
40 out-neighbors and we randomly matched their identities to
400 vehicle identities. Thus, every vehicle driver is represented
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Fig. 13: Simulated city roadmap.

by a node within the used dataset. Furthermore, in every
vehicle we have four devices one of them is assumed unknown.

For VANET settings, the traffic is generated using the
Citymob mobility model [40]. In our case we used a 4km2

map of Laghouat city in Algeria (see figure 13) the generated
vehicles path of 80% of the vehicles to enable the paths
prediction. For the 20 % remaining vehicles, half of them
are moving towards predefined positions called Emergency
Location and Event Location (i.e, hospital, Soccer stadium
...etc.), and the other half are assumed to move to unpredictable
positions. The scenario has 4 randomly deployed RSUs. We
run our simulation 15 times to reach the 95% confidence.

The rest simulation parameters are summarized in Table II:

TABLE II: Simulation parameters.

Parameters Value
Experiment duration (s) 1000

Communication range (m) 300
Vehicles speed (km/h) [0,80]
Dishonesty ratio (%) {10, 20}

Number of packet sources 10
Packet size (bytes) 256

Packet rate per second 4

First of all, we study the distribution of inter-vehicle trust
with and without the driver honesty consideration. Afterwards,
we compare the obtained dishonesty detection ratios compared
to RTM [31] and AD-IoV [29]. Finally, we analyze the
generated error ratios with and without the use of our proposed
OSN-aided trust architecture.

A. Distribution of inter-vehicle trust

Making the right detection decision is an important task in
any security system. Thus, the best case for these systems is
to clearly identify whether the peers are honest or dishonest
with a reduced margin of error. Figure 14 represents the
different vehicles trust in respect of time when we do not rely
on the human factor computed from OSNs. It depicts that,
although the majority of peers have increased their trust (i.e,
good behavior), many other peers still have a trust evaluation
0.4 ≤ Tr(i, j) ≥ 0.6 which represents an unclear behavior
leading mostly to wrong decisions.
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Fig. 14: Distribution of inter-vehicle trust without the human
factor consideration.
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Fig. 15: Distribution of inter-vehicle trust when considering
the human factor.

However, when the human weighting factor is used, we
notice that almost all vehicles have either a clear positive
(Tr(i, j) ≥ 0.6) or negative trust (Tr(i, j) ≤ 0.4), making
the detection decision easy to make (see figure 15).

B. Detection performance

For the detection performance we also studied both cases
with and without human factor consideration. Figure 16 rep-
resenting the obtained detection ratio without using HHF for
respectively 10% ad 20% of dishonest vehicles in respect of
time. It shows that even though the average detection ratio
exceeds the 90% for 10% malicious, the confidence interval is
quite large reaching the 5% at the end of the various runs. This
is mainly because of the doubtful behavior of some peers that
must be weighted to either good or bad behavior. On the other
hand, when the human factor is considered (see figure 17), the
detection ratio reaches up to 96% for 10% dishonest vehicles
and 93% for 20% case, with clearly more reduced confidence
intervals.

Confirming the previous results, generated false positive in
respect of time is optimized by more than 3% with more
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Fig. 16: Detection performance without the human factor
consideration.
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Fig. 17: Detection performance when considering the human
factor.

reduced confidence intervals compared to the case with no
human factor consideration (see figure18)

VII. CONCLUSION

In most of the existing works, vehicular social networks
(VSNs) are considered as a set of vehicles moving with the
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Fig. 18: Generated false positive.

same mobility patterns, going towards the same destination, or
sharing specific applications. In this paper, we studied another
dimension of VSNs by combining both online social networks
and vehicular networks. Based on Advogato trust metric, we
proposed to match the drivers honesty as a weighting factor
to enhance the inter-vehicle trust establishment. Obtained
results show that the human factor consideration have clearly
enhanced the detection ratios of dishonest vehicles while
reducing the generated error ratio.

For the future work, we plan to use and compare other
datasets with a higher number of nodes and edges. We plan
also to propose a combined simulation platform for OSNs and
VANETs instead of simulating them in different platforms.
Some other adversary models and privacy issues are also
among the planned tasks.
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