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Abstract—In this work, we address the connectivity mainte-
nance problem for a multi-robot system which moves according to
a given bounded collective control objective. We assume that the
interaction among the robotic units is limited by a given visibility
radius both in terms of sensing and communication capabilities.
For this scenario, we propose a decentralized bounded control law
which can provably preserve the connectivity of the multi-robot
system over time. We characterize the effect of the connectivity
control term on the achievement of the collective control objective
by resorting to an Input-to-State Stability (ISS)-like analysis. We
provide numerical and experimental results to corroborate the
theoretical findings and assess the effectiveness of the proposed
bounded connectivity maintenance control law.

Index Terms—Distributed Robot Systems, Networked Robots,
Global Connectivity Maintenance, Nonsmooth Analysis

I. INTRODUCTION

Multi-Robot Systems (MRSs) have been a very active
research field over the last three decades. The relevance of
this research is motivated by the wide range of applications
which can be carried out by a team of robots, such as
environmental exploration, search and rescue operations, area
coverage, collaborative transportation. Notably, the majority
of these approaches requires the robotic units to exchange
information in order to perform a collaborative task: see,
for instance, [1]–[6] and references therein. Therefore, the
capability to preserve the connectivity of the communication
network over time is of great importance.

Indeed, the connectivity maintenance problem has been
widely investigated in the last decade. Briefly, the objective is
to develop (possibly decentralized) control strategies to guar-
antee that, if the communication graphs is initially connected,
then it can be kept so over time. Originally this problem
was approached in a local sense, i.e., by ensuring that if
a communication link was activated to start with, then the
control law would ensure such a link to remain active over
time. Remarkable examples of local connectivity maintenance
control strategies are [7]–[12] and references therein.
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However, keeping every single communication link of the
network topology is often a very restrictive requirement.
Indeed, a much more flexible strategy can be derived if ap-
proaching the problem in a global sense, that is by dynamically
allowing the deletion and addition of links as long as the
overall connectedness of the graph is preserved. Remarkable
examples of global connectivity maintenance control strategies
are [13]–[16].

As the most recent results in this domain, our work follows
such a global approach. In particular, we propose a bounded
control law to preserve the global connectivity of a multi-
robot system which moves according to a given bounded
collaborative control objective. Furthermore, we investigate
how the connectivity control term affects the achievement of
the collective control objective. In this regard, we consider
the widely used potential-based control as a case study of
collective control objective and resort to an Input-to-State
Stability (ISS)-like analysis to characterize the disturbance
introduced by the connectivity control term on the achievement
of the objective.

To the best of the authors knowledge, this is the first work
addressing the global connectivity maintenance problem with
bounded control inputs and providing a theoretical analysis
of the disturbance introduced by the connectivity control term
on the objective control one. A preliminary version of this
work was presented in [17]. To summarize, the following
contributions are made in this work:

• A bounded control law that can provably preserve the
connectivity of a multi-robot system which moves ac-
cording to a bounded collective control objective;

• A theoretical analysis to evaluate the effects of the con-
nectivity control term on the collective control objective
carried out considering potential-based objectives as a
case study;

• A theoretical analysis to evaluate the robustness of the
proposed connectivity control law against errors on the
knowledge of the actual value of the algebraic connec-
tivity due to the several factors such as the availability
of noisy pose measurements, or the transient of the
connectivity distributed estimation process;

• A numerical validation to corroborate the theoretical
results along with an experimental validation to assess
the effectiveness of the proposed technique in a realistic
context.

The rest of the paper is organized as follows. In section II
the related work is reviewed. In section III preliminary results
concerning both the multi-robot graph theoretic modeling
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and the elementary machinery of the nonsmooth analysis are
provided. In section IV the proposed bounded connectivity
maintenance control law is described and the theoretical anal-
ysis is carried out. In section V the experimental and numerical
validation is described. Finally, in section VI conclusion are
drawn and future work is discussed.

II. RELATED WORK

Connectivity maintenance has been widely investigated, in
the last decade. Without aiming completeness, in this section
we provide a review of the most relevant and recent works,
that approach the connectivity maintenance issue from a global
perspective, that is without necessarily requiring to keep every
initially active communication link.

Along these lines, a methodology for guaranteeing
k-connectivity is presented in [18]. In this paper, authors
propose a methodology for initially deploying a fault tolerant
topology. For this purpose, the group of robots is divided
into two groups, rangers and scouts: rangers are in charge of
managing, in a decentralized manner, the initial deployment
and, subsequently, they control their movements in order
to guarantee a sufficient level of redundancy, thus reaching
k-connectivity. Eigenvalue conditions are presented in [19],
[20] for assessing the biconnectivity of a network, thus defin-
ing a gradient-based control law to enforce such property.

Optimization methodologies are a popular framework for
addressing complex tasks. In [21] authors consider a multi-
robot system where the motion of the robots is controlled in
such a way that a given objective function is optimized, in
a decentralized manner. The objective function is utilized to
formalize all the objectives of the multi-robot system, includ-
ing connectivity maintenance. In [22], [23] authors define an
objective function, to be optimized in a decentralized manner.
This objective function is utilized for keeping connectivity
of the multi-robot system, while minimizing the energy con-
sumption. The proposed optimization strategy is based on non-
cooperative game theory.

A coverage problem is considered in [24]. A number of
finite sensing range robots are spread as much as possible in
the environment, in order to achieve coverage. Simultaneously,
in order to guarantee connectivity maintenance, the minimum
spanning tree is periodically recomputed and kept. A similar
problem is considered in [25], where artificial neural network
techniques are used for defining the motion of the robots.

A path planning algorithm was developed in [26], where
the path of each robot is computed on-line in such a way that
collisions are avoided and, simultaneously, connectivity of the
graph is guaranteed. The main objective is to ensure these
properties not only at the via points, but also in between.

A heuristic methodology is proposed in [27], with the
purpose of improving the robustness of the communication
topology in a multi-robot systems. The main idea consists
in utilizing locally available information for assessing the
existence of weakly connected robots, and subsequently con-
trol the position of the neighbors in order to mitigate such
conditions. A message passing algorithm is developed in [28]
for assessing the level of criticality of a node in a network, and

subsequently mitigating this effect by moving the neighbors
towards a bi-connected network, namely a network where at
least two separate paths exist that connect each pair of nodes.

Heterogeneous robots are considered in [29], where con-
nectivity is preserved for ensuring cooperation capabilities.
A hierarchical, multi-layer, control architecture is developed:
each layer considers a different control objective (reaching
the destination, keeping all the edges active, keeping global
connectivity, keeping k-connectivity, etc.), and each class of
robots implements one (or a set) of the layers, based on its
mechanical characteristics and objectives.

As it is well known from algebraic graph theory, the
algebraic connectivity is a parameter that indicates if a graph
is connected. Defined as the second smallest eigenvalue of the
Laplacian matrix, the algebraic connectivity is positive if the
graph is connected, and zero if the graph is not connected.
Being an eigenvalue of the Laplacian matrix, it represents a
global quantity, that cannot be directly computed by the robots,
based only on locally available information.

Decentralized estimation procedures have been however de-
veloped, for overcoming this issue. In [30], authors developed
a methodology for estimating the algebraic connectivity in
a decentralized manner. The proposed method, based on the
computation of powers of the adjacency matrix, provides, at
each iteration, upper and lower bounds for the actual value of
the algebraic connectivity.

A methodology based on signal processing methods was
proposed in [31] for the decentralized estimation of the spec-
trum of the Laplacian matrix. This method was then utilized
for achieving an estimate of the algebraic connectivity with
arbitrarily small estimation error, in finite time.

A decentralized version of the standard power iteration
algorithm was utilized in [13], for simultaneously computing,
in a decentralized manner, estimates of the second smallest
eigenvalue of the Laplacian matrix, and its corresponding
eigenvector. A slightly modified power iteration algorithm
was developed in [14], where an estimator for the algebraic
connectivity was introduced, and its convergence properties
were studied. Based on this convergence study, authors were
able to define a criterion for each robot to obtain a tradeoff
between number of iterations of the estimation algorithm and
achieved precision.

A decentralized methodology for estimation of the algebraic
connectivity and subsequent connectivity preservation was
introduced in [15], [16]. The proposed estimation procedure,
built on the formulation first introduced in [13], provides
a local estimate of the algebraic connectivity with provably
bounded estimation error. This estimate was then utilized for
designing a gradient descent control strategy for guaranteeing
connectivity maintenance.

A decentralized methodology for connectivity maintenance
in multi-robot systems with unicycle kinematics was intro-
duced in [32]. The proposed approach provides global connec-
tivity maintenance under nonholonomic constraints. In addi-
tion, it only requires intermittent estimation of algebraic con-
nectivity, and accommodates discontinuous spatial potential-
based interactions among robots.
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Most of the aforementioned methodologies for connectiv-
ity maintenance inherently define unbounded control actions,
which generally cannot be applied on real robotic platforms
due to actuators saturation. To overcome this issue, recently
a few control strategies have been developed that consider
bounded control inputs. However, the majority of these strate-
gies solves the connectivity maintenance issue in a local
manner, that is preserving all (or a subset of) the initially
active communication links.

In [33], the authors address path planning for a multi-robot
system as a constrained routing optimization problem, where
connectivity constraints are formalized and included into the
optimization problem, that provides a bounded control input
for the robots. Constraints on the allowed motion are also
considered in [34], where authors provide a methodology for
cooperation among robots in which communication links are
enforced among those robots that need to directly cooperate.

A related approach is proposed in [35], where a bounded
control strategy that enables a group of robots to achieve
a desired graph topology is presented. Constraints on the
motion of the robots are imposed for guaranteeing avoidance
of collisions, and preservation of the neighborhood. A similar
objective is achieved in [36], where bounded artificial potential
fields are utilized with the purpose of preserving the initially
connected communication graph while tracking a leader’s
trajectory.

We reiterate that all these methodologies based on bounded
control actions can only solve the connectivity control problem
from a local perspective, that is by preserving over time the
set of links initially activated. Thus, the design of a technique
to address the connectivity control problem from a global
perspective when considering bounded control actions is still
an open problem.

Our objective in this work is exactly to fill such a gap,
that is by developing a distributed control framework based
on bounded control actions, which can provably solve the
connectivity problem from a global perspective.

III. PRELIMINARIES

A. Multi-Robot Graph Theoretic Modeling

Consider a system composed of N robots moving in a
d-dimensional space and let us denote with pi ∈ Rd the
position of the i-th robot and with p = [pT1 , . . . , p

T
N ]T the

stacked vector of robots positions.
Let us encode the multi-robot interactions by means of

a time-varying graph G(t) = {V,E(t)}, where the set of
vertexes V = {1, . . . , N} denotes the indexes of the robots
and the set of edges E(t) = {(i, j) : i ∈ V, j ∈ V, i 6= j}
denotes the communication availability between pairs of robots
i and j at time t, that is we have eij(t) = 1 if the two robots
are within their visibility radius R, eij(t) = 0 otherwise.
Note that, since the graph G(t) is undirected, the existence
of an edge (i, j) implies the existence of an edge (j, i),
thus they will be used interchangeably. Let Ni(t) be the
neighborhood of the i-th robot at time t, i.e. the set of robots j
that can exchange information with robot i at time t, that is
Ni(t) = {j : (i, j) ∈ E(t) : eij(t) = 1}.

The time-varying communication graph can be described
by means of the adjacency matrix AG(t) ∈ RN×N . Each
element aij(t) is defined as the weight of the edge eij(t)
between the i-th and the j-th robot at time t, and is a positive
number if j ∈ Ni, zero otherwise. Again, since we are
considering undirected graphs, we assume aij(t) = aji(t). Let
us denote with DG(t) ∈ RN×N the degree matrix of the graph,
which is a diagonal matrix defined as DG(t) = diag{dii(t)},
where dii(t) is the degree of the i-th node of the graph, i.e.
dii(t) =

∑n
j=1 aij(t).

The (weighted) Laplacian matrix of the graph is defined
as LG(t) = DG(t) − AG(t). Interestingly, the second smallest
eigenvalue λ2(t) of the Laplacian matrix describes the alge-
braic connectivity of the time-varying undirected graph and in
particular we have that λ2(t) > 0 if and only if the graph is
connected, see [37] for further information. Therefore, λ2(t)
provides a natural metric to measure the connectivity of the
network topology.

B. Nonsmooth Analysis

In this section, we review the Filipov solution concept
for differential equations with discontinuous right-hand side,
the nonsmooth analysis of Clarke’s Generalized Gradient, the
chain-rule for differentiating regular functions along Filipov
solution trajectories, and a nonsmooth version of the LaSalle’s
stability theorem. The reader is referred to [38]–[40] and
references therein for a comprehensive overview of the topic.

Consider the following differential equation

ẋ = f(x) (1)

with f(·) : Rn → Rn a measurable and essentially locally
bounded function. First, we need to clarify what it means to
be a solution of this equation.

Definition 1 (Filipov Solution): A vector function x(·) is
called solution of (1) on a time interval [t0, ti] if x(·) is
absolutely continuous on [t0, ti] and for almost all t ∈ [t0, ti]

ẋ ∈ K[g](τ) (2)

where K[f ](x) : Rn → 2R
n

is defined as

K[f ](x) ≡
⋂
δ>0

⋂
µ{H}=0

co{f(B(x, δ) \H)} (3)

where
⋂
µ{H}=0 denotes the intersection over all sets H of

Lebesgue measure zero, B(x, δ) denotes the ball of radius δ
centered at x, co the convex closure and 2R

n

the set of subsets
of Rn. �

Briefly, the idea of the Filipov’s solution is that the tangent
vector to a solution, where it exists, must lie in the convex
closure of the values of the vector field in progressively smaller
neighborhoods around the solution point. A very important
aspect of this definition is given by the possibility of discarding
sets of measure zero. Indeed, this technical detail allows
solutions to be defined even at points where the vector field
itself is not defined.

We now introduce the concept of Clarke’s Generalized
Gradient, an essential tool in the machinery of nonsmooth
analysis.
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Definition 2 (Clarke’s Generalized Gradient): Consider a
locally Lipschitz function V : Rn → R. Then the generalized
gradient at x is defined as

∂V (x) = co
{

lim
i→∞

∇V (xi) |xi → x, xi /∈ ΩV

}
(4)

where ΩV is the set of measure zeros where the gradient of
V is not defined. �

We now review the chain rule which allows to differentiate
Lipschitz regular functions along the Filipov’s solution trajec-
tories.

Theorem 1 (Chain Rule [39]): Let x(·) be a Filipov solution
to (1) on an interval containing t and V : Rn → R be a
Lipschitz and, in addition, regular function. Then V (x) is ab-
solutely continuous, (d/dt)V (x(t)) exists almost everywhere
and

d

dt
V (x(t)) ∈a.e. ˙̃V (x) (5)

where the generalized time derivative ˙̃V (x) is defined as

˙̃V (x) :=
⋂

ξ∈∂V (x(t))

ξTK[f ](x) (6)

�
So far, we have introduced the essential tools constituting

the machinery of the nonsmooth analysis, where the right-hand
side of differential equations may be discontinuous and the
Lyapunov function may be non-differentiable. Interestingly,
this machinery can be simplified under the assumption of
continuous differentiability of the Lyapunov function.

First, let us notice that for a continuously differentiable
function the generalized derivative becomes a singleton con-
taining the actual gradient of the function, that is

Corollary 1 ([38]): Let V : Rn → R be a continuously
differentiable function. Then

∂V (x) = {∇V (x)} (7)

�
Then, by exploiting this information we can give a simplified
version of the chain rule stated in Theorem 1 as:

Theorem 2 (Simplified Chain Rule): Let x(·) be a Filipov
solution to (1) on an interval containing t and V : Rn → R be
a continuously differentiable function. Then V (x) is absolutely
continuous, (d/dt)V (x(t)) exists almost everywhere and

d

dt
V (x(t)) ∈a.e. ˙̃V (x) (8)

where the generalized time derivative ˙̃V (x) is defined as

˙̃V (x) := (∇V (x))
T
K[f ](x) (9)

�
We now review a nonsmooth version of LaSalle’s theo-

rem. This will prove useful to establish stability results for
dynamical systems described by differential equations with
discontinuous right-hand side.

Theorem 3 (Nonsmooth LaSalle Invariance Principle [39]):
Let Ω be a compact set such that every Filipov solution to (1)
starting in Ω is unique and remains in Ω for all t ≥ 0. Let
V : Ω→ R be a time independent regular function such that

v ≤ 0 for all v ∈ ˙̃V (x) (if ˙̃V (x) is the empty set then this
is trivially satisfied). Define S = {x ∈ Ω : 0 ∈ ˙̃V (x)}. Then
every trajectory in Ω converges to the largest invariant set M ,
in the closure of S. �

Finally, we review a calculus for computing the Filipov’s
differential inclusions, originally developed in [38] (and fur-
ther extended in [40]).

Theorem 4 (Calculus for K [38]): The map K : Rn → 2R
n

has the following properties
1) Assume that f : Rn → Rn is locally bounded. Then
∃Hf ⊂ Rn, µ{Hf} = 0, such that ∀H ∈ Rn,
µ{H} = 0,

K[f ](x) = co
{

lim
i→∞

f(xi) |xi → x, xi /∈ Hf ∪H
}
(10)

2) Assume that f, g : Rn → Rn are locally bounded; then

K[f + g](x) ⊂ K[f ](x) +K[g](x) (11)

3) Assume that fi : Rn → Rni , j ∈ {1, . . . , N}, are
locally bounded; then

K
[
×N

j=1fj(x)
]
⊂×N

j=1K[fj ](x) (12)

where the cartesian product notation and the column
vector notation are used interchangeably.

4) Let g : Rm → Rp×n (i.e., matrix valued) be continuous
and f : Rm → Rn be locally bounded; then

K[g f ](x) = g(x)K[f ](x) (13)

where g f , g(x) f(x) ∈ Rp.
5) Let f : Rn → Rn be continuous; then

K[f ](x) = {f(x)} (14)

�

IV. BOUNDED CONNECTIVITY MAINTENANCE

Let us consider a multi-robot system composed of
N robots interacting according to a time-varying graph
G(t) = {V,E(t)}, and let us assume that the dynamics of each
robot i is described as follows

ṗi = fi(p) + ui (15)

where f(·) : RNd → Rd is the desired control objective,
p = [pT1 , . . . , p

T
N ]T is the stacked vector of per-agent state

with pi ∈ Rd, and ui ∈ Rd is the local control input1. It
follows that the dynamics of the multi-robot system can be
written in a compact form as

ṗ = f(p) + u (16)

where f(p) = [f1(p)T , . . . , fN (p)T ]T is the stacked
vector of the per-agent desired objective functions and

1It is worth noting that, even though this is a very simplified model, it
can still be effectively used to control real robotic systems. In particular,
by endowing a robot with a sufficiently good Cartesian trajectory tracking
controller, it is possible to use single integrators to generate velocity-reference
for several types of robotic platforms such as wheeled mobile robots [41], and
unmanned aerial vehicles [42].
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u = [uT1 , . . . , u
T
N ]T is the stacked vector of per-agent control

inputs.
The following assumption is taken on the dynamics (15).
Assumption 1: There exist Uo > 0 ∈ R and Uc > 0 ∈ R

such that

‖fi(p)‖ ≤ Uo, ∀i ∈ [1, . . . , N ],

‖ui‖ ≤ Uc, ∀i ∈ [1, . . . , N ].
(17)

with Uo + Uc ≤ U , where U > 0 ∈ R might represent some
physical limitations on the actuator capabilities. �

Similarly to [43], let us now consider a continuously dif-
ferentiable version of the edge weights originally introduced
in [13] as follows

aij(t) =

e
(R2 − ‖pi − pj‖2)2

2σ2 − 1 if ‖pi − pj‖ ≤ R

0 otherwise
(18)

with R the visibility radius, σ a tuning parameter, and for
which the ∇piλ2(p) can be computed as

∇piλ2(p) =
∑

j∈Ni(t)

∇piaij(t)(vi − vj)2 (19)

where vi and vj are the i-th and j-th component of the
eigenvector v = [v1, . . . , vn]T associated with algebraic con-
nectivity λ2 and the gradient ∇piaij(t) is computed as

∇piaij(t) = −aij(t)
(
R2 − ‖pi − pj‖2

) (pi − pj)
σ2

(20)

We now propose the following connectivity maintenance
control term for each robot i described by the dynamics (15)

ui =

kc e
(−λ2(p) + ε)

c
∇piλ2
‖∇piλ2‖

if ‖∇piλ2(p)‖ 6= 0

0 if ‖∇piλ2(p)‖ = 0
(21)

where ε > 0 is the desired lower-bound for the algebraic
connectivity λ2(p), ∇piλ2(p) is the gradient of λ2(p) with
respect to pi as defined in (19), and c > 0 and kc ∈ (0, Uc]
are tunable parameters. Details concerning the tuning of the
parameters c and kc will be provided in the sequel.

Note that a decentralized computation of (21) requires the
estimation of the global terms λ2(p) and v. This problem will
however not be addressed in this paper, since several proce-
dures to attain this objective can be found in the literature.
In particular, [13], [15] utilize the power iteration algorithm,
implemented in a decentralized manner utilizing consensus-
based distributed averaging. Both power iteration [44] and
consensus [45] provide only asymptotic convergence to the
desired value. However, convergence speed can be arbitrarily
increased by appropriately selecting tuning gains. In a similar
way, a consensus-based decentralized estimation protocol is
proposed in [46] for simultaneously computing Laplacian
eigenvalues and eigenvectors. A different approach is utilized
in [31], where local interaction rules are defined among the
robots in such a way that their state trajectory converge to a
linear combination of sinusoidal signals, whose characteristic

frequencies are function of the eigenvalues of the Laplacian
matrix. Convergence is guaranteed in finite time, and eigenval-
ues are then found using standard signal processing techniques.

In addition, it should be noticed that (21) is discontinuous
at ‖∇piλ2(p)‖ = 0. Thus, it necessitates the application of
the tools coming from the nonsmooth analysis reviewed in
Section III-B.

We now demonstrate that the proposed control term (21) can
maintain the connectivity of the time-varying interaction graph
G(t) over time. Successively, we investigate the effects of the
connectivity control term on the collective control objective.
Then, we discuss the robustness of the proposed control
law against error affecting the estimation of the algebraic
connectivity. The dependence of λ2 from the stacked vector
of agent positions p, as in (21), will be dropped in the sequel
when not strictly required for the sake of readability.

A. Theoretical Analysis of Connectivity Maintenance

The following theorem establishes conditions for which the
connectivity of the multi-robot system can be preserved over
time.

Theorem 5: Consider the dynamics (15) with the local
connectivity control input (21) under Assumption 1. Let the
initial value of the algebraic connectivity be λ2 > ε. Then, if
kc > Uo the algebraic connectivity will necessarily increase if

λ2 < ε+ c log

(
kc
Uo

)
, (22)

thus ensuring that λ2 never goes below ε as the system evolves.
�

Proof: Consider a continuously differentiable function
V (·) : RNd → R+ defined as follows

V (p) = e

(−λ2(p) + ε)

c (23)

along with the set Ωβ =
{
p ∈ RNd : V (p) ≤ β

}
. Arguments

concerning the compactness of the set Ωβ with respect to
relative distances can be found for instance in [47]–[49].

Since the Lyapunov candidate V (p) is a smooth function,
we can resort to the (simplified) chain rule given in Theorem 2
to compute the generalized time-derivative as

˙̃V (p) = (∇pV )
T
K[ṗ] ⊂

N∑
i=1

(∇piV )
T
K[ṗi]

=

N∑
i=1

−1

c
e

(−λ2 + ε)

c ∇piλ2

T

K[ṗi]

= −1

c
e

(−λ2 + ε)

c
N∑
i=1

(∇piλ2)
T
K[ṗi]

(24)

where the third property of the calculus given in Theorem 4
has been used.

Let us now evaluate the i-th term of the sum in (24) as

(∇piλ2)
T
K[ṗi] = (∇piλ2)

T
K [fi(p) + ui]

⊂ (∇piλ2)
T
K [fi(p)] + (∇piλ2)

T
K [ui]

(25)
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where the fourth property of the calculus given in Theorem 4
has been used. At this point, by plugging (21) into (25) we
obtain

(∇piλ2)
T
K[ṗi] ⊂ (∇piλ2)

T
K [fi(p)]

+ (∇piλ2)
T
K

kc e (−λ2 + ε)

c
∇piλ2
‖∇piλ2‖

 (26)

From (26), by recalling that ‖∇piλ2‖ = 0 implies ∇piλ2 = 0,
it follows that

(∇piλ2)
T
K[ṗi] ⊂ {0} if ‖∇piλ2‖ = 0 (27)

Let us now consider the case ‖∇piλ2‖ 6= 0. In this regard,
according to the first and fourth properties of Theorem 4 we
have that

K [fi(p)] = co

{
lim
h→∞

fi(p
h) |ph → p,p /∈ Hfi

}
(28)

with Hfi the set of points for which fi(p) fails to be the
differentiable. It follows that (26) can be simplified as

(∇piλ2)
T
K[ṗi] ⊂ (∇piλ2)

T

co

{
lim
h→∞

fi(p
h) |ph → p,p /∈ Hfi

}

+ (∇piλ2)
T


kc e (−λ2 + ε)

c
∇piλ2
‖∇piλ2‖


(29)

In particular, an element ζhi of this intersection looks like

ζhi = (∇piλ2)
T
fi(p

h) + (∇piλ2)
T
kc e

(−λ2 + ε)

c
∇piλ2
‖∇piλ2)‖

≥ ‖∇piλ2‖

−∥∥fi(ph)
∥∥+ kc e

(−λ2 + ε)

c
‖∇piλ2‖
‖∇piλ2‖


≥ ‖∇piλ2‖

−Uo + kc e

(−λ2 + ε)

c


(30)

Therefore, a sufficient condition for the term ζhi to be positive
definite is that

−Uo + kc e

(−λ2 + ε)

c > 0 (31)

From Theorem 2 we know that
d

dt
V (p(t)) ∈a.e. ˙̃V (p) (32)

and by recalling (24) we have

d

dt
V (x(t)) ∈a.e. −1

c
e

(−λ2 + ε)

c
N∑
i=1

(∇piλ2)
T
K[ṗi] (33)

At this point, by exploiting (31), it follows that the Lyapunov
time derivative is negative definite, and thus the algebraic
connectivity λ2 increases, if

λ2 < ε+ c log

(
kc
Uo

)
(34)

and finally, since log
(
kc
Uo

)
> 0 the thesis follows.

Notably, from Theorem 5, it follows that Uo < Uc with
Uo + Uc < U . Therefore the boundedness condition on the
local control inputs implies that some design constraints must
be taken when defining the desired collective control objective.

Interestingly, what Theorem 5 tells us is that the proposed
control law renders the set Ωε = {p ∈ RNd : λ2(p) > ε}
positively invariant, that is by assuming the multi-robot system
starts with a configuration that belongs to such a set, then it
will remain there as time goes to infinity, thus preserving the
connectedness of the multi-robot interaction graph over time.

Furthermore, it should be pointed out that the result given
in Theorem 5 could be generalized by introducing into the
dynamics (15) a bounded additive uncertainty term di. Briefly,
as for the term fi(p) for which we introduced Uo as an upper
bound, it would suffice to consider an upper bound Do for
the disturbance di, and repeat the analysis by considering
both terms. Notably, by following the same reasoning as
in Theorem 5, the final result would be that the Lyapunov
time derivative is negative definite, and thus the algebraic
connectivity λ2 increases, if

λ2 < ε+ c log

(
kc

Uo +Do

)
(35)

and thus the thesis would follow under the assumption
log
(

kc
Uo+Do

)
> 0. Thus, clearly imposing a more restrictive

condition on the value of the algebraic connectivity due to the
presence of an additional term.

B. Theoretical Analysis of Control Objective Perturbation

Theorem 5 states that the proposed control law can guaran-
tee the connectivity maintenance over time in the presence
of any bounded control objective such that Uo < k. We
now change perspective and investigate how the connectivity
control term may affect the achievement of the collective
control objective.

For the sake of the analysis and with no lack of generality,
we will assume that the collective control objective can be
obtained through a potential-based design approach. Indeed,
the potential-based control design is a very popular framework
widely exploited in the robotics and control communities for
controlling multi-robot systems [7], [32], [47]–[52]. Briefly,
the idea is to define a potential function Φ(p) encoding
the energy of the system in such a way that the desired
configurations of the multi-robot system correspond to those
points of the potential for which the energy is minimized.
Then, a natural way to design a control law to achieve these
configurations is to let the multi-robot system move along the
anti-gradient −∇pΦ of the potential Φ(p).

A very common approach to design distributed potential-
based control objectives is to consider, for each pair of
robots i and j, a (continuously differentiable2) potential func-

2A generalization to handle pairwise non-smooth potential functions can be
found in [32]. Here, for the sake of simplicity, since the focus of the paper
is on the design of a bounded connectivity control term, we limit ourself on
smooth pairwise potentials.
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tion Φij(p) , Φij(pi, pj) for which the following properties
hold

∇piΦij = ∇piΦji
∇piΦij = −∇pjΦij

(36)

Then, the following global potential function for the multi-
robot system can be considered

Φ(p) =

N∑
i=1

∑
j 6=i

Φij(pi, pj) (37)

and the following per-agent anti-gradient control term can be
plugged into (15) as the desired control objective (with ui = 0)
to ensure that a (local) minimum of the potential function Φ(p)
is achieved

fi(p) = −∇piΦ(p) i ∈ {1, . . . , N} (38)

with ∇piΦ(p) defined according to (36) and (37) as

∇piΦ(p) =
∑

j∈Ni(t)

∇piΦij . (39)

Our objective is to consider this control objective as a case
study to investigate how the connectivity control term, while
preserving the connectedness of the graph, may affect the
achievement of the desired objective. Note that in order to
fulfill Assumption 1 we are going to consider the following
normalized version of (38)

fi(p) = −ko
∇piΦ(p)

‖∇piΦ(p)‖
i ∈ {1, . . . , N} (40)

with 0 < ko ≤ Uo the gain of the collective control objective.
Indeed, it can be shown that the same equilibria could be
reached by the multi-robot system if each agent i were
controlled to run (40) instead of (38), see [53] for further
details.

However, it should be noticed that these control laws (38)
and (40) would not ensure that the connectedness of the
communication graph is preserved over time for any set of
initial conditions, i.e., the stacked vector p describing the robot
locations, as numerically demonstrated also in Section V-A.

The following theorem provides an Input-to-State Stability
(ISS)-like result in the algebraic connectivity domain (see [54]
for a comprehensive overview of the ISS framework) for the
proposed connectivity maintenance control law. As a matter of
fact, while acting primarily as a mathematical formalization of
a quite intuitive theoretical result, that is with a disturbance
in general one cannot achieve exactly the desired objective,
this theorem will also prove useful to narrow down scenarios
for which the objective could be indeed achieved, even in the
presence of the connectivity control term.

Theorem 6: Consider the dynamics (15) with the desired
control objective (40) and the local connectivity control in-
put (21). Let the global potential function Φ(p) be defined
as in (37). Then, the multi-robot system will move towards a
local minimum of such a global potential function Φ(p) until

λ2(p) > ε+ c log

(
kc
ko

)
, ko ∈ (0, Uo] (41)

with p = [p1, . . . , pN ]T . �

Proof: Consider the dynamics (15) of the i-th robot when
the desired objective (40) and the connectivity control law (21)
are used

ṗi = −ko
∇piΦ(p)

‖∇piΦ(p)‖
+kc e

(−λ2(p) + ε)

c
∇piλ2(p)

‖∇piλ2(p)‖
(42)

Consider the global potential function Φ(p) in (37) as
the Lyapunov candidate function along with the set of
Ωβ =

{
p ∈ RNd : Φ(p) ≤ β

}
. As for (23), arguments con-

cerning the compactness of the set Ωβ with respect to relative
distances can be found for instance in [47]–[49]. Then, by
recalling that Φ(p) is continuously differentiable we can resort
again to the (simplified) chain rule given in Theorem 2 and
thus the generalized time-derivative can be computed as

˙̃Φ(p) = (∇pΦ)
T
ṗ ⊂

N∑
i=1

(∇piΦ)
T
K[ṗi] (43)

where again the third property of the calculus given in Theo-
rem 4 has been used. Let us now evaluate the i-th term of the
sum in (43) as

(∇piΦ)
T
K[ṗi] = (∇piΦ)

T
K [fi(p) + ui]

⊂ (∇piΦ)
T
K [fi(p)] + (∇piΦ)

T
K [ui]

= (∇piΦ)
T
K

[(
−ko

∇piΦ
‖∇piΦ‖

)]

+ (∇piΦ)
T
K

kc e (−λ2(p) + ε)

c
∇piλ2(p)

‖∇piλ2(p)‖


(44)

From (44), by recalling that ‖∇piΦ‖ = 0 implies ∇piΦ = 0,
it follows that

(∇piΦ)
T
K[ṗi] ⊂ {0} if ‖∇piΦ‖ = 0 (45)

Let us now consider the case ‖∇piΦ‖ 6= 0. In particu-
lar, (44) simplifies to

(∇piΦ)
T
K[ṗi] ⊂ (∇piΦ)

T

{
−ko

∇piΦ
‖∇piΦ‖

}

+ (∇piΦ)
T
K

kc e (−λ2(p) + ε)

c
∇piλ2(p)

‖∇piλ2(p)‖


(46)

First, let us consider the case ‖∇piλ2‖ 6= 0 for which we
have

(∇piΦ)
T
K[ṗi] ⊂ (∇piΦ)

T

{
−ko

∇piΦ
‖∇piΦ‖

}

+ (∇piΦ)
T

kc e
(−λ2(p) + ε)

c
∇piλ2(p)

‖∇piλ2(p)‖


=

−‖∇piΦ‖
ko − kc e (−λ2(p) + ε)

c cos(αi)


(47)

with αi the angle between the two gradients ∇piΦ and ∇piλ2,
that is

αi = ∠(∇piΦ,∇piλ2) (48)
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In particular, since the following bound holds for (47)

(∇piΦ)
T
K[ṗi] ≤

−‖∇piΦ‖
ko − kc e (−λ2(p) + ε)

c


(49)

a sufficient condition for its negative-definiteness is that

ko − kc e
(−λ2(p) + ε)

c > 0 (50)

which, by means of some manipulations, can be rewritten as

λ2(p) > ε+ c log

(
kc
ko

)
(51)

Let us now consider the case ‖∇piλ2‖ = 0. In this regard,
let us recall that the generalized gradient for the discontinuous
right-hand side of (21) according to the first and the fourth
properties of Theorem 4 takes the form

K

k e (−λ2 + ε)

c
∇piλ2
‖∇piλ2‖


= k e

(−λ2 + ε)

c K

[
∇piλ2
‖∇piλ2‖

]

= k e

(−λ2 + ε)

c co

{
lim
h→∞

∇phi λ2
‖∇phi λ2‖

| phi → pi, ‖∇phi λ2‖ 6= 0

}
(52)

At this point, by following a similar analysis as before we
obtain

(∇piΦ)
T
K[ṗi] ⊂ (∇piΦ)

T

{
−ko

∇piΦ
‖∇piΦ‖

}

+ kc e

(−λ2(p) + ε)

c (∇piΦ)
T

co

{
lim

∇phi λ2
‖∇phi λ2‖

| phi → pi,
∥∥∥∇phi λ2∥∥∥ 6= 0

}
(53)

In particular, an element ζhi of this intersection looks like

ζhi = −ko ‖∇piΦ‖+ kc e

(−λ2(p) + ε)

c (∇piΦ)
T
∇phi λ2
‖∇phi ‖

= −‖∇piΦ‖+ k e

(−λ2(p) + ε)

c ‖∇piΦ‖ cos(αhi )
(54)

where αhi is defined as

αhi = ∠(∇piΦ,∇phi λ2) (55)

that is, the angle between the two gradients ∇piΦ and ∇phi λ2.
In particular, the following bound holds for the element ζhi

ζhi ≤ −ko ‖∇piΦ‖+ kc e

(−λ2(p) + ε)

c ‖∇piΦ‖

≤ −‖∇piΦ‖

ko − kc e (−λ2(p) + ε)

c

 (56)

and thus, also in this case, a sufficient condition for negative-
definiteness of ζhi is that

λ2(p) > ε+ c log

(
kc
ko

)
(57)

From Theorem 2 we know that

d

dt
Φ(p(t)) ∈a.e. ˙̃Φ(p) (58)

and by recalling (43) we have

d

dt
Φ(p(t)) ∈a.e.

N∑
i=1

(∇piΦ)
T
K[ṗi] (59)

Therefore, it follows that a sufficient condition for the Lya-
punov time derivative to be negative definite is that condi-
tions (51) and (57) hold for each i ∈ {1, . . . , N}. Thus the
thesis follows.

A few remarks are now in order.

• In general, the connectivity control term does not allow
to reach exactly a configuration corresponding to a local
minimum of the global potential Φ(p).

• If the algebraic connectivity is sufficiently large in the
neighborhood of the critical points of the global potential
Φ(p), then the connectivity control term does not affect
(at all) the control objective.

• The disturbance introduced by the connectivity control
term can be (partially) mitigated through the tuning of
the parameter c.

We reiterate that Theorem 6 provides a mathematical for-
malization of a quite intuitive theoretical result. As a matter
of fact, such a result becomes even more clear when looking
at this problem from the perspective of the Input-to-State
Stability (ISS) framework, that is the connectivity control
term can be thought as a disturbance acting on the actual
desired objective, and thus (in general) perturbing the nominal
equilibria.

Furthermore, due to the generality of the problem formula-
tion where the potential design was only required to satisfy the
(commonly assumed) properties (36), conditions for the actual
convergence of the system to the desired objective could not
be derived. Indeed, as shown by the following corollary, better
convergence results can be established by imposing further
(and in some application contexts reasonable) assumptions on
the design of the global potential function Φ(p).

Corollary 2: Consider the dynamics (15) with the desired
control objective (40) and the local connectivity control in-
put (21). Let the global potential function Φ(p) be defined as
in (37) and assume that the following hold

(∇piΦ)
T ∇piλ2 ≥ 0 if λ2(p) ≤ ε+ c log

(
kc
ko

)
(60)

and
‖∇piλ2‖ = 0 ⇒ ‖ (∇piΦ) ‖ = 0 (61)

with i ∈ {1, . . . , N}. Then the multi-robot system reaches a
local minimum of the global potential function Φ(p).
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Proof: The result follows from the proof of Theorem 6.
In particular, we know that if (41) holds then each term
(∇piΦ)

T
K[ṗi] is negative definite, that is

(∇piΦ)
T
K[ṗi] ≤

{
− γai (p)‖∇piΦ‖

}
(62)

with γai (p) > 0 defined as

γai =

ko − kc e (−λ2(p) + ε)

c

 . (63)

Furthermore, when (41) no longer holds, by means of (60),
we can rewrite (47) as

(∇piΦ)
T
K[ṗi] ≤

{
− ko ‖∇piΦ‖

}
(64)

Furthermore, (61) allows to simplify (53) as

(∇piΦ)
T
K[ṗi] = {0} (65)

Therefore, by recalling Theorem 2 and by combining (62),
(64) and (65) , the negative semi-definiteness of the Lyapunov
derivative follows. Thus, by resorting to the nonsmooth version
of the LaSalle’s invariance principle given in Theorem 3 the
result follows.

Notably, Corollary 2 provides us with guidelines to under-
stand whether in principle a desired collective objective can
be (completely) achieved or not. In particular, (60) tells us
that anytime the multi-robot system is approaching a “critical”
configuration for the connectivity maintenance, the potential
encoding the desired objective function must be “coherent”
with the potential encoding the algebraic connectivity, where
by means of “coherence” we mean that the direction of motion
required to minimize the objective function should not further
reduce the algebraic connectivity λ2 if it is already close to its
lower bound ε. Furthermore, (61) tells us that the equilibria of
the system (corresponding to the critical points of the desired
objective function) should match the critical points of the
algebraic connectivity.

C. Discussion on the Robustness to the Estimation Error
So far, an exact knowledge of the algebraic connectivity λ2

was assumed to be available to carry out the theoretical anal-
ysis. However in a real scenario where the proposed control
law is run onboard each robot, we are likely to have only an
estimate of the algebraic connectivity λ̃2 (see for example [15],
[31]), due to several factors such as, for example, robots
pose estimation errors, communication delays, packets drop,
distributed estimation process transient and so on. Therefore,
it is mandatory to evaluate whether such a control law can be
still used when only an estimate of the algebraic connectivity
is available.

In this regard, let us consider (21) where the actual value
of the algebraic connectivity λ2 is replaced by an available
estimate λ̃2 as follows

ui =

kc e
(
−λ̃2 + ε

)
c

∇pi λ̃2
‖∇pi λ̃2‖

if ‖∇pi λ̃2(p)‖ 6= 0

0 if ‖∇pi λ̃2(p)‖ = 0
(66)

The following assumption is taken on the estimation process
of the algebraic connectivity.

Assumption 2: The estimation process of the algebraic
connectivity is such that at each time step there is a bound
on the estimation error as follows

|λ2 − λ̃2| ≤ Ψ (67)

�
Let us now evaluate the “robustness” of the proposed control

law, where by robustness we mean the capability to continue
preserving the connectivity over time, more specifically above
a certain threshold ε, even in the presence of a (bounded)
estimation error, as in Assumption 2. To this end, we now
review the results of Theorem 5 when the control term (66)
is considered instead of (21).

Corollary 3: Consider the dynamics (15) with the local
connectivity control input (66) under Assumptions 1 and 2. Let
the initial value of the estimate of the algebraic connectivity
be λ̃2 > ε + Ψ. Then, if kc > Uo the algebraic connectivity
will necessarily increase if

λ2 < ε+ c log

(
kc
Uo

)
−Ψ, (68)

thus ensuring that λ2 never goes below ε as the system evolves.
Proof: The result follows the same reasoning as in the

proof of Theorem 5, where the continuously differentiable
function (23) is replaced by

V (p) = e

(
−λ̃2 + ε

)
c (69)

for which the generalized time-derivative becomes

˙̃V (p) = (∇pV )
T
K[ṗ] ⊂

N∑
i=1

(∇piV )
T
K[ṗi]

= −1

c
e

(−λ̃2 + ε)

c
N∑
i=1

(
∇pi λ̃2

)T
K[ṗi]

(70)

In particular, when
∥∥∥∇pi λ̃2∥∥∥ 6= 0, a sufficient condition for

a term ζhi of the intersection
(
∇pi λ̃2

)T
K[ṗi] to be positive

definite is that

λ̃2 < ε+ c log

(
kc
Uo

)
(71)

Therefore, by exploiting Assumption 2, it follows that the
Lyapunov time derivative is negative definite, and thus the
algebraic connectivity λ2 necessarily increases, if

λ2 < ε+ c log

(
kc
Uo

)
−Ψ. (72)

Note that an interesting consequence of this analysis is that
in the presence of an estimation error to keep the algebraic
connectivity λ2 above a certain threshold ε, we are now forced
to pose a further constraint on the choice of the tuning gains
c and kc, that is we now need to ensure that

c log

(
kc
Uo

)
> Ψ. (73)
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Indeed, this additional constraint reflects also on the capability
to mitigate the effect that such a control law has on a potential-
based desired objective as further detailed in the following.

Corollary 4: Consider the dynamics (15) with the desired
control objective (40) and the local connectivity control in-
put (66). Let the global potential function Φ(p) be defined
as in (37). Then, the multi-robot system will move towards a
local minimum of such a global potential function Φ(p) until

λ2(p) > ε+ c log

(
kc
ko

)
+ Ψ, ko ∈ (0, Uo] (74)

with p = [p1, . . . , pN ]T .
Proof: The result follows the same reasoning as in

the proof of Theorem 6, where the condition for negative
definiteness in (51) and (57) now becomes

λ̃2(p) > ε+ c log

(
kc
ko

)
. (75)

Therefore, by exploiting Assumption 2 a sufficient condition
for the Lyapunov time derivative to be negative definite is that

λ2(p) > ε+ c log

(
kc
ko

)
+ Ψ. (76)

An important remark is now in order. According to Corol-
laries 3 and 4, in the presence of an estimate of the algebraic
connectivity, the connectivity control term dominates if (68)
holds, while the system moves towards a local minimum of the
desired objective if (74) holds. Compared to the case of exact
knowledge of the algebraic connectivity, where the conditions
were (22) and (41) respectively, two major differences arises:
• We now loose the capability to arbitrarily mitigate the ef-

fects of the connectivity control term through the parame-
ter c due to the presence of the additional constraint (73);

• There exists now a gap between the inequalities (68)
and (74), which can be explained by the necessity to be
conservative for handling the fact that the estimate of the
algebraic connectivity λ̃2 may deviate from the actual
value of the algebraic connectivity λ2 at most by Ψ.

V. EXPERIMENTAL AND NUMERICAL VALIDATION

A. Simulations

Simulations have been carried out by exploiting a frame-
work developed by the authors in Matlab©. In particular, four
different simulation scenarios have been considered. First,
by taking inspiration from [7], we numerically demonstrate
that for an initially connected interaction graph, a lost of
connectivity can be experienced in the case of bounded con-
trol objective. Successively, to support the theoretical results,
under the assumption of perfect knowledge of the algebraic
connectivity, we consider a simple aggregative potential as
an example of “coherent” collaborative objective for which
a local minimum can be reached, and a simple dispersive
potential as an example of “incoherent” collaborative objective
for which a local minimum cannot be reached. In particular,
given the switching nature of the interactions arising in a
proximity-limited setting, we adopt continuously differentiable

pairwise potential functions inspired by [55], which are smooth
over neighborhood transitions in order to comply with the
theoretical assumptions made in this work. Then, by assuming
that only an estimate of the actual value of the algebraic con-
nectivity is available, we consider again a dispersive scenario
to demonstrate the robustness of the proposed control law
against a bounded estimation error. Finally, to validate the
effectiveness of the proposed connectivity control strategy in a
typical formation control setting, we consider a bounded ver-
sion of a well-known distance-based gradient-descent control
framework, which takes the form of (37). Notably, as discussed
in a recent survey on multi-agent formation control [56],
different approaches are available at the state of the art for
defining the pairwise potential function. As already discussed
above, we adopt continuously differentiable pairwise potential
functions as in [57], which are smooth over neighborhood
transitions in order to comply with the theoretical assumptions
made in this work.

Note that, for the numerical evaluation where our main
objective is to corroborate the theoretical findings, we do not
consider an obstacle avoidance as it will be done for the
experimental validation.

Table I summarizes the parameters setting used in the
simulations for the proposed control law (21).

Symbol N R σ ko kc c ε Ψ
Value 9 1.5 5 0.6 1 1 0.5 0.4

TABLE I
PARAMETERS SETTING FOR SIMULATIONS

Figure 1 depicts the behavior of a multi-robot system com-
posed of 9 robots running a bounded aggregative control objec-
tive of the form (40) with no algebraic connectivity control. In
particular, Figure (1a) represents the initial configuration of the
multi-robot system where it can be noticed that the interaction
graph is initially connected, Figure (1b) depicts the instant at
which the graph connectivity is lost, and Figure (1c) shows
how the multi-robot system keeps evolving into connected
components of robots. Indeed, as discussed in [7], also in
our setting with no algebraic connectivity control, the multi-
robot system may experience a loss of the graph connectivity
even tough the interaction graph was initially connected. This
demonstrate that the same connectivity maintenance issues
may arise even when considering objective functions encoded
by bounded control laws, as for the case of unbounded control
laws discussed in [7]. Thus, we reiterate that the connectivity
maintenance problem is relevant also under the assumption of
bounded control terms.

Figure 2 depicts the behavior of a multi-robot system
composed of 9 robots running a bounded aggregative control
objective of the form (40) along with the algebraic connectivity
control term (21) under the ideal case of perfect knowledge
of the algebraic connectivity. Figure (2a) depicts the initial
configuration of the multi-robot system, while Figure (2b)
shows an intermediate configuration, and Figure (2c) illustrates
the final configuration of the multi-robot system. It can be
seen that the system is able to achieve a local minimum
of the desired collective objective function. This can be
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Fig. 1. Multi-robot system composed of 9 robots running a bounded aggregative control objective with no algebraic connectivity control losing graph
connectivity over time even though the interaction graph was initially connected.
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Fig. 2. Multi-robot system composed of 9 robots running a bounded aggregative control objective with algebraic connectivity control under the ideal case of
perfect knowledge of the algebraic connectivity. The system is able to reach a local minimum of the collective objective function as both the conditions of
Theorem 6 and of Corollary 2 are satisfied.

explained by the fact that both the conditions of Theorem 6
and Corollary 2 are satisfied. Figure (2d) illustrates how the
algebraic connectivity changes over time. In particular, it can
be noticed that the initial configuration of the system does
not satisfy the condition (41) of Theorem 6. However, since
the algebraic connectivity monotonically increases when the
inter-robot distance decreases, it follows that the condition (60)
of Corollary 2 must necessarily hold, and thus the system is
moving toward a local minimum of the aggregative potential
even when condition (41) does not hold. Figure (2e) shows
the per-agent (largest) control effort along with the maximum
effort for both the collective objective control term and alge-

braic connectivity control term. In particular, it can be noticed
how the connectivity control term dominates the collaborative
objective control term in magnitude while condition (41) is
not satisfied. Furthermore, it can be noticed that ‖∇piλ2‖ = 0
for each i = {1, . . . , N} implies that p1 = p2 = . . . = pN .
Indeed, by construction this represents a critical point of the
aggregative potential as well, and thus also the condition (61)
of Corollary 2 is satisfied. Therefore, it follows that the system
can reach a local minimum of the collective objective even in
the presence of the connectivity maintenance control term. Fig-
ure (2f) supports this reasoning by numerically demonstrating
that the potential reaches zero as time goes by, thus showing
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that a critical point has been reached.
Figure 3 depicts the behavior of a multi-robot system

composed of 9 robots running a bounded dispersive control
objective of the form (40) along with the algebraic connectivity
control term (21) under the ideal case of perfect knowledge
of the algebraic connectivity. Figure (3a) depicts the initial
configuration of the multi-robot system, while Figure (3b)
shows an intermediate configuration, and Figure (3c) illustrates
the final configuration of the multi-robot system. It can be
noticed that the system cannot achieve a local minimum of
the desired collective objective function as this would imply
letting each robot move arbitrarily far away from each other,
a behavior that would eventually break the connectedness of
the interaction graph. As proven in Theorem 6 the system
keeps moving towards a local minimum of the objective
function until condition (41) holds. In this regard, Figure (3d)
shows how the algebraic connectivity changes over time, while
Figure (3e) shows the per-agent (largest) control effort along
with the maximum effort for both the collective objective
control term and algebraic connectivity control term, and Fig-
ure (3f) illustrates how the potential changes over time. More
specifically, from Figure (3d) it can be noticed that the alge-
braic connectivity, which initially satisfies (41), approaches
the value ε + c log

(
kc
ko

)
. This ensures that the system is

temporarily moving towards a local minimum of the potential
function. However, from Figure (3e) it can be noticed how
the connectivity control effort matches the collective objective
control term to preserve the connectedness of the interaction
graph while the algebraic connectivity is approaching such a
value. As a matter of fact, from Figure (3e) it can be noticed
that this control action prevents the potential function encoding
the collective objective to keep decreasing, thus indicating a
local minimum cannot be reached.

Figure 4 illustrates the results obtained for a multi-robot
system composed of 9 robots running the same dispersive ob-
jective as above, where only an estimate of the algebraic con-
nectivity is assumed to be available under Assumption 2, and
thus the connectivity control term (21) is replaced with (66). In
particular, we recall that in this setting a further constraint must
be enforced to ensure that the algebraic connectivity remains
above a desired threshold. In this regard, we point out that
the choice of the parameters is such that c log

(
kc
ko

)
= 0.5108

while Ψ = 0.4, and thus (73) holds. Note that, due to space
limitations, in this case we do not report a screenshot describ-
ing the sequence of configurations of the multi-robot system,
as it turns out to be compatible with the nominal case described
in Figures (3a), (3b), and (3c). Furthermore, two different
scenarios representing the boundary cases were considered,
that is in the first case we assume λ̃(p) = λ(p) − Ψ, while
in the second we assume λ̃(p) = λ(p) + Ψ. Indeed, the
behavior of any other possible estimation scenario satisfying
Assumption 2 is confined within the evolution of these two.
Figure (4a) shows how the algebraic connectivity and its
estimate change over time, while Figure (4b) shows the per-
agent (largest) control effort along with the maximum effort
for both the collective objective control term and algebraic
connectivity control term, and Figure (4c) illustrates how the

potential changes over time, for the case λ̃(p) = λ(p) − Ψ.
Similarly, Figure (4d) shows how the algebraic connectivity
and its estimate change over time, while Figure (4e) shows
the per-agent (largest) control effort along with the maximum
effort for both the collective objective control term and alge-
braic connectivity control term, and Figure (4f) illustrates how
the potential changes over time, for the case λ̃(p) = λ(p)+Ψ.
In particular, from Figure (4a) it can be noticed how in
the first case the algebraic connectivity approaches the value
ε+ c log

(
kc
ko

)
−Ψ, while from Figure (4d) it can be noticed

how in the second case the algebraic connectivity approaches
the value ε + c log

(
kc
ko

)
+ Ψ. Indeed this supports the fact

that the behavior of any other possible estimation scenario
satisfying Assumption 2 is confined within the evolution of
these two boundary cases. Furthermore, it can also be noticed
that since in both cases the conditions of Corollary 3 are
satisfied, then the system is able to preserve the connectedness
of the interaction graph even though only an estimate of the
algebraic connectivity is available. Furthermore, according to
Corollary 4 the system in both cases keeps moving towards a
local minimum of the objective function until condition (74)
holds.

Figure 5 depicts the behavior of a multi-robot system
composed of 5 robots running a bounded version of a distance-
based formation control of the form (40), for which pairwise
potentials are derived from [57], with and without the algebraic
connectivity control term (21). For this scenario, the objective
formation was a square pyramid encoded by a set of desired
inter-robot distances. Note that, to properly encode the desired
shape, a constraint among each pair of robots was required,
and the resulting graph will be denoted in the following as G∗.
Indeed, this is a constraint that generally speaking cannot
be satisfied by our connectivity control law, which instead
aims only at ensuring the overall connectedness of the graph
topology, rather than controlling the existence of individual
edges. For this reason, and with no lack of generality for the
validation of the effects of the proposed connectivity control
law in a formation control setting, a suitable set of initial
conditions has been chosen. Figure (5a) depicts the initial
configuration of the multi-robot system, while Figure (5b)
illustrates the final configuration of the multi-robot system
for the case with connectivity maintenance, and Figure (5c)
shows the final configuration of the multi-robot system for the
case without connectivity control. For both scenario with and
without connectivity control term respectively, Figures (5d)
and (5g) show how the algebraic connectivity changes over
time, while Figures (5e) and (5h) show the per-agent (largest)
control effort along with the maximum effort for both the
collective objective control term and algebraic connectivity
control term, and Figures (5f) and (5i) illustrate the overall
formation error computed as the sum of per-pair squared error,
that is

∑
(i,j)∈G∗

(
‖pi − pj‖ − ‖p∗i − p∗j‖

)2
. In particular, it

can be noticed how the algebraic connectivity never goes
below the value ε+ c log

(
kc
ko

)
, and thus the system can reach

the desired formation shape, since the objective control term
always dominates over the connectivity control term. Indeed,
as it can be observed by comparing the formation control
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Fig. 3. Multi-robot system composed of 9 robots running a bounded dispersive control objective with algebraic connectivity control under the ideal case of
perfect knowledge of the algebraic connectivity. The system is only able to get arbitrarily close to a local minimum of the collective objective function as
only the conditions of Theorem 6 are satisfied.
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Fig. 4. Multi-robot system composed of 9 robots running a bounded dispersive control objective with algebraic connectivity control under the case of
estimation error affecting the knowledge of the algebraic connectivity. The two boundary cases are analyzed, that is in the first case the estimate is assumed
to be λ̃(p) = λ(p)−Ψ, while in the second case the estimate is assumed to be λ̃(p) = λ(p) + Ψ. Note that the behavior of any other possible estimation
scenario satisfying Assumption 2 is confined within their evolution. Indeed, the system is able to preserve the connectedness of the interaction graph even
though only an estimate of the algebraic connectivity affected by (bounded) estimation error is available.
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Fig. 5. Multi-robot system composed of 5 robots running a bounded version of the gradient-descent control framework for achieving distance-based formation
control defined in [57], with and without the algebraic connectivity control term (21). The desired formation is a square pyramid encoded by a set of desired
inter-robot distances for which the related algebraic connectivity is above the threshold ε+ c log

(
kc
ko

)
.

error in Figure (5f) and in Figure (5i), the major difference
introduced by the presence of the connectivity control term
is the reduction of the convergence speed, as it takes longer
for the system to achieve the desired formation when the
connectivity control term is present.

Figure 6 depicts the behavior of a multi-robot system
composed of 5 robots running again a bounded version of a
distance-based formation control of the form (40), for which
pairwise potentials are derived from [57], with and without the
algebraic connectivity control term (21). Also for this scenario
the objective formation was a square pyramid encoded by
a set of desired inter-robot distances. However, compared
to the previous setting, in this scenario the desired inter-
robot distances were purposely chosen such that the final
configuration would require the algebraic connectivity to go
below the value ε+ c log

(
kc
ko

)
. Figure (6a) depicts the initial

configuration of the multi-robot system, while Figure (6b)
illustrates the final configuration of the multi-robot system
for the case with connectivity maintenance, and Figure (6c)
shows the final configuration of the multi-robot system for
the case without connectivity control. For both scenarios with
and without connectivity control term respectively, Figure (6d)
and (6g) show how the algebraic connectivity changes over
time, while Figure (6e) and (6h) show the per-agent (largest)
control effort along with the maximum effort for both the
collective objective control term and algebraic connectivity
control term, and Figure (6f) and (6i) illustrate the overall
formation error computed as the sum of per-pair squared
error, that is again

∑
(i,j)∈G∗

(
‖pi − pj‖ − ‖p∗i − p∗j‖

)2
. In

particular, it can be noticed how the system reaches different
equilibria with and without the connectivity control term, that
is the system cannot reach the desired formation shape with
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Fig. 6. Multi-robot system composed of 5 robots running a bounded version of the gradient-descent control framework for achieving distance-based formation
control defined in [57], with and without the algebraic connectivity control term (21). The desired formation is a square pyramid encoded by a set of desired
inter-robot distances for which the related algebraic connectivity is below the threshold ε+ c log

(
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)
.

the connectivity control term, while the system can reach it
without the connectivity control term. This can be explained
by the fact that in the case without connectivity control the
algebraic connectivity is allowed to go below the theoretical
bounds for which the connectivity control term dominates
to ensure the graph connectedness. On the contrary, in the
case with connectivity control, while the algebraic connectivity
is approaching ε + c log

(
kc
ko

)
the connectivity control effort

matches the collective objective control term (see Figures (6d)
and (6e)). On the one hand, this ensures that the connectedness
of the interaction graph is preserved over time, on the other
hand this prevents the multi-robot system to fully achieve
the desired formation as it corresponds to a configuration
for which the algebraic connectivity is below the activation
threshold of the connectivity control.

B. Experiments

Experiments have been carried out by exploiting 4 units of
the SAETTA mobile robotic platform along with a low-cost
vision tracking system composed of commercial wide-angle
webcams both developed at the Robotics and Sensor Fusion
Lab of the Department of Engineering at the University of
Rome “Roma Tre” and integrated within a ROS network.
Briefly, the Robot Operating System (ROS) is a flexible
framework for writing robot software. Further details regarding
ROS can be found in [58].

The SAETTA mobile robot is a small low-cost robotic
platform which features a complete sensorial system, a very
accurate traction in indoor environment, and a wireless com-
munication channel for multi-robot applications. Further de-
tails regarding the SAETTA platform can be found in [59].
Relative distance information was provided by such a low-cost
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vision tracking system with a resolution of the order of about
5 cm, sufficiently accurate considering the size 14× 29 cm of
the SAETTA robot platform.

The main objective of this experimental validation was to
test the proposed control law in a real context against not
modeled factors such as pose measurements affected by noise,
communication affected by packets delay (or packets loss), or
inherent asynchronism in the robot-to-robot interaction. For
the sake of comparison we considered again an aggregative
and dispersive scenarios as for the numerical evaluation de-
scribed in Section V-A with the same parameters setting used
for the simulations (see Table I).

Figure 7 illustrates the results obtained for the experimental
validation of the aggregative scenario, where also a repulsive
potential-based control term was considered for avoiding inter-
robot collisions. In particular, it can be observed that a similar
behavior compared to the simulation results is experienced
during the transient. More specifically, first the connectivity
control term dominates the collective objective until the alge-
braic connectivity crossed the theoretical bound denoting its
activation, then it starts fading out as the algebraic connectivity
increases due to the fact that the robots get closer and closer.
Furthermore, it can be noticed that, once a certain inter-
robot distance close to the equilibrium has been reached,
the robots motion exhibits a sustained oscillation. Although
such an oscillation can be reasonably related to the non-
holonomic nature of the robots kinematics, we believe it
to be mainly induced by the (quite) poor resolution of the
developed low-cost vision tracking system, which in turn
highly emphasizes the discontinuous nature of the controller
adopted for achieving aggregation and for avoiding collisions.
Note that this behavior could be significantly mitigated by
properly tuning the control gains and introducing small code
workarounds, but we decided to keep it as it gives an idea of
the entity of the estimation error affecting the experimental
validation and thus in turn of the robustness of the proposed
control law.

Figure 8 illustrates the results obtained for the experimental
validation of the dispersive scenario. In particular, it can be
seen that once the algebraic connectivity is approaching the
theoretical bound for which the connectivity control term
has to dominate the control objective in order to guarantee
the connectedness of the interaction graph, a similar (even
though smaller) sustained oscillation can be noticed. Also in
this case, this can be explained both by the non-holonomic
nature of the robots kinematics and the (quite) poor resolution
of the developed low-cost vision tracking system and its
effects on the discontinuous nature of the adopted dispersive
controller. Nevertheless, the system is still capable to preserve
the connectedness of the interaction graph even in the presence
of (significantly) noisy pose measurements.

VI. CONCLUSION

In this paper we addressed the connectivity maintenance
problem for a team of mobile robots which move according
to a given bounded collective control objective. We proposed a
bounded connectivity control law which can provably preserve

the connectedness of the multi-robot system over time. We
characterized the effects of the connectivity control term on
the collective control objective by resorting to the ISS-like
analysis framework. We investigated its robustness against
estimation error of the algebraic connectivity. We validated
the effectiveness of the proposed connectivity control term by
considering both simulations and experiments results. Future
work will be focused on extending the proposed approach to
systems with higher-order dynamics.
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Fig. 7. Experimental validation carried out with a multi-robot system composed of 4 SAETTA units. The multi-robot system is running a bounded aggregative
potential along with the connectivity control term.
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Fig. 8. Experimental validation carried out with a multi-robot system composed of 4 SAETTA units. The multi-robot system is running a bounded dispersive
potential along with the connectivity control term.
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