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Lattice Boltzmann approach for complex nonequilibrium flows
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We present a lattice Boltzmann realization of Grad’s extended hydrodynamic approach to nonequilibrium flows.
This is achieved by using higher-order isotropic lattices coupled with a higher-order regularization procedure.
The method is assessed for flow across parallel plates and three-dimensional flows in porous media, showing
excellent agreement of the mass flow with analytical and numerical solutions of the Boltzmann equation across
the full range of Knudsen numbers, from the hydrodynamic regime to ballistic motion.
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I. INTRODUCTION

A deeper understanding of the physics of fluids at the mi-
croscale and nanoscale is key to many emergent applications in
science and micronanoengineering [1–3]. Due to the inherent
multiscale nature of the problem, with details at the nanometric
scales affecting the overall operation of macroscopic devices,
a whole array of computational techniques must be deployed
to develop a quantitative understanding of these phenomena.
As a result, in the last decades, several mesoscale methods
have emerged in the attempt to bridge the gap between the
macrolevels and microlevels [4–9]. Among others, the lattice
Boltzmann (LB) approach appears to offer a very effective
means of dealing with flow problems which are “too small”
for the continuum mechanics and “too large” for molecular
methods [10].

The Boltzmann equation is known to converge to the
Navier-Stokes equations in the limit of vanishing Knudsen
number, through the Chapman-Enskog asymptotic expansion.
The same is true for the LB equation.

At finite-Knudsen numbers, higher-order generalized hy-
drodynamic equations, known as Burnett and super-Burnett,
are obtained. However, the practical use of these equations
has met with limited success, due to unstable behavior
and other difficulties connected with the implementation of
boundary conditions. It has been argued that the LB approach
cannot deliver any reliable information in this finite-Knudsen
generalized hydrodynamic regime, since it does not feature
enough symmetry to recover the required high-order terms.
However, numerous simulations have proved such theoretical
expectations too restrictive and shown that the LB approach
continues to provide useful information also beyond the
hydrodynamic regime, where nonequilibrium effects can no
longer be treated as a weak departure from local equilibrium.
[11–13].

Subsequent developments have identified the main fea-
tures that have to be added on top of the standard LB
scheme in order to make it eligible for generalized hydrody-
namic investigations, namely, (i) higher-order lattices (HOLs)
[14–17], (ii) kinetic boundary conditions (KBCs) [18], and (iii)
regularization (REG) [19,20]. KBCs are required to properly
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describe the momentum exchanges between fluid molecules
and solid walls, so as to allow relative motion of the fluid in the
near-wall region (slip motion). They stand in marked contrast
with the no-slip boundary conditions used in continuum
hydrodynamics which are typically implemented by the so-
called bounce-back (BB) rule, i.e., particles impinging on the
wall are bounced back along the opposite direction [15,18].
HOLs are necessary to provide sufficient isotropy for the
description of the high-order kinetic moments carrying the
relevant generalized hydrodynamic information. By HOLs
we refer to those lattices which provide isotropy beyond the
fourth order. Typical HOLs used in LB theory contain more
kinetic moments than needed for hydrodynamic purposes, the
so-called “ghosts,” hence suitable filtering of such modes is a
crucial step in the procedure. Finally, regularization filters out
the nonhydrodynamic modes generated by the free motion
of the molecules between two subsequent collisions, with
the result of smoothing the effects of ghost modes [20–22].
The combination of the three features above, which we shall
dub “extended LB” for brevity, bears a major conceptual and
practical value, as it potentially leads to the accomplishment
of the Grad’s extended hydrodynamics approach [23] within a
very compact and efficient computational framework [24]. It
is clear that the successful completion of this program would
lead to a significant gain (one or two orders of magnitude) in
computational efficiency for Kn ∼ 1 flows. However, to date,
a consolidated picture of how the above features combine to
form a unified lattice kinetic approach capable of handling
strong nonequilibrium effects across a broad range of Knudsen
numbers is lacking.

In this paper, we show that all three ingredients are indeed
necessary to correctly reproduce nonequilibrium behavior
across the full range of Knudsen numbers, for the case of flow
across flat parallel plates. On the other hand, we also show
that for more complex geometries, such as three-dimensional
flows through a regular array of spheres, global observables,
say, mass flow, can be computed even by using simple
bounce-back boundary conditions. Since such conditions are
manifestly locally incorrect at finite-Knudsen numbers, the
message is that the errors they introduce are alleviated by the
regularization procedure, at least in a global sense, i.e., upon
averaging over the entire fluid configuration. This may offer
a handy shortcut for computational studies of nonequilibrium
flows through disordered media.
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II. REGULARIZED LATTICE BOLTZMANN METHOD
AND KINETIC BOUNDARY CONDITIONS

The lattice Boltzmann method is based on a minimal
(lattice) version of the Bhatnagar-Gross-Krook equation, in
which the computational molecules stream along the links of a
uniform lattice, and collide on the nodes according to a simple
relaxation to a local equilibrium. In equations,

fi(�x + �ci�t,t + �t) = fi(�x,t) + �t

τ

[
f

eq
i − fi(�x,t)

]

+ �t

c2
s

�ci · �F, (1)

where fi(�x,t) is the discrete distribution function, representing
the probability of finding a particle at position �x and time t

with discrete velocity �ci , being i the index spanning over the
lattice discrete directions, i = 0, . . . ,b, [25]. Finally, �t is
the lattice time step. The left hand side of Eq. (1) represents
the free-streaming of particles within the lattice, which hop
from a lattice node to neighboring ones according to the
direction defined by the lattice vector �ci . The right hand side
includes the forcing term and the collisional relaxation of
the set of distribution functions towards the discrete local
equilibria f

eq
i , i.e., truncated low-Mach number expansion

of the Maxwell-Boltzmann distribution. When using HOLs,
the forcing term as in Eq. (1) should be modified to include
a discrete correction [14]. However, we have verified that
the results obtained are not affected by the type of forcing
scheme. Indeed, by simulating the same flow with both flow
boundary conditions (without a forcing term) and with a
different kind of forcing scheme, namely, the exact difference
method [26], we have obtained basically the same results.
It is worth noting that while the low-order isotropic lattices
are implemented with second-order equilibria, the high-order
lattices are equipped with equilibria including kinetic moments
up to third order. The second-order and third-order expansion
of the Maxwell-Boltzmann distribution function used in this
work reads as follows:

f
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where wi are weights of the discrete equilibrium distribution
functions, cs is the lattice sound speed, and �u is the macro-
scopic flow velocity. The parameter τ in Eq. (1) is the relax-
ation time which controls the lattice kinematic fluid viscosity
through the relation [25] ν = c2

s (τ − �t
2 ). We wish to point

out that the use of third-order equilibria is motivated by the
fact that the regularization procedure employed encompasses
moments up to order three. As a result, the use of equilibria
higher than third order would require an adaptation of the
regularization step as well. Such an adaptation is conceptually
straightforward, but it implies a significant computational
overhead due to the need for computing the 15 components of
the fourth-order tensor

∑
i fi �ci �ci �ci �ci .

FIG. 1. (Color online) Fourth-order isotropic 19-speed lattice
(red arrows) and eighth-order isotropic 41-speed lattice (red and blue
arrows).

The relevant hydrodynamic macroscopic moments, i.e.,
density, linear momentum, and momentum flux tensor, are
given by linear weighted sums, namely, ρ(�x,t) = ∑

i fi(�x,t),
ρ �u(�x,t) = ∑

i fi(�x,t)�ci , �(�x,t) = ∑
i fi(�x,t)Qi , where Qi =

�ci �ci − c2
s I, I being the identity matrix.

In this work, we shall use two classes of lattices, the
D3Q19 and D3Q41 lattices, providing fourth- and eighth-order
isotropy in three dimensions, respectively (see Fig. 1). The
standard notation D nQm for m discrete velocities in n spatial
dimensions is used throughout. While low-order lattices allow
one to correctly recover kinetic moments only up to second
order, the eighth-order ones provide sufficient isotropy to
retrieve moments up to order four.

The regularized LB reads as follows:

fi(xi + ci�t,t + �t) = Rf ′
i (x,t) ≡ h

eq
i − �t

τ
h

neq
i , (4)

where hi is the hydrodynamic component of the full dis-
tribution fi (see Refs. [19,21,27,28]) and R stands for the
regularization operator. From the above, it is appreciated that
the postcollision distribution of a fourth-order isotropic lattice
is defined only in terms of the relevant hydrodynamic modes,
namely, the conserved and the transport ones (ρ, ρ �u, and
�). Also to be noted is that, for eighth-order lattices, the
hydrodynamic component also includes third-order moments,
namely, Q(�x,t) = ∑

i f
eq
i (�x,t)Qi �ci .

The physical meaning of the regularization is quite trans-
parent: It filters out the nonhydrodynamic moments from
the postcollision distribution function, so as to minimize
their unphysical effect on the macroscopic behavior of the
flow. Indeed, the aim of employing HOLs is not to include
nonhydrodynamic moments (ghosts), but the transport modes,
namely, nonconserved ones higher than second order, which
lie beyond the Navier-Stokes description but still carry a
macroscopic meaning.
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As we shall see, this is crucial to recover the correct
behavior in the high Knudsen regime. As per kinetic boundary
conditions, we have employed the diffuse-scattering formula-
tion developed in Ref. [18], namely, a lattice transcription
of Maxwell’s full accommodation model. In this model,
molecules impinging on the wall fully accommodate with
the solid ones, and consequently they are reemitted into
the fluid along a random direction and with a magnitude
drawn from a local Maxwellian at the local wall temperature
[29].

A. Extended lattice Boltzmann versus Grad’s
extended hydrodynamics

It is well known that, back in the 1960’s, Grad [23]
proposed an elegant procedure, generalized hydrodynamics,
to solve the Boltzmann equation via expansion onto suitable
sets of basis functions (Hermitian polynomials for the case of
Cartesian geometries). This expansion leads to an open-ended
hierarchy of first-order nonlinear partial differential equations
for the kinetic moments associated with the projection of the
Boltzmann distribution upon the chosen basis function. In
order to close the hierarchy, Grad proposed to truncate it to the
third-order level, i.e., including density, current, momentum
flux, and energy flux, for a total of 13 in three spatial
dimensions. Despite its elegance, Grad’s procedure has met
with limited success in practical applications, mainly because
the 13-moment truncation no longer guarantees positivity
of the distribution function and also because it is hard to
impose well-defined boundary conditions, especially in wall
bounded flows where more moments are needed to describe
anisotropic transport. The LB approach is an alternative way
of formulating the Grad’s program, by using the discrete distri-
butions instead of Grad’s kinetic moments as a mathematical
representation. The perceived advantage is that, by including
a sufficient number of discrete velocities, the LB can capture
finite-Knudsen nonequilibrium effects without incurring the
numerical difficulties incurred by the Grad’s procedure [24].
More specifically, there are several basic differences between
extended LB schemes and Grad’s 13 moments method. First,
extended LB schemes obviously contain many more moments
than Grad’s 13 moments method. In particular, extended LB
schemes account for third-order tensors not included in Grad’s
analysis, which play a significant role, especially near solid
walls. Second, not all extended LB schemes can be recovered
via the Gauss-Hermite quadrature; to this purpose, it suffices to
note that Gauss-Hermite nodes beyond the first Brillouin cell
do not come in integer sequence, hence they do not correspond
to the discrete velocities used in extended LB schemes. Third,
while in Grad’s 13 moments method the boundary conditions
are often ill conditioned, extended LB schemes have shown
compliance with well-posed boundary conditions [24]. This is
because the interaction of the discrete distributions with the
wall can be handled through controlled lattice transcriptions
of the boundary conditions used in particle methods, typically
direct simulation Monte Carlo (DSMC). In this sense, extended
LB schemes are well positioned to capture the best of the
worlds.

III. FLOW ACROSS FLAT PLATES AT
INCREASING KNUDSEN

The capability of extended LB schemes to reproduce the
flow across parallel plates across a broad range of Knudsen
numbers has been pointed out before [24,27]. From this study,
however, it is not clear whether all three ingredients mentioned
above are indeed necessary to achieve quantitative agreement
with analytical results and direct Monte Carlo simulation of the
Boltzmann equation. To clarify this important issue, we have
performed a systematic investigation of different combinations
of HOL, KBC, and REG features.

The numerical simulations are performed on a 50 × 50
grid, over several thousand time steps in order to achieve
steady-state conditions. The main results are collected in Fig. 2.
From this figure, we see that the regularized D3Q41 with
kinetic boundary conditions provides excellent agreement with
both analytical asymptotics and DSMC data, across all four
Knudsen regimes: continuum, slip, transition, and ballistic.
On the contrary, D3Q41 (no regularization) with kinetic
boundary conditions overestimates the flow approximately
above Kn ∼ 0.1, where, for the flow across flat plates, the
Kn is defined as

Kn = ν/(hcs), (5)

where h is the height of the channel.
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FIG. 2. (Color online) Normalized mass flux across two parallel
plane plates as a function of the Knudsen number. Legend: Navier-
Stokes solution 1/(12 Kn) (NSE) (solid line), Cercignani solution in
the low-Kn slip flow regime [29] (CEL) (dotted line), Cercignani
solution in the high-Kn transition and ballistic regimes (CEH)
(dashed-dotted line), direct simulation Monte Carlo (DSMC) (cir-
cles), regularized D3Q19 LB with bounce-back boundary conditions
(R19BB) (solid line with squares), regularized D3Q41 LB with
kinetic boundary conditions (R41KB) (solid line with diamonds),
regularized D3Q41 LB with bounce-back boundary conditions
(R41BB) (solid line with circles), and D3Q41 LB with kinetic
boundary conditions (41KB) (dotted line with triangles). Results
with regularized D3Q41 LB with the kinetic boundary conditions
are omitted because on the scale of the figure they overlap with
R19KB. Likewise, D3Q19 LB with kinetic boundary conditions is
not shown because it overlaps with the 41KB. The main message
here is that higher-order lattices, regularization, and kinetic boundary
conditions are required, in order to retrieve the correct behavior of
the flow between two plates across all the Knudsen’s regimes.
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This suggests that the regularization corrects the well-
known tendency of the LB lattices to overemphasize the role
of the streaming directions which never hit the wall in the
collisionless limit (“runaway directions”), thereby leading to
an artificial excess of mass flow [12]. Clearly, this anomaly is
particularly acute in the flat plate geometry, a point to which
we shall return shortly. From the same figure we see that
D3Q41R with bounce-back underestimates the flow already
at Kn > 0.05, indicating that the excessive slowdown at solid
walls caused by the bounce-back conditions is not healed by
regularization. Taken all together, the figure shows that both
regularization and kinetic boundary conditions are required to
retrieve the correct nonequilibrium behavior across all values
of the Knudsen numbers. More importantly, it also shows why
this is so: Regularization mitigates the “runaway pathology,”
but cannot cure the excessive loss of momentum to the walls
caused by bounce-back boundary conditions.

IV. THREE-DIMENSIONAL FLOW THROUGH REGULAR
ARRAYS OF SPHERES

We have noted before that the “runaway pathology” is
particularly emphasized by the flat plate geometry. One may
wonder whether more complex geometries, such as those
encountered in many practical applications, suffer the same
pathology. A similar question goes for the overdissipation
induced by the bounce-back conditions. Both questions appear
relevant to the assessment of the LB approach to geometries
of practical interest [30,31]. To shed light on these issues, we
have performed systematic simulations of three-dimensional
flows through a porous medium formed by an array of simple
cubic cells (scc’s) of spheres of equal radius, at increasing
values of the Knudsen number.

The simulations are performed on a 1003 grid, with 25 grid
points across the radius of the sphere. In lattice units (i.e.,
�t = �x = 1), the Knudsen number is defined as follows,

Kn = ν/(Dcs), (6)

where D is the sphere diameter. Hence, the Knudsen number
can be controlled by varying the viscosity through the
relaxation time τ . Due to the geometric properties of the
elementary cell, we applied periodic boundary conditions on
all six faces of the domain. Both Reynolds and Mach numbers
were kept sufficiently low to secure compliance with the
incompressible and Darcy limits, respectively.

In Fig. 3 we show the permeability correction factors,
defined as the ratio between the apparent permeability (which
is a function of Kn) κ and the equivalent liquid permeability or
absolute permeability κ∞, for a broad range of flow regimes.
As a reference, we take the analytical correction factors
proposed by Klinkenberg [32] and Beskok et al. [33], which
read, respectively,

κ = (1 + 4c Kn)κ∞, (7)

κ = [1 + 4α(Kn)Kn]

(
1 + 4 Kn

1 − b Kn

)
κ∞, (8)

where c is a constant slightly less than one, α is the rarefaction
coefficient, and b is a constant. These two corrections stand,
respectively, for the lower and upper bounds for permeability
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FIG. 3. (Color online) Permeability correction factor as a func-
tion of the Knudsen number. The Klinkenberg (KLI) [32] and the
Beskok (BES) [33] solutions are reported in solid and dashed-dotted
lines, respectively. 19BB (dotted line with triangles), R19BB (dashed
line with diamonds), 41BB (dashed line with crosses), and R41BB
(dashed-dotted line with circles). It is evident that the nonregularized
models can predict accurately the correction factor only within the
continuum regime, while they deviate from the analytical solutions
already in the slip regime. On the other hand, the R41BB provides
correction factors in good agreement with the Klinkenberg solution
across the continuum, slip, and transition regimes. When entering the
ballistic region, the R41BB begins to overestimate the Klinkenberg
discharge while keeping on predicting values of permeability between
the Beskok and the Klinkenberg solutions. Here, 19BB stands for the
D3Q19 LB with bounce-back boundary conditions, while the other
labels are the same as in Fig. 2.

in porous media. Figure 3 carries the central message of
this section. First, the D3Q19 and D3Q41 with bounce-back
boundary conditions agree with the analytical solutions only
in the regime Kn < 0.01. At higher Knudsen’s, say, between
0.01 < Kn < 0.03, they slightly overestimate the mass flow.
For D3Q19 this is no surprise, but the fact that D3Q41 shows
the same behavior reveals that higher-order lattices are still
exposed to the “runaway” effects. On the other hand, the
excessive slowdown due to bounce back is probably still weak
in this region of Knudsen numbers, since molecular collisions
in the bulk are much more frequent than fluid-solid collisions
at the wall. At higher Knudsen’s, both models substantially
overestimate the permeability, which is also understandable
in view of the increasing role of runaway effects. Summa-
rizing, to this point, HOL alone is powerless. Let us now
consider the effect of regularization while still sticking to
bounce-back conditions. From Fig. 3, it is clearly appreciated
that regularization provides a dramatic improvement at all
Knudsen numbers, even with the standard 19-speed lattice.
Indeed, the mass flow fits both the Klinkenberg and the
Beskok solutions in the slip regime and in the first half of
the transition zone (up to Kn � 0.3). At higher Knudsen
numbers, D3Q19R slightly underestimates the Klinkenberg
solution, but still keeps providing reasonable results both in
the transition and in the free-molecular regimes. This shows
that, even without higher-order lattices, the artifacts due to
runaway directions and bounce-back boundary conditions are
substantially suppressed by the regularization procedure. The
use of higher-order lattices further improves the situation.
Indeed, upon inspecting Fig. 3, a remarkably good agreement
with the Klinkenberg solution across all four Knudsen regimes
is appreciated. When entering the ballistic region, Kn > 1,
the D3Q41R starts to overestimate the Klinkenberg discharge,
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FIG. 4. (Color online) Qxxz field on midplanes of the porous
media at Kn = 5. (a) The D3Q19 exposes in full the lattice structure,
which betrays its lack of isotropy towards third-order moments. As
expected, D3Q19R is powerless against this structural deficiency,
as shown in (b). (c) The D3Q41R appears both isotropic and noise
free.

but still remains between the Beskok and the Klinkenberg
solutions. This is a remarkable result, especially in view of
the fact that we are using a very simple single-time relaxation
model with bounce-back boundary conditions. To gain further
insight into this welcome behavior, we have monitored the
spatial distribution of a number of representative third-order
kinetic moments, i.e., the ones carrying the generalized
hydrodynamic information. In Fig. 4, we show the Qxzz field
at Kn = 5, i.e., the flux along the mainstream direction x of the
partial kinetic energy along the z direction, on three midplanes.
These are prototypical moments not included in the original
Grad’s formulation. From these figures, we see that D3Q19
exposes in full the lattice structure, which betrays a lack of
isotropy of the third-order moments. As shown, D3Q19R is
powerless against this structural deficiency. Finally, D3Q41R
appears both isotropic and noise free. Although qualitatively
consistent with the picture of the extended LB strategy
presented in this work, these results still need quantitative
comparison with direct simulation of the Boltzmann equation.

V. SUMMARY AND OUTLOOK

Summarizing, we have shown that for parallel plate flows
only, all three ingredients of the extended LB method, namely,
a standard LB enriched with regularization step, high-order lat-
tices, and kinetic boundary conditions, are necessary to quanti-
tatively accomplish Grad’s extended hydrodynamics program.
We have also shown that the mass flow across a regular array
of spheres can be quantitatively captured across the full range
of Knudsen numbers, by just regularizing the standard LB
scheme, without using kinetic boundary conditions.

A quantitative statement on the internal structure of the flow,
on the other hand, must await for a systematic comparison with
a direct solution of the Boltzmann equation for the geometry
setups discussed in this paper. Before closing, we hasten to
add that our results by no means imply that the extended
LB schemes presented in this work can capture the physics
contained in the Boltzmann equation in full generality. What
they imply is simply that the gap between the two can be
significantly narrowed for the specific cases explored in this
work. This opens different perspectives for the simulation
of strong nonequilibrium flows, either with extended LB
standalone schemes or in connection with DSMC for advanced
multiscale applications.
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