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DIVISIBILITY OF REDUCTION IN GROUPS OF RATIONAL

NUMBERS

FRANCESCO PAPPALARDI

Abstract. Given a multiplicative group of non–zero rational numbers and a
positive integer m, we consider the problem of determining the density of the

set of primes p for which the order of the reduction modulo p of the group is

divisible by m. In the case when the group is finitely generated the density is
explicitly computed. Some example of groups with infinite rank are considered.

1. Introduction

It is a well known result due to Hasse [?] and others that the probability that 2
generates a subgroup of F∗p with even order is 17/24 while the probability that 3
generates a subgroup of F∗p with even order is 2/3. So, it might not be a surprise to
read that the probability that 2 and 3 together generate a subgroup of F∗p with even
order is 195/224 and that the probability that 3 and 5 together generate a subgroup
of F∗p with even order is 6/7. In general, groups of rational numbers containing 2
have a slightly higher tendency, then those not containing 2, to generate subgroups
of F∗p with even order. This phenomenon is related to the fact that the size of the

Galois group of x8 − 2 is half of the size of the Galois group of x8 − ` where ` is an
odd prime. This paper deals with these properties in a fairly general context.

Let Γ ⊂ Q∗ be a multiplicative subgroup and define the support Supp Γ of Γ
to be the set of primes p such that the p–adic valuation of some elements of Γ is
nonzero. In the special case of finitely generated Γ (see [?]) it is easy to see that
Supp Γ is finite. For any prime p 6∈ Supp Γ, we denote by Γp the reduction of Γ
modulo p. That is

Γp = {g(mod p) : g ∈ Γ}.
It is clear that since p 6∈ Supp Γ, Γp ⊆ F∗p is a subgroup. As usual we also denote
by indp(Γ) and ordp(Γ) the index and the order of Γp. That is

ordp(Γ) = #Γp and indp(Γ) = [F∗p : Γp] = (p− 1)/ ordp(Γ).

Here, for m ∈ Z, we consider the function

AΓ(x,m) = #{p ≤ x : p 6∈ Supp Γ, m | ordp(Γ)}.

The special case of Γ generated by a rational number in Q∗ \ {1,−1} has been
extensively considered in the literature. For a complete and updated account we
refer to Moree’s survey paper [?, Sections 9.2 and 9.3]. Moree [?], Wiertelak [?] and
the author [?], give several asymptotic formulas for A〈g〉(x,m) with g ∈ Q∗\{1,−1}.
More general results have been considered by Moree [?] and by Chinen and Murata
[?]. In this paper we propose the following:
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2 F. PAPPALARDI

Theorem 1. Let Γ ⊂ Q∗ be a finitely generated group of rank r and let m ∈ N.
Then, as x→∞, uniformly in m,

AΓ(x,m) = %Γ,m
x

log x
+OΓ

(
τ(m)m× x

(
(log log x)2

log x

)1+ 1
3r+3

)
,

where if γ(f, t) =
∏
`|f `

v`(t)+1,

Sm = {n ∈ N : Rad(n) | m and m | n}

and if Q(ζk,Γ
1/h) is the extension of Q generated by ζk = e2πi/k and by the h–th

roots of all the elements of Γ, then

%Γ,m =
∑
n∈Sm

∑
d|n
f |n

µ(d)µ(f)

[Q(ζnd,Γ1/γ(f, nm )) : Q]
.

In the case when Γ ⊂ Q+, the group of strictly positive rational numbers, we
express %Γ,m in terms of the orders of the groups

Γ(t) = ΓQ∗t/Q∗t :

Theorem 2. Assume that Γ is a finitely generated subgroup of Q+ and that m ∈ N.
For any squarefree integer η, let tη = ∞ if either m is odd or for all t ≥ 0,

η2tQ∗2
t+1

6∈ Γ(2t+1) and tη = min
{
t ∈ N : η2tQ∗2

t+1

∈ Γ(2t+1)
}

otherwise. Fur-

thermore let sη = v2

(
δ(η)
m

)
, where δ(η) is the discriminant of Q(

√
η) and let

σΓ =
∏
`∈Supp Γ `. Then

%Γ,m =
1

ϕ(m)

∏
`|m
`>2

1−
∑
j≥1

`− 1

`j |Γ(`j)|

1−
∑

η|gcd(m,σΓ)

ψη

 ,

where

ψη =



0 if tη =∞;∑
k>tη

1

2k |Γ(2k)|
if sη ≤ tη <∞;

− 1
2sη |Γ(2sη )| +

∑
k>sη

1

2k |Γ(2k)|
if sη > tη.

Remarks.

(1) The condition Γ ⊂ Q+ is not essential. It is mainly due to the fact that

the group (Γ ∩ Q(ζm)∗
2α

) · Q∗2
α

/Q∗2
α

is easy to describe when Γ ⊂ Q+.
This is done in Corollary ??. However, similar expressions for %Γ,m as in
Theorem ?? should be derived also for groups containing negative numbers
and in particular containing −1.

(2) It is plain that the Generalized Riemann Hypothesis for the Dedekind zeta
functions of the fields Q(ζm,Γ

1/d) (d | m) allows a sharper error term
in Theorem ??. In fact, applying Generalized Riemann Hypothesis, and
proceeding along the lines of the proof of Theorem ?? and applying [?,
Lemma 5] rather than Lemma ??, it can be showed that, as x → ∞,
uniformly in m,

AΓ(x,m) = %Γ,m li(x) +OΓ

(
τ(m)3x3/4 log x

)
.
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(3) All the series involved in the expression for %Γ,m are convergent since they
are bounded by geometric series. In the case when Γ is finitely generated
with rank r, for every prime power `j , the following identity holds (see
(??))

|Γ(`j)| = `max{0,j−v`(∆1),··· ,(r−1)j−v`(∆r−1),rj−v`(∆r)},

where for i = 1, . . . , r, ∆i is the i–th exponent of Γ (defined in (??)).
Therefore

(1)
∑

j>v`(∆r)

1

`j |Γ(`j)|
= `v`(∆r)

∑
j>v`(∆r)

1

`(r+1)j
=
`−rv`(∆r)

`r+1 − 1
.

This implies that %Γ,m ∈ Q+. Another immediate consequence of (??) is
that if gcd(m,∆r−1) = 1 and either m is odd or gcd(m,σΓ) = 1, then

(2) %Γ,m =
1

ϕ(m)

∏
`|m

(
1− `− 1

`r − 1

[
1− `r(`− 1)

`rv`(∆r)(`r+1 − 1)

])
.

(4) If one sets ∆0 = 1, then (??) holds also for r = 1. More precisely, if
Γ = 〈a〉, where a ∈ Q∗ \ {±1}, a = bh where b is not the power on any
rational number so that h = ∆1, we write (in a unique way) b = a1a

2
2,

where a1 is a squarefree integer. Then

1−
∑
j≥1

`− 1

`j
∣∣∣ 〈bh〉Q∗`jQ∗`j

∣∣∣ =
1

`v`(h)

`

`+ 1
and

∑
k>ra1

1

2k
∣∣∣ 〈bh〉Q∗2k

Q∗2k

∣∣∣ =
1

32v2(h)

since ra1 = v2(h), r1 = 0 and since sa1 = v2

(
δ(a1)
m

)
. By Theorem ?? we

obtain that %〈bh〉,m equals:

1

m

∏
`|m

`2−v`(h)

`2 − 1
×


1
2 if [2, a1] | m and v2(δ(a1)) ≤ v2(mh);

1 + 1

22v2(
δ(a1)
hm

)
if [2, a1] | m and v2(δ(a1)) > v2(mh);

1 if [2, a1] - m.

This formula is consistent with the formula in [?, Theorem 1.3].
(5) An immediate consequence of the previous remark is that %Γ,m 6= 0 for any

group Γ and for any m. In fact %〈a〉,m > 0 for any a ∈ Q∗ and if Γ′ ⊂ Q∗
is a subgroup with Γ′ ⊂ Γ, then ordp Γ′ | ordp Γ for any prime p 6∈ Supp Γ.
Therefore %Γ,m ≥ %Γ′,m > 0.

(6) In the special case when Γ = 〈d1, d2〉 with d1, d2 ∈ Q+ multiplicatively
independent so that rank Γ = 2, we have that, for ` ≥ 3,

Γ(`j) =


1 if j ≤ v`(∆1);

`j−v`(∆1) if v`(∆1) < j ≤ v`(∆2/∆1);

`2j−v`(∆2) if j > v`(∆2/∆1).

Hence

1−
∑
j≥1

`− 1

`j |Γ(`j)|
=

1

`v`(∆1)
· `

`+ 1
+

1

`2v`(∆2/∆1)
·
(
`v`(∆1)

`+ 1
− 1

`2 + `+ 1

)
.

This identity can be used in Theorem ?? to explicitly compute %〈d,d2〉,m in
the case when m is odd or when gcd(m,σ〈d,d2〉) = 1.
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(7) If Γ ⊂ Q∗ is the multiplicative subgroup generated by r distinct prime
numbers p1, . . . , pr, then |Γ(`j)| = `rj for all j, and if η is a divisor of
gcd(m, p1 · · · pr), then tη = 0. We deduce that

%〈p1,··· ,pr〉,m =
1

ϕ(m)

∏
`|m,
`>2

`(`r − 1)

`r+1 − 1
×
(

1− ψ

2r+1 − 1

)
,

where uk = #{η ∈ N : η | gcd(m, p1 · · · pr), η ≡ k(mod 4)}

(3) ψ = ψ〈p1,p2,··· ,pr〉,m =


0 if 2 - m;

u1 +
(

1
2r − 1

) [
u2

2r+1 + u3

]
if 2‖m;

u1 +
(

1
2r − 1

)
u2 + u3 if 4‖m;

u1 + u2 + u3 if 8 | m.
Several computations of the densities %〈p1,··· ,pr〉,m are presented in Sec-
tion ??.

(8) Among the various consequences of Theorem ??, one can also compute the
density of the set of primes for which ordp Γ is k–free (i.e. not divisible
by the k–power of any prime). More precisely, if k ≥ 2 and Γ is finitely
generated with rank r, then

#{p ≤ x : p 6∈ Supp Γ, ordp(Γ) is k–free}

=

(
βΓ,k +Ok,Γ

(
(log log x)3

log(k−1)/((k+1)(3r+3)) x

))
x

log x
,

where

βΓ,k =

∞∑
m=1

µ(m)%Γ,mk .

In the special case when Γ = 〈p1, · · · , pr〉 ⊂ Q∗, where pj is prime for all
j = 1, . . . , r and pj < pj+1 for all j = 1, . . . , r − 1, we have that

βΓ,k = βr,k × β̃Γ,k,

where

βr,k =
∏
`>2

(
1− `r − 1

`k−2(`− 1)(`r+1 − 1)

)
.

and β̃Γ,k ∈ Q+. Furthermore, if k ≥ 3 or p1 ≥ 3, then β̃Γ,k equals

1− 1

2k−1

1− gcd(2, p1)

2r+1 − 1

r∏
j=1

(
1−

prj − 1

pk−2
j (pj − 1)(pr+1

j − 1)− (prj − 1)

) ,
while, if k = 2 and p1 = 2, β̃Γ,k equals

1

2
+

1

2(2r+1 − 1)

r∏
j=1

(
1−

prj − 1

(pj − 1)(pr+1
j − 1)− (prj − 1)

)
.

The proof of the above statement is carried out along the lines of [?, The-
orem 1.2]. Indeed one starts from the identity

#{p ≤ x : p 6∈ Supp Γ, ordp(Γ) is k–free} =

∞∑
m=1

µ(m)AΓ(x,mk).

The mail term is obtained by applying Theorem ?? to the values of m ≤
log1/(2k(3r+3)) x. For log1/(2k(3r+3)) x < m ≤ log2 x, one uses the bound
AΓ(x,mk) ≤ π(x,mk, 1) and the Brun–Titchmarch Theorem. We will omit
further details.
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Like for most of the results regarding properties of the index and the order of
subgroups of F∗p, the techniques are those of the pioneering work by C. Hooley
[?], where Artin’s Conjecture for primitive roots is established as one of the conse-
quences of the Generalized Riemann Hypothesis.

The first to consider higher rank groups in relation to the Lang–Trotter Conjec-
ture, were Gupta and Ram Murty in [?]. Their approach led to the quasi–resolution
of the Artin’s Conjecture by Gupta, Ram Murty and Heath–Brown [?, ?].

2. Notational conventions

Throughout the paper, the letters p and ` always denote prime numbers. As
usual, we use π(x) to denote the number of p ≤ x and

li(x) =

∫ x

2

dt

log t

denotes the logarithmic integral function.
ϕ, µ and τ are respectively the Euler, the Möbius and the number of divisors

functions. An integer is said squarefree if it is not divisible for the square of any
prime number and more generally it is said k–free if it is not divisible by the k–th
power of any prime number.

For n ∈ N, Rad(n) denotes the radical of n, the largest squarefree integer dividing
n. For α ∈ Q∗, v`(α) denotes the `–adic valuation of α and if η ∈ Q∗, δ(η) denotes
the field discriminant of Q(

√
η). So, if

δ0(α) = sgn(α)
∏
`

v`(α)≡1 mod 2

`,

Then δ(η) = δ0(η) if δ0(η) ≡ 1(mod 4) and δ(η) = 4δ0(η) otherwise.
For functions F and G > 0 the notations F = O(G) and F � G are equivalent

to the assertion that the inequality |F | ≤ cG holds with some constant c > 0. In
what follows, all constants implied by the symbols O and � may depend (where
obvious) on the small real parameter ε but are absolute otherwise; we write Oρ and
�ρ to indicate that the implied constant depends on a given parameter ρ.

3. Finitely generated subgroups of Q∗.

Let Γ be a finitely generated subgroup of Q∗ of rank r and let (a1, . . . , ar) be
a Z-basis of Γ. We write Supp(Γ) = {p1, . . . , ps}. Then we can construct the
s× r–matrix with coefficients in Z:

M(a1, . . . , ar) =


α1,1 · · · α1,r

...
...

...
...

αs,1 · · · αs,r

 ,

defined by the property that |ai| = p
α1,i

1 · · · pαs,is . It is clear that the rank of
M(a1, . . . , ar)) equals r. This of course implies r ≤ s. For all i = 1, . . . , r, we define
the i–th exponent of Γ by

(4) ∆i = ∆i(Γ) = gcd (detA : A is a i× i–minor of M(a1, . . . , ar))) .

So ∆i is the the non-negative greatest common divisor of all the minors of size i
of M(a1, . . . , ar). We also set ∆k = ∆k(Γ) = 1 for k ≤ 0 and ∆k = ∆k(Γ) = 0
for k > r. It can be shown (see [?, Section 3]) that ∆1, . . . ,∆r are well defined
and do not depend on the choice of the basis (a1, . . . , ar) and on the ordering of
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the support {p1, . . . , ps}. Furthermore, from the Dedekind formula expansion for
determinants, we deduce that

∆i∆j | ∆i+j ∀i, j ≥ 0.

For m ∈ N, we have the following identity (see [?, Proposition 2, page 129 and
preceding pages])

(5) |Γ(m)| = |ΓQ∗m/Q∗m| = εm,Γ ×mr

gcd
(
mr,m(r−1)∆1, . . . ,m∆r−1,∆r

) ,
where

(6) εm,Γ =

{
1 if m is odd or if − 1 6∈ ΓQ∗m;

2 if m is even and− 1 ∈ ΓQ∗m.

Finally, from (??) and (??), we deduce the bounds:

(7) 2mr ≥ |Γ(m)| ≥ mr

∆r(Γ)
.

4. Locally finite subgroups of Q∗

The case when Γ is not finitely generated is also of interest. In order to apply
the machinery used for finitely generated groups, we shall make some necessary
assumptions. We say that Γ has thin support if Supp Γ has 0 density in the set
of prime numbers. This hypothesis assures that ordp(Γ) is defined for almost all
primes p. Furthermore we say that Γ is locally finite if Γ(m) = ΓQ∗m/Q∗m is finite
for every m ∈ N.

If Γ is locally finite, we know that the exponent of finite group Γ(m) is a divisor
of m. We denote by rΓ(m) the finite group rank of Γ(m). That means that

Γ(m) ∼=
Z

m1Z
⊕ · · · ⊕ Z

mrZ
,

where r = rΓ(m), m1 | m2 | · · · | mr | m, m1 > 1. If η1Q∗m, . . . , ηrΓ(m)
Q∗m is a set

of generators for Γ(m), we define the m–th local support as

Suppm Γ = {p ∈ Supp Γ : vp(ηj) 6= 0, for some j = 1, . . . , rΓ(m)}.

and

σΓ,m =
∏

p∈Suppm Γ

p.

Furthermore it is easy to check that

Γ(m) = 〈η1, . . . , ηrΓ(m)
〉Q∗m/Q∗m.

So we can apply the identity of (??) obtaining

|Γ(m)| = εm,Γ ×mrΓ(m)

gcd
(
mrΓ(m) ,mrΓ(m)−1∆1(Γ̃), . . . ,m∆rΓ(m)−1(Γ̃),∆rΓ(m)

(Γ̃)
) ,

where Γ̃ = 〈η1 . . . ηrΓ(m)
〉 and εm,Γ is defined in (??).

The free subgroup of Q∗ generated by any fixed set of primes S with zero density
is a thin support subgroup. However, if S is infinite, such subgroup is not locally
finite. Here we consider the following family of locally finite, thin support, not
finitely generated subgroups of Q∗:
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Definition 1. Let S be a set of primes with 0 density and write

S = {p1, p2, · · · },

where pi ≤ pi+1 for all i ∈ N. Let ΓS be the subgroup of Q∗ generated by the
k!–powers of the pk’s. That is

ΓS = 〈p1, p
2!
2 , . . . , p

k!
k , . . .〉.

It is plain that ΓS is a free Z–module of infinite rank. Furthermore S = Supp ΓS
so that ΓS has thin support. However, for every m ∈ N, we have the identity:

ΓS(m) =
ΓSQ∗m

Q∗m
=
〈p1, p

2!
2 , . . . , p

(m−1)!
m−1 〉Q∗

m

Q∗m
.

Hence

Proposition 1. Let m ∈ N and let S be a set of prime numbers. Then ΓS is locally
finite and satisfies the following properties:

(1) rΓS(m) = r(m) = max{k ∈ N : m - k!} ≤ m− 1;
(2) if ` is prime, then r(`α) ≤ α`− 1;
(3) r(`α) = α`− 1 for α ≤ `.
(4) #ΓS(m) =

∏
j≤r(m)

m
gcd(m,j!) is a multiplicative function.

(5) Suppm ΓS = {p1, . . . , prΓS(m)
} ⊂ {p1, . . . , pm−1}.

Proof. The first statement is clear from the definition and for the second observe
that v`((α`)!) satisfies

v`((α`)!) = α+
∑
j≥1

[ α
`j

]
≥ α.

This observation also implies that r(`α) = α` − 1 for α ≤ `. As for the fourth
statement, it is enough to observe that

ΓSQ∗m

Q∗m
∼=
∞⊕
j=1

〈pj!j 〉Q∗
m

Q∗m

and to apply the fact that

#
〈pj!j 〉Q∗

m

Q∗m
=

m

gcd(m, j!)

is a multiplicative function of m which is identically 1 if j > r(m). The last
statement is also clear from the definition of Suppm ΓS . �

Theorem 3. Let S be a set of prime numbers with 0 density and let m ∈ N be
either an odd number or such that gcd(m,σΓS ,m) = 1. Then, as x→∞,

AΓS (x,m) ∼ χΓS ,m

ϕ(m)
· x

log x
,

where

χΓS ,m =
∏
`|m

1−
∑
α≥1

`− 1

`α+
∑
j≥1 max{0,α−v`(j!)}

 .

We will omit the proof of Theorem ?? since it is similar to the proof of Theo-
rem ??, where the main ingredient Lemma ?? is replaced with Lemma ??.

Remarks.
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(1) When Γ is not finitely generated, the rationality of %Γ,m does not hold
in general. In fact if ` is an odd prime, Γ = 〈p1, p

a2
2 , . . . , pakk , . . .〉 where

{p1, p2 . . .} is a zero density set of primes and ak = `βkk!/`v`(k!) where
β1 = 0 and for k ≥ 2, βk is defined by

βk = j if and only if j!− j < k ≤ (j + 1)!− j − 1,

then Γ has thin support and it is locally finite. Furthermore

Γ(`j) = `max{k∈N: βk<j} = `j!−j .

Hence

%Γ,` = 1− (`− 1)
∑
j≥1

1

`j!
.

is rationally depedent to the Liuville transcendental number.
(2) The conditions that either m is odd or that gcd(m,σΓS ,m) = 1 in the

statement of Theorem ?? can be removed at the cost of complicating the
expression for χΓS ,m.

(3) It was proven in [?] that if Γ ⊂ Q∗ is a finitely generated subgroup, the
Generalized Riemann Hypothesis implies that the set of primes for which
indp(Γ) = 1 has a density δΓ that equals

∏
`>2

(
1− 1

|Γ(`)|(`− 1)

)1− 1

|Γ(2)|
∑
ξ∈Γ(2)

ξ≡1 mod 4

∏
`|ξ

1

1− |Γ(`)|(`− 1)

 .

This formula also holds for thin support, locally finite subgroups. In par-
ticular if S = {p1, p2, . . .} is a set of prime numbers with zero density,
then

ΓS(`) =
〈p1, p

2!
2 , . . . , p

(`−1)!
`−1 〉Q∗

`

Q∗`
.

and |ΓS(`)| = `r(`) = ``−1 by 3. in Proposition ??. Therefore

δΓS =
∏
`

(
1− 1

``−1(`− 1)

)
× (1 + τp1

) ,

where

τp1 =

{
1

p
p1−1
1 (p1−1)−1

if p1 ≡ 1 mod 4;

0 otherwise.

Example: Let G = {3, 5, 11, 17, 29, . . .} denotes the set of (youngest) twin primes
which is well known to have density 0 and we will also assume to be infinite. Hence

ΓG = 〈3, 52, 116, 1724, 29120, . . .〉.

In the following table we compare:

• the values of %ΓG,m (1st row);

• the values of
AΓG,m(106,3)

π(106) (2nd row);

• the values of
AΓG,m(106,3)

#{p≤106: p 6∈G} (3rd row).

m = 2, . . . , 13. Note that the numbers are truncated (not approximated) to the
nineth decimal digit.
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m 2 3 4 5 6 7
0.733383118 0.462912155 0.366691559 0.249679999 0.447527842 0.166665452
0.681724375 0.462725165 0.314364697 0.214757063 0.447743891 0.145086499
0.760844529 0.516428520 0.350849505 0.239681524 0.499708537 0.161925072

m 8 9 10 11 12 13
0.183345779 0.154304051 0.178962194 0.099999999 0.108035882 0.083333333
0.156959413 0.154564447 0.161800300 0.088397156 0.107302096 0.074052842
0.175175943 0.172503021 0.180578659 0.098656429 0.119755456 0.082647330

Finally, δΓG = 0.47203266462865646291 · · · while

|{p ≤ 106 : p 6∈ G, indp(ΓG) = 1}|
π(106)

=
33059

78498
= 0.4211444878 · · ·

and
|{p ≤ 106 : p 6∈ G, indp(ΓG) = 1}|

|{p ≤ 106 : p 6∈ G}|
=

33059

70335
= 0.4700220374 · · · .

5. The degree [Q(ζm,Γ
1/d) : Q].

Let Γ ⊂ Q∗ be a locally finite subgroup and let m and d be positive integers
with d | m. We denote by Km the m–th cyclotomic field. So Km = Q(ζm), where
ζm = e2πi/m is the primitive m–th root of unity. Furthermore we denote Km(Γ1/d)
the subfield of C generated over Km by the d–th roots of all elements of Γ. It is
well known that Km(Γ1/d) is a finite Galois extension of Q and that there is an
isomorphism

(8) Gal(Km(Γ1/d)/Km) ∼= Γ(K∗m)d/(K∗m)d.

Details on the theory of Kummer’s extensions can be found in Lang’s book [?,
Theorem 8.1]. The goal of this section is to prove the following:

Lemma 1. Let Γ ⊂ Q∗ be a locally finite subgroup. Let m and d be positive integers
with d | m, set α = v2(d) be the 2–adic valuation and let km,d(Γ) denote the degree

of the extension Km(Γ1/d)/Q. Then the degree

km,d(Γ) =
ϕ(m)× |Γ(d)|
|Hm,α|

,

where

Hm,α = (Γ ∩K∗m
2α)Q∗2

α

/Q∗2
α

.

It is clear that if d is odd, so that α = 0, then |Hm,0| = 1. In the following
statement we will describe explicitly Hm,α is the case when Γ contains only positive
numbers.

Corollary 1. Given the Hypothesis of Lemma ??, also assume that Γ ⊂ Q+ and
that d is even so that α > 0. Then

Hm,α = {η ∈ N : η | gcd(m,σΓ,m), η2α−1

·Q∗2
α

∈ Γ(2α), δ(η) | m}.

Proof of Corollary ??. First note that if ζ ∈ Γ, then ζ ∈ K∗m
2α if and only if

2α
√
ζ ∈ K∗m. Since, for ζ > 0, Q[ 2α

√
ζ] is a Galois extension of Q only if its degree

over Q is less or equal than 2, we deduce that ζ · Q∗2
α

= η2α−1· Q∗2
α

for a unique
squarefree η ∈ N. Furthermore Q(

√
η) ⊂ Km if and only if δ(η) | m (see for

example Weiss [?, page 264]). Finally the conditions δ(η) | m and η squarefree
imply in particular that η | Rad(m) and this completes the proof. �

Proof of Lemma ??. By the multiplicative property of the degree, we have that

km,d(Γ) = [Km(Γ1/d) : Q] = ϕ(m)×
∣∣∣Gal(Km(Γ1/d)/Km)

∣∣∣ .
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By (??), since Γ(K∗m)d/(K∗m)d is an abelian torsion group with exponent dividing
d, we have that

km,d(Γ) = ϕ(m)
∏

` prime
`α‖d

[Km(Γ1/`α) : Km] = ϕ(m)
∏

` prime
`α‖d

|ΓK∗m
`α/K∗m

`α |.

Now we apply the standard Isomorphism Theorems of finite groups and obtain
that:

ΓK∗m
`α

K∗m
`α
∼=

Γ

Γ ∩K∗m
`α
∼=

ΓQ∗`
α

/Q∗`
α

(Γ ∩K∗m
`α)Q∗`α/Q∗`α

.

If ` is odd, then Γ ∩K∗m
`α = Γ ∩Q∗`

α

. Therefore

km,d(Γ) =
ϕ(m)

|Hm,v2(d)|
×

∏
` prime
`α‖d

|Γ(`α)| = ϕ(m)

|Hm,v2(d)|
× |Γ(d)|,

where Hm,α = (Γ ∩K∗m
2α)Q∗2

α

/Q∗2
α

and this concludes the proof. �

6. Chebotarev Density Theorem for Q(ζm,Γ
1/d).

In this section we apply the celebrated Chebotarev density Theorem to the fields
Q(ζm,Γ

1/d). We start by stating the result proven in [?] which, for simplicity, we
specialize to the case of extensions of Q and trivial conjugacy classes:

Lemma 2 (Effective, “unconditional” Chebotarev Density Theorem.). Assume
that L/Q is a Galois extension and denote by nL and dL the degree and the dis-
criminant of L. Then there exist constants c1 and c2 such that if

log x > 10nL log2 dL,

then

#{p ≤ x : p - dL, p split totally in L/Q} =
li(x)

nL
+O

(
li(xβ0)

nL
+

x

e
c1

√
log x
nL

)
and β0 ≥ 1

2 satisfies:

β0 ≤ max{1− 1

4 log dL
, 1− 1

c2d
1/nL
L

}.

In order to apply the above result, we need a sufficiently sharp estimate for
log dL. An adequate one can be found in [?].

Lemma 3. Assume that L/Q is a Galois extension and denote by nL and dL the
degree and the discriminant of L. Then

nL
2

log(Rad(dE)) ≤ log dL ≤ (nL − 1) log(Rad(dE)) + nL log nL.

Consider the Galois extension Q(ζm,Γ
1/d), where d | m and where Γ ⊂ Q∗ is a

locally finite subgroup. So, by Lemma ??,

nQ(ζm,Γ1/d) = km,d(Γ) ≤ m|Γ(d)|.
Also note that the primes that ramify in such an extension are exactly those that ei-
ther divide m or those in Suppd Γ. Therefore Rad(dQ(ζm,Γ1/d)) = lcm(Rad(m), σΓ,d)
and, by Lemma ??,

log(dQ(ζm,Γ1/d)) ≤ 2m|Γ(d)| log(m|Γ(d)|σΓ,m).

The conditions of uniformity of Lemma ?? are satisfied if

(m|Γ(d)|)3
log2(m|Γ(d)|σΓ,m) ≤ c log x
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for some c > 0. We set πΓ(x, n, d) to be the number of primes up to x that are
unramified and split completely in Kn(Γ1/d).

If we specialize the previous discussion to the case when Γ is a finitely generated
group and we use the upper bound in (??), we obtain:

Lemma 4. Assume that Γ ⊂ Q∗ is a fixed finitely generated subgroup of rank r.
Let m, d ∈ N be integers such that d | m. Then there exists constants c1 and c2
depending only on Γ such that, uniformly for

m ≤ c1
(

log x

(log log x)2

)1/(3r+3)

,

as x→∞,

πΓ(x,m, d) =
1

km,d(Γ)
li(x) +OΓ

(
x

ec2
6
√

log x· 3
√

log log x

)
. �

If we specialize the previous discussion to the case when Γ = ΓS , where S if a
set of primes with zero density, we obtain:

Lemma 5. Let S be a set of prime numbers with density zero. Let m, d ∈ N be
integers such that d | m. Assume also that log σΓ,m ≤ mm. Then, there exist
absolute positive constants c1 and c2 < 1 such that for x→∞, uniformly for

m ≤ c1
log log x

log log log x

we have

πΓS (x,m, d) =
1

km,d(ΓS)
li(x) +O(x exp(−(log x)c2) . �

7. Proofs of Theorems ?? and ??

It is a criterion due to Dedekind that an odd prime p 6∈ Supp Γ splits totally in
Kn(Γ1/d) if and only d divides the index indp(Γ) and p ≡ 1(mod n). Therefore

(9) πΓ(x, n, d) = #{p ≤ x : p 6∈ Supp Γ, p ≡ 1(mod n), d | indp(Γ)}.

The following combinatorial identity allows us to apply the Chebotarev Density
Theorem.

Lemma 6. Let m ∈ Z and Γ ≤ Q∗. We have the identity

AΓ(x,m) =
∑
n∈Sm

∑
d|n

∑
f |m

µ(d)µ(f)πΓ(x, nd, γ(f, n/m)),

where

Sm = {n ∈ N : Rad(n) | m and m | n}
and

γ(f, k) =
∏
`|f

`v`(k)+1.

Note that with the notation above γ(f, n/m) | nd. In fact for every ` | f ,
v`(n)− v`(m) + 1 ≤ v`(n) + v`(d) since v`(m) ≥ 1.

Proof. Let p be a prime such that p 6∈ Supp Γ and m | ordp(Γ). Then m | p − 1

and there exists a unique n ∈ Sm such that p ≡ 1 mod n and (p−1
n ,m) = 1 (indeed

n =
∏
`|m `

v`(p−1)). Hence

AΓ(x,m) =
∑
n∈Sm

BΓ(x,m),
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where BΓ(x,m) equals

(10) #

{
p ≤ x : p 6∈ Supp Γ, m |ordp(Γ), p ≡ 1(mod n), (

p− 1

n
,m) = 1

}
.

Now note that if p is a prime with p 6∈ Supp Γ, p ≡ 1(mod n) and (p−1
n ,m) = 1,

then

m | ordp(Γ) ⇐⇒ (indp(Γ), n)
∣∣∣ n
m
.

Indeed from the hypothesis that n ∈ Sm and from

n = (p− 1, n) = (indp(Γ), n)(ordp(Γ), n)

we deduce that m | ordp(Γ) if and only if m | (ordp(Γ), n) i.e. (indp(a), n) | nm . So
we can rewrite BΓ(x,m) in (??) as

#

{
p ≤ x : p 6∈ Supp Γ, (indp(Γ), n)

∣∣∣ n
m
, p ≡ 1(mod n), (

p− 1

n
,m) = 1

}
.

Next we apply the inclusion–exclusion formula to the conditions p ≡ 1( mod n) and
(p−1
n ,m) = 1, so that AΓ(x,m) equals∑

n∈Sm

∑
d|m

µ(d)#
{
p ≤ x : p 6∈ Supp Γ, (indp(Γ), n)

∣∣∣ n
m
, p ≡ 1(mod nd)

}
.

Finally observe that, if γ(f, n/m) is the quantity defined in the statement of the
lemma, then

∑
f |n

γ(f, nm )|indp(Γ)

µ(f) =
∏
`|n

v`(
n
m )<v`(indp(Γ)))

(1 + µ(`)) =

{
1 if (indp(Γ), n)

∣∣ n
m ;

0 otherwise.

So AΓ(x,m) equals∑
n∈Sm

∑
d|m
f |n

µ(d)µ(f)#
{
p ≤ x : p 6∈ Supp Γ, γ(f,

n

m
) | indp(Γ), p ≡ 1(mod nd)

}
.

Applying the definition in (??) and the fact that n and m have the same radical,
we deduce the claim. �

Proof of Theorem ??. Let us start from the identity of Lemma ?? and rewrite it
as:

AΓ(x,m) =
∑
n∈Sm,
nm≤y

∑
d|m
f |n

µ(d)µ(f)πΓ

(
x, nd, γ

(
f,
n

m

))
+

O

 ∑
n∈Sm,
nm>y

∑
d|m
f |n

πΓ

(
x, nd, γ

(
f,
n

m

))
= Σ1 +O(Σ2).
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Note that Lemma ?? implies that if y = c1(log x/ log2 log x)1/(3r+3), then

Σ1 =
∑
n∈Sm,
nm≤y

∑
d|m
f |n

µ(d)µ(f)πΓ

(
x, nd, γ

(
f,
n

m

))

=
∑
n∈Sm,
nm≤y

∑
d|m
f |n

(
µ(d)µ(f) li(x)

kdn,γ(f, nm )(Γ)
+OΓ

(
x

ec2
6
√

log x· 3
√

log log x

))

= %Γ,m li(x) + E(x, y,m),

where

E(x, y,m) �
∑
n∈Sm,
nm≤y

τ(n)τ(m)x

ec2
6
√

log x· 3
√

log log x
+
∑
n∈Sm,
nm>y

∑
d|m
f |n

µ2(d)µ2(f)

kdn,γ(f,n/m)(Γ)
li(x)

� τ(m)

m

xy log y

ec2
6
√

log x· 3
√

log log x
+ τ(m)

m

ϕ(m)

x

log x

∑
n∈Sm,
n>y/m

1

ϕ(n)
,

since kdn,γ(f,n/m) ≥ dϕ(n). The choice made for y implies that the first term is neg-
ligible. For the second term observe that the Rankin Method (see [?, Lemma 3.3])
implies that for any c ∈ (0, 1), uniformly in m,

(11)
∑
n∈Sm
n≥T

1

n
�c

1

T c
.

Hence

τ(m)
m

ϕ(m)

x

log x

∑
n∈Sm,
n>y/m

1

ϕ(n)
= τ(m)

(
m

ϕ(m)

)2
x

log x

∑
n∈Sm,
n>y/m

1

n

≤ τ(m)

(
m

ϕ(m)

)2
x

log x

mc

yc

� τ(m)mcx(log log x)
2c

3r+3 +2

(log x)1+ c
3r+3

.

Now let us deal with Σ2. We have that∑
n∈Sm,
nm>y

∑
d|m
f |n

πΓ

(
x, nd, γ

(
f,
n

m

))
�

τ(m)

 ∑
n∈Sm,
y<nm≤z

∑
d|m

π (x, nd, 1) +
∑
n∈Sm,
nm>z

∑
d|m

#{k ≤ x : nd | k}

 ,

where z is a suitable parameter that will be determined momentarily. By the
Brun–Tichmarch Theorem and the trivial estimate, the above is

� τ(m)m

ϕ(m)
x

 1

log(x/z)

∑
n∈Sm,
nm>y

1

ϕ(n)
+
∑
n∈Sm,
nm>z

1

n

 .

Applying one more (??), we obtain the estimate

Σ2 � τ(m)

(
m

ϕ(m)

)2

mcx

(
1

log(x/z)yc
+

1

zc

)
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Finally setting z = log2+1/c x and c = 1− 1/ log log x we obtain the claim. �

Proof of Theorem ??. We use the formulas for the degrees knd,γ(f, nm )(Γ) of Lemma ??
and of Corollary ?? which in this case reads as:

knd,γ(f, nm )(Γ) =
dϕ(n)

|Hnd,v2(γ(f, nm ))|
∏
`|f

∣∣∣Γ(`v`(n/m)+1)
∣∣∣ ,

whereHnd,v2(γ(f, nm )) is trivial if f is odd while if 2 | f , then v2(γ(f, nm )) = v2( nm ))+1
and

Hnd,v2( nm )+1 =
{
η ∈ N : η |Rad(m), η2v2( n

m
)

Q∗2
v2( n

m
)+1

∈ Γ(2v2( nm )+1), δ(η) |nd
}
.

Thus, if for brevity we write v = v2( nm ), the sum defining %Γ,m in the statement of
Theorem ??, equals∑

n∈Sm

1

ϕ(n)

∑
d|n

µ(d)

d

∑
f |n

µ(f)
∏
`|f

∣∣∣Γ(`v`(n/m)+1)
∣∣∣−1

+

+
∑

η|Rad(m)
η 6=1

∑
n∈Sm

η2vQ∗2
v+1
∈Γ(2v+1)

1

ϕ(n)

∑
d|n

δ(η)|nd

µ(d)

d

∑
f |n

f even

µ(f)
∏
`|f

∣∣∣Γ(`v`(n/m)+1)
∣∣∣−1

.

= S1 + S2,

say. To compute S1, we use the identity

1

ϕ(n)

∑
d|n

µ(d)

d
=

1

n
.

So that

S1 =
∑
n∈Sm

1

n

∏
`|m

(
1−

∣∣∣Γ(`v`(n/m)+1)
∣∣∣−1
)

=
∏
`|m

∑
j≥v`(m)

1

`j

(
1−

∣∣∣Γ(`j−v`(m)+1)
∣∣∣−1
)

=
1

m

∏
`|m

∑
j≥0

1

`j

(
1−

∣∣Γ(`j+1)
∣∣−1
)

=
1

ϕ(m)

∏
`|m

1− (`− 1)
∑
j≥1

1

`j |Γ(`j)|

 .

We also deduce that for m odd,

%Γ,m =
1

ϕ(m)

∏
`|m

1−
∑
j≥1

`− 1

`j |Γ(`j)|


In order to compute S2, we need to use the following lemma:

Lemma 7. With the notation above, let

S =
1

ϕ(n)

∑
d|n

δ(η)|nd

µ(d)

d
.

Then

S =
τη,n
n
, where τη,n =


1 if δ(η) | n;

−1 if δ(η) - n but δ(η) | 2n;

0 if δ(η) - 2n.
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Proof of Lemma ??. Set δ(η) = x2β with x odd squarefree and β ∈ {0, 2, 3}. Fur-
ther set n = n′2α with n′ odd.

The condition δ(η) | n implies that δ(η) | nd for all possible d and in such a case,
we have that S = 1

n by the multiplicativity of the involved functions.
The condition δ(η) - n, δ(η) | 2n is equivalent to x | n′ and β = α + 1, which in

particular implies that n is even. Therefore, in this case, by multiplicativity,

S =
1

n′
× 1

2α−1

∑
γ∈{0,1},
β≤α+γ

(−1)γ

2γ
= − 1

n
.

Finally, if the condition δ(η) - 2n is satisfied, since x - n′, for all squarefree d | n,
we have that δ(η) - nd so, in such a case, S = 0. So we can assume that x | n′,
β > α+ 1 and that β ∈ {2, 3}. It follows that

S =
1

n′
× 1

ϕ(2α)

∑
γ∈{0,1},

α+1<β≤α+γ

(−1)γ

2γ
= 0,

since the conditions on γ in the sum are never satisfied. This concludes the proof.
�

Next note that S2 = 0 unless m is even. In the latter case we write

S2 =
∑

η|Rad(m)
η 6=1

Sη,

where, by Lemma ??,

Sη =
∑
n∈Sm

η2v2(n/m)
Q∗2

v2( n
m

)+1
∈Γ(2v2(n/m)+1)

τη,n
n

∑
f |n

f even

µ(f)
∏
`|f

∣∣∣Γ(`v`(n/m)+1)
∣∣∣−1

.

Next we use the fact that Sη = 0 unless δ(η) | 2n and this happens only if η | m.

Furthermore Sη = 0 unless there exists t ≥ 0 such that η2tQ∗2
t+1

∈ Γ(2t+1). We
will set tη to be the least of such t so that tη = ∞ if there is no t with such a

property. Furthermore if s ≥ tη, then η2sQ∗2
s+1

∈ Γ(2s+1).
Hence, for m even, we can rewrite

S2 =
∑

η|Rad(m),
η 6=1,
tη<∞

Sη.

We deduce that if Sη is one of the summands above, then it equals

−
∑
n∈Sm

v2(n/m)≥tη

τη,n

n
∣∣Γ(2v2(n/m)+1)

∣∣ ∏
`|n
`>2

(
1−

∣∣∣Γ(`v`(n/m)+1)
∣∣∣−1
)

=

∑
n∈Sm

v2(δ(η))≤v2(n)+1
v2(n/m)≥tη

εη(v2(n))

n
∣∣Γ(2v2(n/m)+1)

∣∣ ∏
`|n
`>2

(
1−

∣∣∣Γ(`v`(n/m)+1)
∣∣∣−1
)
,
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where εη(j) = 1 if j = v2(δ(η)/2) and εη(j) = −1 if j > v2(δ(η)/2). So Sη equals

S1 × 2v2(m)−1

1−
∑
j≥1

1

2j |Γ(2j)|

−1

×
∑

j≥tη+v2(m)

j≥v2(
δ(η)

2 )

εη(j)

2j
∣∣Γ(2j−v2(m)+1)

∣∣

= S1 ×

1−
∑
j≥1

1

2j |Γ(2j)|

−1

×
∑

k≥max{tη+1,v2(δ(η)/m)}

εη(k + v2(m/2))

2k |Γ(2k)|
.

Hence,

%Γ,m =
1

ϕ(m)

∏
`|m

1−
∑
j≥1

`− 1

`j |Γ(`j)|

× νΓ,m,

where, if m is odd, νΓ,m = 1 and, if m is even, νΓ,m equals

1 +

1−
∑
j≥1

1

2j |Γ(2j)|

−1 ∑
η|Rad(m)
η 6=1
tη<∞

∑
k≥tη+1

k≥v2(δ(η)/m)

εη(k + v2(m/2))

2k |Γ(2k)|
.

If we add to the last sum above the term η = 1 and we observe that

−
∑

k≥t1+1
k≥v2(δ(1)/m)

ε1(k + v2(m/2))

2k |Γ(2k)|
=
∑
j≥1

1

2j |Γ(2j)|

since t1 = 0, δ(1) = 1 and ε1(k + v2(m/2)) = −1, we mildly simplify the formula
for νΓ,m when m is even, obtaining:

νΓ,m =

1−
∑
j≥1

1

2j |Γ(2j)|

−1
1 +

∑
η|Rad(m)
tη<∞

∑
k≥tη+1
k≥sη

εη(k + v2(m2 ))

2k |Γ(2k)|

 .

=

1−
∑
j≥1

1

2j |Γ(2j)|

−11−
∑

η|Rad(m)

ψη

 ,

where sη = v2( δ(η)
m ) and

ψη =



0 if tη =∞;∑
k>tη

1

2k |Γ(2k)|
if sη ≤ tη <∞;

− 1
2sη |Γ(2sη )| +

∑
k>sη

1

2k |Γ(2k)|
if sη > tη,

and this completes the proof. �

8. Numerical Data

In this section we compare numerical data. The density %Γ,m can be explicitely
computed once a set of generators of Γ is given. In particular, the following Pari-GP
[?] code allows to compute %〈p1,··· ,pr〉,m =rho(m,p 1· · · p r).
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rho(m,q)={local(a,A,b,B,l,r,rh);
r=omega(q);rh=gcd(2,m)/m;

B=divisors(m);b=matsize(B)[2];

for(k=1,b,l=B[k];

if(isprime(l)&(l>2),

rh=rh*(l^2*(l^r-1)/(l-1)/(l^(r+1)-1))));

A=divisors(gcd(m,q));a=matsize(A)[2];

u1=0;u3=0;u2=0;

for(j=1,a,l=A[j];

if(l%4==1,u1++);if(l%4==3,u3++);if(l%4==2,u2++));

psi=if(m%2==1,0,

if(m%4==2,u1+(2^(-r)-1)*(u3+u2/2^(r+1)),

if(m%8==4,u1+u3+(2^(-r)-1)*u2,u1+u3+u2)));

rh*(1-psi/(2^(r+1)-1))}
The first table compares the values of %Γr,m as in Theorem ?? (second row)

and
AΓr (109,m)
π(109) (first row) with Γr = 〈2, . . . , pr〉, r ≤ 7 (pi is the i–th prime) and

m = 2, . . . , 16. All values have been truncated to 7 decimal digits.
m\Γr 1 2 3 4 5 6 7

2 0.7083259 0.8705329 0.9369869 0.9686946 0.9843725 0.9921912 0.9960977
0.7083333 0.8705357 0.9369791 0.9686869 0.9843672 0.9921865 0.9960936

3 0.3750162 0.4615489 0.4874978 0.4958546 0.4986178 0.4995315 0.4998315
0.3750000 0.4615384 0.4875000 0.4958677 0.4986263 0.4995425 0.4998475

4 0.4166745 0.4821469 0.4958488 0.4989975 0.4997547 0.4999387 0.4999818
0.4166666 0.4821428 0.4958333 0.4989919 0.4997519 0.4999384 0.4999846

5 0.2083311 0.2419332 0.2483914 0.2496736 0.2499273 0.2499772 0.2499875
0.2083333 0.2419354 0.2483974 0.2496798 0.2499359 0.2499871 0.2499974

6 0.2656511 0.4574280 0.4869920 0.4957940 0.4986109 0.4995309 0.4998313
0.2656250 0.4574175 0.4869921 0.4958052 0.4986186 0.4995415 0.4998474

7 0.1458489 0.1637375 0.1662449 0.1665994 0.1666516 0.1666582 0.1666592
0.1458333 0.1637426 0.1662500 0.1666071 0.1666581 0.1666654 0.1666664

8 0.0833265 0.1785587 0.2166697 0.2338669 0.2420661 0.2460616 0.2480390
0.0833333 0.1785714 0.2166666 0.2338709 0.2420634 0.2460629 0.2480392

9 0.1249966 0.1538451 0.1625054 0.1652942 0.1662133 0.1665179 0.1666177
0.1250000 0.1538461 0.1625000 0.1652892 0.1662087 0.1665141 0.1666158

10 0.1475587 0.2106102 0.2170853 0.2340359 0.2421145 0.2460758 0.2480397
0.1475694 0.2106134 0.2170890 0.2340434 0.2421216 0.2460806 0.2480442

11 0.0916644 0.0992460 0.0999258 0.0999871 0.0999930 0.0999937 0.0999937
0.0916666 0.0992481 0.0999316 0.0999937 0.0999994 0.0999999 0.0999999

12 0.1562485 0.2142815 0.2396969 0.2469355 0.2490664 0.2497065 0.2498959
0.1562500 0.2142857 0.2396875 0.2469341 0.2490658 0.2497098 0.2499084

13 0.0773848 0.0828743 0.0832971 0.0833291 0.0833317 0.0833320 0.0833320
0.0773809 0.0828779 0.0832983 0.0833306 0.0833331 0.0833333 0.0833333

14 0.1033220 0.1425403 0.1557674 0.1665792 0.1666493 0.1666580 0.1666592
0.1032986 0.1425438 0.1557727 0.1665861 0.1666555 0.1666651 0.1666664

15 0.0781280 0.1116612 0.1210907 0.1238016 0.1246141 0.1248689 0.1249475
0.0781250 0.1116625 0.1210937 0.1238082 0.1246246 0.1248792 0.1249606

16 0.0416661 0.0892749 0.1083288 0.1169345 0.1210315 0.1230292 0.1240151
0.0416666 0.0892857 0.1083333 0.1169354 0.1210317 0.1230314 0.1240196

The next table compares the values of %Γ̃r,m
as in Theorem ?? (second row) and

AΓ̃r
(109,m)

π(109) (first row) with Γ̃r = 〈3, . . . , pr+1〉, r ≤ 7 and 2 ≤ m ≤ 16.
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m\Γ̃r 1 2 3 4 5 6 7
2 0.6666655 0.8571448 0.9333310 0.9677335 0.9841212 0.9921209 0.9960788

0.6666666 0.8571428 0.9333333 0.9677419 0.9841269 0.9921259 0.9960784
3 0.3749919 0.4615306 0.4874732 0.4958573 0.4986160 0.4995291 0.4998312

0.3750000 0.4615384 0.4875000 0.4958677 0.4986263 0.4995425 0.4998475
4 0.3333555 0.4285866 0.4666680 0.4838841 0.4920754 0.4960635 0.4980383

0.3333333 0.4285714 0.4666666 0.4838709 0.4920634 0.4960629 0.4980392
5 0.2083280 0.2419252 0.2484011 0.2496762 0.2499270 0.2499777 0.2499876

0.2083333 0.2419354 0.2483974 0.2496798 0.2499359 0.2499871 0.2499974
6 0.3124943 0.4450448 0.4834115 0.4948565 0.4983659 0.4994672 0.4998148

0.3125000 0.4450549 0.4834375 0.4948680 0.4983790 0.4994810 0.4998322
7 0.1458220 0.1637352 0.1662398 0.1666008 0.1666509 0.1666581 0.1666592

0.1458333 0.1637426 0.1662500 0.1666071 0.1666581 0.1666654 0.1666664
8 0.1666562 0.2142934 0.2333303 0.2419403 0.2460312 0.2480318 0.2490220

0.1666666 0.2142857 0.2333333 0.2419354 0.2460317 0.2480314 0.2490196
9 0.1250027 0.1538590 0.1625073 0.1652946 0.1662161 0.1665172 0.1666171

0.1250000 0.1538461 0.1625000 0.1652892 0.1662087 0.1665141 0.1666158
10 0.1388773 0.1728045 0.2152763 0.2335623 0.2419895 0.2460393 0.2480265

0.1388888 0.1728110 0.2152777 0.2335715 0.2420015 0.2460503 0.2480366
11 0.0916609 0.0992403 0.0999244 0.0999869 0.0999931 0.0999936 0.0999937

0.0916666 0.0992481 0.0999316 0.0999937 0.0999994 0.0999999 0.0999999
12 0.0624985 0.1648314 0.2112409 0.2319473 0.2414047 0.2458287 0.2479503

0.0625000 0.1648351 0.2112500 0.2319381 0.2413984 0.2458378 0.2479635
13 0.0773695 0.0828785 0.0832960 0.0833287 0.0833318 0.0833320 0.0833320

0.0773809 0.0828779 0.0832983 0.0833306 0.0833331 0.0833333 0.0833333
14 0.0972166 0.1403456 0.1648538 0.1662621 0.1665672 0.1666369 0.1666534

0.0972222 0.1403508 0.1648645 0.1662712 0.1665754 0.1666449 0.1666613
15 0.0781188 0.1116473 0.1210896 0.1238047 0.1246196 0.1248686 0.1249482

0.0781250 0.1116625 0.1210937 0.1238082 0.1246246 0.1248792 0.1249606
16 0.0833204 0.1071366 0.1166656 0.1209677 0.1230143 0.1240113 0.1245069

0.0833333 0.1071428 0.1166666 0.1209677 0.1230158 0.1240157 0.1245098

The next table compares the values of βΓr,k (i.e. the density of primes p with

ordp(Γr) k–free) (first row) and
#{p≤109,p6∈Supp Γ,ordp(Γ) is k–free}

π(109) (second row) for

k = 2, . . . , 7 and r = 1, . . . , 7.

k\Γr 1 2 3 4 5 6 7
0.4643728 0.3916870 0.3783724 0.3751626 0.3743029 0.3740588 0.3739871

2 0.4643773 0.3916738 0.3783458 0.3751487 0.3742881 0.3740453 0.3739753
0.8669787 0.7640822 0.7275550 0.7117925 0.7044658 0.7009347 0.6992045

3 0.8669801 0.7640826 0.7275397 0.7117918 0.7044620 0.7009346 0.6992023
0.9429226 0.8922523 0.8729475 0.8644050 0.8603871 0.8584410 0.8574845

4 0.9429270 0.8922653 0.8729480 0.8644003 0.8603827 0.8584393 0.8574853
0.9742393 0.9493687 0.9396381 0.9352925 0.9332389 0.9322416 0.9317506

5 0.9742428 0.9493723 0.9396454 0.9352960 0.9332398 0.9322460 0.9317542
0.9879809 0.9757187 0.9708684 0.9686929 0.9676621 0.9671607 0.9669135

6 0.9879833 0.9757210 0.9708738 0.9687015 0.9676725 0.9671724 0.9669251
0.9942653 0.9881936 0.9857800 0.9846948 0.9841798 0.9839289 0.9838052

7 0.9942667 0.9881987 0.9857830 0.9846992 0.9841872 0.9839368 0.9838137
0.9972219 0.9942060 0.9930041 0.9924629 0.9922058 0.9920804 0.9920185

8 0.9972247 0.9942058 0.9930081 0.9924704 0.9922122 0.9920868 0.9920254

Example. Let Γ = 〈33 · 1115, 33 · 113, 37 · 137, 22 · 52 · 11 · 13〉. Then Supp(Γ) =
(2, 3, 5, 11, 13) and the matrix associated to Γ is

M =


0 0 0 2
3 3 7 0
0 0 0 2
15 3 0 1
0 0 7 1

 ,

so ∆4(Γ) = 23 · 32 · 7,∆3(Γ) = 2 · 3 and ∆2(Γ) = ∆1(Γ) = 1. Hence if ` - 42,

1−
∑
j≥1

`− 1

`j |Γ(`j)|
=
`(`4 − 1)

`5 − 1

while

1−
∑
j≥1

2

3j |Γ(3j)|
=

24 × 21

3× 112
and 1−

∑
j≥1

6

7j |Γ(7j)|
=

2× 11× 127

2801
.
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Furthermore if η is squarefree and tη is finite (i.e. η2tQ∗2
t+1

∈ Γ(2t+1) for some
t ≥ 0), then η | 2 × 3 × 5 × 11 × 13. More precisely, after some calculations, one
obtains that:

tη =


0 if η ∈ {1, 33, 39, 143};
1 if η ∈ {30, 110, 130, 4290};
2 if η ∈ {3, 11, 10, 13, 330, 390, 1430};
∞ otherwise.

So by (??)

∑
j≥j0

1

2j |Γ(2j)|
=


33

23×31 if j0 = 1
1

22×31 if j0 = 2
1

27×31 if j0 = 3

We conclude that

ψη =



33
23×31 if η ∈ {1, 33} or if η ∈ {39, 143} and 4 | m;

1
22×31 if η ∈ {30, 110, 130, 4290} and 4 | m;

1
27×31 if η ∈ {3, 11, 10, 13, 330, 390, 1430};
− 29

23×31 if η ∈ {39, 143} and 2‖m;

− 15
26×31 if η ∈ {30, 110, 130, 4290} and 2‖m;

0 otherwise.

The following table compares the values of %Γ,m as in Theorem ?? (second row)

and AΓ(109,m)
π(109) (first row) with Γ and m = 2, . . . , 25. The numbers are truncated

(not approximated) to the seventh decimal digit.
m 2 3 4 5 6 7 8

0.86691300 0.46280353 0.43348907 0.24967274 0.40110378 0.16624556 0.21673147
0.86693548 0.46280992 0.43346774 0.24967990 0.40110970 0.16625015 0.21673387

m 9 10 11 12 13 14 15
0.15427696 0.21638900 0.09998758 0.20057942 0.08332899 0.14412518 0.11554303
0.15426997 0.21639344 0.09999379 0.20055485 0.08333064 0.14412815 0.11555433

m 16 17 18 19 20 21 22
0.10836781 0.06248592 0.13371134 0.05554725 0.10819549 0.07695901 0.08666158
0.10836694 0.06249929 0.13374211 0.05555515 0.10822818 0.07694221 0.08666296

m 23 24 25 26 27 28 29
0.04544655 0.10028492 0.04993461 0.07222781 0.05141541 0.07206581 0.03571052
0.04545439 0.10027743 0.04993598 0.07222128 0.05142332 0.07206407 0.03571423

m 30 31 32 33 34 35 36
0.10098433 0.03332901 0.05418229 0.04627953 0.05417804 0.04149951 0.066869103
0.10099355 0.03333329 0.05418346 0.04627811 0.05418285 0.04150932 0.066871057

m 37 38 39 40 41 42 43
0.02777853 0.04815382 0.03856533 0.05408612 0.02500475 0.06670581 0.023815314
0.02777776 0.04816273 0.03856624 0.05409836 0.02499999 0.06668454 0.023809517

Conclusion. Average values of ordp(Γ) in the sense of Kurlberg and Pomerance [?]
or weighted sum of indp(Γ) in the sense of [?] can also be considered. For example,
if m ∈ N, in [?] Susa and the author consider the problem of enumerating primes p
such that indp(Γ) = m.
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