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Abstract

We investigate the non-equilibrium hydrodynamic effects on the reactivity of a
nanoporous catalytic sample. Numerical simulations using the Lattice Boltz-
mann Method (LBM) show that non-equilibrium effects enhance the reactivity
of the porous sample, in agreement with theoretical predictions [1]. In addition,
we provide a quantitative assessment of the reactivity in terms of the thickness
of the reactive layer inside the nanoporous catalytic sample. Such an assessment
constitutes a first step towards integrated simulations encompassing nanoscale
reactivity and transport coeflicients within a macroscale description of experi-

mental relevance.

1. Introduction

The effective control and optimization of catalytic processes is known to
play a crucial impact in many fields of applied science and technology, from
the synthesis of new materials, to the production of innovative fuels and energy
systems of crucial relevance to sustainable industrial growth [2, 3]. Due to the
complex nature of the involved phenomena, characterized by timescales ranging

from femtoseconds, (O(1071® s), bond breaking/forming events, all the way
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up to minutes and hours for reactor operation. Under such conditions, the
experimental activity must be assisted by multiscale numerical models aimed
at assessing the interplay of the different physical mechanisms involved in the
process. In this paper, we present the results of numerical simulations based on
the Lattice Boltzmann Method (LBM), [4, 5,6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
for reactive flows through nano-porous media. LBM has proven to provide a
flexible and efficient method for the investigation of fluid dynamic phenomena,
especially flows in porous media [7, 17, 18, 19|, as well as non-ideal flows at
meso- and nano-scales, [20, 21]. When considering passively advected scalars
in fluid flows, LBM allows to tune the carrier kinematic viscosity independently
from the passive scalar molecular diffusivities. In this paper, we exploit this
unique characteristic to investigate flow reactivity in response to variations of
molecular diffusivity within non-hydrodynamic regimes.

By resorting to a new reactive boundary condition we assess the influence of
characteristic non-dimensional numbers on the overall conversion efficiency of a
nano-porous material. In particular, it is found that Knudsen number, a direct
measure of departure from hydrodynamic behavior, provides a marginal gain
of reactivity. Such gain is found to increase at decreasing diffusive Damkdhler
number (for definition see Section 3), the ratio of chemical to diffusive timescales,
i.e. for materials with relatively low chemical reactivity. Even though our
work focuses on general features of the advection-diffusion-reaction problem, it
nonetheless provides quantitative insights on the conversion of gold disk-shaped

(ingot) nanoporous materials for heterogeneous catalysis applications [22, 23].

2. The LBM for heterogeneous reactive flows

The LBM has been described at length in the current literature [24, 25|,
hence here we only remind the basic aspects most relevant to the present work.

The multicomponent LBM can be expressed as follows,

FO (@4 ept+1) — 10 (@, t) = —w(f® — pHeay (1)
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where fi(k) is the probability density function of finding a particle of the species
k at site x at time ¢, moving along the ¢ — th lattice direction defined by the
discrete speeds ¢;, with i = 0, ..., b, where b = 18 if a three dimensional nineteen
speed lattice (D3Q19) is employed . It has been recently shown that a lower
order regularized LB model can be used to accurately predict flows in complex
porous media even at finite Knudsen numbers [19].
The left hand-side of eq. (1) represents the free-streaming of molecules, whereas
the right-hand side accounts for the collisional relaxation towards local Maxwellian
equilibrium, on a time-scale 7 = 1/w. The macroscopic fluid density p and veloc-
ity uw are given by p(x,t) = Z?:o fi(z,t) and p(x,t) u(x,t) = Z?:o cifi(z,t),
respectively. The equilibrium distribution function is given by a low-Mach,
second-order, expansion of a local Maxwellian, namely:

Flet = P (1 + éci ‘u+ é(ci cu)? — %u . u) (2)
In the above, u is the flow velocity of the carrier species. In order to span a
wide range of Knudsen number beyond the usual hydrodynamic limits, it proves
highly beneficial to filter out non-hydrodynamic modes from the post-collisional
distribution f; = (1 — w)f; + wf{% The procedure, known as "regularized"
LBM |26, 27], is briefly recalled hereafter. The main idea is to introduce a
set of pre-collision distribution functions which are defined only in terms of
the macroscopic hydrodynamic moments. All the higher-order non-equilibrium
information, often referred to as ghosts [4], is discarded. In equations, the

regularized LB reads as follows:

At
filwi + At t + At) = Rfl(z,t) = h{T — —h? (3)

T
where h; is the hydrodynamic component of the full distribution f; (see [28, 27,
29, 30]) and R is the regularization operator. The above equation show that
the post-collision distribution, of a 4**-order isotropic lattice, is defined only in
terms of the conserved and the transport hydrodynamic modes, namely density

p, current pt and momentum-flux tensor II. Hence, the regularization filters
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out non-hydrodynamics modes from the non-equilibrium component of the post-
collision distribution functions, thus preserving the non-equilibrium component
of the distribution from ghost contamination.
The choice of the regularization procedure is motivated by the fact that, in a
previous work ([19]) it has been shown that a standard LB enriched with regu-
larization procedure and Higher Order Lattices (HOL) allows to quantitatively
predict mass flow in porous media across the full range of Knudsen numbers
(from hydro to ballistic regime). In the same paper, it is also shown that, stan-
dard LB equipped with regularization step provides reasonable results both in
the slip and transition regimes (Kn < 1) . This fact can be explained by noting
that, for the Kn numbers at hand, even without HOL, the artifacts due to run-
away directions( i.e. the tendency of the LB lattices to overemphasize the role
of the streaming directions which never hit the wall in the collisionless limit)
are substantially suppressed by regularization. Doubtless, the use of HOL regu-
larized models is needed to account for non-equilibrium effects at high Knudsen
numbers so as to accomplish the so called Grad’s extended hydrodynamics but,
at least for the problem studied in this paper, where the non-equilibrium effects
seems not to play a dramatic role as shown in [19], the low order regularized
model still perform reliably. For the sake of clarity, here we report a pseudo-
code of the regularization procedure employed in our simulations (eqn.).

for | <bAV(i,j,k) € D do

S g, k) = f7° G, 5. k) = f7( 5, k)
end for
for [ <bAVY(i,j,k) € D do
Pap(isJ, k) = pap(is j, k) + (clacis — c30ap) f;"° (i, 5, k)
end for
for [ <bAV(i,j,k) € D do
0,5, k) = £ 5, k) + 32 sk (clacis — ¢2)pap(is g, k)

end for
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where f7°(i,, k) is the set of post-collision distribution functions, f;*“?(i,j, k)
is the non equilibrium part of f7°(i,, k), pas are the components of the non-
equilibrium part of the momentum flux tensor,D stands for the fluid domain

and f; (i, 7, k) is the regularized set of post-collision distribution functions.

2.1. The reactive boundary condition

In this paper, we employ the standard version of the LBM for a three-
component system, consisting of an inert carrier (C), a reactant (R) and product
(P) species. Chemical reactions are patterned after the following methanol

oxidation reaction [23],
2CHs0OH + Oy — HCOOCHS3 + 2H,0, (4)

Species interconversion due to catalytic reactions at the pore surface is ac-
counted for by considering a local exchange of populations as they meet and
react on the solid walls of the pore. For the case of heterogeneous cataly-
sis, such reaction takes places whenever gas populations hit the surface of the
porous catalyst. Here, we consider a first order chemical reaction of the generic
form R — P.

The reactive boundary condition is designed such that, upon colliding with a
solid site, the reactant R converts into the product P with a given probability
p. Thus, each molecule of R colliding with a catalytic site is re-emitted along
a random direction, either as species R with probability 1 — p (no-reaction),
or as species P with probability p. It is worth highlighting that, in order to
fulfill mass conservation locally, p is uniform in the domain and constant in
time. Within this framework a typical chemical timescale can be defined as
Ten = At/p = 1/p (in lattice units), which is the time interval needed for one
representative molecule of product to enter the system (i.e. to be produced).
First order surface chemical reactions have been modelled by implementing a

"sputtering" boundary condition, as depicted in Figure 1. In equations,
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Figure 1: The sputtering reactive boundary condition

b(z)

i) = (1-p)) S (@ —c))
j=1

) b(x)
@) = pd S @ —ep) + 170 (@) (5)
j=1

where S, ; is a random sputtering matrix obeying the mass conservation con-
straint, Z;’(:ml) S;; = 1and 0 < b(x) < 18 is the number of active links at any
given lattice site . According to this model, each node of the porous medium
in direct contact with the gas nodes acts as a catalytic site. The boundary
condition is built in such a way as to locally preserve the R+P mass, while the
C mass is conserved anyway since the carrier does not take part to the reac-
tion. The random, although discrete, orientation of the emerging populations
mimics the microscopic effect of the wall orientation on the gas dynamics and
the fact that the particles that are adsorbed by the catalyst have sufficient time
to loose memory of their incoming directions thus making the scattering angles
effectively random. In the present boundary condition (see Fig. 1) such random-
ization mechanism acts independently on the two species (R and P), while the
carrier is subject to bounce-back boundary rule which have been shown to cap-
ture lumped quantities (say mass flow) in finite-Knudsen flows, once combined

with Regularization (see [19]).
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3. Relevant non-dimensional numbers

The main governing dimensionless parameters of reactive fluid transport
are: the Reynolds number Re = U 4/, measuring inertial versus dissipative ef-
fects, the Mach number Ma = U/c,, fluid versus sound speed and the Knudsen
Kn = v/c,d, namely the molecular mean free path versus the average flow char-
acteristic length scale. A second group is composed by the Peclét Pe = Ud/p
(advection over diffusion), advective Damkéhler Daa = ¢sp/U (chemical versus
advection timescales), diffusive Damkohler Dap = ¢srd/p, (chemical versus dif-
fusive timescale) and Schmidt Sc¢ = ¥/p (momentum versus mass diffusion). The
following notation is employed: U and d are respectively the characteristic pore
velocity and spacing, v is the fluid kinematic viscosity and D is the diffusivity
of the chemical species.

It is possible to identify five quantities describing the physical system, namely,
U,v,D,d,cs involving two physical dimensions,Jength and time. A straightfor-
ward application of the IT theorem allows to formulate three independent non-

dimensional groups. Therefore, the following relations hold:
Kn=Ma/Re Pe=ScRe Dap=PeDay (6)

Given the three relations (6), one is left with four independent parameters, Kn,
Dap, Pe, Sc. When the pore thickness is small compared to the mean-free
path of the molecules, say Kn > 1, molecules collide with the pore surface
with higher probability than bulk intermolecular collisions. The resulting total

diffusivity, namely Di - = ﬁ + D—IK gets lower [1] where Dy and D are the

molecular and Knudsen diffusion coefficients, respectively. The investigation of
the dependence on the Kn is here restricted to Pe = O(107?), as it pertains to

rarefied gas flows in catalytic media.

4. Model validation

The model has been first validated against Lévéque’s analytical solution [31]

of a two-dimensional laminar reactive flow between two parallel plates, reactions
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Figure 2: Dependence of the total diffusivity on pore diameter or, given a mean free molecular
path, on Kn. In this figure "Molecular Regime" denotes the low-Knudsen collective particle
(hydrodynamic) regime, whereas "Configurational Regime" stands for high-Knudsen free-
particle motion. Note that Knudsen increases from right to left. From [1]

taking place at one of the two. The vertical gradient of concentration at the
reactive wall can be calculated as:

OCx 1 4pe \V?
oy ") = T (x/%)

(7)

where C'r(x) is the reactant concentration distribution along the reactive wall, T’
is the Gamma function [32], = is the streamwise direction and L, is the distance
between plates. As per the Peclét number, Levesque’s solution is valid for high
Pe. According to this, the Peclét number was set to Pe ~ 253.

The benchmark test was carried out on a 150(x) x 50(y) grid. A body force has
been used to simulate the constant pressure gradient along the channel. The
reactant is injected continuously at the inlet of the channel and reacts only with
the lower plate. The reaction probability in the sputtering boundary conditions
has been set to 1, so as to simulate instantaneous reaction, (Day — o0). In

the limit of infinite Da 4, all the reactant impacting on the active nodes are
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Figure 3: Comparison between analytical solution of the 2d laminar reactive flow between
parallel plates. The concentration gradient along the crossflow direction at the reaction plate
is plotted against the streamwise direction.

instantly converted into products. Good agreement with the analytical solution
is found, as evidenced by the comparison reported in Figure 3. The overall

Mean Absolute Error, is roughly 4%.

5. Numerical simulations

Simulations have been carried out on a numerical sample of nanoporous
medium, with a resolution of 128% nodes and a porosity of 70%, with random
pore distribution. The value of the porosity is chosen so as to match that of the
nano-porous gold ingot used in the experiments. As per the grain dimension,
each grain is discretized with ten lattice spacings on average. Flow inside the
medium has been obtained by applying a constant mass force to the carrier

distribution. Boundary conditions are as follows:
e carrier: periodic boundary conditions at all domain boundaries;

e reactant: continuous constant injection of unit concentration at inlet, zero-

gradient at oultet, periodic for crossflow directions;
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Figure 4: Reactant concentration across the sample for three different Dap namely, (a)Dap =
0.05, (b)Dap = 0.12 and (c¢)Dap = 1.2. Thick line at the 20% value identifies the assumed
penetration threshold.

e reactant: zero-gradient at inlet and outlet; periodic for crossflow direc-

tions;

The simulations are advanced in time until the flow and concentration fields
reached the steady state. Several numerical simulations have been carried out
by varying Dap and Kn numbers independently. The results are analyzed in
terms of Depth of Penetration (DoP) of the reactant, which we define as the
distance from the inlet section at which 80% of the Reactant is consumed, that is
where the average concentration on a crossflow section of the specimen, namely
C, falls below 20%. The reactant concentration hereinafter is normalized to the

inlet reactant concentration.

10
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5.1. Effect of the Damkdohler number

In this subsection, we study the effect of Damkoéhler number. Peclét number
is chosen of order O(107%) in all simulations, for matter of consistency with the
experimental flow conditions within the ingot nano-pores previously mentioned.
Indeed, with reference to the experimental facility described in [22], by taking
a typical flow rate through the reactor of the order of 50 mL/min and a pipe
diameter = 25 mm, the outside velocity can be estimated of the order 0.001 m/s.
The effective diffusion coefficient inside the pores is estimated as ~ 107% m?/s.
The pore characteristic diameter d is &~ 50 nm; inside such pores, the actual
flow speed is expected to be, at least, one or two order of magnitude lower
than the outside flow velocity. This said, a Peclét number of O(107°) is an
appropriate choice, resulting in a gas speed 10~* m/s inside the pore. From
Fig.4 (a), the major effect of Dap on the depth of penetration is apparent. The
lower the Damkohler, the deeper the penetration of the reactant into the bulk
of the nano-porous catalyst. This is very intuitive, but the present simulations

provide the effective penetration depth in quantitative terms.

5.2. Effect of the Knudsen number

The procedure followed to carry out the simulations is here outlined: the
scalar relaxation time defines Djs, and consequently it is used to define the
diffusive Damkohler number, Dap, reported in Figure 6. Throughout the work
molecular diffusivity was assumed to be equal to that of the product. The Knud-
sen number is varied by acting on kinematic viscosity, through the relaxation
rate of the carrier. It is worth recalling that at high Kn numbers, the total
diffusivity, Dyot, receives a further contribution from Dy . With respect to Fig.
5, the higher the Dy the higher the Dy, but Dy, reduces to Dy for Dy — oo.
Since Dk o< d x A/Kn then Dk o 1/Kn, the DoP automatically accounts for
the effect of the total diffusivity, which is a decreasing function of the Kn. Here,
we analyze the DoP at two different Kn (0.1 and 1) and three different Dap
(0.05, 0.12 and 1.2). In Fig. 6 the C profiles measure the coupled effect of the

Kn and Dap. Firstly, the simulations confirm the decreasing trend of the DoP

11
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Figure 5: Qualitative sketch showing the dependency of the Do on the Kn through the Dy
The higher the Kn the higher the D¢, but effect is strongly mitigated by the value of Dy,
that is, the higher the Dy, the larger the gain in Dyo¢. Note that, for Kn — 0, (hydrodynamic
regime), Dy — 00 Diot — Dyy.

at increasing Dap for each different Knudsen number. In agreement with the
theoretical predictions shown in Fig. 5 our results show a decreasing trend in
the DoP as Kn increases, for a given Dap. More interestingly, Fig.6 highlights
that the effects of K'n are mitigated at higher values of Dap (which means lower
values of D)), which is in compliance with the theoretical prediction sketched
in Fig. 5. This means that the higher the molecular diffusion of the gas, the

higher the sensitivity to a variation of the pore diameter.

5.3. Towards large-scale simulations

An all-encompassing full-scale simulation of nanocatalytic devices is clearly
beyond the capabilities of present-day most powerful computers, and likely to
remain such for many years to come. Under such state of affairs, it is imperative
to develop upscale strategies whereby the microscale details are conveyed into
effective meso/macroscale parameters, to be used in large scale simulations at

affordable resolution. For the problem in point, it is of great relevance to develop

12



O J oy U WD

OO UTUTUTOTOTE BB E B SRS DEDSEWDWOWWWWWWWHNNNRNONRNONONNONN R R R R R
OB WNRPOWVWOJINNEWNRFROWOWOJAUEWNHRFRFOWOOJAOEWNROW®O-JIAUEWNROWWJOU S WNR O L

——Kn=0.1; DaD:O.OS
Kn=1; DaD:O.OS
——Kn=0.1; DaD:O.IZ
—Kn=1; DaD=O.12
——Kn=0.1; DaD:1.2
—Kn=1; DaD=1.2

0.8

i
0.4
0 i . . .
0 25 50 75 100 125

streamwise direction (lu)

Figure 6: Combined effect of Dap and Kn on the steady state distribution of C' along the
streamwise direction.
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Figure 7: Best fit of the numerical solution gives delta—=62.8, i.e. about six times larger than
the corresponding value for the homogeneous media. This reflects the reduced reactivity due
to the porous structure of the material.

13
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a quantitative assessment of the typical lengthscale at which chemical reactivity
occurs within the nanoporous sample. To this purpose, we compared the nu-
merical LBM solution with the analytical solution of a steady one-dimensional
homogeneous reactive medium, fed at a constant rate of reactant and governed

by the following equation [33]:

oc _9°C  C
Use =D + 1o (8)

Equation (8) can be cast in non-dimensional form:

oc 9

P
eax* Ox*2

+ DapC (9)

where x* = z/L is the dimensionless reactive length. The solution of eq. 9 reads
as: C(z*) = exp(—z*/6), where § = [1/2(Pe —+/Pe? — 4Dap)] ! is the charac-
teristic non-dimensional length scale of the homogeneous reactive layer. In Fig.
7, the numerical solution is plotted together with the analytical aforementioned
solution for the homogeneous medium, as computed with the values of Pe and
Dap pertaining to the simulation. First of all, it is worth highlighting that the
reactant concentration still yields the classical exponential decay also at finite
Knudsen numbers. As this figure also makes apparent, the idealised homoge-
neous medium is significantly more efficient, i.e. it yields a shorter reactive layer
than the nanoprous sample. In an upscaling perspective, one determines ¢ as
the best fit to the analytical solution versus the numerical one. Such procedure
yields the concentration distribution shown in Fig. 7, from which it is seen that
the effective reactive length in the nanoporous sample is about six times longer
than in the homogeneous material. This assessment provides the first step to
large-scale simulation of catalytic devices of engineering relevance, with coarse-
mesh spacings of the order Az ~ ¢, rather than Az << §, as it is the case in

micro-resolved simulations such as the one presented in the current work.

14
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6. Summary and Outlook

Summarizing, we have investigated the effects of hydrodynamic non-equilibrium,

as measured by the Knudsen number, on the reactivity of nanoporous catalytic
samples. Extensive numerical simulations indicate that non-equilibrium effects
enhance the effective reactivity of the sample (see Section 5). Comparison with
a minimal 1D model shows that the streamwise distribution of reactant concen-
tration still yields the classical exponential decay also at finite Knudsen num-
bers, as shown in subsections 5.2 and 5.3. This provides a first step towards
the inclusion of the reactive and diffusive properties of the medium beyond
the hydrodynamic regimes within large-scale simulations of catalytic devices of

experimental relevance.
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