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Abstract. In this paper, meant as a companion to Antinucci et al. (Energy
correlations of non-integrable Ising models: the scaling limit in the cylin-
der, 2020. arXiv: 1701.05356), we consider a class of non-integrable 2D
Ising models in cylindrical domains, and we discuss two key aspects of
the multiscale construction of their scaling limit. In particular, we pro-
vide a detailed derivation of the Grassmann representation of the model,
including a self-contained presentation of the exact solution of the nearest
neighbor model in the cylinder. Moreover, we prove precise asymptotic
estimates of the fermionic Green’s function in the cylinder, required for
the multiscale analysis of the model. We also review the multiscale con-
struction of the effective potentials in the infinite volume limit, in a form
suitable for the generalization to finite cylinders. Compared to previous
works, we introduce a few important simplifications in the localization
procedure and in the iterative bounds on the kernels of the effective
potentials, which are crucial for the adaptation of the construction to
domains with boundaries.
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1. Introduction

In this article, which is a companion to [4], we consider a class of non-integrable
perturbation of the 2D nearest-neighbor Ising model in cylindrical geometry
and discuss some of the key ingredients required in the multiscale construction
of the scaling limit of the energy correlations in finite domains. The material
presented here generalizes and simplifies the approach proposed by two of the
authors in [18], where a similar problem in the translationally invariant setting
was investigated. As discussed extensively in [4, Section 3.1], which we refer
to for additional motivations and references, the methods of [18], as well as of
several other related works on the Renormalization Group (RG) construction
of the bulk scaling limit of non-integrable lattice models at the critical point,
are insufficient for controlling the effects of the boundaries at the precision
required for the construction of the scaling limit in finite domains. This is a
serious obstacle in the program of proving conformal invariance of the scaling
limit of statistical mechanics models [17]; the goal would be to prove results
comparable to the remarkable ones obtained for the nearest neighbor 2D Ising
model [10,12,29], but for a class of non-integrable models, such as perturbed
Ising [2] or dimer models [22] in two dimensions, via methods that do not
rely on the exact solvability of the microscopic model. In this paper and in its
companion [4], we attack this program by constructing the scaling limit of the
energy correlations of a class of non-integrable perturbations of the standard
2D Ising model in the simplest possible finite domain with boundary, that is,
a finite cylinder.
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Let us define the setting more precisely. For positive integers L and M,
with L even, we let G be the discrete cylinder with sides L and M in the
horizontal and vertical directions, respectively, with periodic boundary condi-
tions in the horizontal direction and open boundary conditions in the vertical
directions. We consider G as a graph with vertex set A = Zg, x (ZN[1, M]),
where Zj, = Z/LZ (in the following we shall identify the elements of Z;, with
{1,..., L}, unless otherwise stated) and edge set B, consisting of all pairs
of the form' {z,z+¢é,} for 2 € A,j € {1,2} and é;,é2 the unit vectors in
the two coordinate directions. For z € B, we let j(x) be the j for which
x = {z,2+ ¢é;} for some z € A, so that j(z) = 1 for a horizontal bond and
j(x) = 2 for a vertical bond. The model is defined by the Hamiltonian

Hp(o) = — Z Jj(:p)ﬁw_)\ Z V(X)ox, (1.1)
z€B, XCA

where Jy, Jo are two positive constants, representing the couplings in the hor-
izontal and vertical directions, €, = €,(0) := 0,0, for x = {z,2'}; the spin
variable o belongs to Q4 := {£1}*, and ox := [[,cx 0z; V is a finite range,
translationally invariant, even interaction, obtained by periodizing in the hor-
izontal direction a A-independent, translationally invariant, potential on Z?2;
finally, A is the strength of the interaction, which can be of either sign and, for
most of the discussion below, the reader can think of as being small, compared
to Ji, J2, but independent of the system size. In the following, we shall refer to
model (1.1) with A # 0 as to the ‘interacting’ model, in contrast with the stan-
dard nearest-neighbor model, which we will refer to as the ‘non-interacting’,
one of several terminological conventions motivated by analogy with quantum
field theory. The Hamiltonian defines a Gibbs measure (-); , depending on the
inverse temperature 8 > 0, which assigns to any F': 24 — R the expectation
value

ZO’GQA e_ﬂHA(J)F<U)
ocan € P
The truncated correlations, or cumulants, of the energy observable €,, denoted

(TR ;emn>57A, are given by
an
€ry5 s Eg P
< z1 Ln,)B,A DA, ---0A,

<F>5,A = (12)

log <eA1€xl+-..AnE:cn>ﬁ’A‘A1:.”:A 0
(1.3)

For the formulation of the main result, let us fix once and for all an interaction
V with the properties spelled out after (1.1), and assume that J;/J2 and L/M
belong to a compact K C (0, 400). We let ¢; := ¢;(8) := tanh 5J;, with l = 1,2,
and recall that in the non-interacting case, A = 0, the critical temperature
Be(J1, J2) is the unique solution of t5(5) = (1 —t1(8))/(1 +t1(8)). Note that
there exists a suitable compact K’ C (0,1) such that whenever J;/Jo € K
and 8 € [%ﬁc(Jl,Jg),Qﬁc(Jl,Jg)], then t1,t> € K’. From now on, we will

Mf z = ((2)1,(2)2) € A has horizontal coordinate (z); = L, we use the convention that
z+é1 = (].7 (2)2).
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think K, K’ to be fixed once and for all. Moreover, we parameterize the Gibbs
measure in terms of ¢; as follows:

<'>ﬁ,A = <'>,\,t1,t2;A-

Given these premises, we are ready to state the main result proven in [4].

Theorem 1.1. FizV as discussed above. Fiz Jy,Jy so that Jy/Ja belongs to the
compact K introduced above. There exist Ao > 0 and analytic functions B.(X),
t1(N), Z1(N), Za(N), defined for |A| < Ao, such that, for any finite cylinder A
with L/M € K and any m-tuple @ = (x1,...xy) of distinct elements of B,
with my horizontal elements, my vertical elements, and m = my + mo > 2,

CERR 61m>)\,t1(k),t2()\);A = (ZI(A))W (Z2()\))m2 (CHERIE Ezm>0,t’1‘()\),t§(>\);A
+Rp(x), (1.4)

where t1(A) = tanh(B:(A\)J1), t2(A) = tanh(B:(A)J2) and t5(X) = (1 —
t5(A)/(1 + t5(N). Moreover, denoting by é(x) the tree distance of x, i.e.,
the cardinality of the smallest connected subset of B containing the elements
of ¢, and by d = d(x) the minimal pairwise distance among the midpoints of
the edges in x and the boundary of A, for all 8 € (0,1) and ¢ € (0,1/2) and a
suitable Cg . > 0, the remainder Rp can be bounded as

1 d 2—2¢
|RA(x)| < Cg’fg|/\|m!W (6(:(;)) . (1.5)

As a corollary of this theorem, one readily obtain the existence and
explicit structure of the scaling limit for the ‘energy sector’ of the interact-
ing model, with quantitative estimates on the speed of convergence; see [4,
Corollary 1.2] and Appendix D.

The proof of Theorem 1.1 is based on a multiscale analysis of the generat-
ing function of the energy correlations, formulated in the form of a Grassmann
(Berezin) integral. While the strategy of this proof is based on the same gen-
eral ideas used in [18] in the translationally invariant setting, that is, on the
methods of the fermionic constructive RG, the presence of boundaries intro-
duces several technical and conceptual difficulties, whose solution requires to
adapt, improve and generalize the ‘standard’” RG procedure (e.g., in the def-
inition of the ‘localization procedure’, in the way in which the kernels of the
‘effective potentials’ are iteratively bounded and in which the resulting bounds
are summed over the label specifications, etc.) As discussed in [4, Section 3.1],
which we refer to for additional details, we expect that understanding how to
implement RG in the presence of boundaries or, more in general, of defects
breaking translational invariance, will have an impact on several related prob-
lems, such as the computation of boundary critical exponents in models in the
Luttinger liquid universality class, the Kondo problem, the Casimir effect, and
the phenomenon of many-body localization.

In this paper we give a full presentation of some of the key ingredients
required in the proof of our main result, namely:
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1. exact solution of the nearest neighbor model on the cylinder in its Grass-
mann formulation, including multiscale bounds on the bulk and edge
parts of the fermionic Green’s function (Sect. 2);

2. reformulation of the generating function of energy correlations of the
interacting model as a Grassmann integral (Sect. 3);

3. tree expansion and iterative bounds on the kernels of the effective poten-
tials of the interacting theory in the full plane limit, including the com-
putation and proof of analyticity of the interacting critical temperature
(Sect. 4).

The other ingredients, including most of the novel aspects of the RG con-
struction in finite volume, such as the definition of the localization procedure
in finite volume, the norm bounds on the edge part of the effective poten-
tials and the asymptotically sharp estimates on the correlation functions in
the cylinder, are deferred to [4]; see the end of [4, Section 3.1] for a detailed
summary and roadmap of the proof of Theorem 1.1.

Before starting the technical presentation, let us anticipate in little more
detail the contents of the following sections, thus clarifying the main results
of this paper.

Section 2: exact solution of the model in the cylinder. The multiscale construc-
tion of the interacting theory in the domain A requires a very fine control of the
non-interacting model at the critical point, and, in particular, of the structure
of its fermionic Green’s function, which we call the ‘propagator’; the propaga-
tor is nothing but the inverse of a signed adjacency matrix A, whose definition
we recall in Sect. 2 below [26, Chapter IX]. The key properties we need, and
we prove in Sect. 2 below (with some—important!—technical aspects of the
proofs deferred to Appendices A, B and C ), see, in particular, Eq. (2.2.14)
and Proposition 2.3 below, are the following:

e multiscale decomposition of the propagator and bulk—edge decomposition
of the single-scale propagator;

e exponentially decaying pointwise bounds on the bulk and edge parts
of the single-scale propagators, with optimal dimensional bounds (with
respect to the scale index) on their L norms and on their decay rates;

o Gram representation? of the bulk and edge parts of the single-scale propa-
gators, with optimal dimensional bounds (with respect to the scale index)
on the norms of the Gram vectors.

In reference with the second item, let us remark that the exponential decay
needed (and proved below) for the propagator between two points z,z" € A,
is in terms of the ‘right’ distance between z and 2’, namely: the standard
Euclidean distance on the cylinder between z and z’ in the case of the bulk
part of the single-scale propagator; the FEuclidean distance on the cylinder
between z,z’ and the boundary of A, in the case of the edge part of the
single-scale propagator. In particular, the exponential decay of the edge part

2We say that a matrix g admits a Gram representation, if its elements gi,; can be written
as the scalar product of two vectors u; and v; in a suitable Hilbert space.
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of the single-scale propagator in the distance of z,z’ from the boundary of
A is of crucial importance for proving improved dimensional bounds on the
finite-size corrections to the thermodynamic and correlation functions of the
interacting model, which are systematically used in the conclusion of the proof
of Theorem 1.1 in the companion paper [4], see [4, Section 4].

The proof we give of these key properties is based on an exact diago-
nalization of the signed adjacency matrix A in terms of the roots of a set of
polynomials (this calculation first appeared in [23], and a similar calculation
for a rectangle appears in [25]). It is unlikely that such an explicit diagonal-
ization can be obtained in more general domains than the torus, the straight
cylinder or the rectangle. Therefore, in order to generalize Theorem 1.1 to more
general domains, it would be desirable to prove the properties summarized in
the three items above via a more robust method, not based on an explicit
diagonalization of A. It remains to be seen whether the methods of discrete
holomorphicity, which allowed to prove the convergence of the propagator in
general domains to an explicit, conformally covariant, limiting function [10],
may allow one to prove the desired properties in general domains.

Section 3: Grassmann representation of the generating function. In Sect. 3,
we turn our attention to the generating function for the energy correlations

Zn(A) = ) exp < > [BTjw) + Aa) €a +BA D V(X)UX> . (1.6)

AN zEBA XCA

that, if computed at a configuration A such that A, is equal to A; for z = x;
and zero otherwise, reduces to the combination <6A1611+“'A"61n >ﬂ_A appearing
in (1.3), up to an overall multiplicative constant, independent of A.

In Proposition 3.1 and Eq.(3.22) (adapting a similar result for the torus
in [18]), we show that the correlations without repeated bonds are the same
as those obtained by replacing Zx (A) with a Grassmann integral of the form

=0(4) i= W) [ P Do)p; (D O, (17)

where P} and P, are Gaussian Grassmann measures associated with the crit-
ical, non-interacting Ising model at parameters t},t5 := (1 — 1)/(1 + %),
with t7 a free parameter. Moreover, W(A) is a multilinear function of A
and VD (¢, & ,A) is a Grassmann polynomial whose coefficients are multilin-
ear functions of A, both of which are defined in terms of explicit, convergent,
expansions. As a corollary of Lemma 3.2, we additionally prove that the ‘ker-
nels’ of W(A) and V) (¢, &, A) (i.e., the coefficients of their expansions in
A, ¢, &, thought of as functions of the positions of the components of A, ¢, £ on
the cylinder) can be naturally decomposed into sums of a ‘bulk’ part (equal,
essentially, to their infinite plane limit restricted to the cylinder, with the
appropriate boundary conditions) plus an ‘edge’ part (their boundary correc-
tions), exponentially decaying in the appropriate distances. In particular, the
edge part of the kernels decays exponentially (on the lattice scale) away from



Vol. 23 (2022) Non-integrable Ising Models in Cylindrical Geometry 1067

the boundary, a fact that will play a major role in the control of the boundary
corrections to the correlation functions in [4].

Let us remark that, in addition to ¢] and to the inverse temperature 3,
the representation (1.7) has another free parameter, Z (entering the defini-
tion of V(1); while, for the validity of (1.7), these parameters can be chosen
arbitrarily in certain intervals, in order for this representation to produce a con-
vergent expansion for the critical energy correlations of the interacting model,
uniformly in the system size, we will need to fix ¢}, 3, Z appropriately (a pos-
teriori, they will be fixed uniquely by our construction, see below). Parameters
of this kind are known as counterterms in the RG terminology.

Section 4: the RG expansion for the effective potentials in the full plane limit.
Equation (1.7) is the starting point for a multiscale expansion, which is fully
presented in the companion paper [4], see in particular [4, Section 3], but which
we summarize here in order to provide the context for Sect. 4, where we carry
out an auxiliary expansion for the full plane limit of the kernels of the ‘effective
potentials’. Such an auxiliary expansion, among other things, fixes the values
of 7, 8, Z which are actually used in Theorem 1.1, see Sect. 4.5 below.

The goal is to iteratively compute (1.7) in terms of a sequence of effective
potentials, defined as follows: at the first step we let

NV AV (0.4) / Py (D) (@64), (1.8)

where o< means ‘up to a multiplicative constant independent of A’; the poly-
nomials W V) are specified uniquely by the normalization W(®)(0) =
V©(0,A) = 0.

We are left with computing the integral of eV (¢4) with respect to the
Gaussian integration Pf(D¢) with propagator g:. As anticipated above, in
Sect. 2.2 we decompose the critical propagator g} as g(=h) 4 Zgzh_H g, for
any h < 0; correspondingly, in light of the addition formula for Grassmann
integrals (see, e.g., [21, Proposition 1]), we introduce the sequences P(<") and
P" of Gaussian Grassmann integrations, whose propagators are g(=" and
g™ | respectively, and satisfy, for any Grassmann function f,

(0)(

/ PEM (D) f() = / PERD(D) PM (D) f (6 + ). (1.9)

We can then iteratively define V) and W with W (0) = V(M (0, A) =0
and

V(W) VD (9,4) a/p(h)(p(p)eV(h)(qﬁ-&-%A). (1.10)

The iteration continues until the scale h* = —| log,(min{L, M})| is reached,
at which point we let

VD () o(/P(gh*)('D(b)eV(h*)(%A)’ (1.11)
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giving

0
EA(A) x exp (W(A)+ > w<h>(A)>. (1.12)
1

h=h*—

In order to obtain bounds on the kernels of W(")(A) leading to an expansion
for the energy correlations that is uniform in the system size, at each step it
is necessary to isolate from V(® the contributions that tend to expand (in an
appropriate norm) under iterations: these, in the RG terminology, are the rel-
evant and marginal terms, which we collect in the so-called local part of VM),
denoted by £V . In other words, at each step of the iteration, we rewrite
V) = £y® 4 RYM | where, in our case, LV includes: three terms that
are quadratic in the Grassmann variables and independent of A, depending on
a sequence of h-dependent parameters which we denote v = {(v, (p,Mn) bh<1
and call the running coupling constants; and two terms that are quadratic in
the Grassmann variables and linear in A, depending on another sequence of
effective parameters, {Z1 1, Za p }n<o, called the effective vertex renormaliza-
tions. Moreover, RV is the so-called irrelevant, or renormalized, part of the
effective potential, which is not the source of any divergence.

Such a decomposition corresponds to a systematic reorganization, or
‘resummation’, of the expansions arising from the multiscale computation of
the generating function. The goal will be to show that, by appropriately choos-
ing the parameters t7, 5, Z, which the right side of (1.7) depends on (and which
are related via a simple invertible mapping to the initial values of the running
coupling constants, vg, (o, 7o), the whole sequence v remains bounded, uni-
formly in h*; see Sect. 4.5. Under these conditions, we will be able to show
that the resulting expansions for multipoint energy correlations are convergent,
uniformly in A*. Our estimates are based on writing the quantities involved
as sums over terms indexed by Gallavotti-Nicolo (GN) trees [13-15], which
emerge naturally from the multiscale procedure; the relevant aspects of the
definitions of the GN trees will be reviewed in Sect. 4.3 below.

In order to obtain L, M independent values of these parameters, we study
the iteration in the limit L, M — oo in Sect. 4; we can also restrict to A = 0,
since this already includes all of the potentially divergent terms. This would
superficially appear to involve a number of complications such as defining an
infinite-dimensional Grassmann integral, but in fact the multiscale computa-
tion of the generating function, when understood as an iteration for the kernels
of VM denoted by V/Eh), has a perfectly straightforward infinite-volume ver-
sion, which is stated and analyzed in Sect. 4. The convergence as L, M — oo
of the finite volume kernels th) to the solution Vo(oh) of the infinite-volume
recursive equations for the kernels is one of the main subjects of [4], especially
[4, Section 3].

Section 4 is a reformulation of [18, Section 3]. We nonetheless present
it at length, partly because the treatment of the propagator on the cylinder
in Sect. 2 imposes a different choice of variables which makes the translation
of some statements awkward, but mainly in order to take the opportunity to
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make a number of technical improvements and simplify some unnecessarily
obscure aspects of what is already a complicated argument.

Previously, e.g., in [3,15,16,18], the localization operator (and conse-
quently the remainder) was defined in terms of the Fourier transform of the
functions involved. This has the advantage of providing a simple procedure for
parametrizing the local part of the effective potential by a finite number of
running coupling constants, but is quite difficult to apply to non-translation-
invariant systems (in [3] this led to a peculiar restriction on the dependence of
the interaction on the system size). Moreover, it makes the treatment of finite
size corrections awkward and leads to a convoluted definition of the deriva-
tive operators in the remainder (see [6] and [19] for the treatment of finite-
size corrections on a finite torus via the ‘standard’ definition of localization
operator). To deal with this, in Sect. 4.2 we introduce a localization operator
defined directly in terms of lattice functions and write the remainder in terms
of discrete derivatives using a lattice interpolation procedure. Such definitions
naturally admit finite volume counterparts, discussed in [4, Section 3.1].

The strategy used to estimate the interpolation factors in the above
cited works also involves decomposing them into components which can be
matched with propagators; this involves a number of complications, since it
cannot be done in a strictly iterative fashion (this is the problem discussed
in [6, Section 3.3]). When we handle this issue in Sect. 4.4, see in particular
Proposition 4.6, we instead show iteratively that the coefficient function of the
effective interaction satisfies a norm bound morally equivalent to exponential
decay in the position variables (associated with exponential decay in the scale-
decomposed propagators, see Proposition 2.3); this then makes it possible to
bound the contribution of the interpolation operator immediately, avoiding
technical issues such as the ‘accumulation of derivatives’ (see [6, Section 3.3]
and [15, end of Section 8.4]) or the proof that the Jacobian associated with the
change of variables arising from the interpolation procedure is equal to 1 (see
[6, (3.119)]). In these aspects, the strategy used in this paper for iteratively
estimating the kernels of the effective potentials overlaps with [20], which was
developed in parallel with the present work.

2. The Nearest-Neighbor Model

In this section we review some aspects of the exact solution of the nearest-
neighbor model (A = 0), which will play a central role in the multiscale com-
putation of the generating function for the energy correlations of the non-
integrable model, to be discussed in the following sections. In particular, after
having recalled the Grassmann representation of the partition function, we
explain how to diagonalize the Grassmann action; next, we compute the Grass-
mann propagator and define its multiscale decomposition, to be used in the
following; finally, we compute the scaling limit of the propagator, with quan-
titative bounds on the remainder.
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2.1. Diagonalization of the Free Action

2.1.1. Introduction to the Grassmann Variables and Representation. Let us
recall the form of the Hamiltonian Hx (o) (1.1) in the integrable case A = 0:

2

HA(O') = _ZJl Zazaz+éz7

=1 zEA

with the understanding that o, ¢, = 0 for 2 = (21, 22) such that® 2z, = M and
Oste, = 0.4 (1—L)e, for z such that 23 = L.

As is well known [26, Chapter VL.3], the partition function at inverse
temperature § > 0, Z), = ZaeQA e BHA(9) can be written as a Pfaffian,
which admits the following representation in terms of Grassmann variables,
see, e.g., [27] or [16, Appendix Al]:

Zy =25M (cosh 5.J)LEM=D /ch eStat2(®), (2.1.1)

where ® = {(H,, H,,V ., V,)}.ea is a collection of 4LM Grassmann variables
(we will also use the notation {®;};cz for 7 a suitable label set with 4LM
elements), D® denotes the Grassmann ‘differential’,

Do = || dH.dH.dV.dV.,
z€N

and

St17t2 ((p) = Z(tlﬁsz—i-@q + tQVsz+é2 + Fsz + Vzvz + Vzﬁz
z€A

+V.H,+ H,V,+V.H,) (2.1.2)

where ¢; = tanh 8J; for | = 1,2, and H(141,(2),)s V((2):,m+1) should be inter-
preted as representing —H(y (.),) and 0, respectively. The identification of
H(p11,(2),) With —H(y (2),) corresponds to anti-periodic boundary conditions in
the horizontal direction for the Grassmann variables: these are the right bound-
ary conditions to consider for a cylinder with an even number of sites in the
periodic direction, see [26, Eq.(2.6d)]. For later reference, we let E, = H,H, ¢,
for a horizontal edge x with endpoints z,z + €1, and E, = VZVZ+é2 for a ver-
tical edge x with endpoints z, z + é. Sometimes, we will call {(H., H.)}.ca
the horizontal variables, and {(V ., V.)}.ea the vertical ones.

The quadratic form S, 4,(®) can be written as S, 4,(®) = (P, AD)
for a suitable 4LM x 4LM anti-symmetric matrix A (here (-,-) indicates the
standard scalar product for vectors whose components are labeled by indices
inZ, ie., (¢,49) = > ®;A;;®;). In terms of this matrix A, (2.1.1) can
be rewritten as

Zy = 28M (cosh By ) "M (cosh,é’Jg)L(M_l) PfA.

i,jE€T

3In this section we shall denote the components of z € A by z1, zo. We warn the reader that
in the following sections the symbols 21, z2 will mostly be used, instead, for the first two
elements of an n-ple z in A™ or in (Z2)™, for which we will use the notation z = (21,...,2n).
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[We recall that the Pfaffian of a 2n x 2n antisymmetric matrix A is defined as

PfA =

S Ar),x(2)-Ar@n—1),7(2n)} (2.1.3)
where the sum is over permutations 7 of (1,...,2n), with (—1)™ denoting the
signature. One of the properties of the Pfaffian is that (PfA)? = detA.] For
later purpose, we also need to compute the averages of arbitrary monomials
in the Grassmann variables ®;, with ¢ € Z. These can all be reduced to the
computation of the inverse of A, thanks to the ‘fermionic Wick rule’:

1
(B, By, ) = B /ch ®;, B, e2(PAY) = PG (2.1.4)

where, if m is even, G is the m x m matrix with entries
Gjr, = (04, ®i,) = —[A7 s, 4, (2.1.5)

(if m is odd, the r.h.s. of (2.1.4) should be interpreted as 0). Often (®;®;) is
referred to as the (ij component of the) propagator of the Grassmann field ®,
or as the covariance of D®eS(®); such a form (with a quadratic function in the
exponent) is known as a Grassmann Gaussian measure.

In the following sections, we shall explain how to compute the Pfaffian
of A and its inverse A™!, via a block diagonalization procedure.

2.1.2. Diagonalization of S, ;.

Horizontal direction diagonalization and Schur reduction. By exploiting the
periodic boundary conditions in the horizontal direction, we can block diago-
nalize the Grassmann action by performing a Fourier transform in the same
direction: for each zo € {1,2,..., M} we define

L L
HZQ kl Z ezklm H(thz), Hz2 kl Z ezk1z11’_‘[(21722)7
st st (2.1.6)
22 kl Z 62]9121‘/Zl)z2)7 22 kl Z ezklz11/(21722)7
z1=1 z1=1

with k1 € Dy, where

_[m2m-1) L L
DL.—{ i m=—3 1, 72}, (2.1.7)
in terms of which
1 _
Sua(® =7 D [t O H o (k) Hoy (1) + V oy (k) Vay ()
k1€Dy,
22:1,“.7
12V oy (—k1) Va1 (k1) + Vo (=) Hy (k1) + Ve (—k1) H oy (K1)
+H22(_k1)vz2 (kl) + szz(_kl)H@ (kl) . (218)

[Note that as a consequence of the convention that Vier,m+1) = 0, Varga(kr)
should also be interpreted as 0.] The terms in the second line of (2.1.8), mixing
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the horizontal with the vertical variables, can be eliminated by a linear trans-
formation corresponding to a Schur reduction of the coefficient matrix (cf. [26,
p. 120)):

n (l—l—tle“‘”)_1 —(1+t16?k1)_1 b,z (K1)
(L+tie=™®) =t (T tye= )= | o, (k1) |

(2.1.9)

Defining a related set of Grassmann variables on A by ¢,. =
% ZklEDL e~ *1z1g, .. (k1) and analogously for &, ., we then obtain

H, £+z 5+ - *5+(Zl 7y) (rb-‘r,( 722):|
A A R ol e e e

W/} = [?] , (2.1.10)

k121
where s (21) := ¢ ZleDL m By the Poisson summation formula,

) dk; e~ =
s1(z) = Z(*l)nSOo,i(Zl +nl), with s +(2)= / = 4

nez —T 2r 1 + tleizk1 '
(2.1.11)

It is straightforward to check, via a complex shift of the path of integra-
tion over ki, that so 4+ (and, therefore, si) decays exponentially in z;; more
precisely, [se +(21)] < e @71 — t1e*)~! for any a € [0,—logt;), and
|54 (21) = Soo,+(21)] < e *E(1 — t1e%) ™1 whenever |z1] < L/2.

In terms of the new variables, the Grassmann action reads Sy, +,(®) =
Sm (&) + Sc(¢) (the labels ‘m’ and ‘¢’ stand for ‘massive’ and ‘critical’, for
reasons that will become clear soon), where

M
= 30 > W tem e L (—h)E s (), (2.1.12)

k1€Dy, z2=1

M
1
S5:0) =7 D 0 [ = k)b ey (k)6 e (k1) 264 oo (k)P iy (k)
k1E€Dy, z2=1
i i
= 500G 4,z (R 2y (1) F+ S A1) Dy (1) g 2o ()]
(2.1.13)
with
Qtl sin kl 1-— t%
—_— b(k1) = ———
|1-i—1516lk:1|27 ( 1) |1+t161k1‘2’
where, as a consequence of the convention used above for V, the term in S.(¢)

involving ¢pr41,— (k1) should be interpreted as being equal to zero. Since S,
and S, involve independent sets of Grassmann variables, the Gaussian integral

Aky) = (2.1.14)
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appearing in the partition function factors into a product of two integrals, and
the propagators associated with the two terms can be calculated separately.

The ‘massive’ propagator The calculations for S, are trivial. Let the anti-
symmetric matrix A, be defined by S, (£) = 3(&, Ané). Recall that S, was
defined in (2.1.12), from which

PfA, = J[ (1+te™)™M,
k1€Dy,

and the propagator is given by the appropriate entry of A-!, which in the

m

form used in (2.1.12) is block-diagonal with 2 x 2 blocks such that
w
<£w,22 (kl)gw’,zé (k/1)> = L(Szz,zé 6w,7w’6k1,7k’1

1+ 3] eiwki ’
Therefore, going back to z-space,

<§w,z§w’,z’> =w 5w,—w’5w(zl - Zi) 522,257 (2'1-15)
where s,,(z1) was defined right after (2.1.10). For later reference, the matrix
formed by the elements in (2.1.15) will be referred to as the massive propagator
and denoted by

o
0 st(za=21)) (2.1.16)

! = ’
gm(zaz)—522,22 —S_(Z1—Zi) 0

Recalling that s+ decays exponentially, see comments after (2.1.11), we see
that g, (z,2’) decays exponentially as well, and so corresponds to a massive
field in the language of quantum field theory.

The ‘critical’ propagator The antisymmetric matrix A. defined by S.(¢) =
%(qb, A.¢) can be placed into an explicit block-diagonal form by an ansatz
resembling a Fourier sine transform with shifted frequencies; this involves a
lengthy but elementary calculation which is detailed in Appendix A. Here we
simply state the result for the critical case

—t 1ty

1
tit t to =11t = St = —
1l + 11 + 12 2 T 1 114,

which is the only case of relevance for the present work®. In this case we obtain

<¢) ,z¢ ,z’> <¢ ,z¢—,z’> g (272/)9 _(Z,Z/) _ !
e R | R e o et L XCE AR

(2.1.17)

where

L 1 _ ,
gC(Z7Z/) == Z Z 767”“(‘21721)
LD kaconihn 2N (K1, k2)

ik (za—2l) 4 ikp(zatey) |94+ (K1, k2) Gy (k1, —k2)
x{e g(k1,k2) —e [g_+(k1,k2) 2k (M) g (ky, ko)

(2. 1.19)
4The case ta < (1—t1)/(1+t1), corresponding to the paramagnetic phase can be considered

in the same way, while the case t2 > (1 — ¢1)/(1 4 ¢1) is somewhat more complicated since
one of the frequencies may be complex [23].
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with
- G+ (K1, ko) §+(k17k2)}
ki, ko) == | .
8lk1, k2) {9—+(’€1,k2) G—— (K1, k2)
o 1 —2ity sin ky 4 —(1 — t%)(l — B(kl)e_“Q)
" D(k1, ky) |(1—#3)(1 — B(k1)e™*?) +2it sin ky
(2.1.20)
where
D(ky1, ko) :=2(1 — t3)%(1 — cos k1) 4+ 2(1 — t1)(1 — cos k), (2.1.21)
ikq |2
B(ky) == tg%, (2.1.22)
- Y

On (k1) is the set of solutions of the following equation, thought of as an
equation for kg at k; fixed, in the interval (—m,7):

sin ko(M + 1) = B(k1) sin ko M, (2.1.23)
and
4 (B(ky)sin koM — sinko(M + 1))

N _ dk
n (s he) B(k1) cos koM — cos ka(M + 1)

(2.1.24)

Remark 2.1. From the above formula it is immediately clear that

G+ (k1 ko) = gy (1, —k2) = =944 (k1 ko) = g——(—k1, k2) (2.1.25)

and
94— k1, k2) = gy (k1 k) = =94 (K1, —ka); (2.1.26)
furthermore, Eq. (2.1.23) is equivalent to
1 (k1 ko) = —e 2*2(MH g (K ky), (2.1.27)

which therefore holds for all ¢ € Qs (k7). Moreover, Nas(k1, ka) = Nas(—k, ka)
= Nps(ky, —k2). As we will see in Sect. 2.4 below, these relationships are closely
related to the symmetries of the Ising model on a cylindrical lattice.

Remark 2.2. The definition (2.1.19) can be extended to all z, 2’ € R?; then in
particular, using the relationships listed in the previous remark, we have

g++ ((21,0) 72/) =g+ (2, (2,17 0)) = g+- ((21,0) vZ/) =g 4 (2 (Zia 0)) =0,
(2.1.28)

and

9+— (Z7 (ZivM + 1)) = 09—+ ((ZlvM + 1) 72,) =9 ((ZlaM + 1)32/)
=g__(z(21,M+1)) =0, (2.1.29)

for all z, 2’.
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2.2. The Critical Propagator: Multiscale Decomposition and Decay Bounds

In this section, we decompose g.(z,2’) into a sum of terms satisfying bounds
which are the main inputs of the multiscale expansion.

2.2.1. Multiscale and Bulk/Edge Decompositions. Let
Fo(k1, ko) i= D(ky, kg)e™ P Hik2) (2.2.1)
with D(k1,k2) as in (2.1.21). Note that

/ fn(k1, ko) d (2.2.2)

as long as ki and ks are not both integer multiples of 27 (and so when-
ever ko € Qp(k1)). Comparing with Eq. (2.1.20), we see immediately that
fu(k1, k2)@(k1, k2) is an entire function of both k1 and ks. The reader may find
it helpful in what follows to bear in mind that, for large 1, f,(k1, k2) is peaked
in a region where D(kq, ko) is of the order n~!, and so ki, ky are of order 77_1/2.

Thanks to (2.2.2), f, induces the following multiscale decomposition of g.
defined in (2.1.19). Let h* := —| logy(min{L, M })|; then, for any h* < h <0,

ac(2,2) = g=M (2, 2") Z a9 (z,2") (2.2.3)
j=h+1
where
1
a9 (z,2") ::/ a"(z,2") dn, (2.2.4)
2—2h 0
g (z,2') = / a"(z,2") dn  for h* < h <0, (2.2.5)
2 2h
o) = [ ) dn (2.2.6)
2—2h—2
and
e, . L 1 —iky (21 —2))
(=20 = L M;JL k;EQZ\[(k ) QNM(khkz)e Fnler, k2)
x {e_ikz(zz_zé)@(kl,kz) o7 thalz =) gHEii’Z; ezzkg(Nf+(1’;;17_lzlii,k2):|}
(2.2.7)

Note that the single-scale propagators preserve the cancellations at the bound-
ary spelled out in Remark 2.2 above, namely, denoting the components of g(*)

by g(h) with w,w’ € {£}, in analogy with (2.1.18),

h h h
9" ((21,0),2") = g1} (2, (21,0)) = g ((21,0),2") = g™} (=, (},0)) = 0,
9™ 2 M+ 1) = %) (2, M +1),2') = g™ (21, M + 1), 2)
=g (2, (21, M +1)) =0, (2.2.8)
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and analogously for ngj,) Note also that, taking L, M — oo, the cutoff prop-

agator g[n]( z') tends to its infinite-plane counterpart, provided that z, 2’ are

chosen ‘well inside the cylinder’; in particular, if zy, s := (L/2, | M/2]), then

lim g (] (

/
zom + 2,20 +2)
L,M—oco

dkq dk —1 z1—2/ 2(z2—24 ~
= / e EmRI R (ko) gk, ke)  (2.2.9)
(2m)

[—m,m]?

=gz - 2.

For later purposes, we need to decompose the cutoff propagator g into a
‘bulk’ part which is minimally sensitive to the size and shape of the cylinder,
plus a remainder which we call the ‘edge’ part. The bulk part is simply chosen
to be the restriction of g[n] to the cylinder, with the appropriate (anti-periodic)
boundary conditions in the horizontal direction:

o8 (z,2) i= 51 (21— 24) o (perp (21— 24) 22— ) (22.10)
where, recalling that 21,21 € {1,..., L},
+1, |;1— 4 <L/2

sp(z1 —27) =40, |21 — 24| =L/2 (2.2.11)
=1, |z —2i|>L/2
and
z 1
pery(z1) =2z — L {Ll + QJ . (2.2.12)

The edge part is, by definition, the difference between the full cutoff propagator
and its bulk part:

o (z,2) = g[’”(z ) - ["](z,z’). (2.2.13)
Using these expressions, we define g ) and g ) via the analogues of (2.2.4)—

(2.2.5), with the subscript ¢ replaced by B and E, respectively. As a conse-
quence, for any h* < h <0,

0
8e(22) =g 2) + Y (0 (5 2) + o) (22)). (22.14)
Jj=h+1

As already observed in Remark 2.2, all the functions involved in this identity
can be naturally extended to all z,y € R? (and, therefore, in particular, to
all z,2' € Z?), by interpreting the right side of (2.2.7), etc., as a function on
R? x R2.

2.2.2. Decay Bounds and Gram Decomposition: Statement of the Main
Results. Given the multiscale and bulk-edge decomposition (2.2.14), we now
intend to prove suitable decay bounds for the single-scale bulk and edge prop-
agators, as well as to show the existence of an inner product representation
(‘Gram representation’) thereof. These will be of crucial importance in the
non-perturbative multiscale bounds on the partition and generating functions,
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discussed in the rest of this work, and they are summarized in the following
proposition.

Given a function f : (22)2 — C (or a function f : A2 — C extend-
able to (Z?)?, in the sense explained after (2.2.14)), we let d; ; be the dis-
crete derivative in direction j with respect to the first argument, defined by
O, f(z,2) = f(z+¢€;,2") — f(z,2'), with é; the j-th Euclidean basis vector;
an analogous definition holds for 0, ;.

Proposition 2.3. There exist constants ¢,C' such that, for any integer h in
[h*+1,0], any r = (r1,1,71,2,72,1,72,2) € Zi, and any z,2 € A?,
1.

187" (z,2/)|| < CHHIrhp1g(tIr )R =2 2=2"llx (2.2.15)

where the matriz norm in the left side (recall that 8" g (xz,y) is a2 x 2
matriz) is the max norm, i.e., the maximum over the matriz elements,
2 i.j 2
9" = [1,21 01, vt = IIi =1 mig!s and ||zl = Iperp(z1)] + |22, see
(2.2.12),
Moreover, if z,2" € A are such that |per;(z1 — 21)| < L/2 — |r11] — |r21
2.

?

187 g (2, 2")|| < 120 FIrih =2 dn (=) (2.2.16)

where dg(z,2") := min{|per, (21 — 21)| + min{zs + 25,2(M + 1) — 25 —
2y}, L —|pery (21 — 21)[ + 22 — 25}
Finally, there exists a Hilbert space Hyn with inner product (-,-) including
elements 75,’}2,2, %]}z,z, 7553’2, ’yf,gshl (for s = (s1,52) € Zi, x € A) such that
whenever h* < h <0,

5. 000 (2,2) = (120 ) and

8(5’5,)9551}})(272’) = (Wfs},llﬁf’?’z,), and
b BT L ) B[ < ot sizha2ieh) where ||

is the norm generated by the inner product (-,-).
Combining points 3 and 4, we see that
Corollary 2.4. For all z, 2’ € A, r € Z4, and h* < h <0,
|87 g(=M) (2, 2")|| < CIFHIThigipQtirioh, (2.2.17)

Remark 2.5. Since g](3h) =g — ggl), from items 1 and 2 it follows that the
bulk, single-scale, propagator ggb) satisfies the same estimate as (2.2.15) for all
z,y € A allowed in Item 2, i.e., whenever |pery (z1 —21)| < L/2—|r1 1] —|r21]-
The latter restriction on z, z’ just comes from the requirement that the discrete
derivatives do not act on the discontinuous functions sy, and per;, entering the
definition of g](3h) (and, therefore, of gSEh)); in fact, one can easily check from
the proof that, if » = 0, then (2.2.16) is valid for all z, 2’ € A, without further

restrictions.
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Remark 2.6. All the estimates stated in the proposition are uniform in L, M,
therefore, they remain valid for the L, M — oo limit of the propagators. In
particular, gg..}f)(z —2') and ggh)(z — 2') satisfy the same estimates as (2.2.15)
and (2.2.17), respectively. Similarly, the Gram representation stated in items
3 and 4 is also valid for gﬂ.ﬁ). Therefore, if |21 — 27| < L/2 — |s1] — |s}], also
B(S’sl)ngh)(a:,y) — 3(878’)9(11)(2,,2’) - 8(573/)9&1)(2 — 2') admits a Gram rep-
resentation, with qualitatively the same Gram bounds (and, of course, such
a representation can be extended by anti-periodicity to all z,2’ such that
Iperp, (21 — 21)| < L/2 — [s1] — [s1]).

Remark 2.7. If we rename the massive propagator in (2.1.16) as g, (2, 2’) =:
g (2, 2') and then use it to define gg), gg)7 and gg) in the same way that we
did above with g™, it is straightforward to check that the estimates in items
1 and 2 of the proposition remain valid for h = 1. Similarly, the reader can
check that the proof of items 3 and 4 given below can be straightforwardly

applied to the case h = 1, as well.

Remark 2.8. Again since D(ky, kz) is exactly the denominator in the defini-
tion (2.1.20), it is easily seen that f,(ki,k2)g(k1,k2) is an entire function of
t1. All of the bounds in Proposition 2.3 are obtained by writing the relevant
quantities as absolutely convergent integrals or sums in ky, ko, and n; since
these bounds are locally uniform in ¢; as long as it is bounded away from 0
and 1, we also see that all of the propagators are analytic functions of ¢; with
all other arguments held fixed.

The proof of Proposition 2.3 is in Appendix B.

2.3. Asymptotic Behavior of the Critical Propagator

Although our main result, Theorem 1.1, involves correlation functions for a
finite lattice, since the continuum limit of the energy correlation functions of
the non-interacting model is well understood [11,24], as a result we also obtain
a characterization of the scaling limit [4, Corollary 1.2]. For completeness, we
give here a description of the scaling limit of the critical propagator, from
which the non-interacting energy correlation functions are easily calculated.

We rescale the lattice as follows: fix two positive constants £1,f5 (no
condition on the ratio ¢1/¢3), and let L = 2|a="4;1/2], M = |a= 45| for a > 0
the lattice mesh. Let A% := aA and Ay, ¢, the continuum cylinder. We also let
||-]] indicate the Euclidean distance on the cylinder Ay, ¢,. Given z,2' € Ay, 4,,
we let

Oca(z,2) =a tg.(la™ 2], [a™ 2 )). (2.3.1)

The main result of this section concerns the limiting behavior of g. , as a — 0.

Proposition 2.9. Given ¢1,05 > 0, there exist C,c > 0 such that for all x,y €
Ay, ¢, such that z # 2’ and a > 0 for which a(min{ly, ¢y, ||z — 2’| }) 7! <,

gc,a(zv Z/) = gscal(zv ZI) + Ra(zv Zl)v (232)
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and ||Rq(z,2')|| < Ca(min{ty,ls, ||z — z’||})_2, where
Gseal (2, 2") = Z =" {B:otl(zl - 21 +nily, z2 — Z2 + 2n2f3)
n €72

4 {*gical(h — 2] 4 by, 2o+ 2h + 2n2ks) g5 (21 — 2 4+ naky, 22 + 2 + 2n202) ]
—95° (21 — 2} + n1ly, 22 + 25 + 2n2bs) g3 (21 — 2] + n1ly, 22 + 2h + 2(n2 — 1)£2)

(2.3.3)
and where, letting
gscal(z1 22) — // dkl dk’z —Lklzl ikozo —ikl
' 1 - t2 R2 k% —+ k%
21
= 2.3.4
271'152(17152)2’1 + 22 ( )
we denoted gi (21, 22) = gscal(lzth, = tl) G5 (21, 20) 1= gscal(liiil’ 132),
and
scal scal
scal g1 (21722) 92 (z1’22)
z1,22) == |74 . 2.3.5
(1089 ( 1 2) |:g§cal(zl72,2) _gical(ZhZZ) ( )

The proof of Proposition 2.9 is given in Appendix C. It is easy to see
from the definition of g5 that its entries vanish for zp = 0 and/or zp = /3
and/or z, = 0 and/or z, = {5 in a fashion analogous to the one discussed in
Remark 2.2.

2.4. Symmetries of the Propagator
Note that the action Sy, 1, (®) of Eq. (2.1.2) is unchanged by the substitutions

H,—iHy,., H,—iHgp., V.—iVg, V.——iVy,. (24.1)
with 61 (21,22) := (L 4+ 1 — 21, 29), or

H,— —iHy,., H,— iHp,,, V,—iVy,., V.—iVy,. (24.2)
where 02(z1,22) := (21, M + 1 — 29). These transformations, of course, corre-
spond to the reflection symmetries of the Ising model on a cylinder. In terms
of the ¢, £ variables, it is easy to see from Eq. (2.1.10) that these substitutions
are equivalent to

Gt,> = O10+ = Fid1 9,2, Ex.— O1&s. =50, (2.4.3)

and

¢i,z - ®2¢:I:,z = i¢$,9227 g:i:,z - ®2§:|:,z = q2i£:l:,022~ (244)
With a little more notation we can write this more compactly: letting ¢, .
denote ¢y 4, 0— 2, &4 2,6— 2 for w = 1,—1,+4, —i, respectively, and letting
0;w := (—1)7T1w for w € C, Egs. (2.4.3) and (2.4.4) can be combined into

@jd)w,z = iaj,w¢9_jw,6jm (245)

where a;,, is —1if (j =1 and w = —1) or (j = 2 and w = i), and 1 other-
wise. Since these transformations act on the vector ¥ as orthogonal matrices,
this is equivalent to the symmetry of the coefficient matrix A (and therefore
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its inverse) under the associated similarity transform, and since g. is just a
diagonal block of A~! we have

gc(z’ Zl) _ |:_g0;++ Yo;+— :| (9127 912:/) (246)
Je;—+ “Yoi——
and
gel(z,2') = — [90%—— gc;ﬂ (022, 022"). (2.4.7)
Jei+— Gei++

These relationships can also be recovered from Eq. (2.1.19), using the observa-
tions on goe in Remark 2.1. This latter point is helpful because, since f;, is even
in both ki and ks, it also applies to g, Taking the appropriate L, M — oo

limit we also obtain

[n] (7] [n] [n]
—Yoo; Gooi+— 9oo:—— Yoo:—
gLZ] (2’1,2’2) = [ [ T [777?— ‘| (_31;22) = - [ [77]7 [77]’ +] (Z1, _ZQ)a
9oo;—+ “Yoo;—— Joos;+— Joo;++

(2.4.8)

which also implies that ggﬂ has the symmetries (2.4.6) and (2.4.7). Applying
the differences and integrals in the relevant definitions we see that

Lemma 2.10. ggh), gggh), gg'), and gl(ah) all have the symmetries (2.4.6)

and (2.4.7) for any he, < h < 0, and gg) has the symmetries (2.4.8) for
any h <0.

For g((;l) = g,, we have

9m(272’/) _ |:gm;—— 9m;—+:| (912,91Z/) _ |:gm;++ Imi+— (92270221)
Imi+— Im;++ Im;i—+ —9Gm;——

(2.4.9)

n O

which similarly extends to geo', g5’, and gg ).

3. Grassmann Representation of the Generating Function

In this section we rewrite the generating function of the energy correlations for
the Ising model (1.1) with finite range interactions as an interacting Grassmann
integral, and we set the stage for the multiscale integration thereof, to be
discussed in the following sections. The estimates in this and in the following
section are uniform for Jy/Jo, L/M € K and t;,t2 € K’, but may depend
upon the choice of K, K’, with K, K’ the compact sets introduced before the
statement of Theorem 1.1. As anticipated there, we will think of K, K’ as being
fixed once and for all and, for simplicity, we will not track the dependence
upon these sets in the constants C,C’,...,¢,c, ..., k,K,..., appearing below.
Unless otherwise stated, the values of these constants may change from line to
line.

Our goal is to show that the generating function (1.6) of the energy
correlations can be replaced, for the purpose of computing multipoint energy
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correlations at distinct edges, by the Grassmann generating function (1.7).
Our main representation result for the Taylor coefficients at A = 0 of the
logarithm of Zx(A), analogous to [18, Proposition 1], is the following.

Proposition 3.1. For any translation invariant interaction V' of finite range,
there exists A\g = Ao(V) such that, for any |A] < Xo(V),

0 0 0 0 =~
log Zp(A) = ——...—logEAr(A)
0A., 0A,, Ao OAg 0A,, A0
as long as n > 2 and the x; are distinct, where
EA(A) = VA / DP eSt1t2 (P)HV(®,A) (3.1)

where Sy, 1, was defined in (2.1.2) and, recalling that E, is the Grassmann
binomial defined after (2.1.2):

1.
V(@,A4)= Y (1-£,)EA+ Y WMXY)]]E ][] A
TEBA X,YCBa zeX z€Y
X0 (3.2)
EBfree((b,A)—f—Vint((I),A)
where, for any n € N, m € Ny, and suitable positive constants C,c, K,
sup Z |W/i\nt (X, Y) |ec6(XUY) < cmtn |/\‘max(1,n(m+n))
T0EBA X VB yiwgdX
| X |=n,|Y|=m
(3.3)
and §(X), for X C Bp, denotes the size of the smallest Z DO X which is
the edge set of a connected subgraph of Gy .
2.
W(A) = > wa¥) [] 4 (3.4)
YCB, z€Y
[Y|>2

where, for any m € N, and the same C, ¢,k as above,

sup Z lwa (Y)[e0) < gm | Amax(Lrm) (3.5)
ToEBA Y CBa:
zodY, |Y|=m

3. Wint wy, considered as functions of \, t1, and ta, can be analytically con-
tinued to any complex X, t1,ts such that |\| < g and |t1], |t2] € K', with
K' the same compact set introduced before the statement of Theorem 1.1,
and the analytic continuations satisfies the same bounds above.

Proof. The proof is basically the same as [18, Proposition 1], so we refer to
that for the details. Note that the restriction in [18] to a pair interaction is
unimportant, since any even interaction of the form V(X)ox with X C A can
always be written as a product of factors of ¢, in analogy with the rewriting
0.0, = $(U. .+ D, ) discussed after [18, Equation (2.8)]; the only difference
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in the current setting is that the ‘strings’ graphically associated with U, ,» and
D, ./, see [18, Figure 3], are replaced by other figures, whose specific shape
depends on V(X) and that one should use ¢; or ¢, in place of t as appropriate®.
Note that the set of strings associated with a pair interaction, or the set of more
general figures associated with a generic even interaction, is, or can be chosen
to be, invariant under the basic symmetries of the model, namely horizontal
translations, and horizontal and vertical reflections; therefore, in the following,
we shall assume that such a graphical representation is invariant under these
symmetries.
By proceeding as in [18] we get the analogue of [18, Eq.(2.20)], namely

WA)+V(®,4)= Y ") [[¢cn= D Wax,Y) [] B [] 4«

TeCx ~yel X, YCB, zeX zeY
(3.6)

where C} is the set of multipolygons in A, ¢T is the Mayer’s coefficient, and
(c is the activity of the polygon v, which is a polynomial in the E,, A, for
edges x in v (for more details about the notation and more precise definitions,
we refer to [18]). The terms with X = () contribute to W(A) (that is, we let
wp(Y) := Wa(0,Y)), while those with X # () contribute to V(®, A) (note
that, for the purpose of computing the derivatives of log EA(A) of order 2 or
more, the terms with | X| = 0 and |Y'| = 0,1 can be dropped from the definition
of W(A), and we do so). The explicit computation of the term independent
of A, which has X =Y € 9B, leads to the decomposition in Eq. (3.2). The
bounds Egs. (3.3) and (3.5) follow directly from the bounds in [18], see, e.g.,
[18, Eq.(2.25)] and following discussion.

Finally, the analyticity property (which was used implicitly in [18]) fol-
lows by noting that we have defined all of the quantities of interest as uniformly
absolutely convergent sums of terms which are themselves analytic functions
of \,t1,t2 as long as the absolute values of these parameters belong to the
appropriate intervals. O

With a view toward the analysis of finite size effects in [4] (and, in par-
ticular, toward the claims done in [4, Section 2.2] after the statement of [4,
Proposition 2.5]), it is convenient to decompose the kernel Wit of Vint(d, A)
into a ‘bulk’ plus an ‘edge’ part. This requires a bit of notation. Note that
any subset X of A with horizontal diameter smaller than L/2 can be identi-
fied (non-uniquely, of course) with a subset of Z? with the same diameter and
‘shape’ as X; we call X, C Z? one of these arbitrarily chosen representatives®

5We take the occasion to point out that [18, Figure 4] contains a mistake: the string Sz
depicted there is not allowed by the conventions of [18]: the shape S> can only be obtained
as the union of two appropriate strings.

8For instance, given X = {z1,...,2n}, recalling that (z;)1 € {1,2,...,L} and (z;)2 €
{1,2,..., M}, we can let Xoo = {y1,...,yn} be the set of points such that: (1) the vertical
coordinates are the same as those of z, i.e., (y;)2 = (2;)2, Vi = 1,...,n; (2) the horizontal
coordinate of y; is the same as z1, i.e., (y1)1 = (21)1; (3) all the other horizontal coordinates
are the same modulo L, i.e., (y;)1 = (2i)1 mod L, Vi = 2,...,n; (4) the specific values of (y;)2



Vol. 23 (2022) Non-integrable Ising Models in Cylindrical Geometry 1083

of X, and we shall use an analogous convention for the subsets of B, with
horizontal diameter smaller than L/2.

Lemma 3.2. Under the same assumptions of Proposition 3.1, the kernel Wit
of VIt (®, A) can be decomposed as

WRNX,Y) = WX, Yo ) 1(diam; (X UY) < L/3) + Wi (X,Y)
= WE(X,Y) + Wir(X,Y), (3.7)

where diamy is the horizontal diameter on the cylinder A; Xy, Yoo C B :=
B2 are two representatives of X,Y, respectively, such that Xoo U Yy s a
representative of XUY , in the sense defined before the statement of the lemma;
Wit s a function, independent of L, M, invariant under translations and
under reflections about either coordinate axis, which satisfies the same weighted
L' bound (3.3) as Wi, Moreover, for any n € N and m € No, Wit satisfies

1 : .
Z Z |WI:]nt (X, Y)|605E(XUY) < Cvm-i—n|)\|nt1ax(1,M(m—i—n))7 (38)
X, YCB\
|X[=n, [Y]=m
with the same C,c,k as in Proposition 3.1, where og(X) is the cardinality of
the smallest connected subset of B which includes X and either touches the
boundary of the cylinder”, or its horizontal diameter is larger than L/3.

Proof. In order to obtain the decomposition (3.7), let
W;Iolt(Xoo,Yoo) ::le\ilm W/i\nt(Xoo—FZL,M,YOO—FZL,M), (3.9)

where 27,y = (L/2, | M/2]) and Xoo + 21,0 is the translate of Xo by 21, a3
note that this limit is well defined thanks to the fact that Wi can be expressed
in terms of a sum like [18, Eq.(2.21)], which is exponentially convergent, see
[18, Eq.(2.25)]. The kernel Wt satisfies the analogue of (3.6), that is

> T (D) (H et - 1] cc(v)hzo) = > wkx,Y) [] B [] A

reCo ~erl ~erl X,ycs zeX z€Y
(3.10)

with Cy the set of multipolygons on Z?2, and the activity (g(7) the same as
the one in (3.6), provided that v is considered now as a polygon in Z?2, rather
than in A (note that such identification is possible as long as v does not wrap
around the cylinder). Moreover, W is translation invariant, and, letting

WX, Y) == WX, Y) — I (diam (X UY) < L/3)W" (X, Vo),
(3.11)

the contribution to the first term in the right side of all multipolygons in Cy
with horizontal diameter < L/3 cancels with their counterparts in Cy, from

for ¢ > 2 are chosen in such a way that the horizontal distances between the corresponding
pairs in X and X are the same, if measured on the cylinder A or on Z2, respectively.
"We say that X C 9B, ‘touches the boundary of the cylinder A’, if at least one of the edges
in X has an endpoint whose vertical coordinate is either equal to 1 or to M.
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the second term in the right side. Each of the remaining multipolygons either
comes from the first term in the right side and involves a multipolygon in
Cx whose support has horizontal diameter larger than L/3, or comes from the
second term in the right side and involves a multipolygon in Cy, whose support
contains a set Z,, which is the representative (in the sense explained before
the statement of the lemma) of a connected subset Zj of B, that contains
X UY and touches the boundary of A; in either case the number of edges in the
support of such a multipolygon is at least ég(X UY'), from which the bound
(3.8) follows. O

In the following, we will wish to work in the ¢, ¢ variables introduces
in Sect. 2.1.2; applying the change of variables (2.1.10), with some abuse of
notation we rewrite V(®, A) in (3.2) as

Vg, & A) =D Y BI*(w,2),2)p(w,2)A,

2EBA (w,2)EO02XA?

+ Z Z Z Wt (w, 2), ) d(w, 2) A(x)
nE2N (w,z)EO" X A™ zEBY
meNy
=: B"(¢,€, A) + V(9. A),
(3.12)

where N and Ny are the sets of positive ad nonnegative integers, respectively,
O :={1,-1,i,—i}, and, for w € O™, z € A, we denote

=[] ¢, =, (3.13)
=1

with ¢4; . = &4 -, and similarly A(z) := H;n:l Az, (for & = 0, we interpret
A(D) = 1). The decay properties of s noted after Eq. (2.1.11) together with
Eq. (3.3) imply a similar decay property for the new coefficients:

sup sup Z 605(Z"”)’Bf\ree((w,z)7x)| <C, (3.14)
weO2 B 2EA2

and

sup sup Z ec&(z)’W[i\nt((w’z)’@)} < Cn|>\|max(1,nn)
weO™ z N P Za €A

sup sup Z Z ecS(z ’z)‘W}\nt((w,Z),.'B)’ < Cn+m|>\‘max(1,n(n+m)).
wEO”zLE‘BAwZ ----- T €EB A 2z EAT

(3.15)

Note that, with this rewriting in terms of the ¢, ¢ variables, recalling that
Sty 12 (D) = Si(&) + Sc(9), see (2.1.12)—(2.1.13), and denoting P.(D¢) :=
D¢ eSe(®) | Pf(A.), Pp(DE) := DEeSm &) /PE(A,,) (here A, and A,, are the
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two 2|A| x 2|A| anti-symmetric matrices associated with the Grassmann qua-
dratic forms S.(¢) and S,,(£), respectively), the Grassmann generating func-
tion Ep(A) in (3.1) can be rewritten as

EA(A) xx VA /PC(D¢>)/Pm(D§)eV(¢*f*A), (3.16)

where o means ‘up to a multiplicative constant independent of A’. In view of
these rewritings, Proposition 3.1 implies [4, Proposition 2.5] as an immediate
corollary.

Of course, the bulk-edge decomposition of Lemma 3.2 implies an analo-
gous decomposition for the kernel of VI"t(¢, ¢, A), which reads as follows:

Wi (w, 2), @) = (~1)*C) 1 (diam, (z,@) < L/3) W (@, 200, 200)
+ W (. 2), ) (3.17)

B ((w,2), ) + W ((w, 2), ),
where, for any z with diam;(z) < L/3,

alz) = #{zi€z : ()1 <L/3}, i max;, e {(2i)1 — (25)1} = 2L/3,
B 0, otherwise.

(3.18)
and

Wht((w, 2), ) := . ]I&Imoo W (w,z + 20.0m), T + 21.01)- (3.19)
The factor (—1)®(*) in front of the first term in the right side of (3.17), in light
of the antiperiodicity of the ¢, fields, guarantees that WAt is translation
invariant (in both coordinate directions), and that both Wi and Wit are
invariant under simultaneous translations of z and @ in the horizontal direc-
tion, with anti-periodic and periodic boundary conditions in z and «x, respec-
tively. In terms of this new notation, Eq.(3.8) implies that, for any n € N and
m e No,

— sup Z | mt )‘666]3 z,x) < Cm+n‘)\|max(1 /{(m+n))7 (320)
wEO” ZEA™
zE‘Bj{L

with dg(z,x) is the ‘edge’ tree distance of (z,x), i.e., the cardinality of the
smallest connected subset of B, that includes x, touches the points of z
and either touches the boundary of the cylinder or it has horizontal diameter
larger than L/3. Of course, B{®® admits a similar bulk-edge decomposition:
in analogy with (3 7), Biree = Blree 4 Blree with

— sup Z |BEee(w, 2, z)]e==0) < C. (3.21)
we(92 2eA?
.TE%A

Before concluding this section, let us comment on the connection between
(3.16) and (1.7). Fix once and for all a neighborhood U C R of 1 not containing
0; say, for definiteness, U := {z € R : |z — 1] < 1/2}. For any Z € U and
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t; € K/, welet t5 := (1—t})/(1+t;) and let S* (@) = 3(¢, AL) (resp. S;,(€) =
3(€,A5,€)) be obtained from S, (resp. Sp,) by replacing tq,t; with ¢f,¢5 in
Eq. (2.1.13) (resp. Eq. (2.1.12)). We also let P*(D¢) := DgeS:(®) | Pf(A¥),
P (DE) := DeeSm&) ) PE(A%)). Given these definitions, in (3.16) we first rescale
the ¢ and ¢ variables by Z~1'/2, then multiply and divide the Grassmann
integrand by eS¢ (?)+Sn(8)  thus gettmg

=(A) o VW / P (D) Py, (DE)e¥ ™ (@64) (3.22)
with
V<1)(¢,§,A) = Z7180(¢) _S:(¢) +Z718m(§) ’"L(§)+V(Z 1/2¢ Z 1/2§ A)
=1 Ne(¢) + Nin(€) + V(Z7 129, Z271/2%¢, A). (3.23)

This proves (1.7) and puts us in the position of setting the multiscale compu-
tation of the sequence of effective potentials, whose infinite plane counterparts
are constructed and bounded in the next section. For later reference, we note
that, in light of (2.1.12), (2.1.13), (3.12), VI (¢, &, A) can be written as:

Vige,a)=> Y N wl(w2),z)éw 2)A),

ne2N, (w,z)eO"xAm BT
meNo

(3.24)

for an appropriate kernel, which inherits its properties from those of S,
S, and V. With no loss of generality, we can assume that W(l) is anti-
symmetric under simultaneous permutations of w and z, symmetric under
permutations of @, invariant under simultaneous translations of z and x in
the horizontal direction (with anti-periodic and periodic boundary conditions
in z and @, respectively), invariant under the reflection symmetries induced
by the transformations A, — Ag,, and ¢, . — ©¢, ., see (2.4.3)—(2.4.4).
From now on, with some abuse of notation, given w = (wi,...,w,) € O"
and z = (21,...,2n) € A", we shall identify the pair (w,z) with the n-ple
((w1,21)y- -, (Wny2n)) € (O x A)™

4. The Renormalized Expansion in the Full-Plane Limit

In this section we construct the sequence of effective potentials (see the last
part of Sect. 1) in the infinite volume limit and derive weighted L' bounds for
their kernels, in a form appropriate for the subsequent generalization to the
finite cylinder, discussed in [4, Section 3]. The construction of this section will
allow us, in particular, to fix the free parameters 3, Z, t7, which the Grassmann
integral in the right side of (3.22) depends on, in such a way that the sequence
of running coupling constants goes to zero exponentially fast in the infrared
limit; see Sect. 4.5 below.

As anticipated at the end of Sect. 1, here we limit ourselves to construct
the sequence of effective potentials at A = 0, so, for lightness of notation,
we denote by V) (¢) := V) (¢,0) the effective potentials with h < 0 at zero
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external fields (similarly, we let V(1 (¢, &) = V1 (4, €, A)). In light of (1.8) and
(1.10), these effective potentials are iteratively defined via

log [ P, (DE) eV (¢:9) ifh=1,
log [ P (Dyp) VI () RVO (0te) if <
(4.1)
where the const. is fixed so that V") (0) = 0, for all h < 0, and LV 4 RV
is an equivalent rewriting of V()| to be defined (in the full plane limit) below.

Expanding the exponential and the logarithm in the right side of (4.1) allows
us to rewrite

V=1 () = const. + {

1
VO(g) = const. + Y =Ex | V(, )+ V(g ) (4.2)
s21 > s times
and, for h <0,
1
(h=1)(p) = =
1% (¢) = const. + E>1 o

E® L V™ (g + )+ RV (o4 );-- s LV (o 4+ ) + RVP (4 + 1)

s times

(4.3)

where E¥, (resp. E®) denotes the truncated expectation [15, Eq.(4.13)] with
respect to the Grassmann Gaussian integration P (resp. P"). Expand-
ing the effective potentials in terms of their kernels, in analogy with (3.24),
Egs. (4.2)-(4.3) allow us to iteratively compute the kernels of V", for all
h < 0. For instance, at the first step, using (3.24), (4.2) and the BBFK for-
mula (for Battle, Brydges, Federbush, Kennedy) for the Grassmann truncated
expectations [1,7-9], we find that, denoting by V/ED(\IJ) = W/(\l)(\ll,(l)) with
U= ((w1,21)s 5 (Wn, 2n)) € Upean(O x A)™ =: M 5 the kernel of V1) (¢, ),
the kernel VJEO) of VO (¢) satisfies, for any ¥ = ((w1,21),...,(wn,2n)) €
Unean({+, =} x A)",
o0 (¥)

VA“))(\IJ):Z% ) DO CTRE

s=1 7 Wy, W eMi A TES(Ty,...,T,)
(050, w) [ T VAV () | (4.4)
j=1

where
e the symbol (¥) on the second sum means that the sum runs over all
ways of representing ¥ as an ordered sum of s (possibly empty) tuples,
U & --®¥, =T, and over all tuples My 4 3 ¥; D \I/; (here @ indicates
concatenation of ordered tuples); for each such term in the second sum,
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we denote by W; := W; \ ¥} and by a(¥;Vy,...,¥;) the sign of the
permutation from ¥, ®--- ® ¥, to ¥ P U, 60U, (here @ indicates
concatenation of ordered tuples);

e S(¥y,..., ;) denotes the set of all the ‘spanning trees’ on ¥y, ..., ¥,,
that is, of all the sets T of ordered pairs (f, f’), with f € U;, f' € ¥;
and ¢ < j, whose corresponding graph Gr = (V, Er), with vertex set
V ={1,...,s} and edge set Er = {(i,5) € V* : 3(f, f') € T with f €
Qi, f' € Q;}, is a tree graph (for s = 1, we let S(¥;) = {0});

. Qﬁ(Tl)(\Tll, ..., Uy) is different from zero only if W; € Uy, ({+i, —i} x A)"
forall j=1,...,s, and, if s > 1, onlyif‘I/j # @ forall j=1,...,s; more
precisely: if s = 1 and ¥; = (), then 6&1)((2)) =1;if s =1 and ¥y # 0,
then @(5)1)(@1) = Pf(Ggl)), where, given a pair £ = ((w, 2), (W', 2')) of

distinct elements of Wy, (Gfizll))z = gél) = g(_li)w (2,28 if s > 1 and

W #(forall j=1,...,s, then

& (Ty,...,T,)

= aT(\ilh e @G)

IT o

1
/P\Ill,..‘,\IIS,T(dt) Pf(GSI/I) 7@57T(t))a
LeT

yeee

(4.5)

where

— ap(¥yq,...,¥,) is the sign of the permutation from ¥; @ --- @ U,
toT® (WU \T)D---® (P, \T);

— t={tij}1<ij<s, and Py, g, r(dt) is a probability measure with
support on a set of ¢t such that ¢;; = u; - u; for some family of
vectors u; = u;(t) € R® of unit norm;

— letting 2¢ = >0, |0, Ggl)w’qls’T(t) is an antisymmetric (2¢ —
2s42) x (2q — 2s 4 2) matrix, whose off-diagonal elements are given
by (Gsijll)»-”;qjs,j:(t))f,f/ = ti(f)yi({c/)gé(l}’f,), where f, f’ are elements
of the tuple (¥1\T) @ --- @ (Vs \ T), and i(f) is the integer in

{1,...,s} such that f is an element of ¥; \ T

(1)

Recalling that g, and ngl) admit infinite volume limits g(l)

2,00
tively, in the sense of (2.2.9) and (3.19), from (4.4) it follows that Véo) admits
an infinite volume limit as well, equal to the ‘obvious’ analogue of the right side
of (4.4), namely, the expression obtained from that one by replacing: M; 5 by
M oo := Upean(O x Z2)™; (’59) by Gj(Tllo (the latter being defined analogously

to the former, with gél) replaced by gé}go

v by VA,

and VO(Q1 ) , respec-

in all the involved expressions); and

(1)

o,0

gk, (2,2"), where g%, (2, 2’) the same as in (2.1.16) with t; replaced by ¢;.

8Here g\, (z,2') with o,0’ € {+,—} are the elements of the 2 x 2 matrix g(!)(z,2') =
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Proceeding inductively in h < 0, one finds that (4.3) implies a repre-
sentation of the kernel Vlgh) of V" analogous to (4.4). Also in that case,

the resulting formula for Vih) admits a natural infinite volume limit. In this
way, we obtain a recursive equation for the infinite plane kernels, denoted Vo(oh),
whose definition and solution is described below. Convergence of the finite vol-
ume kernels V/Eh) to their infinite volume counterparts, with optimal bounds
on the norm of the finite size corrections, is deferred to [4, Section 3]. A key
point in the derivation of bounds on the kernels that are uniform in the scale
label h is the definition of an appropriate action of the £ and R operators,
as well as of their infinite volume counterparts, L, and R. As anticipated
above, these operators allow us to isolate the potentially divergent part of the
kernels, LV(?) (the ‘local’ contributions, parametrized at any given scale, by a
finite number of ‘running coupling constants’) from a remainder RV | which
is ‘dimensionally better behaved’ than £V); in order for the remainder to be
shown to satisfy ‘improved dimensional bounds’, it is necessary to rewrite it in
an appropriate, interpolated, form, involving the action of discrete derivatives
on the Grassmann fields.

The plan of the incoming subsections is the following: in Sect. 4.1 we
describe the representation of the effective potentials in the infinite volume
limit and introduce the notion of equivalent kernels; in Sect. 4.2 we define
the operators L, and Ro; in Sect. 4.3 we derive the solution to the recur-
sive equations for the infinite volume kernels in terms of a tree expansion;
in Sect. 4.4, we use such a tree expansion to derive weighted L' bounds on
the kernels; importantly, these bounds depend upon the sequence of running
coupling constants, and they imply analyticity of the kernels provided such a
sequence is uniformly bounded in the scale label; in Sect. 4.5, as a corollary
of the weighted L' bounds of the previous subsection, we prove a fixed point
theorem, which allows us to fix the free parameters Z, 3,t} in such a way that
the flow of the running coupling constants is, in fact, uniformly bounded in
h, as desired: even more, the running coupling constants go to zero exponen-
tially fast as h — —o0, a consequence of the irrelevance of the quartic effective
interaction in the theory at hand.

4.1. Effective Potentials and Kernels: Representation and Equivalence

In this subsection we define the effective potential in the full plane in terms
of equivalence classes of kernels V(¥), namely, of real-valued functions play-
ing the same role as the coefficient functions vd )(\Il) and VO )(\I!) introduced
above. This points of view avoids defining an infinite-dimensional Grassmann
algebra. The equivalence relation among kernels, to be introduced momentar-
ily, generalizes the relationships which hold between different ways of writing
the coefficients of a given Grassmann polynomial.

As mentioned above, in order to obtain bounds on the kernels of the
effective potentials which are uniform in the scale label, we will need to group
some of the Grassmann fields into discrete derivatives; we will mainly use
the directional derivative 0;¢,, , 1= Gu,zte; — Do,z (note that this is the same



1090 G. Antinucci et al. Ann. Henri Poincaré

convention used in Sect. 2.2.2). We consequently consider kernels which specify
when and how this is done, and in particular define the equivalence relationship
with this in mind.

Let Ao := Z2, let B denote the set of nearest neighbor edges of A, and
let D:= {D € {0,1,2}% : |D||; < 2}. Let My = Upeon({+, =} x D x Ao)"
be the set of field multilabels. for some n € 2N, such that ||D;||; < 2. We can
think of any ¥ = ((wy, D1,21), .-+, (Wn, Dn,2n)) € Mo as indexing a formal
Grassmann monomial ¢(¥) given by

¢(\II) = 8D1¢w1,z1 o aDnd)wn,zna (411)
where, denoting D; = ((D;)1, (D;)2) € D, we let

aDi (bwi,,zi = 6§Di)1a§Di)2¢wmzi )

with 0; and Oy the (right) discrete derivatives introduced above. In the
following, with some abuse of notation, any element ¥ € M., of length
|¥| = n will be denoted indistinctly by ¥ = ((w1, D1,21), .-+, (Wny Dny2n))
or ¥ = (w, D, z), with the understanding that w = (w1, ...,wy,), etc.

We will call a function V : Mo, — R a kernel function, let V,, denote its
restriction to field multilabels of length n, and let V,, , be the restriction of
Vi to field multilabels with ||D||; = p. Thinking of such a V as the coefficient
function of a formal Grassmann polynomial

V(g)= Y V(D)D) (4.1.2)

YeMoo

suggests an equivalence relationship corresponding to manipulations allowed
by the anticommutativity of the Grassmann variables and by the definition of
discrete derivative.

More precisely, we say that V is equivalent to V', and write V' ~ V'  if
either:

1. V' is obtained from V by permuting the arguments and changing the sign
according to the parity of the permutation;

2. V' is obtained from V by writing out the action of a derivative: that
is, there exist n € 2N, ¢ € {1,...,n} and j € {1,2} such that, letting
DIJ' = (Dl, . 71)1'_1, Di+éj7Di+1a ey Dn) and Z;j = (Zl, N 7 R A

éjazi+17"'azn>7
0 if (D;); =2,
V’r/L,p(w7D7z): Vn(w’Dj:pZ;j _Vn(“-’aD;r,jvz) if (Di); =1,
Va(w,D,z)4+Vo(w,D} 27 )= Va(w, D}, 2) if (Di); =0,
(4.1.3)

while V!, =V, for all m € 2N\ {n};

3. V'’ is obtained from V by adding an arbitrary kernel V* that is dif-
ferent from zero only for arguments with common repetition, that is,
V*(w,D,z) = 0 unless there is some i # j such that (w;, D;, %) =
(wj» Djs 2j);
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or V' is obtained from V by a countable sequence of such elementary operations
and of convex combinations thereof. Moreover, we assume that the equivalence
relation ~ is preserved by linear combinations, i.e., if V! ~ V,, for all « in the
countable index set Z, then > V. ~ > 7 Vo. We will call the equiva-
lence classes generated by ~ potentials and often specify them by formal sums

like (4.1.2).

Remark 4.1. The operation in item 2 can be thought of as a form of ‘integra-
tion by parts’. The kernels equivalent to zero, V ~ 0, correspond to what are
known as ‘null fields’ in the literature on conformal field theories.

4.2. Localization and Interpolation

In this section we define the operators L., and R acting on kernels indexed
by field multilabels in M, and show several estimates related to R.,. We
recall that, given a kernel V, the symbol V;, , denotes its restriction to field
multilabels of length n, such that ||D||; = p.

The operator L. First of all, we let

Loo(Vy) =0, if 2— g —p<o. (4.2.1)

In the RG jargon, the combination 2 — % — p is the scaling dimension of V,, ;,
and will reappear below, for example in Lemma 4.7; in this sense, (4.2.1) says
that the local part of the terms with negative scaling dimension (the irrelevant
terms, in the RG jargon) is set equal to zero.

There are only a few cases for which 2 — & —p > 0, namely (n,p) =
(2,0),(2,1),(4,0). In these cases, the action of L, on V;, , is non-trivial and
will be defined in terms of other basic operators, the first of which is L',N, which
is defined as: L(Vy,) = (LV)np = LV p, with

LVnp(w, D, (21,...,20)) = H(;Zi’zl Z Vap(w,D,(21,y2,...,Yn)).
Jj=2 Y2,--Yn €Noo
(4.2.2)
If (n,p) = (2,1),(4,0), we let
»COO(VQJ) = A(ZVQJ), ,COOV4’0 = A(EV;LO), (423)

where A is the operator that antisymmetrizes with respect to permutations
and symmetrizes with respect to reflections in the horizontal and vertical direc-
tions”. A first important remark, related to the definitions (4.2.3), is that, if
Va1 is invariant under translations and under the action of A, then

Eoo(‘é,l) = ClFC,oo + Cszoo, (424)

9The reflection transformations in the infinite plane act on the Grassmann fields in the
same way as (2.4.5), with the difference that the reflections 601 (x1,22) and 62(z1,z2) are
replaced by their infinite-plane analogues, namely by 61 (z1,22) = (—z1,22) and 0o (z1,22) =
(z1, —x2), respectively.
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for some real numbers ¢, co and Fy o, £ o the A-invariant kernels associated
with the potentials

f(,w(¢) = Z Z W(bw,z d1¢w,za fn,oo(¢) = Z Z ¢w7z d2¢—w,za

w==% 2EA w==% 2EA
with d; the symmetric discrete derivatives, acting on the Grassmann fields as
djdw,. = %(@-gb%z + 0j¢uw,2—¢;). A second and even more important remark

is that, due to the fact that w only assumes two values and that ZV470 is
supported on z such that z; = zo = 23 = 24, one has

Loo(Vap) =0, (4.2.5)

a cancellation that will play an important role in the following.
In order to define the action of L, on V5, we want to obtain a kernel
function equivalent to V2 o — LVa0, denoted by (RV)2 1, which is supported
on arguments with an additional derivative. As we will see, the definition of

R will also play a central role in the definition of the operator R, below. We
rewrite

> [Vao(w,0,2) = LVap(w,0,2)]6(w,0, 2)

z€AZ]
- Z ‘/2’0((4), 07 Z)[(b(w, Oa Z) - ¢(w7 07 (Zla Zl))]
z€AZ
= Z %70(w’0’z)¢wl,z1 (¢w2,z2 - ¢w27zl)- (4.2.6)
z€EAZ

We now intend to write the difference @u, 2, (Puws, 22 — Puws,z; ) as a sum of terms
of the form ¢, -, ¢y, With | D’[|; = 1, over the sites y on a path from z;
to z9. To do this we must specify which path is to be used.

For each z,2' € Ay, let v(z,2') = (z,21,22,...,2n,2") be the shortest
path obtained by going first horizontally and then vertically from z to z’. Note
that + is covariant under the symmetries of the model on the infinite plane,
ie.,

Sy(z,2") = v(Sz,52) (4.2.7)

where S : Ayo — A is some composition of translations and reflections par-
allel to the coordinate axes. Given z, 2’ two distinct sites in Ao, let INT(z, 2’)
be the set of (o, (D1, D2), (y1,y2)) = (0, D,y) € {£} x {0,é1,é2}? x A2, such
that: (1) y1 = 2, (2) D1 =0, (3) y2,y2+ D2 € (2,2, (4) 0 = + if yo precedes
y2 + Do in the sequence defining v(z,2’), and ¢ = — otherwise. In terms of
this definition, one can easily check that (4.2.6) can be rewritten as

(4.2.6) = Z Va,0(w, 0, 2) Z op(w,D,y)
z€ENZ (0,D,y)€EINT(z)
(4.2.8)

&)
Z Z(ﬁv)ll (wa D, y)‘z)(w’ D, y)a

yeA, D



Vol. 23 (2022) Non-integrable Ising Models in Cylindrical Geometry 1093

where, if z = (21, 21), the sum over (o, D,y) in the first line should be inter-
preted as being equal to zero (in this case, we let INT(z1, 2z1) be the empty

set). In going from the first to the second line, we exchanged the order of

(p)
D

summations over z and y; moreover, » 5’ denotes the sum over the pairs

D = (D, Dy) such that ||D||; = p, and
(RV)a1(w, D, y) := Z oVa,0(w,0,z). (4.2.9)
(a,D,yU)’éI'NT(z)

From the previous manipulations, it is clear that (ﬁV)g,l ~ Voo — ZVZO. We
are finally ready to define the action of Lo, on V5 o:

Loo(Van) = A(LVag + LRV )2,1). (4.2.10)

Note that, if V5 ¢ is invariant under translations and under the action of A,
then

ﬁoo(‘/é70) = C()F%OO + CIFC,oo + C2Fn,oov (4.2.11)

for some real numbers ¢, ¢1, c2, and F, o the A-invariant kernel associated
with the potential

1
Froo(®) =5 2 XA: W 2Pz (4.2.12)
wW==T 2€A

while we recall that F¢ o, F;) o Were defined right after (4.2.4). Summarizing,
in view of Eq. (4.2.5),

A(LVag) if (n,p) = (2,0),
LoV = { A(lVor + ERV)an) if (np) = (2,1),  (4.213)
0 otherwise.

The operator Ro. We now want to define an operator R, such that
RV ~ V — LV for kernels V that are invariant under translations and
under the action of A. First of all, we let

RooVap) = RooV)np :=Vap, if: m>6, orn=4andp>2,
orn=2andp>3. (4.2.14)

Moreover, we let
(ROOV)Q,O = (ROCV)QJ = (RooV)4,0 = 0. (4.2.15)

The only remaining cases are (n,p) = (2,2), (4,1). For these values of (n,p),
(ReoV)n,p is defined in terms of an interpolation generalizing the definition
of (RV)21 in (4.2.9). As a preparation for the definition, we first introduce

(ﬁV)n,p for (n,p) = (2,2), (4,1). For this purpose, we start from the analogues
of (4.2.6), (4.2.8) in the case that (2,0) is replaced by (n,p) = (2,1), (4,0): for
such values of (n,p) we write
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Z [Vnﬁv(wv D7 z) - Zvnvp(wv D,z)]qﬁ(w, Dﬂ Z)

zEAT

= Z Vn,p(w7D7z)[¢(va7z) - (b(vaa (21721, .. -7Z1))]

zEAT,
= Y Vap(w,D,2) > od(w,D+ D' y).  (4.2.16)
z€EAY (o,D’,y)€INT(z)

In the last expression, if n = 2, then INT(z) is the same defined after (4.2.7);
if n = 4, then INT(2) is the set of (o, (D1,...,D4), (y1,...,94)) = (0, D,y) €
{£} x {0,é1,é2}* x AL such that: either y; = yo = y3 = 21, D1 = Dy =
Ds = 0, and (0, (0,Dy4),(21,94)) € INT(21,24); Or Y1 = Y2 = 21, Ya = 24,
Dy = Dy = Dy = 0, and (0,(0, D3), (21,y3)) € INT(21,23); or y1 = 21,
Ys = 23, Y4 = 24, D1 = D3 = D4 = 0, and (0’, (O,Dg), (zl,yg)) € INT(Zl,ZQ).
By summing (4.2.16) over D and exchanging the order of summations over z
and y, we find

(p)
Z ZVn,p(w,D,z) Z op(w, D+ D' y)

zeAr, D (0,D’,y)€INT(z) (4217)
(p+1)
= Z Z(RV)n,pH(w,D,y)</>(w,D7y).
yeAr, D
with
(RV)pps1(w, D, y) := > oVpp(w,D—D' z). (4.2.18)
o,z,D’:

(0,D’,y)€INT(z)
We are now ready to define:
(RooV)2,2 := A(Va,2 + (RV)z2,2 + (R(RV))2,2), (ReaV)a1 :=A(Va1 + (RV)a1).

(4.2.19)
Summarizing,
0 if (n,p) = (2,0),(2,1),(4,0),
(RocV ) = A(Va o+ (RV)22 + (R(RV))2,2) if (n,p) = (2,2),
ST ) AWVaa A+ (RV)a) if (n,p) = (4,1),
Vo otherwise

(4.2.20)

From the previous manipulations and definitions, it is clear that, if V' is invari-
ant under translations and under the action of A, then V — LV ~ R V.
For later use, given D = (Dq,...,D,) with | D]y = p, we let ROOV|D be the
restriction of (RV'),;, to that specific choice of derivative label.

Remark 4.2. From the definitions of L., and R, it also follows that, if V
is invariant under translations and under the action of A, then L. (LV) =
LoV and R (LooV) = 0, two properties that will play a role in the following.
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Norm bounds. Let us conclude this section by a couple of technical estimates,
which relate a suitable weighted norm of RV to that of V, and will be
useful in the following. Suppose that V is translationally invariant. Let, for
any k > 0,

[Vaplly = sup » e o [Vip(w, D, 2)], (4.2.21)
zEAT: D
z1 fixed

where the label (p) on the sup over D indicates the constraint that || D]|; = p,
and (z) is the tree distance of z. With these definitions,

Lemma 4.3. For any positive €,
IRV ) nplly < (0= Ve Vit lurey i (np) = (2,2), (4, 1),
(4.2.22)

[(R(RV))2,2]l(x) < €2 (4.2.23)

As a consequence, noting that || AV, pllx) < [Vapll(x) and recalling the
definitions (4.2.20), we find that

[(RocV ), )+ Vailliero + 2 Vaollsng,  (42.24)
H(ROOV) R (k) +3€_1||V4,0||(K+€). (4225)

In the following, we will use bounds of this kind in order to evaluate the size
of the renormalized part of the effective potential on scale h. In such a case,
both & and € will be chosen of the order 2.

Proof. In order to prove (4.2.22), note that it follows directly from the defini-
tion of R that

(p) %
H(Rv)n;nH(rz) < SUP Z sup Z € 6(Z)|Vn’p71(“-’aD _Dlvy)|~

zEANT: oy,D’:
2 fixed (0,D’,2)EINT(y)
(4.2.26)
If we now exchange the order of summations over z and y, we find
K z (
||(RV)an(,€) < SUP Z Z 8(2) sup |Vnp 1(w, D, y)|.
yeAT: o,z,D’:
y1 fixed (o, D/,z)EINT(y)
(4.2.27)

Now note that §(z) < d(y) and that |[INT(y)| < (n — 1)d(y), so that

= (p-1)
IRV )uplliy < (n=D)sup Y~ e @(y) ggp Vap-1(w, D, y)|

@ yeEAL:
v1 fixed (4.2.28)

n—1

IN

Ve p=1llste,
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where in the last step we used the fact that § < e /e, for any € > 0. A two-step
iteration of the bound (4.2.22) proves (4.2.23). O

Similar estimates are valid for more general values of (n,p), but
Lemma 4.3 includes all the cases which are relevant to the present work.

The running coupling constants. At each scale h < 0 we represent the infinite
volume effective potential, as arising from the iterative application of (4.3) in
the infinite volume limit, in the form (4.1.2), namely:

V(@)= Y VI (W)e(D). (4.2.29)

VeEMoo

For each h < 0, in order to compute Vég -1 from Vg-f) via the infinite volume
limit of (4.3), we decompose VI Lo VA 4 R VA Note that the kernel
Lo VA in light of (4.2.4), (4.2.5) and (4.2.4), takes the form

LoV =My By o+ CiFe oo + 1 Fy o =: U - Foo, (4.2.30)

for three real constants vy, Ch,np, called the running coupling constants at
scale h. The factor 2" in front of v, is motivated by the fact that the F o=
(Fy,00)2,0 has scaling dimension 2 — % — =1, see (4.2.1), see also
(4.3.10) below.

p| (n,p)=(2,0)

4.3. Trees and Tree Expansions

In this section, we describe the expansion for the kernels of the effective poten-
tials, as it arises from the iterative application of Eq. (4.3). As anticipated
above, it is convenient to graphically represent the result of the expansion in
terms of GN trees. At the first step, recalling (3.23) and denoting by N.(¥)
and N,,(¥) the kernels of N.(¢) and N,,(€), respectively, we reorganize the
expression for VA9 obtained by taking the infinite volume of Eq. (4.4) to
obtain, for any ¥ = (w, D, z) € M such that D = 0 (which we identify
with the corresponding element (w, z) of Upcan({+, —} X Axo)™),

V(@) = Ne(@) + 27 1¥12vin )+ Sz IRy w6t (0 W)

T EM; ot
v, DOW
+Zg Z H [Nm(\llj)+Z7|\P]|/2V£t(\Ijj)] Oé(\IJ;\I’l,...,\I/S)
s=2 % W, Ww,eM, . \j=1
x Z 6(7’1,)00(@17"'7@8)7 (431)
TES(Ty,..., o)

where VI is the infinite volume limit of the kernel of V*(¢, £) := VI"t(¢, £, 0),
and we recall that in the first (resp. last) line, the factor Qﬁ% )oo(‘l’l \ U) (resp.
Qi(Tl))oo(\Tll, ..., Uy)) is different from zero only if WUy \ ¥ is an element (resp.

Wq,..., Uy are elements) of Upean({+4, —i} X A)™. For the definition of ¥,
see the first item in the list after Eq. (4.4).
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P = e —o+o—o+o<:+a<:+
12

LoV +RVY = &+ @
11

FIGURE 1. Graphical interpretation of (4.3.1)

Similarly, at the following steps, for any h < 0 and any ¥ € M, we

can write Vo(ch_l)(\ll)7 as computed via the infinite volume analogue of (4.3),
as follows:

VETDW@) ~ oy Foo (1) + RV (1) + Y RV ()6 (01 \ W)

Zsi > (H [un - Foo q/v)+7zoov;h>(q/j)}) (T Wy, ..., T,)

s=2 Wy, V. eEM =
XY e (T, W), (4.3.2)
TeS(¥y,..., v,)
Where Q§ (\Ill, ..., ¥y) is the infinite volume analogue of the function defined

n (4.5), dlffermg from it for an important feature (besides the ‘obvious’ one
that Q5(T}f lo is defined in terms of the infinite plane propagators gglo)o
than those on the cylinder): since now the field multilabels ¥; have the form
(w4, Dy, z;), with D; different from 0, in general, the infinite plane propagators
gého)o, with £ = ((wi, D, 2i), (wj, Dj, 2;)), entering the definition of Qﬁ(Th)OO should

now be interpreted as aD 3zj7g£,h2dj (zi, ZJ)

We graphically interpret (4.3.1) as in Fig. 1. On the right-hand side of
the first line, we have drawn a series of diagrams consisting of a root at scale
1, which we will usually denote vy, connected to s other vertices (which we
will call endpoints) at scale 2 which are of two different types: €, which we call
counterterm endpoints and which represent N, or N,,, and @, called interaction
endpoints and representing VI*. In the first two terms (in which there is no
factor ®(Tl’2>o, because it is ‘trivial’, i.e., it equals 6&120(0) = 1) the root is
drawn simply as the end of a line segment (we will say it is undotted); in the
other terms (including all those with s > 1) we draw a dot @ to indicate the

rather

presence of a non-trivial Qﬁ(l)oo and « factors and additional sums.

In order to iterate the scheme, we decompose VO(B ) as Voo ©) ~ Lo Vo(é)
Roo Vo(o) and graphically represent L Vo(o) = vg - F5x by a counterterm vertex
@ at scale 1, and ROOVO(S ) by a big vertex o at scale 1, as indicated in the
second line of Fig. 1. Next, using the conventions of Fig. 1, we graphically
represent V(,(o_l)7 computed by (4.3.2) with h = 0, as described in Fig. 2
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Vil = > ® o O 4o
o 1 0 1
Rec Reo Rec
= .+ ° + oo + .
o 1 o 1 2 o0 1 2 0 1 2
Roo
ot +
Reo

FIGURE 2. Graphical interpretation of (4.3.2) with h =0

In passing from the first to the second line of Fig. 2 we expanded the big
vertex on scale 1, which represents ROOVO(CO )7 by using the first line of Fig. 1,
with an additional label R, on the vertices on scale 1, to represent the action
of Reo-

The graphical equations in Figs. 1 and 2 are the analogues of the graphical
equations in [15, Figures 6-7], which contains a more detailed discussion of
some aspects of this construction. By iterating the same kind of graphical

equations on lower scales, expanding the big vertices . until we are left with
endpoints all of type @ or ®, we find that O(oh) can be graphically expanded in
terms of trees of the kind depicted in Fig. 3, with the understanding that in
principle there should be a label R, at all the intersections of the branches
with the vertical lines, with the sole exception of vg; however, by convention,
in order not to overwhelm the figures, we prefer not to indicate these labels
explicitly. We call such trees ‘GN trees’ and denote by To(oh), with A < 0, the
set of GN trees with root vy on scale h + 1. We call ‘vertices’ of a GN tree the
root vg, all its dotted nodes, and its endpoints.

We introduce some conventions and observations about the set of GN
trees:

e The root vy is the unique leftmost vertex of the tree. Its degree (number
of incident edges) must be at least 1, i.e., vo cannot be an endpoint. It
may or may not be dotted; in order for vy not to be dotted, its degree
must be 1.

e Vertices, other than the root, with exactly one successor, are called ‘triv-
ial’.

e Interaction endpoints ® can only be on scale 2. Counterterm endpoints
@ can be on all scales < 2; if such an endpoint is on a scale h < 2, then
it must be connected to a non-trivial vertex on scale h — 1. [The reason is
the following: if this were not case, then there would be an R, operator
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s

“N
e

h+1 2

FiGURE 3. Example of a tree in To(oh). As explained in the
text, one should imagine that a label R, indicating an action
of the R operator, is present at all the intersections of the
branches with the vertical lines, with the only exception of
vg. In order not to overwhelm the figures, these labels are left
implicit

acting on the value of the endpoint, but this would annihilate it, because
a @ endpoint on scale h < 2 corresponds to EOOVCSOh), and the definitions
of Lo, Reo are such that ROO(EOOVO(O}L)) ~ 0, see Remark 4.2.]

In terms of these trees, we shall write the expansion for v =y [v],
thought of as a function of v := {(vn, Cn, M) tr<o, as

VP~ > Waoly; 7). (4.3.3)
reTi

In order to write W [v; 7] more explicitly, we need to specify some additional
notations and conventions about GN trees. Let 7 € T = Uhgo’]&h) and
vg = vo(7) be its root. Then:
e We let V(1) be the set of vertices, V(1) C V(7) the set of endpoints,
and Vo(7) := V(1) \ Ve(7). We also let V/(7) := V(1) \ {vo} and V{(7) :=
Vo () \ {vo}.

e Given v € V(7), we let h,, be its scale.
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e v > w or ‘vis a successor of w’ means that the (unique) path from v to
v passes through w. Obviously, v > w means that v is a successor of w
and v # w.

e ‘v is an immediate successor of w’, denoted v > w, means that v > w,
v # w, and v and w are directly connected. For any v € 7, S, is the set
of w € 7 such that w > v.

e For any v > vy, we denote by v’ the unique vertex such that v > v'.

e Subtrees: for each v € Vy(7), let 7, € Togh”fl) denote the subtree consist-
ing of the vertices with w > v.

Next, we need to attach labels to their vertices, in order to distinguish the
various contributions to the kernels arising from the different choices of the
sets U, ete., in (4.3.1), (4.3.2), also keeping track of the order in which they
appear. In particular, with each v € V(7) we associate a set P, of field labels,
sometimes called the set of external fields, whose elements carry two informa-
tions: their position within an ordered list which they belong to, and their
w index; more precisely, the family P = {P,},cv(r) is characterized by the
following properties, which correspond to properties of the iteration of the
kernel:

|P,| is always even and positive. If v is a 4 endpoint, then |P,| = 2.

e If v is an endpoint of 7, then P, has the form {(j,1,w1),..., (4,2n,wa,)},
where j is the position of v in the ordered list of endpoints, and w; €
{+, —,i, =1}, if h, = 2, while w; € {4, =}, if h, < 2. Given f = (j,1,w;),
we let o(f) = (4,1) and w(f) := w;.

e If v is not an endpoint, P, C U,es, P

o Ifv e Vy(r), welet Qy = (Uyeg, Puw) \R, be the set of contracted fields.
If v is dotted, then we require |Q,| > 2 and |Q,| > 2(|S,| — 1); and
conversely ), is empty if and only if v = vy and vy is not dotted.

e If h, =1 and v is not an endpoint, then @, = UwESv {f e P, | }w

{+i,—i} (all and only massive fields are integrated on scale 1).

For 7 € 7o, we denote by P(7) be the set of allowed P = {P,}yev(r)-
We also denote by w, the tuple of components w(f), with f € P,, and by
wU| 0 the restriction of w, to any subset Q C P,. Note that the definitions
imply that for v, w € 7 such that neither v > w or v < w (for example when
v =w' but v # w), P, and P, are disjoint, as are @, and Q.

Next, given P € P(7), for all v € V(1) we define sets T,

T, = {(f17f2) yeee (fZ\Sv\73af2\Sv\72)} C Q3

called spanning trees associated with v, characterized by the following
properties: if w(f) denote the (unique) w € S, for which f € P,,
then (f,f) 6 T, = w(f) # w(f) and o(f) < of’); moreover,
{{w 1), {w fa18,1-3)s w(fa)s,|—2 }} is the edge set of a tree with
vertex set S We denote by S(7, P) the set of allowed T" = {T’, },evy(r)-
Finally, for each v € V(7), we denote by D, amap D, : P, - D ={D €
{0,1,2}2 : ||D|j; < 2}; the reader should think that a derivative operator
dP»(f) acts on the field labeled f. We denote by D(7, P) the set of families
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of maps D = {Dy}cv(r)- We also denote by D, the tuple of components
D,(f), with f € P,, and by DU|Q the restriction of D, to any subset Q C P,.
Additionally, if a map z : P, — A, is assigned, we denote by z, the tuple of
components z(f), with f € P,, and by ¥, = U(P,) := (w,, Dy, z,) the field
multilabel associated with w,, D,, z,; moreover, if v € Vy(7) and also the
maps z : P, — Ay, for all w € S,,, are assigned, for each w € S,, we denote
by U, = (P, \ P,) = (ww|Pw\PU,Dw PP, P Pw\Pv) the restriction of W,
to P, \ P, (here zw’Q is the restriction of z,, to the subset Q C P,).

In terms of these definitions, we write W, [v; 7] in the right side of (4.3.3)

as
Welvit)= > Y. Y. Wu[y;7,P,T,D],  (43.4)
PeP(r)TeS(r,P) DeED(T,P)
where W, [v;7, P, T, D] is the translationally invariant kernel inductively
. / !
defined as follows: letting D, := @vesvo D“’PUU for h,, <1 and D, =0
for hy, =1,

Wocles 7, 2., D (w0, Do, 20) = 1w = wa,)1(Do = Dy = D}, ) 1t
Vol
(hoo) (17, = 4.3.5
X Z Q5T,,Oo,oo(\pv1 LR \I]USUO) H K%OO(\I]U)v ( )
2: Py UQyy — Ao VE Sy,
z0=zv0
where o,y = @(Uy; Ty s - - - \I/%vO ), cf. (4.3.1), and we recall that, if |.S,,| = 1,

then T,, = 0. In this case, if ¥,,, = ¥,,, then @éh;’g)(@) should be interpreted
as being equal to 1; this latter case is the one in which, graphically, vy is not
dotted. In the second line of (4.3.5), if h,, =1,

N.(D) if v is of type € and vg is undotted,
Kyoo(Uy) = ¢ Ny (0,) if v is of type @ and vq is dotted,
Z=-1W 2yt (@) if v s of type @,
(4.3.6)
while, if hy, < 1,
Vh,, Foo (Ty) if v € Vi (7) is of type ®and h, = Ry, +1
RooNc(¥s,) if v € V(1) is of type ® and hy =2
Koo (W) =0 /w12 vint (g, if v € Vi (7) is of type @
oo Vo v e ype
Woolv; 7o, P, T, D,J(¥,) if v € Vo(7),
(4.3.7)

where, in the last line of (4.3.7), letting P, (resp. T,, resp. D,) be the
restriction of P (resp. T, resp. D) to the subtree 7,, and D! := {D!} U
{Duw}wev(r)wsw, (here D) is the map such that D;, := P Dw|P ), we

denoted

weS,

WOO [Qa TU?B'[}?I’(}?QU] = ROOWOO[Q7 TvanIan;] bl (438)
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and we recall that the definition of ROOV| p Was given a few lines after (4.2.20).

The inductive proof that AR 740 [v], as iteratively computed by (4.3.1)-
(4.3.2), is equivalent to »__ o Weslv; 7], with We[v; 7] as in (4.3.4), (4.3.5),
is straightforward and left to the reader.

Remark 4.4. Given 7 € T, and P € P(7), we say that D is ‘allowed’ if
Weolv; T, P, T, D] 4 0. With some abuse of notation, from now on we will re-
define D(r, P) to be the set of allowed D for a given 7 and P. Of course, such
a redefinition has no impact on the validity of (4.3.4). If D is allowed, then
it must satisfy a number of constraints. In particular, if v € Vy(7), w € V(1)
and f € P, N Py, then D,(f) > D, (f). Moreover, letting, for any v € V(7),
Ry = [Dulli = Ses, 1Dl 11 = [Dully — 1D, 1, one has

2, |PyJ=2and |D,|,=0

R, =41, |P=2and |D,|,=1or|P[=4and |D,|, =0

0, otherwise,
(4.3.9)

with the exception of vy, for which R,, = 0 (in other words D,, = D;o, see
(4.3.5)). Finally, the combination

Py

2

known as the scaling dimension of v, is < —1 for all v € Vj(7), and for all
v € V(1) such that h, = 2 and h,» < 1. As we shall see below, see in particular
the statement of Lemma 4.7, the fact that d(P,, D,) < —1 for all such vertices
guarantees that the expansion in GN trees is convergent uniformly in h,,.

d(P,, D) =2 —

= 1Dl (4.3.10)

Remark 4.5. With the other arguments fixed, the number of choices of D for
which Wao[v; 7, P, T, D] does not vanish is no more than 101V("l: there is a
choice of at most 10 possible values for each endpoint'’, and then the other
values are fixed except for a choice of up to 10 possibilities each time that R,
acts non-trivially on a vertex v € V{j(1), i.e., each time that, for such a vertex,
R, >0, see (4.3.9).

4.4. Bounds on the Kernels of the Full Plane Effective Potentials

In this subsection we show that the norm of the kernels W, [v; 7, P, T, D] is
summable over 7, P, T, D, provided that the elements of the sequence v are
bounded and sufficiently small. We measure the size of W[v; 7, P,T, D] in
terms of the weighted norm (4.2.21), with k = 2"+, where h,, is the scale of

10The value 10 bounds the number of different terms that the operator R produces when
it acts non-trivially on an interaction endpoints. In fact, the cases in which R~ acts non-
trivially are those listed in the right side of (4.2.20) with (n,p) = (2,2), (4,1). If (n,p) =
(2,2), the number of possible values taken by D, is 10 (one derivative in direction ¢ €
{1,2} on the first Grassmann field and one derivative in direction j € {1,2} on the second
Grassmann field, etc.); if (n,p) = (4,1), the number of possible values taken by D, is 8,
which is smaller than 10 (one derivative in direction ¢ € {1, 2} on the k-the Grassmann field,
with k € {1,2,3,4}).
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the root of 7 and ¢y is the minimum between the constant ¢ in Proposition 2.3
and half the constant ¢ in (3.14), (3.15), (3.20), (3.21). With some abuse of
notation, we let

1Wee[v3 7, P, T, Dllln,, = [Woolvs 7, P, T, D]l ca g (4.4.1)

The first, basic, bound on the kernels W, [v; 7, P,T, D] is provided by the
following proposition. We recall that we assumed once and for all that Z € U,
with U = {z € R: |z—1| < 1/2}, and that t],¢1,¢2 € K’, with K’ the compact
set defined before the statement of Theorem 1.1.

Proposition 4.6. Let W, [v;7, P, T, D] be inductively defined as in (4.5.5).
There exist C,k, Ao > 0 such that, for any 7 € T, P € P(1), T € S(r, P),
D e D(r,P), and |\| < Ao,

||Woo [Q; T, Bv Ia Q] h

v

1
2(§‘Qv|+zwesv HDw‘Qu |‘1_RU+2_2‘SWth

< CXvevern 1Pl H

|Su!
veEVH(T)
1
1 {2<h“—1>(2—2|ﬂ,|—|m|1>€hv_1 if v is of type ® (442)
vevi(r) LAPR{lnlPl} if v is of type ®

where ep, := max{|vp|, [Cul, |nk|} if b <0 and €1 := max {||N¢||2, | Nm|l2}-

Proof. Let us first consider the case h,, = 1, in which case, using (4.3.5) and
(4.3.6), we find

1
1Waelv; 7, P T, 0], < B >
V0

2:UveSyoPo—Aco:
z(f1) fixed

x g9 Z“U)‘(’j Uo,oo(i’vu“"qlvsm)‘ :
[N(,)] if v is of type € and vg is undotted,
: H [Ny (0,)] if v is of type @ and vy is dotted,
V€S || Z|7 1Vl 2|Vint (W ,))| if v is of type ®,
(4.4.3)

where f; is the first element of P,,. By using the definition of 6%1 ) and the

,O0

property (PfM)? = det M, valid for any antisymmetrix matrix M, we find

65).(Q1,...,Q <H|g(1) |> SIth\/|detG(ll),_“’QS’Tm(t)L (4.4.4)

LeT

so that, thanks to items 1,3,4 of Proposition 2.3 (which apply to g(()? by
Remark 2.6), and to the Gram-Hadamard inequality [15, Appendix A.3],
which allows one to bound the determinant of any matrix M with elements
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M; ;= (vi,7;) as [det M| < T, vl 17,

88 (Qu,...,Q) <ot [ [ ezeolst—=tl
(f.fHeT
1/2

(1) (1)
X H Mo 0.z0| Faip.oxn]
fEUiQi\T

< (O/)EﬂQz‘l H e—2collz(£)==(F) | (4.4.5)
(f.f)er
If we now note that

8(zo) < Do =) =2+ D b(=z0), (4.4.6)
(faf/)eTvo WGSUU
and plug Eq. (4.4.5) into (4.4.3), we find

szesvo 1P|
HWOO [27 T, B7 Ia Q] || h’UO

‘Svo |71
> e—fo|2|1>

z2€A

|(Ne)2ll (o) if v is of type 4 and vy is undotted,

X H | (Nom)2l (eo) if v is of type ® and vg is undotted,
v€Se (V)P lleo) i v is of type @,

(4.4.7)
which immediately implies the desired bound for h,, = 1, because of the

definition of €; and ||(V: ))|P7)| (o) < Ol max{lrlPol} gee (3.15) and recall
the definition of ¢y at the beginning of this subsection.
Next, we consider the case h,, < 1, in which case K, o is defined by

(4.3.7). We proceed similarly: we start from (4.3.5) and use the analogue of
(4.4.4)—(4.4.5), namely

|@$£)(Q17...,QS)| < ( H ‘ge ,,0)|)
(f.feT

1/2

H | (h vo) | |~(hv o) |
Yo (£).D(f)=(F) (f).D(f),=(f)
FELQNT

< (C2hvo ) XilQilghvo Epeviq IPDI | T emeo2™ 0 ===l
(ff)er
(4.4.8)

where in the second inequality we used again the bounds in items 1,4 of
Prop.2.3. Using (4.4.8) and, again, (4.4.6), we obtain the analogue of (4.4.7),

IWee [v: 7, P, T, D]l
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1 1Qugl 5 Dol I cq oho [Svg =1
< (CthO) 7 90 vE Sy viQug Il | Z e 2 2770 2]y .
T ISyl

— | 2 int . .
vesy, | 121 wol/ 1(Roo VEE) 1By 11D w111 10 if v € V(1) is of type @

(W oo [v; To, Py Loy, Do) Py 1D w114 1oy i 0 € Vo(7

2€A00
||(Uhv0 . Foo)QﬁuD,UHl ”hvo if v € Ve(7) is of type ’ and hy = hyg + 1
) H ||(7?,00NC)2,”D,U I Hhvo if v € Vo (7) is of type ’ and h, # hayg + 1
)
)

(4.4.9)
The terms in the second line can be bounded as follows:
o If v € V() is of type ® and h, = hy, + 1,
2" |up,,, | if [Dyl1=0
[(Vhy, * Foo)2, D1y Iy < C ° . B
max{[Ch,, | [7n,, |} if [ Dol =1
< C'Q(hzﬁl)(Q*'P;‘*HDv\h)eh 1 (4.4.10)

where we recall that e, = max{|vs|, |Cnl, [nn]} and, in passing from the
first to the second line, we used the fact that |P,| = 2 and hy, = hy — 1,

so that 20t =D@=E=IDu11) s equal to 20w, if | D,y = 0, and is equal
to 1, if [Dyly = 1.

o If v € V(1) is of type ® and h, # hy, + 1, using Lemma 4.3 and the
definition of €; we have

||(ROONC)27|\Du|\1

hag < ||(RooNc)2,HDUH1||O < 2C’”]\]’c”l <2C¢g
— co(he—1)2=11—|IDy 1)

€1,

where the last equality holds trivially since we necessarily have h, = 2
and |P,| = 2, and (RooN¢)2, D, |, vanishes unless || D,[|; = 2.
o If v € V(1) is of type ® (and, therefore, h, = 2), then

IR VaEN LDl 10y < NHRVEE ), s o < O AR IR,

thanks to Lemma 4.3 and Eq.(3.15).
o If v € Vy(7), recalling the definition of W..[v;7,, P,,T,,D,], see
Eq. (4.3.8), and the bounds on the norm of Ru, see (4.2.22)—(4.2.25),

we find
(W oo[w; 7wy Py, s D)) Py D o 1 1
< 2~ P (Il =ID% )| (W, [u; Tos Py Loy D)1y 10 1 -

(4.4.11)

Recalling the definition of D!, that is D!, = Dues, Duw |PU’ as well as the
one of R,, see the line before (4.3.9), we recognize that || D, ||; — || D1 =
R,. Note also that Wy.[v; Ty, P,,T,,D.] coincides with its restriction
(Weo[U; Ty Py, T D/])lva‘D:)”l, so that the second line of (4.4.11) can

ER IR WL -]}
be rewritten more compactly as C2~ " |W [v; T, Py, Ty, D)0, -
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Plugging these bounds in (4.4.9), noting that >7__, e~ 220zl < 0= 2hu,
we find

1 1Qug | [Qug | _
[Woolws 7, B, T, Dllln,, < o O %32 1wl 0 (55 ey, 10 claug 142210

T |Sv0"
Q(h’fl)@*%*‘m””1)6;%_1 if v € Vo(7) is of type @
: H CIPvl| \max{l,e| P} if v € Ve(7)is of type @

oS (27 B [Woo[ws 7o, Py, Ly, DI, if 0 € Vo(7),

ESRTENE

(4.4.12)

Now, in the last line, for v € S,,, NV, (7), we iterate the bound, and we continue
to do so until we reach all the endpoints. By doing so, recalling that R,, = 0,
we obtain the desired bound, (4.4.2), provided that

CEvevon (418D < (0N Tvevein 1Pl (4.4.13)

In order to prove this, note that, for any dotted v € Vy(7), |S,| <1+ |Q2“| <
|Qy], because |Q,| > max{2,2(]S,|—1)}; moreover, if vy is not dotted, |S,,| = 1
and |Qy,| = 0. Therefore, recalling also that [Qy| =}, cg. [Puwl—[Py|, we find

CZ1JEV0(T)(@+|SV|) < Cl+%zuev0 Q] < ClJF% Yveve(n) ‘Pv|7
which implies (4.4.13). O

Next, we rearrange (4.4.2) in a different form, more suitable for summing
over GN trees and their labels.

Lemma 4.7. Under the same assumptions as Proposition 4.0,

1
W [v; 7, E?I?Q]”hvo < CLveve) IPUIFQhVUOd(PUO,DuO) (4.4.14)

Uo"

% ( H 1 Q(hrhv,)d(Pv,Dv)) H €h,—1 if v is of type ®
veviin 1%l wetitry AP v s of type @

where d(P,, D,) = 2— IP;‘ —|IDyl|1 is the scaling dimension of v, see (4.3.10).

Note that, as observed in Remark 4.4, the scaling dimensions appearing
at exponent in the product over v € V'(7) are all negative, with the exception
of the case that v is an endpoint such that h,, = h, — 1. Note, however, that in
such a case 2(hv—hw)d(Po.Dv) < 9 which is a constant that can be reabsorbed
in CXveve(r) |P“|, up to a redefinition of the constant C.

Proof. First note that, for all v € Vo(7), [Qu| = D ¢, [Pwl — [Pu], so that,

recalling that R, = [[Dyl1 — > ,cs, ||Dw|P I, we can rewrite the factor

Hvevo(f) 2(%|Qv|+2wesv IDwl@y i —Ro+2-2|Su))ho 5 (4.4.2) as

2hvo Zvevo(q—)(%zwesv |Pw _%|Pv|+zwesv ”Dw”1_”DvH1_2(‘Sv‘_1)) .
9%vevg(r) (ho=hog) (5 Lues, [Pol=31P [+ es, 1D wlhi =D olli=2(1Su|-1)) (4.4.15)
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Now, the factor in the first line can be further rewritten by noting that:

> <Z IPwI—IPU|>: > P = [P, (4.4.16)
7)

veVy( wE S, vEVL(T)

Z ( Z HDle - ||Dv||1> = Z ||Dv||1 - ||DU0||1’ (4417)
veEV(T) \weES, vEV(T)

> (S = 1) = Ve(r)] - 1. (4.4.18)
veVy(T)

(The first two identities are ‘obvious’, due to the telescopic structure of the
summand; the latter identity can be easily proved by induction.) Therefore,

9o Toevy(n (3 Twes, [Pul= 4 ues, 1D wlli =D o]l =2(Su, | ~1))

— 2hv0 (2, ‘P;o‘7‘|D,UO|‘1) ( H Q—hvg(Qf ‘P2v| |Dv|1)> . (4419)

vEV(T)

Similarly, the exponent of the factor in the second line of (4.4.15) can be
rewritten as

> ( > <hw—hwf>) (; > 1Pl - 517

veVo (1) \weVy(r) wESy
vo<w<v
+ > 1Dwli = Dol = 2(1Su,| - 1))
weSy
1 1
S e Y (S im-dim
weVy (1) veEVH (Tw) wWES,
w>vg
+ > 1Dl = Dol = 2(1Su, | - 1))
weS,
| Pu| |2 |
- ¥ tur (2= oipu- 3 @Bl i)
weVy(T) VEVe (Tw)
w>vo

(4.4.20)

Using (4.4.19) and (4.4.20) and recalling that 2 — £l —|D, ||, = d(P,, D,),
we rewrite (4.4.15) as

(4.4.15):2hvod<on7Dvo)< H Q(hv_hu/)d(Pu,Dv)>
veVy(r)
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( H o= (hog + 0050 ) (haw hw/))d(Pv,Du)>

vEV.(T)

— 9hwgd(Pug, 1,0)< H 2(hvhv/)d(Pu,Du)>< H 2h,u,d(PU,D7,)>.

veVy () vEVL(T)
(4.4.21)
By using this rewriting in (4.4.2) and noting that

1
H 9—h,d(Py,Dy) | {2(h”1)(22lp“”D“|1)ehv1 if v is of type @

eV (r) | A[ax{Lal P} if v is of type ®
< H 2(hv7hv’)d(PﬁuyDv) ) €h,—1 if v is of type ’
~ avin 21Pul | \|max{LklPul} if pis of type @
(4.4.22)
(since if v is an endpoint of type ®, then 2"vd(Pv.Dv) > 92=IPul) e readily
obtain the desired estimate, (4.4.14). O

As announced above, the bound (4.4.14) is written in a form suitable for
summing over the GN trees and their labels, as summarized in the following
lemma.

Lemma 4.8. Under the same assumptions as Proposition 4.6, for any ¥ €
(0,1), there exists Cy > 0 such that, letting T NM) denote the subset of

Togh) whose trees have N endpoints of type ® and M endpoints of type ®,

2719}1 Z Z Z Z ||Woo[ya T,Bazvg]”hﬂLl

reT™ PeP(r) TeS(r,P) DeD(r,P)
i NAMD 1P, |=n 1D v llr=p

(4.4.23)

M
< C{J9V+M|/\|N <hmha}<<1 2—19h’€h,> 2h<d(n,p).
<h'<

Remark 4.9. (Short memory property). The fact that this estimate holds with
the factors of 277" included indicates that the contribution of trees covering
a large range of scales are exponentially suppressed, a behavior referred to in
previous works (e.g., [18]) as the ‘short memory property’. As we shall see
below, taking advantage of this there is a way to choose the free parameters
Z,t%, B such that |e| < Ky|A\|2°", see Propositions 4.10 and 4.11 below. Under
this condition, Lemma 4.8 implies that
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> > > > Weolts 7, T, Dl|lnta

(h) PeP(r) TeS(r,P) DeD(r,P)
TeT
MY Py |=n ID oyl =p

< 01]9V+M|)\|N+M2hd(nyp)2ﬁh’ (4.4.24)

for all ¥ < 1 and N + M > 0. The factor 2" in the right side is called the
‘short-memory factor’.
Summing over N + M > 1, this immediately implies

H(Wm)n,th+1 < Cp|A[2hdrp)goh (4.4.25)

Proof. Thanks to (4.4.14), the left side of (4.4.23) can be bounded from above
by

, M
N ) B R D DR DIt DS
<h’'<

) PeP(r TeS(r,P
rET o 5 o 5

1 1
(ho—h,)d(P,.D )
3 ' ( [1 i ) (4.4.26)

DeD(r,P) ”Dv(]lllzp‘ vol! veV/ ()

H 90h, H |>\|[K‘|Pv|_1]+’

veEV(T) veEV(T)
v of type L 2 v of type @

where, in the last factor, [-]; indicates the positive part. Note that, if either
v € V§(7) or v is an endpoint such that h, < h,—1, then the scaling dimension
of v can be bounded uniformly in D,, i.e., d(P,, D,) < min{—1,2 — |P,|/2};
if v is an endpoint such that h, = h, — 1, then the factor 2(hv—w)d(Pv.Dv) ig
smaller than 2 (and, therefore, it can be reabsorbed in CFvevep(n 10l up to a
redefinition of the constant C'). Moreover, recall that the number of elements
of D(r,P) is bounded by 10/V()I see Remark 4.5. Finally, the number of
elements of S(7, P) is bounded by

|S(T,£)| < CZ‘UEVﬂp(T) 1Pl H |Sv|‘, (4427)
veVH(T)

see, e.g., [15, Lemma A.5]. Therefore, putting these observations together, we
see that (4.4.26) can be bounded from above by

' M maz
2h.d(n,p)‘)\|N( max 2~k 6h,) Z QO (R —h) Z (C/)zvevcpmm,\ %

h<h'<1
TE’T (N M) PeP(T)
— in{— _ [Pul _
x( [T 2t romint-r2=t }> I 2 I e
veV'(r) veEV.(T) veV,. (1)
v of type voftype.

(4.4.28)
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We can cancel the factor of 279" with a product of factors leading to an
endpoint, and simplify the remaining bounds, to get

219h< H 2(huhv/)min{1,2lp2“}> H 9Py

veV'(r) vEVL(T)
v of type
< ( I1 2<hvh1,/>wl>'i’“>,
veV' (1)

This leaves a variety of exponential factors which make it possible to control
the sum over P, giving

>, D (C’)Z”GVGP“)'P“'( 11 2<hv—hv/>w—1>%’>

h ’
TGTo(o;zN,M) PeP(T) veV'’ (1)

H |)\|[n\P1,|71]4r < (C//)NJrM’
vEV(T)
v of type @

see, e.g., [15, App.A.6.1], from which (4.4.23) follows. O

We conclude this subsection by noting that, in order for the right side of
the bound (4.4.23) to be summable over N, M uniformly in h, we need that €,
is bounded and small, uniformly in h. In view of Lemma 4.8, this condition is
sufficient for the whole sequence of kernels Vo(oh)7 h <1, to be well defined. In
the next subsection, we study the iterative definition of the running coupling
constants and prove that they in fact remain bounded and small, uniformly in
h, provided that the counterterms vy are properly fixed.

4.5. Beta Function Equation and Choice of the Counterterms

The definition of the running coupling constants, (4.2.30), combined with the
GN tree expansion for the effective potentials implies that the running coupling
constants v = {(Vn, ¢, M) }r<o satisfy the following equation, for all A < 0:

2" Fy oo + ChFcoo + nFroe = D LooWao[u; 7. (4.5.1)
7'€'To(oh>

More explicitly, using the definitions of F}, o, F¢ o, Fy, (see the lines after
(4.2.4) and after (4.2.11)), for any 2z € A,

vn = 27" (2w) Z LooWeo[v; T]((w,O,z), (—w,O,z)),

TGTO(Qh)
<h = 4w Z ‘COOWOO [Qv T] ((wv 07 Z)a (wa é17 Z))7
TETo(ch')
n, =4 Z LooWeo|v; T]((w,O,z), (—w,ég,z)). (4.5.2)

TGTO(JL)
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In view of the iterative definition of the kernels Wo,[v; 7], see Egs. (4.3.4) and
(4.3.5), the right sides of these three equations can be naturally thought of as
functions of v or, better yet, of the restriction of v to the scales larger than h.
Therefore, these are recursive equations for the components of v: given Vo(o1 )
(and, in particular, given ti,3,Z), one can in principle construct the whole
sequence v. More precisely, since the definition of the right sides of Eq. (4.5.2)
requires the summations over 7 to be well defined, in view of Lemma 4.8, these
recursive equations allow one to construct the running coupling constants only
for the scales h such that maxy/~p €, is small enough. As we shall soon see,
given a sufficiently small )\, the quantity maxy s €5/ stays small, uniformly
in h, only for a special choice of the free parameters t7, 3, Z; to understand
the appropriate choice of these parameters, it is helpful first to isolate those
trees with only counterterm vertices, whose contribution in (4.5.2) is especially
simple:

1. For h < 0, To(jzo 1 consists of two trees, one with a single countert-
erm endpoint v on scale h, = 2 > hy, + 1, for which Lo Weo[v, 7] =
LooRooN. = 0, and one with a single counterterm endpoint on scale

hy = hy, + 1, for which we have
»CooWoo [Qa T] = 2thFV,OO + ChF(:,oo + nth,oo;

2. For h = 0, T, )
contribution involving N, which can be calculated quite explicitly from
Eq. (3.23) and Eq. (2.1.13) taking advantage of the fact that the latter

is written in terms of the Fourier transformed fields:

EooWoo [Qy 7—] = EooNc

consists of only a single tree 7. This tree gives a

1 1—t 1t t
- L ) (i i)
2(2 16 T\ Z 0 e TrgE) o
to t;)
(52 = 2) Froe (4.5.3)
(recall t5 = (1 —t7)/(1 + t7)) which we can put in the same form as the
other scales by letting

9 1 (t lftl) C 1 t tT
V= — — == —
YTz 1w n ) YT 20+ (4
ty  th
== 2 454
m 57 B (4.5.4)

3. The contributions from the trees in To(jz(], M) (i.e., those with no inter-
action endpoints and M counterterm endpoints) vanish for all h < 0
and M > 2, as can be seen as follows. In this case, each vertex must be
assigned exactly 2 field labels, and for any endpoint v the components
of w, must be both imaginary (corresponding to Ny, i.e., to h, = 2,
hy = 1) or both real (in all the other cases). If any endpoints of the
first type appear there is no allowed assignment of field labels to the
corresponding tree (since the £ fields this case represents can neither be
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external fields nor be contracted with ¢ fields to form a connected dia-
gram). In any case, all of the internal field labels are included in spanning
trees, and the local part of the contribution can be made quite explicit.
For example, denoting by [ggﬁ) (z — z’)]w .+ the elements of the transla-
tion invariant infinite volume propagator gﬁ.ﬁ) (z—2), see (2.2.4), (2.2.5),
(2.2.9), the local part of the term with D, = 0 for all vertices (which
contributes to 1) is a sum of terms proportional to

> [l - 20)] 10 [0 (20 — 23)] s

ZQ,...,ZA{EZ2

... [g(ongl)(szl — ZM)] a1
= [85V] L O[87] L, - 88,

for some tuple (wi,...,wyp—1) € {+,—}M~1; from Eqgs. (2.2.9), (2.2.4)
and (2.2.5), the Fourier transform g*) in the right side satisfies

(0), (4.5.5)

272h

g™ (k) = / gl Ay, @(K) = e PO D(R)E(R)  (45.6)

(except for h = 0, where the lower limit of integration is 0), with D
defined in Eq. (2.1.21), from which it is evident that D(0) = 0, and
in consequence that the right-hand side of Eq. (4.5.5) is likewise zero.
The same argument holds, mutatis mutandis, when D, does not vanish
for all vertices of the tree, with some discrete derivatives appearing in
Eq. (4.5.5).

In view of these properties, we can write

vh = 2vp41 + By V], Ch = Chy1 + B;CLH[QL N = NMht1 + By, [v],
(4.5.7)

for all h < 0, where the functions BfL 41[v] are given by the restrictions of the
sums on the right-hand sides of Eq. (4.5.2) to trees in some TO(O}QM’N) with

N > 1. The functions B,EH[Q], with § € {v,(,n}, are called the components
of the beta function, and (4.5.7) are called the beta function flow equations for
the running coupling constants; note that, even if not explicitly indicated, the

functions B,ﬁH_l[Q], in addition to v, depend analytically upon A,t}, 3, Z. For

later reference, we let B [v; 7] be the contribution to Bf +1[v] associated with
the GN tree 7. In view of Lemma 4.8, we find that, for any |Z — 1| < 1/2,
any |t3], [t1], [t2] € K’, any 9 € (0,1) there exists Cy > 0 such that, if |A| and
maxy sp{€p } are small enough, then

max |Bi[u]] < CyA[2°", VR <O. (4.5.8)

te{v.¢n}

Proposition 4.10. For any ¥ € (0,1), there exist Ky, Ag(¥) > 0 and functions
VI(A;tT,ﬁa Z); CI(A;tT,ﬁa Z)> 771(>‘; tTaﬁa Z)} Q()‘;tika/67 Z) = {(Vh(/\;tivﬂ, Z)7
Ch(Xst1, B8, Z),mn(As 8, B, Z)) bn<o, analytic in [A] < Xo(¥), [Z — 1] < 1/2,
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[ti| € K’ and B such that |t1], [t2| € K’ (recall that t; = tanh(B8J;)), for all
A5, B, Z in such an analyticity domain:
1. i85, 8,2), G, 8,7), m(Nt5,8,Z) and the components of
v(\;ty, B8, Z) satisfy (4.5.7), for all h <0;
2. For allh <1,

en(X;t1, 8, Z) := max{|vn (A t1, B, Z)|, [Gr(N: 11, B, Z),
(N5, 8. Z)|} < Koy |A[ 270, (4.5.9)

Note that, at this point, we do not prove that vy (A; 5, 8, Z), ¢1(\;t5, 8, Z),
m (N t5, 8, Z) satisfy Eq. (4.5.4); this comes later.

Proof. For simplicity, we do not track the dependence of the constants and
of the norms upon ¢ which, within the course of this proof, we assume
to be a fixed constant in (0,1). In order to construct ©(\;¢7,0,2) =
{wnX 85,8, 2), G\ 85,8, Z) (A 5, 8, Z)) br<1, we first note that the equa-
tions for vy, Cp,nn in (4.5.7) imply that, for & < h < 1, v, = 2F Py, —
D k<j<h PIBY ], G = = k< j<n B?[Q]a and ny, = M= g j<p By ] I
we send k — —oo and impose that € := max{|v|, ||, |76} — 0 as k — —o0,
we get

Vph = — Z_j<h 2j7h713}'j[ﬂ]7

Ch = — ngh ng [v], (4.5.10)

Nh = — ngh B?[Q]v
which we regard as a fixed point equation © = T'[0] for a map T on the
space of sequences X 1= {0 = {(v,Cn,m)tn<t ¢ 2] < e}, with 5] =
sup,<1{2~ "¢} and ¢ a sufficiently small constant.

“We now intend to prove that T is a contraction on X, and, more precisely,
that: (1) the image of X, under the action of T is contained in X,; (2) ||T[2] —
T < (1/2) |o—2'| for all ©,0" € X.. Once T is proved to be a contraction,
it follows that it admits a unique fixed point in X., which corresponds to the
desired sequence 0(A;t5, 8, Z). The analyticity of ©(\; 7, 3, Z) follows from the
analyticity of the components of the beta function with respect to A, t7, 3,2
and v that, in turn, follows from the absolute summability of its tree expansion,
which is a power series in A\, with coefficients analytically depending upon
tT, tl, t27 Z, with ti = tanh(/@Ji)

The fact that the image of X. under the action of T' is contained in X,
follows immediately from Eq. (4.5.8). In order to prove that || T[] — T[0']|| <
(1/2) ||lo—2'||, we rewrite the v-component of T'[0] —T'[0'] at scale h as a linear
interpolation

1
; d
i<h ez o

where 0(t) = 0’ + t(© — ©'), and similarly for the ¢- and n-components. When
the derivative with respect to ¢ acts on the tree value BY[v(t); 7], it has the
effect of replacing one of the factors vy, (t), or (n(t), or nn(t), associated with
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one of the counterterm endpoints, by %Vh(t) = vp—V), or %Ch (t) =Cp—¢p, or
%nh(t) = np, — Ny, respectively. Therefore, we get the analogue of Eq. (4.5.8):
if |A| and ||©(¢)|| are sufficiently small, then

d
max Bt 3T
te{v.Cn} 2 ‘dt lu(t):7)

eTd b
< O™ max{lvn — Vil (G — Gl b — I} (45.12)

for all A < 1. Plugging this estimate into Eq. (4.5.11) and its analogues for
¢ — ¢}, and np — 1, we readily obtain the desired estimate, || T[0] — T[0']|| <
(1/2) |l — @'||, for A\p and ¢ sufficiently small. O

We now need to show that it is possible to choose the free parame-
ters 3, Z,t in such a way that the functions vy (X\;t5,5,2), G1(N ¢, 8,2),
m(X\;t5, 8, Z) constructed in Proposition 4.10 satisfy Eq. (4.5.4); that is, for
given Jp, Jo and A, there exists a critical value of the inverse temperature
for which the above expansion for the kernels of the infinite plane effective
potentials is convergent, with dressed parameters ¢] and Z. The desired result
is summarized in the following proposition.

Proposition 4.11. For any Ji,Js2 satisfying the conditions of Theorem 1.1,
and any ¥ € (0,1), there exist M\og(¥9) > 0 and functions t5(N), B.(A),
Z(N), analytic in [N < Xo(U), such that Eq. (4.5.4) holds, with t; =
tanh(Bc(A)J1), t2 = tanh(Be(A)J2), and (v1,C,m) = ((71(A), G(A), 71 (N)),
with 71 (A) = vi(A;t5(N), Be(N), Z(N)) (here v1(N;t], 8, Z) is the same as in
Proposition 4.10), and similarly for (1 (X) and 7y (X). Correspondingly, the flow
of running coupling constants with initial datum (71(X\),C1(N), 71 (X)), gener-
ated by the flow equations (4.5.7), is well defined for all h < 0 and satisfies
(4.5.9).

Proof. The result is a direct consequence of the analytic implicit function
theorem: we intend to fix 5 = t5(\), 8 = B.(\), Z = Z()\) in such a way
that Eq. (4.5.4) holds, with vy = v1(Nt],6,2), (1 = G(Nt,6,2), m =
m(\;t5, 8, Z), the same functions as in Proposition 4.10. With this in mind,
we recast the system of equations (4.5.4) in the following form (recall once
more that ¢; = tanh(8J;) and t5 = (1 —¢7)/(1 +¢7)):

27 (M tE, 8, Z) — tanh BJy + 2871 = 0, (4.5.13)
AZt%
426N, 8, 2) + —— +e ¥ 1 =0, (4.5.14)
! (1+t%)2
1—t;
2Zm (N5, 8, 7Z) + Z1 - ti — tanh 8.J5 = 0. (4.5.15)
1

Note that, by Proposition 4.10, everything appearing in Egs. (4.5.13) to
(4.5.15) is analytic, so if we succeed in showing that the implicit function
theorem applies, the resulting solution will be analytic in A, as desired. Note
that, at A = 0, we have v1(0;t7,3,2) = ((0;t5,8,Z) = m(0;t5,8,Z) =0, so
in this case the system (4.5.13)-(4.5.15) is solved by § = B.(J1,J2) (with
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Bc(J1,J2) the critical temperature of the nearest neighbor model, see the
lines after (1.3)), ¢t} = tanh (B:(J1,J2)J1) and Z = 1. Note also that the
partial derivatives of vy (\;t%, 8, 2),G1(\ 8%, 8, Z),m (N t], B, Z) with respect
to 7,0 and Z vanish at A = 0, so the determinant of the Jacobian of the
system (4.5.13)—(4.5.15) with respect to 7,3, Z, computed at A = 0 and
(t1,8,Z) = (tanh (Be(J1, J2)J1), Be(J1, J2), 1), equals

0 —J sechz(ﬁch) — 2Jye 20Ny 0
1-t% - 4t3
44(1+t’{1)3 *4J1€ 4Be Tz (1+t1’f)2
— ey —Jysech?(BeJ2) Lt
(+7)? 2 ez T+
1 t* 2
= —4(Jasech®(BeJa) + 2Jle—2ﬁcJ1)Li)4 (4.5.16)
1+1)

with 8. = B.(J1,J2) and ¢ = tanh(8.(J1, J2)J1); the right-hand side is evi-
dently nonzero, and, therefore, the analytic implicit function theorem applies,
implying the desired claim. O

This concludes the construction of the sequence of effective potentials in
the infinite volume limit, uniformly in the scale label, with optimal bounds
on the speed at which, after proper rescaling, such effective potentials go to
zero as h — —oo. This result, and the methods introduced to prove it, is a
key ingredient in the proof of Theorem 1.1, for whose completion we refer the
reader to [4].
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A. Diagonalization of the Matrix A,

In this section we compute the propagator of ¢ and the Gaussian integral
associated with S.. For this purpose, we first need to block diagonalize the
coefficient matrix, which we do by using a transformation which can be thought
of as a Fourier sine transformation with modified frequencies. We write

S0) =57 % ([Q’Z*E—’Zﬂ i WM)

k1€Dr
1 ¢ (k)| 5 ¢+ (k1)
=, — AC k , A.].
2L kz (Lb—(—kl) » Ae(kr) (k1) (A1)
1€DL
where ¢, (k1), with w = =+, is the column vector whose components are

Bu,zp (k1) with 2o = 1,..., M, and 7 is the M x M shift matrix 7, ., :=
02541,24, that is,

0 1 0
0 0 1
0
T =
1 0
0 0 1
0 0 0

For brevity, we will write A, = A.(k1), A = A(k1), b = b(k;) since depen-

dence on k; plays no role in the next several pages. It is helpful to begin by

diagonalizing the real symmetric matrix

o [Bf 0

A2 _ c B
N

C

where B} is the M x M tri-diagonal matrix

—A% —b? 12 bto
bto —A% b2 12 bto
B = bto —A% b2 12
bty  —A% —b* —t3 bto
bta —A% —p?

Note that all the diagonal entries are equal to —A? —b? —t2 apart from the last
one, which equals —A? — b2. The block B is obtained from B} by reversing
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the order of the rows and columns. Bf, with w = %, can each be thought of

as a discrete Laplacian with mixed boundary conditions, which suggests the
ansatz

(0778 6;:2 + ﬂeriz_};;
12K2 —12K2
Vg, = | W€ A Brse , (A.2)

for their eigenvectors. In fact, we see that vy, is an eigenvector of B iff the
system of equations

(—A2 _ b2 o t%)(akzeikz + ﬁk2€_ik2) + th(aeriQkQ + ﬁkze—ﬂkg)
= >\k2 (akz eikz + ﬁkze_ikz) (A3)
bt2(ak2€i(zzfl)kz + ﬂbefikg(zzfl)) + (*A2 2 _ t%)(ak26ik2z2 + ﬁkzefikﬂz)

+ bt2 (akz eikQ(ZTl_l) + 5k26_ik2(zz+1))

— >\k2 (akzeikzzz + ﬂkze—ikzzz)7 1< 29 < M (A.4)
bt2(ak26ik2(M71) + ﬂbefikg(Mfl)) + (—A2 _ b2)(ak26ik2M + /BkQ(E*ikQM)
= Ak, (g, €™M 4 By, e 2 M) (A.5)

are all satisfied. Equation (A.4) is solved by choosing
Ay = bta(e™ + e72) + (=A% — % — 13),
which reduces the other two conditions to
bta(a, + Br,) =0, (A.6)
bto(ap,eF2 M+ gy e=tka(MAD)Y _42(q, etheM 4 g p=ikaM) — (o (A7)

The first condition implies By, = —ay,, which can be used to rewrite Eq. (A.7)
as

sinko(M + 1) = B(ky1) sinko M (A.8)
where for brevity we have introduced

t2 |]. + tleik1|2
B(ky) == =1

(k) b(ky)  ° 1—t2

(cf. Eq. (2.1.22)). We call Q},(k1) the set of the solutions of (2.1.23) with
Rky € [0771'].

Restricting to the critical case (2.1.17),
2t1to
1—1t2

(A.9)

B(ky)=1-

(I —cosky) =:1—k(1—cosky), (A.10)

so that 0<B(k1)<1 for k; € Dr. Equation (2.1.23) is equivalent to

B(k1) sin ko

tanko(M +1) = —————
an k(M +1) B(k1)cosky — 1’

(A.11)
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which for 0 <B(k1) < 1 has a unique real solution in each interval I, :=
et %, n+1),n=0,...,M — 1, since the left-hand side increases mono-
tonically from —oo to 0, while the right-hand side is negative and decreasing.
Thus, all M eigenvectors of Bj (and, as a consequence, of B{ ) correspond to

real solutions of this form by

sin ko
o ) sin 2k,
k2 Nas(ky, kz) :
sin ko M
SinkgM
1 , 2 sinko(M — 1)
and, respectively, u, =,/——F7—— . ,
PEEVERS e T A Nag (kr, k) :
Sinkg
(A.12)
where
M 1 1sin(2M + 1)k
Npy(kq, ko) := 2 inkhor = M 4 = — ——— 02 Al
(K1, ko) ;Sln 2T + 575 sin g (A.13)

so that the eigenvectors are normalized.
To obtain Eq. (2.1.24), we note that since ¢ satisfies (A.8), we have

sin [k (M + 1) & ko M| = sin ko (M + 1) cos ko M = sin ky M cos k(M + 1)
= [B(k1) cos kaM + cos ka(M + 1)) sinko M,
and so we can rewrite Nps(k1, k2) as
B(k1)M cos koM — (M + 1) coska(M + 1)

Noi(k1, k2) =
wr (s he) B(k1) cos koM — cos ka(M + 1)
d . .
_ @ (B(k1) sin koM — sin ko(M + 1)) (A14)
B(k1) coskaM — coska(M + 1)
We now return to A.. Equation (2.1.23) is equivalent to
beikQ(M+1) _ tzeikQM — be—ikQ(M+1) _ tze—ik'gM, (A15)

and therefore
(b _ tQTT)’UJ;; — _(beikz(M+1) _ tzeikQM)uI;,
and  (=b+ tor)uy, = (b (MHD gtk

whenever ko € Qp(k1). Combining this with the definition of flc(kl) in
Eq. (A.1), we see that

. N4
Tl R TAN
A, [ 02:| B |:_(beik2(M+1) —t;eik2M)u1;2:| 7
. } ) [(beikQ(M—O—l) —t2€ik2M)u;:2:|

and A. [ukz A, (A.16)
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+

. . . U 0

or in other words, the change of variables induced by [ 62} and [u‘} puts

k2

A, in block-diagonal form, with 2 x 2 blocks

o _iA —iko(M+1) () _ 4 oiks

g 1(k1,k2) = |:76“€2(1\/1+1)Zb _ tge_ikz) € Zé 2€ )]
-~ 1 —2ity sin k; e~ R (MAD (1 _42)(1 — B(ky)e'*?)
T+ tretkr |2 [ e MY (1 42)(1 — B(ky)e*2) 2it; sin kq ’

(A.17)
recalling the definitions (2.1.14) and (2.1.22). This block-diagonalization
implies that

.= [ ]I det g=1 (K, ko), (A.18)
k1€DL kyeQF, (k1)
where explicitly, using the criticality condition (2.1.17),
2(1 —t2)%(1 — cosky) +2(1 — t1)%(1 — cos ko)
11+ treikr)? '

det gil(k'l,k'g) = (A19)
Note that this determinant vanishes iff k1 = k3 = 0 mod 27 (in particular, it
is positive if k1 € Dr).

Concerning the propagator, denoting the inverse of (A.17) by

- G+ (k1,k2) g4— (K1, k2)
ki,ks) = |2 7
glkr, k2) [9—+(k1,k2) G——(k1,k2)

1
" D(kn, k2)
21ty sinky —e ik (MA1) (1 _42)(1 — B(ky)eth2)
eth2(MA1) (1 — 42)(1 — B(k1)e~tk2) —2itq sin k1 ’
(A.20)

where D(k1, ko) is defined as in (2.1.21) and, letting

M
Q;kz’w(kl) = Z Pz, (k/’l)ufz (Zg),

2’2:1
we have, for ki, k} € Dy, , ko, kb € O}, and w,w’ € {£},
<¢~5k2,w(k1)¢~5k;,w'(/€/1)> = — Lk, Oy ky G (K1, 2), (A.21)
so that, in terms of ¢,- = 7 Y1 ep, € " Pu 2y (K1),

1 - g _Z/ w w/
(bu b)) = —F ST Guwlkr ke BTN () ()

k1€DL kyeQf (k1)
= Guw (2,2). (A.22)
Then recalling the definition of ui)(zg) and the identity (A.15), Eqgs. (2.1.18)

and (2.1.19) follow by writing out the sines in terms of complex exponentials
and relabeling the sum in terms of Qns(kq) := 9}, (k1) U (— Q7 (k1)).
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B. Proof of Proposition 2.3

For the proof of items 1 and 2 it is convenient to start by proving their ana-
logues for the infinite volume limit propagators.

Decay bounds on gL@, gg). Recall that gL’Q was defined in (2.2.9). We intend
to prove that, for all z € Z?,

34+7r+s —1/2 .
rlsln™ =z e Pzl f n>1,

(B.1)
e~ lzh if  0<np<il,

10705050 (2)]] < O+ % {

where 0; is the discrete derivative with respect to the j-th coordinate. By using
(B.1) in the definition of ggﬁ), namely

1
/ 1 (2) dn, if h=0,
" (2) =70, o (B.2)

/ ol (z) dn, if h<0,
9—2h—2
we obtain the analogue of (2.2.15),
107030 (2)]] < O epsta0 =2 el (B3)

for all z € Z2 and h < 0.
In order to prove (B.1), we start from the explicit expression of the func-
tion in the left side,

0705850 (2)

= e ilhnmibham) (giks )7 (e=tka 1)1 nP0k k) 1 (o, ky) L OR2
[~m.m]? (3m)?
(B.4)
where D(kq,k2) is as in Eq. (2.1.21) (cf. Eq. (2.2.1)) and
M(kﬁl, k‘g) = D(k‘h kg)@(k‘l, kg)
B —2it; sin ky —(1 = 2)[1 — e~ *2B(ky)] (B.5)
T (=)l - e*2B(ky)] 2ity sin ky '

Note that the integrand in Eq. (B.4) is periodic with period 27 both in k7 and
in ko, and is entire in both arguments. Therefore, we can shift both variables
in the complex plane, ki — k1 — ta and ko — ko — ib, to obtain

a{agg([)z] (Z) _ 6*!121*5722 / efi(klleerzQ)(efiklfa _ l)r(efilmfb _ 1)3

[~ (B.6)

X e_nD(kl—i(l,kz—ib) M(kl _ ’L'a, k2 . Zb) d(]€21 (:)152
i
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We now pick a = asign(z;) and b = assign(zz), with a = min{n~/2,1}, and
take the absolute value, thus getting

HaraQQ ( )” <e —alz|1 7277[(1 t1)%4+(1—t2)?](cosh a—1)

% / 6_nD(k1’k2)(aea + |e—ik1 _ 1|)r

[—m,m]?

(B.7)
dkq dko
(2m)?

where Mo(k1, k2, o) = max|q—jpj=qa [|M (k1 —ia, ky —ib)|| and we used the fact
that, if |a| = |b] = «, then

|D(ky — ia, kg — ib)| > D(ky1, ko) +2[(1 —t1)* + (1 — t2)?](cosha — 1) (B.8)

and

(ae”‘ + \e_ikz — ].DSM()(kh kg,a)

\e*i’“*“ — 1] < e+ |e*”€1 -1, |e*ik2*b -1 <ae*+ |e*““2 —1].
(B.9)
Now, if < 1 and, therefore, « = 1, then (B.7) immediately implies
that [|07050% (2)| < CWr+se=l2l as desired. If 7 > 1 and, there-
fore, o = n~Y2, we make the following observations: (i) the factor
e=2n[(1—t)*+(1~t2)*)(coshn™*=1) 5 hounded from above uniformly in 7; (i)
if —m S kl,kg § ™, then D(kl,kg) Z C(k% +k%), |€7ik1 - ].| S C|k1|,
e=™2 — 1] < Clko| and Mo (k1, ko, n~"/?) < C(n="? + [k1| + |k2|). By using
these inequalities in (B.7), we find
070505 (2)|| < O Eeen
: 2y R
/ e D (712 )7 (72 4 [a)?
R2

(Y2 + k1| + |kz|) dkey dkes, (B.10)

1/2|Z\1

and expanding the powers in the integrand we obtain a sum of Gaussian inte-
grals which reduce to (B.1) for this case as well.

Decay bounds on gg], gSE , and proof of items 1 and 2. Recall that g[n]( ') =

al!l(z,2)) — g[n]( "), with gl as in (2.2.7) and gg] as in (2.2.10). We focus
on the case that z3 — 2] # £L/2 (recall that in our conventions zi,z] €
{1,...,L}), in which the function s, in (2.2.10) is equal to £1; the comple-
mentary case, z1 —z] = =L /2, in which g[n]( z') = 0, can be treated in a way
analogous to the discussion below, and is left to the reader. If z; — 2] # £L/2,
by using the anti-periodicity of the propagator in the horizontal direction, we
can reduce without loss of generality to the case 21 — 2] = per; (21 — 27) (i.e.,
—L/2 < z — 2} < L/2), in which g[n]( Z') = g@(z — 2'), and we shall do so
in the following. Therefore, in this case,

[n] Z Z ;{GT](khkz;z,z') —G[:'](kl,kg;z,z')]

k1€DL ko €Qp(ky) QLNM(kl’kQ)
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—oll(z - 2), (B.11)
where, recalling the definitions of f,, in (2.2.1) and of g(k1, k2) and Gu. (k1, k2)
in (2.1.20),

G[JZ] (kl, k2; zZ, Zl) = e_ikl(Zl_zi)e_ikz(n_zé)fn(k‘1, kz)g(kl, kg),
Gk, kay 2, 2') 1= e miha (G2t ) £y k)

G+ (k1. k2) Gy (K1, —ks)
[§_+(/€1, k2) (321%2(]\/["‘1)@__(kl7 ko) (B.12)

which are entire functions of ki, ks, and 2m-periodic in both variables. We

intend to prove that, for all z, 2’ € A,

g~ S emen sz i 1< <272

e—cdr(z) it 0<n<l1,
(B.13)

1679l (2, )| < ¢TI {

where we recall that h* = —|log, min{L, M }|. Recalling also the relationship

between gEEh) and gg], this implies

—2h
Harggl)(z’zl)n < Cl+\r\1,’,!efczth(z7z’)/ n7(3+|r\1)/2 d77

2—2h—2

< (Cl)l—Hrh,,,!2(1—1-\1'|1)he—02th(z7z’)’ (B14)

for h* < h < 0, and HBTQEEO) (z,2")] < O HIrhe=cde(=2) for b = 0.

Recalling that g = g{® + g,(Eh) and noting that dg(z,2") > ||z — #||1,
inequalities (B.3) and (B.14) also imply that g(*) satisfies a bound of the form
(2.2.15).

In order to prove (B.13), we start from (B.11). Recalling that Qps(k1)
is the set of roots of B(k1)sinkoM — sinke(M + 1), with ky € (—m, 7], that
Nar(kqi, ko) is given by (A.14), and that Gj[im(kl,kg;z,z’) are entire and 27-
periodic, for § € {£}, we can rewrite

1 (]
Z ———— G (k1,k2; 2,2")
N f ’ [l
kZEQM(k?I)Q M(k1>k2)
1 [ B(ky)coskoM — coska(M +1) dks
— - Gl (ky, ks 2, 2') =2
sz{ Bl ) sin kol —sm (M 1) ¢ (Fh2iz 2) 500,

(B.15)

where C is the boundary of the rectangle in the complex plane of vertices
—m —1b,m — b, ™+ ib, —m + 1b, b > 0, traversed counterclockwise. We rewrite

B(ky) cos koM — cos ka(M + 1) S P Ry (ky, ko)et2ika(M+1)

B(kq)sinkoM — sinko(M + 1) 1 — Ry (ky, ko)et2ik2(M+1) |7
(B.16)
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where

1 — B(kp)eTz
1 — B(ky)exik2’
and using this and noting that the contributions of the left and right sides of

C in the integral in Eq. (B.15) cancel by the periodicity of the integrand, we
then have

Ri(kl,k’g) = (B].?)

1 ]
Gk ko !
D NS AR

ko€Qnr (k1)
m+iob
dk
> / Ag (b1, k2)GY (i o 2, 2) ——= (B.18)
6=0,+17 —7tiob 2

where Ag(k1,k2) =1 and, if 0 = +1,

Ra(kh k2)62i0k2(1\/l+1)
1— Ra(kh k2)e2iak2(M+1) '
We now need to sum (B.18) over k; € Dy. Notice that the right side of (B.18)
is analytic in k; in a sufficiently small strip around the real axis (quantitative
bounds on the width of the analyticity strip will follow) and is 27-periodic
in k1. Given any function F(k;) that is 2m-periodic and analytic in a strip of
width 2b > 0 around the real axis, we have

1 dk; ’*+wb dk;
L > Flk) 27r1+e““1L— > / V()55

ki €Dy, 0/=0,+1 ”+“f’b

Ag(kl, ]{72) =

(B.19)

(B.20)

where A)(k;) =1 and, if o’ = +1, A, (k) = —e'F1L /(1 + e"F1L); moreover
C is the same contour defined after (B.15). Using (B.11), (B.18) and (B.20),
we obtain

8’“ // S dk? ell ](khkz;%zl)

[m]2
+3¢ Z Al (k1 +i0'b) Ag(ky + io’b, ks + iob) 8" Gy"
=+ o0,0'=0,%
(k1 +i0'b, ko +iob; 2, z’)} ,
(B.21)
where the * on the sum indicates the constraint that (o, ¢’) # (0,0), and
BTng](kl,kg;zJ') = (e _yra(ehr — 1)z (et _ )m2
(eFihe — 1)r22Gl (ke gy 2, ). (B.22)

Now, by using the definition of G" and by proceeding as in the proof of (B.1),

we see that the first term in the right side of (B.21) admits the same bound as

[77} o0 (z—2"), see (B.1), with the only difference that |z — 2’|; should be replaced
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by |21 — 21| + min{zs + 25, 2(M + 1) — 290 — 24} < dg(z, 2’). Therefore, the first
term in the right side of (B.21) satisfies (B.13) as desired.

Let us now prove that the contribution to [Bng] (2,2")]ww from the sec-
ond line of (B.21) satisfy (B.13). For this purpose, if ¢’ = 0, we shift k; in the
complex plane as k; — k; —ibsign(z1 —21). If o = 0, we shift ko in the complex
plane as ko — ko — i7h, with 7 = =+, its specific valued depending on £ and
on the matrix element (w,w’) we are looking at; more precisely, 7 = T4 (w') s
with

—sign(zg — 25) if =+
Th (ww) = § —1 if f=— and (w,w’) # (—,—) (B.23)
+1 iff=— and (w,w’) =(—,—).
Once these complex shifts are performed, we bound the contribution to
[Brgg] (2,2")]ww from the second line of (B.21) by the sum over § and over
o,0’ (with (o,0") # (0,0)) of:
d

// (k2l7r()12k2 |AL (k1 4 i6'D)| | A (k1 + 67D, ko + iGD)|

[—m.7]?
(0" G (ky + i6"b, ko + i6b; 2, 2] ’ (B.24)
where ¢ = {U %fa;éO’ and ¢ = {0/_ %fa,#o. Note
Th(wor) L0 =0 —sign(z —#;) ifo’'=0
that, if o’ # 0, then
o—bL
|AL, (k1 +i6'b)| < [p=—rr (B.25)

If o # 0, we recall that A, (k1,ke) is given by (B.19), with R, (k1,k2) as in
(B.17). We claim that, if b < ¢, with ¢g sufficiently small, and kq, ko real,
then
|Ry(ky + 167D, ko + i5b)| < €. (B.26)
for some C' > 0; this will be proved momentarily, after (B.29). We now pick
b = comin{1,n~'/?}, so that, using (B.26), for o # 0, M sufficiently large,
and ki, ko real,
.y . e —2b(M+1)
|A0—(k1 —+ 10 b, kQ + lJb)| S m e . (B27)
If we now use (B.25) and (B.27) in the second line of (B.21) and we estimate
the integral of |8T Gj[jn](kl +1i6'b, ko + i0b; 2, z’)| via the same strategy used in
the proof of (B.1), see Egs. (B.7) to (B.10), we find that, for n <1,
(B.24) < CMlrhgcodn(z,2") (B.28)

where dg was defined after (2.2.16), while, if 1 <7 < 272",

(B.24) < CHIrligmeon™ 2 de (=2 g0 dley dkge™ 1R [y | + |ka| + 7~ 2/2)1HT 0
< (O I i emeon ™ 2 de (22 gy = S (B.29)
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This completes the proof that the terms in the second line of (B.21) satisfy
(B.13), with ¢ = ¢p, provided that the bound (B.26) holds.

Proof of (B.26). We will prove the following version of (B.26): if ¢ # 0, b < ¢
with ¢g sufficiently small and a := ¢'b with ' = £1, then

|R, (ky4ia, ko + iob)|? < e (1 + Cob), (B.30)
where Cy can be chosen
Co = max {8k(1 + %), 1287 k(1 — 2r) 2}, (B.31)
and & is the same as in (A.10). By using the definition of R,, (B.17), one sees
that (B.30) is equivalent to

e 2" 4+ p* — 2pe~bcos(oks — B) < (1 + Cob)[1 + p*e 2" — 2pe~" cos(aks + B)],
(B.32)
where p = p(k1,a) := |B(ki+ia)| and 8 = B(k1,a) := Arg(B(ki+ia)). As
shown below, if —7 <k < 7 and |a|=b < ¢y with ¢g sufficiently small, then

4k

p< 1+ s[(L+ 70 —ki/n’], 1Bl < -

kil-b.  (B.33)

By rearranging the terms in the two sides, one sees that (B.32) is equivalent
to

(P —1)(1 — e 2) < dpe~bsin(oky) sin § 4 Cob[(1 — pe~?)?
+2pe~?(1 — cos(aks2 + B))]. (B.34)

By using the first bound in (B.33), the fact that |a| = b < ¢ with ¢ sufficiently
small, and the bound 1 — cos(cks + 3) > (cks + 3)?/7? valid for 3 sufficiently
small, it is straightforward to check that the left side of (B.34) is smaller or
equal than 4kb[(1+72)b? — k? /2], while the right side is greater or equal than

—b 62 2 —b 2
~4pe k| 18+ Cob[ o + 5o (hal = 181)?]:

Therefore, (B.34) is a consequence of

_ b 2
4k (1 + 72)b% + 4peb|ko| - |8] < 4rbE? 7 + COE + Cobﬁpe b(Jko| — |8])%.

(B.35)

Now, the first term in the left side of (B.35) is smaller than the third term
in the right side, Cob%/2, because Cy > 8k(1 + 72), see (B.31). By using the
second bound in (B.33) and the fact that pe=® < 1 for b small enough (thanks
to the first bound in (B.33)), we see that, if |k2| < 43|k |, then the second
term in the left side of (B.35) is smaller than the first term in the right side.
In the complementary case, |ka| > 14; 25| ky | (which implies, in particular, that

|k2| > 2|8|, thanks to the second bound in (B.33)), then the second term in
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the left side of (B.35) is bounded from above by 292 pe=b|ky| - |ki |, while the

last term in the right side is bounded from below by QCT?S peb|ks|?; now,

16+ 3272k
1—-2k 00(1 )

which is verified for |ka| > 1= |k|, because Cy > 1287%k(1 — 2k) 72, see
(B.31). In conclusion, (B.35) 1s always verified and, as a consequence, (B.34)
(and, therefore, (B.30)) is, as desired.

We are left with proving the validity of (B.33) for |a|= b small enough.
By definition

_ Cob _
peblko| - k| < S peka? & ko] > |k,
272

pe® =1 — k + Kk cos k; cosh a—ir sin kq sinh a, (B.36)

so that, using 1 —cosk; > 2k? /7% and the fact that, for |a|= b small, cosha <
1 +b? and |sinhal < 20b,

p <1+ r(b®—2k2 /72 + 2b|ky ).

Using 2blk1| < 720% + k3 /72, we get the first of (B.33). Finally, from (B.36),
we find

K| sin k1 sinh a| < 2kb|k1 |

< .
1B = 1—Kk+kcoskycosha = 1— k(24 b?)

Now, picking b? smaller than (1 — 2x)/2k, we find that 3 satisfies the second
of (B.33). O

Gram representation: proof of items 3 and 4. Recall that

B(S’s’)g(h) (2,2")
1
(s,8") ~Inl . /
/ dn Z Z 2LNM(]€1,]€2) |:8 G+ ww’ (kthaZvZ)

k1€DL ko€Qum (k)

—0 G (ki 2, )] (B.37)

where Iy = [0,1), and I}, = [272h72272") for all h* < h < 0. We recall
that 8(3’3/)675"] is given by (B.22), with s playing the role of (r1,1,71,2) and
s’ playing the role of (rg1,722). In the following, we will exhibit a Gram
decomposition separately for the two terms in (B.37) corresponding to G/ ) and

el , which will immediately imply a Gram decomposition for the combination
of the two.
We rewrite

4
ILIh(n)8(878/)G1[17Lw'(k17k2§zvz Z jjws z(klak% )] [’75}2 s’ (k17k2777)]a’

o=1
(B.38)
where 1, is the characteristic function of the interval I, and
[’Yﬁ(i,),s)z(k1,k2ﬂ7)]g, H(h) (k1,k2,m)]  are the components of the following

fw,s,z
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4-vectors:
%}2 oo (b1, ko, m) = 1y, () erortikesz (gt 1)tz —1)2, [ f (ky, ko)
[\/ 9ﬁ,++(k17k2)}
[\/ 9, +— (K1, kz)} ,
0
- 0 -
'Y(h) (k17k27 ) _ ]lIh (77) zk1z1+szZ2( ikl 1)51 (eikg _ 1)52 fn(kth)
_ 0 i
0
(Va5 G2 |
_{ §n,——(k17k2)} |
vé}ﬁ oo (k1 ko, m) = 1y, () 1o tihem (g qyo (ehike —1)s2, [ f (ky, ks)
Gt 4+ (k1, k2)
0
gs,—+(k,q) |’
- 0 -
Véh_) o2 (k1 ko ) = 1y, () =i tiikaz (b qysi(etthe —1)s2, [ f (ko)
0 i
G, 4+—(k1, k2)
O b
gﬂ,——(kla kZ)_

where if § = +, then 4 oo (K1, k2), with w,w’ € {£}, are the components of

the 2x2 matrix gy (k1, ko) = g(k1, k2), see (2.1.20); if § = —, then gy o (k1, k2)
with w,w” € {£}, are the components of

. g ki, k G _(ky,—k
i (k1. ko) G+ (K1, k2) v (b1, —k2)

A_+(k1’k2) 62ik2(M+1)g__(kl,k2) >
(C.6). The square roots \/ gy ww (K1, k2) of the complex numbers gy . (K1, k2)
are all defined by the same (arbitrarily chosen) branch

In conclusion, in light of (B.38), (B.37) can be rewritten as
PICERMGW) (2,2")

[y ¥ >

k1€DL ko€ Qnr (k1) LNM kl’ kQ
h
[’yéuj s’z (kl’k%n)}g

h *
il ’Yéw)s (R ko, )]
a':ljj:

= (W0t +7%, 00, )

~ h ~
+’w/7s/7z/ ® €1 — ’Y(_7Zu/7s/,z/ ® 62)
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~ h
= ( é’fﬁ,z,vi/?s/,z/), (B.39)

where in the last line €1, é; are the elements of the standard Euclidean basis of
R2. We can adapt all of the preceding discussion to g(=" simply by replacing
I, with [272772 00); this concludes the proof of item 3.

In order to prove the bounds in item 4, we first note that the definitions

given above for &EJQ 2, 'yfdhg » immediately imply

2 2 1
~(h) h < d TN (L. L)
"Vw,s,z [ Vw,s,2] = ~/I; n Z Z LNM(klakZ)
" k€DL ka€Qu (k) (B.40)
i 2s i 2s
|e’€1 =17 e F =17 fy (R, ko) E |Guowor (1, Ke2).
w,w'==%

Now, recall that the set Dy, consists of points in [—7, 7] that are equi-spaced
at a mutual distance 27/L, and that the set Qus(k) consists of points in
[—7, 7] that are almost equi-spaced at a mutual distance 7/(M + 1) (more
precisely, recall that there is exactly one point of Qs (k) in every interval

Sy} (n+ %,n +1),n=0,...,M — 1, and exactly one point in every interval
ei(-n—1,-n—1%),n=0,...,M —1). Note also that Nas(k1,k) > M"',

and that the summand in (B.40) is continuous, so we can bound (B.40) by a
Riemann sum and obtain

2 )
)%j};’Z Jym <o | an / / dky dks et
I [—m,m]?
2s i 2s
=17 e =17 fy(kr k) D> | gur (B, k)|
w,w!'=+
(ChIE / dn / / dky dk
I [—7,m]?
min(1, [y |2 o[22 =M THRD) (| ey | 4 [ka))
< (CM)IFsitsag 1,1 min(l,n_31_52_3/2) dn
I
< (C///)1+281+23281!52!2h(1+2$1+282). (B.41)
Similarly
’~(§h) 7(gh) 2 <<C”)1+81+3281!82!/00 ,'7—31—32—3/2 dn
w,8,z w,8,z — g—2h—2 (B42)

S (C///)1+251+25281!32! 2h(1+2$1+252)7

and these bounds constitute item 4.

In fact, by Eq. (A.13) and the definition of Qps(k1), one has Nps(k1,k2) — M = (1 —
B(k1) cos k2)/(B?(k1) — 2B(k1) coska 4+ 1) > 0.



Vol. 23 (2022) Non-integrable Ising Models in Cylindrical Geometry 1129

C. Proof of Proposition 2.9

Recall that A is the discrete cylinder of sides L = 2[a™141/2] and M + 1 =
a1 ]+1 and gscal(2, 2’) the scaling limit propagator (2.3.3) in the continuum
cylinder Ay, ¢, of sides /1, ¢2. In order to emphasize its dependence upon the
sides of the cylinder, let us denote the scaling limit propagator in Ay, ¢, by
Oscal (01, £2; 2, 2'). Note that, upon rescaling by £ > 0, this propagator satisfies:
ggscal(€17€2; { Z, f Zl) = gscal(gilglv 57162; Zy Z/)' (Cl)

We will prove that, for any 2,2’ € A such that z # 2/, and any w,w’ €
Ag-14, 4-14, Such that w # v/, |w —z|| < V2 and ||Jw' — 2| < V2,

|9c(2, 2") = agscar (1, b2 aw, aw’) || < C(min{L, M, ||z — 2'[|}) 7%, (C.2)
provided that min{L, M, ||z — 2’||} is sufficiently large. Proposition 2.9 readily
follows from (C.2), simply by rescaling by a~!. Note that, thanks to (C.1),
agscal (01, £2; aw, aw') = ggear (a1, a~ o; w, w'); note also that |[a=1¢; — L| <
2v/2 and |a~'2~M| < /2. By using the explicit expression of the scaling limit
propagator (2.3.3) and the fact that ||w—z|| < v/2 and ||w’ — 2’| < v/2, we find
that ||gscar(@ 101, a Yoy w,w') — gscar(L, M + 152,2")|| < C(min{L, M, |z —
2'||})72. Therefore, in order to prove (C.2), it is enough to show that, for
min{L, M, ||z — 2’|} large,

[gc(2,2") = gscal (L, M + 1;2,2") || < C(min{L, M, ||z —2'|[})72,  (C.3)
which is what we will prove in the rest of this appendix.

Recall that gc(z,2') = [~ g (z,2") dn, with

1

Wy =383 Y e Gk ka2, 2), (C4

8"(2,7) b DL Nar iy )t (122 2) (C4)
=+ ki1E€DL ko€Qn (k1)

where Gﬁ were defined in (B.12). Similarly, gsca(L, M + 1;z,2") fo ggcal
(L, M + 1; 2, 2") dn, with

ol (LM + 12, 2)
._ 1 [n] . /
=20 ) > mel 3(k1, ka; 2, 2)C.5)

=t k1€ (2Z+1) ko€ iy (22+1)

where d(kq, k2) := (1 — t2)?k? + (1 — t1)%k3 and

G[’] 1+(/€1 kQ'Z Z/) ,:e—ilcl(zl—zi)—ikg(zz—zé)—nd(krl7k2)
sca, ’ [t :
—2it1ky  —(1 —t3)iky
_(1 - t%)ik‘g 2it1kq ’ (C 6)
Gl 1 (k1 ks 2,2") =g k1 (21 —21) —ik2(22+25) —nd(k1,k2) '
—2it1 ky (1 —t2)iko
—(1 — 3)ikq e2F2(M+1) 24t k| -
We rewrite

g (LM + 152,2") — g (2,2') = RV (2, 2') + RV (2, 2),  (C.7)
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where

1
2L(M + 1)

Z Gscal;ﬁ(kla k?; Z, Z/)

(k1,k2)EBL, M

- Z ngn](kth;Zazl) )

(k1,k2)€DL M

Moreover,

(C.8)

(M+1) (QZ + 1)’ and ,DL7M = Dp X DQ(M+1)-

1 1

mz[ > e
=+ k1€Dr Lk2€Do(nm+1)

Gy (k1 kas 2,2). (C.9)

2 :
ko€Qn (k1,k2) 2J\[M(kl, kg)

The first remainder term. We consider the contribution to gscal(L, M +
1;2,2") — ge(z,2') from R[ln] first. Examining the definitions (B.12) and (C.6),
we see that, if (k1,ke) € Dp m, each matrix element of Gizgl;ﬁ(kl,kg;z,z’) —
Gg"](kl,kg;z,z’) is bounded in absolute value by C|k|26*5"|k|2, with [k|? =
k} + k3, for some C,c > 0; if (k1,k2) € Br,m \ Drm, each matrix ele-

ment of Gscalu(khk??Zazl) is bounded in absolute value by C|kle=<nlI’.

These bounds are sufficient for performing the integral of HR[f’](z,z’ )| over
n > (min{L, M })2. In fact, for such values of 7,

! 5 e_me_{w if max{ffal, e} <7 _ o

2L(M +1) (b eBu |[k|  otherwise
(C.10)
for some C > 0, so that
oo oo
/ IR (2, < © ™ dn < C'(min(L, M)
(min{L,M})? (min{L,M})2
(C.11)

In order to bound the contribution from the integral of HR[{]](Z,Z/)” over

n < (min{L, M})?, we need to rewrite R[ln] (z,2') as a suitable integral in the
complex plane, in analogy with what we did in Appendix B. More precisely,
by using (B.20) and its analogue for the sums over ks, we find that the matrix

elements of R[n] (z,2') can be rewritten as:

[R[nzz ww, Zﬁ Z

’i + 01, O’g:O:l:

co+io1b dk co+ioab dk
{ / - 2 AL (k1) AZ, (ko) [Gocars (b1, ka; 2, 2")]

’
—oo+io1b 2m —oo+io2b 2m ww
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T+io1b dkl m+ioab dkg
B or T2 AL (ky) AL (k) [GY (K kas 2, 2)] s
/7r+ialb 27 —ndiogb 2r 1 2 [ # ]ww

(C.12)

where b will be conveniently fixed below, A/ (k) was defined after (B.20) and
A" is defined analogously: A% (k) = 1 and, if ¢ = +, A7 (k) = —e? ok M+1) /(14
e2ok(M+1)y We now proceed as described before and after (B.23): if oy = 0,
we shift k; in the complex plane as ky — ki — ibsign(z; — 21); if oo = 0,
depending on the values of §,w,w’, we shift ko — ka — 97y (uu)b, With Ty (wur)
as in (B.23). Next, we combine the third line of (C.12) with the contribution
to the integral in the second line from the region max{|Rk:|, |[Rk2|} < 7. After

these manipulations, we find that [R[ln](z, )] can be further rewritten as

) 0+iG1b (kg [RFiG2b ko
LACESED DD oy 27 ) sopinyy 2m A (FD) Aoy (k)
=+ o01,0,=0,% —oo+i&b &M J—ocotigsb ST

[Gscal;ﬁ(kla k‘g; Z’Zl)]ww' _ [ng](kl, kz; z,z’)] ww! if max{|§)?k1|, ‘%kzl} S us
[Gscal;ﬁ(kl,kz;z,z')]w if max{|Rk1|, |Rkz2|} > 7
(C.13)

w’

where 51 = —sign(z1—21), if o1 = 0, and 1 = o1, otherwise; and G2 = 7, (wu),
if 09 = 0, and &5 = 09, otherwise. We now pick b = ~/2 and notice that, if
Sky = 1m0~ Y/2 and Sky = Gon~ /2, with n < (min{L, M})2, the integrand in
the right side of (C.12) is bounded in absolute value by

Cen_l/zein_1/2Hzfzfufcmkﬁ ' |]€|2 + 7771 if maX{|§RI€1|7 |§Rk2|} <7
k| +7=Y/2  if max{|Rky|, |Rka|} > 7

for some C, ¢ > 0. Therefore, recalling that ||z — 2/|| > 1,

HR[lﬂ](Z,Z/)” < Oe*%”]_lﬂﬂzlel\ l / dk efcn\k\2(|k|2 +,,771)

[_7‘-77"]2

+ dk e~ (|k| +5~1/2)

R2\[—m,7]?

< e3Pl (n=2 4 o=nyy=8/2),

(C.14)

Note that e~ 17~ /?llz=="l—¢'n < Ce_c/,‘lz_zlllz/s, so that, by integrating over

n < (min{L, M})?2, we find:

(min{L,]\/f})z ] , , 2 , 1 Z 712/3
/0 IR (2, 2 ldn < Oz — 2|72 + |2 — /|| 2e 12177

<z -2 (C.15)
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Combining this with (C.11), we find that [~ ||R[1n](z, 2"|ldn < C(min{L, M, ||z—
2|}~

The second remainder term. Let us now consider the contribution to
Oscal(L, M + 152, 2") — ge(2, 2') from R2 ! By using (B.18) and the analogue of
(B.20) for the sums over ks in Dy(pr41), we rewrite Rgﬂ (2,2') as

S P OD o)

kieDy o==% w+iob 27T
x [AL(ks) — Ag(kr, k)| GY (k1 kas 2,2), (C.16)
where A” and A, were defined after (C.12) and in (B.19), respectively. Note
that, for o = =,
o2iok(M+1) R, (K1, ko )e2ioka(M+1)
1+ e20k(M+1) 1 — R (ky, ky)e2ioka(M+1)

2(1 + Rg(kl, kQ))@Qing(M+1)
(]_ + eQiokz(M+1))(1 _ Rg(kl’ k2)62iok2(M+1)) .

Al (ko) — Ag(k1, ko) = —

(C.17)
Recalling the definition (B.17) of R,, we have
1 — B(ky) cos(ks) k1] + |k2|? + b2
1 k =2 - <
|1+ Ry (k1, k2)l 1= Blk)eick: | = C b
(C.18)

for |Sky1| < oSke = b positive and sufficiently small; and recalling the bound
(B.26) on R,, which remains valid with i6b replaced by igd’, || < b, the
denominator of (C.17) is bounded from below as

|1 _ Ra(kl’k2)62iak2(M+l)||1 +62iak2(M+1)| > (1 _ e—b(M+1))2 (019)

for M larger than some constant and |k | < oSky = b positive and sufficiently
small. We now proceed slightly differently, depending on whether 7 is larger
or smaller than (¢(z,2'))?, with £(z,2') := max{min{L, M}, ||z — 2’|/}

The case of n smaller than (£(z,2'))?. In this case, we rewrite (C.16) by
using (B.20); if o’ = 0, we perform the complex shift k; — k; —ibsign(z; — 21),
thus getting (letting 6’ = o', if 0/ = +, and ' = —sign(z1 — 2}), if ¢’ = 0)

2=ty ¥

f=+ o/=0,fo=%7 "Tti0
[AL (k) = Ag(k1, ko) G (y kos 2, 2). (C.20)

7T+’L'5'/b dk w+iob dk
2A/ ( )
an 27'[' —n+ioh 27'('

We now bound the integrand by its absolute value, by using, in particular,
(C.17)—(C.18), and by estimating the matrix elements of Gj[jn] in the same
way as we did several times above and in Appendix B. We thus get, for b =
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co min{1,n~/?} with ¢, sufficiently small,

—bllz—2"|| 3
. Ce / (k[ +0)°
RY"(z,2")|| < dk ~———e
H 2 ( ) (1 — e*bL)(l — e*bM)Q [—m,7]2 b
Cble—blz=2l
= (1 —e VL)1 — e oM)2° (C.21)

If we now integrate this inequality with respect to 7, for 0 < n < £(z,2'),
recalling that ¢(z, 2') = max{min{L, M}, ||z — 2’|}, we find, for ||z — 2’1,

(£(2,2"))? .
[ e
0

’
e—coll===ll gy

(min{L,M})?
+C/ n~2e—con” ===l gy
1
+1(||z = 2'|| > min{L, M})
ol
FEYD) n
LM? J(mingr,mp)2

oo 1 Iz = Z
<c’( collz=="]| )
=oe M PR R Ve

Cl/

< :
= (min{Z, M, ||z — 2'|[})?

The case of n larger than £(z, z"). In this case we go back to the represen-
tation (C.16) (no rewriting of the sum over k; in terms of an integral in the
complex plane).

We proceed slightly differently for the diagonal and off-diagonal elements
of R[Q"]. Let us begin with the diagonal terms. Note that the diagonal elements
of G} have the form

_ _ —1/2,_
12g=con™ ll==="ll gy

(C.22)

, o
+24t, e~ F1(z1=2) gtk Zo o= D(k1sk2) gip |y

where Zs is either zo — 25, 20 + 25, or 29 + 25 — 2M — 2. We thus see that each
diagonal element of R["]
f and o) of the form

2 t w+iocb . ’ .
) <ty Z / A//(k2)7Aa(kl’k2)]671k1(zlle)efszZQean(kl,k:g)

k, €Dy, w+iob

is given by a sum of four terms (due to the sums over

dkso
sin k1 ——
27 o (C.23)
—j:2t1 /”+1ab 2(1 4+ Ry (k1,k2))e ioks 20 sinky (21 — 2} )e= 1P (F1ke )smkl
L, 2% Jonvion (1= Raba, ka)2omaOTe D) (1 4 c2io ks (D)
dkso
o’

where in passing from the first to the second line we used (C.17) and the
fact that R, (k1,k2) is even in k;. Moreover, in the second line, Z; , is either
2(M41)—0(za—25),2(M+1)—oc(z2+25),or 2(M 4+ 1)(1+0) —o(22+ 25);
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in any case, Z; , > 2. We can then use this, together with Inequalities (C.18)
and (C.19) and the observation that |sin ki (z1 — 21)| < |k1|- ||z — Z/|| to obtain,
for w = 4+ and b = con~ /2, with n > (z, 2'),

1 2 2 2 1
< CHZ—z 3 / /2 (k34 k3 +n~ )lkl‘zefcn(kf+k§)

ww‘ — —e— confl/zM)Q

‘[R[Qn] (z,z’)]

ki€Dy,
Cllz — 2'||n—=3/2
< Y= (C.24)
and thus, recalling that £(z,2") = max{min{L, M}, ||z — 2’|},
= Cllz = 2|
Rz, ] dp| < 22— =1 o 2 C.25
/(e(z,z/))2 |7 )L’“’ M2 {(x,y) — M? ( )

which is of the desired order.
The off-diagonal elements of Gg"] are equal, up to a sign, to

2(1 _ t%)e—ikl(zl—z{)e—ik2Z26—nD(k1,k2)(1 . B(kl)eiikQ),

where as before Zs is either zo — 25, zo + 24, or 2o + 25, — 2M — 2. Noting that
Ri(kl, kg) = R¢(1€1, 7]62)7 we rewrite

T—1b
, dk
/ [A” (kg) — A_(k1, k?)]Gj[in] (K1, ka; 2, Z/)TZ
—m—1b ™
w+1b ” [77] , de
:/ (A (k) — A (o, ko) G (ko —hai2,2) 5 2 (C:26)
—m+1ib U

]

and so each off-diagonal element of R[277 can be written as a sum of two terms

(due to the sum over ) of the form

1 /”“b 2(1 + Ry (k1, ka))e2 2 (M+D) k1 (z1-2}) gD (k1 k2)
o2 )i (1= Ry (kr, ) 2k OTHD) (1 4 ¢2ik200FD))
) ) . . dk
x [e—zk222(1 _ B(kl)eizkz) +6zk222(1 _ B(kl)e:ﬁk?)} 5 2
™

up to uninteresting coefficients; then noting that
% [e—ikQZQ(l _ B(k_l)eﬂ:zkg) + 6ik2Z2(1 _ B(kl)e:F’Lkg)}
= coskoZy — B(ky) coska(Zo F1)
= (1 — coskz) cos ko Zy F sinkosin ko Zo + [1 — B(k1)] coska(Z2 F 1),

we obtain, for w = #+ and b = con~/? with > £(z,2'), noting also that
|Z2‘ < 2M7

C|Zs)| n'/2 k2+k2+ R
[Nl iy s M) e eid

w,—w‘ - — e—con~ 1/2M)2
ki1€Dy,

c —3/2
MT} )

IA

(C.27)
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from which

¢ (C.28)

= (]
RY ! d
/(ve |: 2 (27 z )i| w,—w TI MK(Z, Z/) ’

(2,2"))?
which is again of the desired order. Combining this with (C.25) and (C.22),
we find that [;° HRgﬂ (2,2)||dn < C(min{L, M, ||z — 2'||}) 2. Together with

the bound on R[ln], see the line after (C.15), this concludes the proof of (C.3)
and, therefore, of Proposition 2.9.

D. Non-interacting Correlation Functions in the Scaling Limit

In this appendix, we explain how to express the scaling limit of the non-
interacting correlation function appearing in Theorem 1.1 in terms of the prop-
agators studied in Appendix C, thus proving, in particular, [4, Eq.(1.12)]. For
notational simplicity, in this appendix we let t;(\) = ¢; and t5(\) = t2 =
(1—1t1)/(1+1t1). By using the Grassmann representation of Proposition 3.1 in
the case A = 0, we find that, for the lattice of unit mesh and any m-tuple of
distinct edges 1, ..., T;y, with m > 2,

{€oi 5 Exm>0,t17t2;/\

om Sty ity (B)4 (1—t2)E, A
=——1o Dtz TEBANTT G (2)) e e D.1
9A,, 04, ° / azo DV
(note that the expectation in the left side is the truncated one). Introducing
the rescaled energy observable £} (z) := a" 10,0, 14¢,, rescaling the lattice by
a factor of a and passing over to the non-truncated expectation, we obtain

<571 (21) €, (Zm)>0,t1,t2;A“
= aim(l - t%)ml(l - t%)m2<(Ex(Z1,l1) - <E$(21711)>) T (Ex(zmvlm) >
~(Euemitn))): (02)

where, in the right side: Ey, 1) = Fsz+aél and Ey;0) = Vsz+aé2; the
I D@esglwtz(q))(.)
J'Déesglxiz(q’) ’

symbol ((-)) indicates normalized Grassmann measure with

St 4, the same as (2.1.2) on the rescaled lattice A®.
Recall the transformation (2.1.10) relating the variables {H,, H,,V .,

Votzea to {dw.z w2 }:’ee/{&i}, from which we see that, if x is a vertical
edge of endpoints z,z + aég, then E; = ¢y .0_ .1qé,, While, if z is a hor-
izontal edge of endpoints z,z + aé;, then (with obvious notation) FE, =
(s % (¢4 —d-)(2)] [s— % (¢4 +¢—)(2+aéy)] plus terms involving the ‘massive’
variables {£, - }zen wef+)-

The reader can convince herself that, for the purpose of computing the
limit @ — 07 of (D.2), in the right side of (D.2) we can freely replace E, by the
following local expressions in the Grassmann ‘massless’ variables: ¢ .¢_ ., if
x is a vertical edge of endpoints z, z+aés (note that ¢ .¢_ . is obtained from
@429 »+ae, Dy ‘localizing’ the second field at the same position of the first
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one); and (14 61)"2(¢4. = 6-2) (b4.o +6-2) = 21+ 1) 2y 6., ifais a
vertical edge of endpoints z, z + aé; (note that (14t1)"2(¢4 . — d— ) (4 . +
¢_,-) is obtained from [s; * (o4 — ¢_)(2)] [s— * (¢4 + ¢—)(z + aé1)] by local-
izing [s_ * (¢4 + ¢_)(2 + aé1)] at z, and by replacing the non-local, expo-
nentially decaying, kernels sy (z1) by their local counterparts, namely ¢, o,
with ¢g = limp_, 00 25:1 s+(y) = (1+t1)71). It is, in fact, easy to check that
the difference between the exact expression of E, and such a ‘local approxi-
mations’ is of higher order in a and its contribution to the correlation function
vanishes in the limit ¢ — 0. Therefore,

tizn (i (1) e, (2m) ) 4, s

0+
—-m 2(1 — t%)
((1 +11)?

a

) (1- t%)mZ <5¢+,Z1 O L NEY o R, s
(D.3)

where : ¢4 .¢_ . : denotes the difference ¢4 ¢ . — (¢4 ¢ .). Note that

?&:f@ = 2t3. The Grassmann average in the right side of (D.3) can be

expressed in terms of the fermionic Wick rule or, equivalently, in terms of
the Pfaffian of the 2m x 2m anti-symmetric matrix M%(z), whose elements,
labeled by the indices (1,+), (1,—),...,(m,+), (m, —), are equal to

w2 Purz;) 1 TF
(M (2)] sy = {(<)¢ =) othzviise.
In view of Proposition 2.9, limg—0a ¢y 20w o) = [gswl<z’z,)]ww’ and,
therefore,
i, (o8 (1) €8 (2m)) g, gyone = (202)™ (1~ t2)™2 Pf(M(z)), (D.4)
with
[M(z)}(i,w)’(j*wl) B {(Egscal(z“zj)]wuﬂ i)ft;l:v\]/i’se, (D5)

Since gscal is covariant under rescaling, see (C.1), the scaling limit (D.4) is,
as well. Note that rescalings are, together with translations and parity, the
only conformal transformations from finite cylinders to finite cylinders or,
equivalently, from a finite circular annulus to a finite circular annulus: in
fact, it is well known [5,28] that an annulus {z € C : r < |z| < R}
can be conformally mapped to another one only if the two annuli have
the same modulus % log(R/r); moreover, any automorphism of the annulus
{z € C : r<|z| < R} is either a rotation z — ze* or a rotation followed by
an inversion z — Rr/z. Equivalently, in terms of finite cylinders, this classi-
cal result of complex analysis implies that the only conformal transformations
from finite cylinders to finite cylinders are uniform rescaling, translations and
parity.
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