
NORMAL FORM À LA MOSER FOR DIFFEOMORPHISMS AND
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Abstract. We prove a discrete time analogue of 1967 Moser’s normal form of

real analytic perturbations of vector fields possessing an invariant, reducible,

Diophantine torus; in the case of diffeomorphisms too, the persistence of such

an invariant torus is a phenomenon of finite co-dimension. Under conve-

nient non-degeneracy assumptions on the diffeomorphisms under study (tor-

sion property for example), this co-dimension can be reduced. As a by-product

we obtain generalizations of Rüssmann’s translated curve theorem in any di-

mension, by a technique of elimination of parameters.
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1. Introduction and results

Let T = R/2πZ, a, b ∈ R, a < b and consider the twist map

P : T× [a, b]→ T× R, (θ, r) 7→ (θ + α(r), r),

where α′(r) > 0: P preserves circles r = r0, r0 ∈ [a, b], and rotates them by an

angle which increases as r does (this is the twist property).

Moser in [24] proved that for any r0 ∈ (a, b) such that α(r0) is Diophantine, if

Q is an exact area preserving diffeomorphism sufficiently close to P , it has an in-

variant curve near r = r0 on which the dynamics is conjugated to the rotation

θ 7→ θ + α(r0).

In 1970, Rüssmann generalized this fundamental result to non-conservative twist
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diffeomorphisms of the annulus [3, 27, 32]. He showed that the persistence of a

Diophantine invariant circle is a phenomenon of co-dimension 1: in general the

invariant curve does not persist but it is translated in the normal direction. It is

the ”theorem of the translated curve” (see below for a precise statement).

As in Kolmogorov’s theorem [20], the dynamics on the translated curve can be

conjugated to the same initial Diophantine rotation because of the non degener-

acy (twist) of the map. Herman gave a proof of the translated curve theorem for

diffeomorphisms with rotation number of constant type [18], then generalized Rüss-

mann’s result in higher dimension to diffeomorphisms of Tn × R (Tn = Rn/2πZn)

close enough to the rotation (θ, r) 7→ (θ + α, r), α being a Diophantine vector,

without assuming any twist hypothesis but introducing an external parameter in

order to tune the frequency on the translated torus, yet breaking the dynamical

conjugacy to the Diophantine rotation, see [32].

Up to our knowledge no further generalization in Tn ×Rm of Rüssmann’s theorem

has been given so far.

The first purpose of this work is to prove a discrete-time analogue of Moser’s

1967 normal form [26] of real analytic perturbations of vector fields on Tn × Rm

possessing a quasi-periodic Diophantine, reducible, invariant torus. The normal

form will then be used to deduce ”translated torus theorems” under convenient non-

degereracy assumptions. As a by-product, Rüssmann’s classical theorem will be a

particular case of small dimension. While Rüssmann and Herman consider smooth

or finite differentiable diffeomorphisms, we focus here on the analytic category. Let

us state the main results.

A normal form for diffeomorphisms. Let Tn = Rn/2πZn be the n-dimensional

torus. Let V be the space of germs along Tn × {0} in Tn × Rm = {(θ, r)} of real

analytic diffeomorphisms. Fix α ∈ Rn and A ∈ GLm(R), assuming that A is

diagonalizable with (possibly complex) eigenvalues a1, . . . , am ∈ C.

Let U(α,A) be the affine subspace of V of diffeomorphisms of the form

(1.1) P (θ, r) = (θ + α+O(r), A · r +O(r2)),

where O(rk) are terms of order ≥ k in r which may depend on θ. For these

diffeomorphisms Tn0 = Tn × {0} is an invariant, reducible, α-quasi-periodic torus

whose normal dynamics at the first order is characterized by a1, . . . , am. We will

collectively refer to α1, . . . , αn and a1, . . . , am as the characteristic frequencies or

characteristic numbers of Tn0 .

Let now a1, . . . , aq ∈ C be the pairwise distinct eigenvalues of A. We will impose

the following Diophantine conditions for some γ > 0 and τ ≥ 1

∀i = 1, . . . , q : |ai| = 1

|k · α+ arg ai − 2πl| ≥ γ

|k|τ
∀(k, l) ∈ Zn \ {0} × Z,

∀i, j = 1, . . . , q : |ai| = |aj |

|k · α+ arg ai − arg aj − 2πl| ≥ γ

|k|τ
∀(k, l) ∈ Zn \ {0} × Z,

(1.2)
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where arg ai ∈ [0, 2π[ denotes the argument of the i-th eigenvalue ai = |ai|ei arg ai .

Remark 1.1. Note that A being in GLm(R), the possible complex eigenvalues come

in couples and that conditions (1.2) imply the classical Diophantine condition on α

when i = j.

Let G be the space of germs of real analytic isomorphisms of Tn × Rm of the

form

(1.3) G(θ, r) = (ϕ(θ), R0(θ) +R1(θ) · r),

where ϕ is a diffeomorphism of the torus fixing the origin and R0, R1 are functions

defined on the torus Tn with values in Rn and GLm(R) respectively and such that

ΠKer(A−I)R0(0) = 0 and ΠKer[A,·](R1(0) − I) = 0, having denoted I the identity

matrix in Matm(R) and Π the projection on the indicated subspace.

Let us define the ”correction map”

Tλ : Tn × Rm → Tn × Rm, (θ, r) 7→ (β + θ, b+ (I +B) · r),

where β ∈ Rn, b ∈ Rm and B ∈ Matm(R) are such that

(1.4) (A− I) · b = 0, [A,B] = 0.

We will refer to translating parameters λ = (β, b+B · r) as corrections or counter

terms, and denote with Λ the space of such λ′s

Λ = {λ = (β, b+B · r) : (A− I) · b = 0, [A,B] = 0}.

Theorem A (Normal form). Let (α,A) satisfy the Diophantine condition (1.2).

If Q is sufficiently close to P 0 ∈ U(α,A), there exists a unique triplet (G,P, λ) ∈
G × U(α,A)× Λ, close to (id, P 0, 0), such that

Q = Tλ ◦G ◦ P ◦G−1.

In the neighborhood of (id, P 0, 0), the G-orbit of all P ′s ∈ U(α,A) has finite

co-dimension. The proof is based on a relatively general inverse function theorem

in analytic class (Theorem A.1 of the Appendix).

The idea of proving the finite co-dimension of a set of conjugacy classes of a

diffeomorphism or of a vector field has been successfully exploited by many au-

thors. Arnold at first proved a normal form for diffeomorphisms of Tn [1], fol-

lowed by Moser’s normal forms for vector fields [21, 22, 25, 26, 31]. Among other

authors we recall Calleja-Celletti-deLaLlave work on conformally symplectic sys-

tems [4], Chenciner’s study on the bifurcation of elliptic fixed points [5–7], Herman’s

twisted conjugacy for Hamiltonians [12, 13] (a generalization of Arnold’s work [1])

or Eliasson-Fayad-Krikorian work around the stability of KAM tori [10].

This technique allows us to study the persistence of an invariant torus in two

steps: first, prove a normal form that does not depend on any non-degeneracy

hypothesis (but that contains the hard analysis); second, reduce or eliminate the

(finite dimensional) corrections by the usual implicit function theorem, using con-

venient non degeneracy assumptions on the system under study.
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A generalization of Rüssmann’s theorem. From the normal form of Theorem

A, we see that when λ = 0, Q = G◦P ◦G−1: the torus G(Tn0 ) is invariant for Q and

the first order dynamics is given by P ∈ U(α,A). Conversely, whenever λ = (β, b),

the torus is translated and the α-quasi-periodic tangential dynamics is twisted by

the correction β:

Q(ϕ(θ), R0(θ)) = (β + ϕ(θ + α), b+R0(θ + α)).

We will loosely say that the torus Tn0

− persists up to twist-translation, when λ = (β, b)

− persists up to translation, when λ = (0, b)

We stress the fact that Theorem A not only gives the tangential dynamics to

the torus, but also the normal one, of which Rüssmann’s original statement is

regardless:

Theorem (Rüssmann). Let α ∈ R be Diophantine and P 0 : T× [−r0, r0]→ T×R
be of the form

P 0(θ, r) = (θ + α+ t(r) +O(r2), A0r +O(r2)),

where A0 ∈ R \ {0}, t(0) = 0 and t′(r) > 0.

If Q is close enough to P 0 there exists a unique analytic curve γ : T→ R, close to

r = 0, an analytic diffeomorphism ϕ of T close to the identity and b ∈ R, close to

0, such that

Q(θ, γ(θ)) = (ϕ ◦Rα ◦ ϕ−1(θ), b+ γ(ϕ ◦Rα ◦ ϕ−1(θ))).

Note that t(r) may depend on the angles as well. In the original statement

A0 = 1; to consider this case with general A0 does not add any difficulty to the

proof.

We will generalize Rüssmann’s theorem on Tn ×Rn. At the expense of loosing the

control on the final normal dynamics and conjugating T−1
λ ◦Q to a diffeomorphism

P whose invariant torus has a normal dynamics given by a different A, under conve-

nient non-degeneracy conditions we can prove the existence of a twisted-translated

or translated α-quasi-periodic Diophantine torus by application of the classical im-

plicit function theorem in finite dimension. The following results will be proved

in section 5, where a more functional statement will be given (Theorem 5.1 and

Theorem 5.2).

On Tn × Rn, let P ∈ U(α,A), defined in expression (1.1), be such that A is

invertible and has simple, real eigenvalues a1, . . . , an. This hypothesis clearly im-

plies that the only frequencies that can cause small divisors are the tangential ones

α1, . . . , αn, so that we only need to require the standard Diophantine hypothesis

on α.

Theorem B. Let α be Diophantine and let A ∈ GLn(R) have simple, real eigen-

values. If Q is sufficiently close to P 0 ∈ U(α,A), there exists A′ close to A such

that the torus Tn0 persists up to twist-translation and its normal dynamics is given

by A′.
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If, in addition, Q has a torsion property we can prove the following theorem.

Theorem C. Let α be Diophantine and let A be invertible with simple, real eigen-

values. Let also

P 0(θ, r) = (θ + α+ p1(θ) · r +O(r2), A · r +O(r2))

be such that

det

(∫
Tn
p1(θ) dθ

)
6= 0.

If Q is sufficiently close to P 0, there exists A′ close to A such that the torus Tn0
persists up to translation and the normal dynamics is given by A′.

The paper is organized as follows: in sections 2-3 we introduce the normal form

operator, define conjugacy spaces and present the difference equations that will be

solved to linearize the dynamics on the perturbed torus; in section 4 we will prove

Theorem A while in section 5 we will prove Theorems B and C.

2. The normal form operator

We will show that the operator

φ : G × U(α,A)× Λ→ V, (G,P, λ) 7→ Tλ ◦G ◦ P ◦G−1

is a local diffeomorphism (in the sense of scales of Banach spaces) in a neigh-

borhood of (id, P 0, 0). Note that φ is formally defined on the whole space but

φ(G,P, λ) is analytic in the neighborhood of Tn0 only if G is close enough to the

identity with respect to the width of analyticity of P . See section 2.3.

Although the difficulty to overcome in the proof is rather standard for conjugacy

problems of this kind (proving the fast convergence of a Newton-like scheme), the

procedure relies on a relatively general inverse function theorem (Theorem A.1 of

section A), following a strategy alternative to Zehnder’s in [33]. Both Zehnder’s

approach and ours rely on the fact that the fast convergence of the Newton’ scheme

is somewhat independent of the internal structure of the variables.

2.1. Complex extensions. Let us extend the tori

Tn = Rn/2πZn and Tn0 = Tn × {0} ⊂ Tn × Rm,

as

TnC = Cn/2πZn and TnC = TnC × Cm

respectively, and consider the corresponding s-neighborhoods defined using `∞-balls

(in the real normal bundle of the torus):

Tns =

{
θ ∈ TnC : max

1≤j≤n
|Im θj | ≤ s

}
and Tns = {(θ, r) ∈ TnC : |(Im θ, r)| ≤ s},

where |(Im θ, r)| := max (max1≤j≤n |Im θj |,max1≤j≤m |rj |).

Let now f : Tns → C be holomorphic on the interior of Tns , continuous on

Tns , and consider its Fourier expansion f(θ, r) =
∑
k∈Zn fk(r) ei k·θ, denoting by
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k · θ = k1θ1 + . . . + knθn. In this context we introduce the so called ”weighted

norm”:

|f |s :=
∑
k∈Zn

|fk| e|k|s, |k| = |k1|+ . . .+ |kn|,

where |fk| = sup|r|<s |fk(r)|. Whenever f : Tns → Cn, |f |s = max1≤j≤n(|fj |s), fj
being the j-th component of f(θ, r).

It is a trivial fact that the classical sup-norm is bounded from above by the weighted

norm:

sup
z∈Tns

|f(z)| ≤ |f |s

and that |f |s < +∞ whenever f is analytic on its domain, which necessarily con-

tains some Tns′ with s′ > s. In addition, the following useful inequalities hold if f, g

are analytic on Tns′

|f |s ≤ |f |s′ for 0 < s < s′,

and

|fg|s′ ≤ |f |s′ |g|s′ .

Moreover, one can show that if f is analytic on Tns+σ and G is a diffeomorphism of

the form (1.3) sufficiently close to the identity, then |f ◦G|s ≤ CG|f |s+σ, where CG
is a positive constant depending on |G− id|s (see Appendix C). For more details

about the weighted norm, see for example [9, 23].

In general for complex extensions Us and Vs′ , we will denote by A(Us, Vs′) the set

of holomorphic functions from Us to Vs′ and A(Us), endowed with the s-weighted

norm, the Banach space A(Us,C).

Eventually, let E and F be two Banach spaces,

− We indicate contractions with a dot ” · ”, with the convention that if l1, . . . , lk+p ∈
E∗ and x1, . . . , xp ∈ E

(l1 ⊗ . . .⊗ lk+p) · (x1 ⊗ . . .⊗ xp) = l1 ⊗ . . .⊗ lk〈lk+1, x1〉 . . . 〈lk+p, xp〉.

In particular, if l ∈ E∗, we simply write ln = l ⊗ . . .⊗ l.

− If f is a differentiable map between two open sets of E and F , f ′(x) is considered

as a linear map belonging to F ⊗ E∗, f ′(x) : ζ 7→ f ′(x) · ζ; the corresponding

norm will be the standard operator norm

|f ′(x)| = sup
ζ∈E,|ζ|E=1

|f ′(x) · ζ|F .

2.2. Spaces of conjugacies.

− We consider the neighborhood of the identity Gσs in the space of germs of real

holomorphic diffeomorphisms on Tns , defined by

|ϕ− id|s ≤ σ

and

|R0 + (R1 − I) · r|s ≤ σ,
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where ϕ(0) = 0, R0 and R1 satisfy Πker(A−I)R0(0) = 0 and Πker([A,·])(R1(0) −
I) = 0.

The tangent space at the identity TidGσs , consists of maps Ġ ∈ A(Tns ,Cn+m)

Ġ(θ, r) = (ϕ̇(θ), Ṙ0(θ) + Ṙ1(θ) · r),

where ϕ̇ ∈ A(Tns ,Cn), Ṙ0 ∈ A(Tns ,Cm) and Ṙ1 ∈ A(Tns ,Matm(C)). We endow

it with the norm ∣∣∣Ġ∣∣∣
s

= max
1≤j≤n+m

(∣∣∣Ġj∣∣∣
s

)
.

G

Tns+σ

Tns
Tn0

G(Tns )

G(Tn0 )

Figure 1. Deformed complex domain

− Let Vs be the subspace of A(Tns ,TnC × Cm) of diffeomorphisms

Q : (θ, r) 7→ (f(θ, r), g(θ, r)),

where f ∈ A(Tns ,Cn), g ∈ A(Tns ,Cm), endowed with the norm

|Q|s = max (|f |s, |g|s).

− Let Us(α,A) be the affine subspace of Vs of those diffeomorphisms P of the form

P (θ, r) = (θ + α+O(r), A · r +O(r2)).

We will indicate with pi and Pi the coefficients of the order-i term in r, in the θ

and r-directions respectively.

− IfG ∈ Gσs and P is a diffeomorphism overG(Tns ) we define the following deformed

norm

|P |G,s := |P ◦G|s,

depending on G; this in order not to shrink artificially the domains of analyticity.

The problem, in a smooth context, may be solved without changing the domain,

by using plateau functions.

2.3. The normal form operator. By Theorem B.1 and Corollary B.1 the follow-

ing operator

(2.1)
φ : Gσ/ns+σ × Us+σ(α,A)× Λ → Vs

(G,P, λ) 7→ Tλ ◦G ◦ P ◦G−1

is now well defined. It would be more appropriate to write φs,σ but, since these

operators commute with source and target spaces, we will refer to them simply as

φ. We will always assume that 0 < s < s+ σ < 1 and σ < s.
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3. Difference equations

We present here three lemmata that we will use in the following in order to

linearize the tangent and the normal dynamics of the torus (see section 4).

Let α ∈ Rn and let M ∈ GLm(R) have pairwise distinct eigenvalues µ1, . . . , µm.

We assume the following Diophantine conditions on α and M :

|k · α− 2πl| ≥ γ

|k|τ
, ∀k ∈ Zn \ {0},∀l ∈ Z

(3.1)

|k · α− argµj − 2πl| ≥ γ

|k|τ
, ∀(k, l) ∈ Zn \ {0} × Z, ∀j = 1, . . . ,m : |µj | = 1

(3.2)

|k · α+ argµi − argµj − 2πl| ≥ γ

|k|τ
, ∀(k, l) ∈ Zn \ {0} × Z, ∀i, j = 1, . . . ,m : |µi| = |µj |

(3.3)

||µi| − |µj || ≥ γ, ∀i, j = 1, . . . ,m i 6= j : |µi| 6= |µj |

|1− |µj || ≥ γ, if |µj | 6= 1

(3.4)

|µi − µj | ≥ γ, ∀i, j = 1, . . . ,m i 6= j : |µi| = |µj |

|1− µj | ≥ γ, if |µj | = 1 and µj 6= 1

(3.5)

min
1≤j≤m

(|µj |) ≥ γ.
(3.6)

We first prove the following fundamental lemma, which is the heart of the proof

of Theorem A and, more generally, of many stability results related to Diphantine

rotations on the torus.

Lemma 1. Let α ∈ Rn be Diophantine in the sense of (3.1) and let a, b ∈ C \ {0}.
(1) If a = b and |a| ≥ γ, for any g ∈ A(Tns+σ), there exists a unique f of zero

average which is complex analytic on Tns and a unique λ ∈ R such that

λ+ af(θ + α)− af(θ) = g(θ), λ =
1

(2π)n

∫
Tn
g dθ,

satisfying

|f |s ≤
C

γ2στ+n
|g|s+σ,

C being a constant depending only on n and τ .

(2) Let a 6= b.
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(i) If |a| = |b| and

(3.7)


|a− b| ≥ γ
|a| ≥ γ
|k · α+ arg a− arg b− 2πl| ≥ γ

|k|τ ∀(k, l) ∈ Zn \ {0} × Z

for any g ∈ A(Tns+σ), there exists a unique f which is complex analytic

on Tns such that

(3.8) af(θ + α)− bf(θ) = g(θ),

satisfying

|f |s ≤
C

γ2στ+n
|g|s+σ,

C being a constant depending only on n, τ .

(ii) If |a| 6= |b| and ||a| − |b|| ≥ γ, for any g ∈ A(Tns+σ), there exists a

unique f which is complex analytic on Tns+σ such that

af(θ + α)− bf(θ) = g(θ),

satisfying

|f |s+σ ≤ γ
−1|g|s+σ.

Proof. (1) Developing in Fourier series the equation yields

λ+ a
∑
k

(ei k·α − 1)fke
i k·θ =

∑
k

gke
i kθ;

letting λ = g0 we formally have

f(θ) =
1

a

∑
k 6=0

gk
ei k α − 1

ei kθ.

First note that the coefficients gk decay exponentially:

|gk| =
∣∣∣∣∫

Tn
g(θ)e−i k·θ

dθ

2π

∣∣∣∣ ≤ |g|s+σe−|k|(s+σ),

by deforming the path of integration to Im θj = − sgn(kj)(s+ σ).

Second, remark that for any x, y ∈ R+, ϕ ∈ [0, 2π[∣∣x eiϕ − y∣∣2 = (x− y)2 cos2 ϕ

2
+ (x+ y)2 sin2 ϕ

2

≥ (x+ y)2 sin2 ϕ

2
= (x+ y)2 sin2 ϕ− 2πl

2
,

(3.9)

with l ∈ Z. By choosing l ∈ Z such that −π2 ≤
ϕ−2πl

2 ≤ π
2 we get

(3.10)
∣∣x eiϕ − y∣∣ ≥ 2

π
(x+ y)

|ϕ− 2πl|
2

,

by the classical inequality |sin δ| ≥ 2
π |δ|, whenever −π2 ≤ δ ≤

π
2 .

In our case x = y = 1, ϕ = k · α and ∀k, by choosing l ∈ Z such that

−π2 ≤
k·α−2πl

2 ≤ π
2 we get∣∣ei k·α − 1

∣∣ ≥ 4

π

|k · α− 2πl|
2

≥ 2

π

γ

|k|τ
,
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by inequality (3.10) and the Diophantine condition (3.1).

We thus have

|f |s ≤
π |g|s+σ
|a|γ

∑
k

|k|τe−|k|σ ≤
π 2n|g|s+σ
|a|γ

∑
`≥1

(
`+ n+ 1

`

)
e−`σ`τ

≤
π 4n|g|s+σ
|a|γ(n− 1)!

∑
`≥1

(n+ `− 1)n−1+τe−`σ

≤
π 4n|g|s+σ
|a|γ(n− 1)!

∫ ∞
1

(`+ n− 1)n+τ−1e−(`−1)σ d`.

The integral is equal to

σ−τ−nenσ
∫ ∞
nσ

`τ+n−1e−` d`

< σ−τ−nenσ
∫ ∞

0

`τ+n−1e−` d` = σ−τ−nenσΓ(τ + n).

Hence f , of zero average, is complex analytic on Tns and, since |a| ≥ γ it

satisfies the claimed estimate.

(2) Point (i). Let a = |a|ei arg a and b = |b|ei arg b with the convention that

arg z = π (arg z = 0) if z ∈ R− (if z ∈ R+).

The Fourier’s expansion gives

f0 =
g0

a− b
and ∀k 6= 0

fk =
gk

ei arg b
(
|a|ei( k α+arg a−arg b) − |b|

)ei k·θ.
In order to bound the divisors we apply the same inequalities as in (3.9)-

(3.10), with ϕ = k ·α+ arg a− arg b. Since |a| = |b|, by conditions (3.7) we

proceed as in the proof of point (1) to get the stated estimate. In the case

where a (or b) is real and arg a (or arg b) is equal to π, we shall englobe it

with l by choosing l̂ = 2l−1 (or l̂ = 2l+1) such that −π2 ≤
k·α+arg a−πl̂

2 ≤ π
2

to conclude the estimate as in (3.10).

Point (ii) follows directly from the triangular inequality.

We address the reader interested to optimal estimates (with στ instead of στ+n)

to [28]. �

Let now α ∈ Rn and M ∈ GLm(R) have simple eigenvalues such that1 µi 6=
1,∀i = 1, . . . ,m, and consider the following operator

L1,M : A(Tns+σ,Cm)→ A(Tns ,Cm), f 7→ f(θ + α)−M · f(θ).

1In order not to burden the following statements, we suppose that M has simple spectrum and

1 does not belong to it. Just note that in the general case, one should introduce the corrections λ

meant to absorb the average of the given term in the homological equations when it is the case,

as in Lemma 1 point (1) (cf. conditions (1.4)).
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Lemma 2 (Relocating the torus). Let α ∈ Rn and M ∈ GLm(R), a diagonalizable

matrix with simple eigenvalues distinct from 1, satisfy the Diophantine conditions

(3.1)-(3.2)-(3.4)-(3.5)-(3.6). For every g ∈ A(Tns+σ,Cm), there exists a unique

preimage f ∈ A(Tns ,Cm) by L1,A. Moreover the following estimate holds

|f |s ≤
C2

γ2

1

σn+τ
|g|s+σ,

C2 being a constant depending only on the dimension n and the exponent τ .

Proof. In the scalar case m = 1 and M = µ ∈ R. By expanding both sides of

L1,Mf = g the formal preimage is given by

fk =
gk

ei k α − µ
and the proof is recovered from Lemma 1 point (2) ii). The diagonal case follows

readily by working component wise and taking into account condition (3.4).

Eventually, if M is diagonalizable let P ∈ GLm(C) be the diagonalizing matrix

such that PMP−1 = diag(µ1, · · · , µm), µi ∈ C. By left multiplying both sides of

f(θ + α)−M · f(θ) = g by P , we get

f̃(θ + α)− PMP−1f̃(θ) = g̃,

where we have set g̃ = Pg and f̃ = Pf . By Lemma 1 point (2) and the Diophantine

conditions (3.1)-(3.2)-(3.5)-(3.6), f̃ satisfies the wanted estimates, and f = P−1f̃ .

�

Eventually, consider a holomorphic function F on Tns+σ with values in Matm(C)

and define the operator

L2,M : A(Tns+σ,Matm(C)) → A(Tns ,Matm(C))

F 7→ F (θ + α) ·M −M · F (θ)
.

Lemma 3 (Straighten the first order dynamics). Let α ∈ Rn and M ∈ GLm(R), a

diagonalizable matrix with simple eigenvalues distinct from 1, satisfy the Diophan-

tine conditions (3.1)-(3.3)-(3.4)-(3.5)-(3.6). For every G ∈ A(Tns+σ,Matm(C)),

such that
∫
Tn G

i
i

dθ
(2π)n = 0, there exists a unique F ∈ A(Tns ,Matm(C)), having zero

average diagonal elements, such that the matrix equation

F (θ + α) ·M −M · F (θ) = G(θ)

is satisfied; moreover the following estimate holds

|F |s ≤
C3

γ2

1

σn+τ
|G|s+σ,

C3 being a constant depending only on the dimension n and the exponent τ .

Proof. Let M = diag(µ1, . . . , µm) ∈ Rm and F ∈ Matm(C) be given, expanding

L2,MF = G we get m equations of the form

µj

(
F jj (θ + α)− F jj (θ)

)
= Gjj , j = 1, . . . ,m

and m2 −m equations of the form

µjF
i
j (θ + α)− µiF ij (θ) = Gij(θ), ∀i 6= j, i, j = 1, . . . ,m.
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where we denoted by F ij the element corresponding to the i-th line and j-th

column of the matrix F (θ). Taking into account the Diophantine conditions (3.1)-

(3.4), the thesis follows from the same computations as Lemma 1 point (1) for the

m-diagonal equations and point (2)-ii) for the (m2 −m)-out diagonal ones.

Eventually, to recover the general case, we consider the transition matrix P ∈
GLm(C) such that PMP−1 = diag(µ1, · · · , µm), µi ∈ C, and the equation

(PF (θ + α)P−1PMP−1)− PMP−1PF (θ)P−1 = PGP−1;

letting F̃ = PFP−1 and G̃ = PGP−1, the equation is of the previous kind and

by the Diophantine conditions (3.1)-(3.3)-(3.4)-(3.5)-(3.6), F̃ satisfies the wanted

estimates, and F = P−1F̃P . �

Remark 3.1. The real analytic character of the solutions in Lemmata 2 and 3 follows

from their uniqueness and the fact that the matrix M has real entries.

4. Inversion of the operator φ

The following theorem represents the main result of this first part, from which

the normal form Theorem A follows.

Let us fix P 0 ∈ Us(α,A) and note V σs =
{
Q ∈ Vs :

∣∣Q− P 0
∣∣
s
< σ

}
the ball of

radius σ centered at P 0.

Theorem 4.1. The operator φ is a local diffeomorphism in the sense that for any

0 < η < s < s+ σ < 1 there exists ε > 0 and a unique C∞-map ψ

ψ : V εs+σ → Gηs × Us(α,A)× Λ

such that φ ◦ ψ = id . Moreover ψ is Whitney-smooth with respect to (α,A).

This result will follow from the inverse function theorem A.1 and regularity

propositions A.2-A.1-A.3.

In order to solve locally φ(x) = y, we use the remarkable idea of Kolmogorov and

find the solution by composing infinitely many times the operator

x = (g, u, λ) 7→ x+ φ′−1(x) · (y − φ(x)),

on extensions Tns+σ of shrinking width.

At each step of the induction, it is necessary that φ′−1(x) exists at an unknown

x (not only at x0) in a whole neighborhood of x0 and that φ′−1 and φ′′ satisfy a

suitable estimate, in order to control the convergence of the iterates.

The main step is to check the existence of a right inverse for

φ′(G,P, λ) : TGGσ/ns+σ ×
−→
U s+σ × Λ→ VG,s,

if G is close to the identity. We indicated with
−→
U the vector space directing U(α,A).

Proposition 4.1. If (G,P, λ) is close enough to (id, P 0, 0), for all δQ ∈ VG,s+σ =

G∗A(Tns+σ,Cn+m), there exists a unique triplet (δG, δP, δλ) ∈ TGGs×
−→
U s×Λ such

that

(4.1) φ′(G,P, λ) · (δG, δP, δλ) = δQ.
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Moreover we have the following estimates

(4.2) max(|δG|s, |δP |s, |δλ|) ≤
C ′

στ ′
|δQ|G,s+σ,

C ′ being a constant possibly depending on |((G− id), P − (θ + α,A · r))|s+σ.

Proof. Let a vector field δQ ∈ VG,s+σ be given. Differentiating with respect to

x = (G,P, λ), we have

δ(Tλ ◦G ◦ P ◦G−1) = Tδλ ◦ (G ◦ P ◦G−1) + T ′λ ◦ (G ◦ P ◦G−1) · δ(G ◦ P ◦G−1)

hence

M · (δG ◦P +G′ ◦P · δP −G′ ◦P ·P ′ ·G′−1 · δG) ◦G−1 = δQ−Tδλ ◦ (G ◦P ◦G−1),

where M =

(
I 0

0 I +B

)
.

The data is δQ while the unknowns are the ”tangent vectors” δP ∈ O(r)×O(r2),

δG (geometrically, a vector field along G) and δλ ∈ Λ.

Pre-composing by G we get the equivalent equation between germs along the stan-

dard torus Tn0 (as opposed to G(Tn0 )):

M · (δG ◦ P +G′ ◦ P · δP −G′ ◦ P · P ′ ·G′−1 · δG) = δQ ◦G− Tδλ ◦G ◦ P ;

multiplying both sides by (G′−1 ◦ P )M−1, we finally obtain

(4.3) Ġ ◦ P − P ′ · Ġ+ δP = G′−1 ◦ P ·M−1δQ ◦G+G′−1 ◦ P ·M−1Tδλ ◦G ◦ P,

where Ġ = G′−1 · δG.

Remark that the term containing Tδλ is not constant; expanding along r = 0, it

reads

Tλ̇ = G′−1 ◦ P ·M−1 · Tδλ ◦G ◦ P = (β̇ +O(r), ḃ+ Ḃ · r +O(r2)).

The vector field Ġ (geometrically, a germ along Tn0 of tangent vector fields) reads

Ġ(θ, r) = (ϕ̇(θ), Ṙ0(θ) + Ṙ1(θ) · r).

The problem is now: G,λ, P,Q being given, find Ġ, δP and λ̇, hence δλ and δG.

We are interested in solving the equation up to the 0-order in r in the θ-direction,

and up to the first order in r in the action direction; hence we consider the Taylor

expansions along Tn0 up to the needed order.

We remark that since δP = (O(r), O(r2)), it will not intervene in the cohomological

equations given out by (4.3), but will be uniquely determined by identification of

the reminders.

Let us proceed to solve the equation (4.3); taking its jet at the wanted order, it

splits into the following three

(4.4)

ϕ̇(θ + α)− ϕ̇(θ) + p1 · Ṙ0 = q̇0 + β̇

Ṙ0(θ + α)−A · Ṙ0(θ) = Q̇0 + ḃ

Ṙ1(θ + α) ·A−A · Ṙ1(θ) = Q̇1 − (2P2 · Ṙ0 + Ṙ′0(θ + α) · p1) + Ḃ.

The first equation is the one straightening the tangential dynamics, while the sec-

ond and the third ones are meant to relocate the torus and straighten the normal
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dynamics.

For the moment we solve the equations ”modulo λ̇”; eventually δλ will be uniquely

chosen to kill the average of the equation determining ϕ̇ and the constant compo-

nent of the given terms in the second and third equation that belong to the kernel

of A− I and [A, ·] respectively, and solve the cohomological equations.

In the following we will repeatedly apply Lemmata 1-2-3 and Cauchy’s inequal-

ity. Furthermore, we do not keep track of constants - just note that they may

only depend on n and τ (from the Diophantine condition) and on |G− id|s+σ and

|P − ((θ + α), A · r))|s+σ, and refer to them as C.

− First, second equation has a solution

Ṙ0 = L−1
1,A(Q̇0 + ḃ− b̄),

where b̄ =
∏

Ker (A−I)
∫
Tn Q̇0 + ḃ dθ

(2π)n , and∣∣∣Ṙ0

∣∣∣
s
≤ C

γ2στ+n

∣∣∣Q̇0 + ḃ
∣∣∣
s+σ

.

− Second, we have

ϕ̇(θ + α)− ϕ̇(θ) + p1 · Ṙ0 = q̇0 + β̇ − β̄,

where β̄ =
∫
Tn q̇0 − p1 ·R0 + β̇ dθ

(2π)n , hence

ϕ̇ = L−1
α (q̇0 + β̇ − β̄),

satisfying

|ϕ̇|s−σ ≤
C

γ3σ2(τ+n)

∣∣∣q̇0 + β̇
∣∣∣
s+σ

− Third, the solution of equation in Ṙ1 is

Ṙ1 = L−1
2,A(Q̃1 + Ḃ − B̄),

hiving denoted Q̃1 = Q̇1− (2P2 · Ṙ0 + Ṙ′0(θ+α) ·p1), and B̄ =
∏

Ker[A,·]
∫
Tn Q̃1 +

Ḃ dθ
(2π)n . It satisfies ∣∣∣Ṙ1

∣∣∣
s−2σ

≤ C

γ2σn+τ

∣∣∣Q̃1 + Ḃ
∣∣∣
s+σ

.

We now handle the unique choice of the correction δλ = (δβ, δb+ δB · r) given by

Tδλ. Letting λ̄ = (β̄, b̄ + B̄ · r), the map f : Λ → Λ, δλ 7→ −λ̄ is well defined in

the neighborhood of δλ = 0. In particular f ′ = − id at G = id, and it will remain

bounded away from 0 if G stays sufficiently close to the identity. In particular,

δλ 7→ −λ̄ is affine: the system to solve being linear of the form
∫
Tn a(G, Q̇)+A(G) ·

δλ = 0, with diagonal close to 1 when G is close to the identity, f is invertible.

Thus, there exists a unique δλ such that f(δλ) = 0, satisfying

|δλ| ≤ C

γ2στ+n+1
|δQ|G,s+σ.

We finally have ∣∣∣Ġ∣∣∣
s−2σ

≤ C

γ3

1

σ2(τ+n)+1
|δQ|G,s+σ.
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Now, from the definition of Ġ = G′−1 · δG we get δG = G′ · Ġ. The unique

solutions such that δϕ(0) = 0, δR0(0) = 0 and δR1(0) = 0 are easily determined,

since G is close to the identity and similar estimates hold for δG:

|δG|s−2σ ≤ σ
−1(1 + |G− id|s)

C

σ2(τ+n)+1
|δQ|G,s+σ.

Eventually, equation (4.3) uniquely determines δP .

Letting τ ′ = 2(τ + n) + 2, up to redefining σ′ = σ/3 and s′ = s + σ, we have the

stated estimates for all s′, σ′ : s′ < s′ + σ′. �

Proposition 4.2 (Boundness of φ′′). The bilinear map φ′′(x)

φ′′(x) : (TGGσ/ns+σ ×
−→
U s+σ(α,A)× Λ)⊗2 → A(Tns ,T

n
C),

satisfies the estimates ∣∣φ′′(x) · δx⊗2
∣∣
G,s
≤ C ′′

στ ′′
|δx|2s+σ,

where τ ′′ ≥ 1 and C ′′ is a constant depending on |x|s+σ.

Proof. Differentiating twice φ(x), yields

−M
{[
δG′ ◦ P · δP + δG′ ◦ P · δP +G′′ ◦ P · δP 2 − (δG′ ◦ P +G′′ ◦ P · δP ) · P ′ ·G′−1 · δG

−G′ ◦ P ·
(
δP ′ · (−G′−1 · δG′ ·G′−1) · δG

)]
◦G−1

+
[
δG′ ◦ P · δP + δG′ ◦ P · δP +G′′ ◦ P · δP 2 − (δG′ ◦ P +G′′ ◦ P · δP ) · P ′ ·G′−1 · δG

−G′ ◦ P ·
(
δP ′ · (−G′−1 · δG′ ·G′−1) · δG

)]′
◦G−1 · (−G′−1 · δG) ◦G−1

}
.

Once we precompose with G, the estimate follows. �

Hypothesis of Theorem A.1 are satisfied, hence the existence of (G,P, λ) such

that Q = Tλ ◦ G ◦ P ◦ G−1 is proved. Uniqueness and smoothness of the normal

form follows from Propositions A.1-A.2-A.3. Theorem 4.1 follows, hence Theorem

A.

5. A generalization of Rüssmann’s theorem

Theorem A provides a normal form that does not rely on any non-degeneracy

assumption; thus, the existence of a translated Diophantine, reducible torus will

be subordinated to eliminating the ”parameters in excess” (β,B) using a non-

degeneracy hypothesis. We will implicitly solve B = 0 and β = 0 by using the

normal frequencies as free parameters and a torsion hypothesis respectively. Rüss-

mann’s classical result will be the immediate small dimensional case.

Elimination of B. Let ∆s
m(R) ⊂ GLm(R) be the open set of invertible matrices

with simple, real eigenvalues. On Tn × Rm, let us define

Û =
⋃

A∈∆s
m(R)

U(α,A).
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We recall that those P ′s ∈ U(α,A) are diffeomorphisms of the form

P (θ, r) = (θ + α+O(r), A · r +O(r2)),

on a neighborhood of Tn × {0}.
The following theorem is an intermediate, yet fundamental result to prove the

translated torus Theorem C and holds without requiring any torsion assumption

on the class of diffeomorphisms.

Theorem 5.1 (Twisted Torus of co-dimension 1). For every P 0 ∈ Us+σ(α,A0)

with α Diophantine, and A0 ∈ ∆s
m(R), there is a germ of C∞-maps

ψ : Vs+σ → Gs × Ûs × Λ(β, b), Q 7→ (G,P, λ),

at P 0 7→ (id, P 0, 0), such that Q = Tλ ◦G ◦ P ◦G−1, where λ = (β, b) ∈ Rn+1.

Corollary 5.1 (Twisted torus). If 1 does not belong to the spectrum of A0, the

translation correction b = 0.

Proof. Denote φA the operator φ, as now we want A to vary. Let define the map

ψ̂ : ∆s
m(R)× Vs+σ → Gs × Ûs × Λ, (A,Q) 7→ ψ̂A(Q) := φ−1

A (Q) = (G,P, λ)

in the neighborhood of (A0, P 0), such that Q = Tλ ◦ G ◦ P ◦ G−1 where λ =

(β, b, B · r), β ∈ Rn, b ∈ Rm such that (A − I) · b = 0 and B ∈ Matm(R) satisfies

[B,A] = 0. Equivalently, B is simultaneously diagonalizable with A, since A has

simple spectrum; we can thus restrict our analysis to a neighborhood of A0 in the

subspace of those matrices commuting with A0. Note that we can choose such a

neighborhood so that it is contained in ∆s
m(R). Then we study the dependence of

B on A in their diagonal form.

Without loss of generality, let A0 be in its canonical form, let ∆A0 be the subspace

of diagonal matrices, namely the matrices which commute with A0. Consider the

restriction of ψ̂ to ∆A0 . Let A ∈ ∆A0 be close to A0, let δA := A0 − A and write

P 0 as

P 0(θ, r) = (θ + α+O(r), (A0 − δA) · r + δA · r +O(r2));

we remark that P 0 = Tλ ◦ PA, where

λ =
(
0, B(A) = (A0 −A) ·A−1

)
, [B(A), A] = 0

and PA = (θ+α+O(r), A · r+O(r2)), A = A0− δA.2 Remark that, since A ∈ ∆A0

has simple spectrum, B is indeed in ∆A0 .

According to Theorem A, φA(id, PA, λ) = P 0, thus locally for all A ∈ ∆A0 close to

A0 we have

ψ̂(A,P 0) = (id, PA, B · r), B(A,P 0) = (A0 −A) ·A−1 = δA · (A0 − δA)−1

and, in particular B(A0, P 0) = 0 and

∂B

∂A

∣∣∣
A=A0

= −A0−1
,

2The terms O(r2) contain a factor (I + δA ·A−1)−1.
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which is invertible, since A0 is so. Hence A 7→ B(A) is a local diffeomorphism on

∆A0 and by the implicit function theorem (in finite dimension) locally for all Q

close to P 0 there exists a unique Ā such that B(Ā,Q) = 0. It remains to define

ψ(Q) = ψ̂(Ā,Q). �

The proof of Corollary 5.1 is immediate, by conditions (1.4).

Remark 5.1. This twisted-torus theorem relies on the peculiarity of the normal dy-

namics of the torus Tn0 . The direct applicability of the implicit function theorem is

subordinated to the fact that no arithmetic condition is required on the characteris-

tic (normal) frequencies so that the correction A0 +δA is well defined; beyond that,

since having simple, real eigenvalues is an open property, the needed counter term

B is indeed a diagonal matrix, so that the number of free frequencies (parameters)

is enough to solve, implicitly, B(A) = 0. The generic case of complex eigenvalues is

more delicate since one should guarantee that corrections A0 + δA at each step sat-

isfy the Diophantine condition (1.2). It seems reasonable to think that one would

need more parameters to control this issue, using the Whitney smoothness of φ on

A, and verify that the measure of such stay positive (see [12]).

Elimination of β. If Q satisfy a torsion hypothesis, the existence of a translated

Diophantine torus can be proved.

Theorem 5.2 (Translated Diophantine torus). Let α be Diophantine. On a neigh-

borhood of Tn × {0} ⊂ Tn × Rn, let P 0 ∈ U(α,A0) be a diffeomorphism of the

form

P 0(θ, r) = (θ + α+ p1(θ) · r +O(r2), A0 · r +O(r2)),

where A0 is invertible and has simple, real eigenvalues and such that

det

(∫
Tn
p1(θ) dθ

)
6= 0.

If Q is close enough to P 0 there exists a unique A′, close to A0, and a unique

(G,P, b) ∈ G × U(α,A′)× Rn such that Q = Tb ◦G ◦ P ◦G−1.

Phrasing the thesis, the graph of γ = R0 ◦ϕ−1 is a translated torus on which the

dynamics is conjugated to Rα by ϕ (remember the form of G ∈ G given in (1.3)).

Before proceeding with the proof of Theorem 5.2, let us consider a parameter c ∈
Bn1 (0) (the unit ball in Rn) and the family of maps defined by Qc(θ, r) := Q(θ, c+

r) obtained by translating the action coordinates. Considering the corresponding

normal form operators φc, the parametrized version of Theorem A follows readily.

Now, if Qc is close enough to P 0
c , Theorem 5.1 asserts the existence of (Gc, Pc, λc) ∈

G × U(α,A)× Λ(β, b) such that

Qc = Tλ ◦Gc ◦ Pc ◦G−1
c .

Hence we have a family of tori parametrized by c̃ = c+
∫
Tn γ

dθ
(2π)n ,

Q(θ, c̃+ γ̃(θ)) = (β(c) + ϕ ◦Rα ◦ ϕ−1(θ), b(c) + c̃+ γ̃(ϕ ◦Rα ◦ ϕ−1(θ))),

where γ := R0 ◦ ϕ−1 and γ̃ = γ −
∫
T γ

dθ
2π .
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Proof. Let ϕ̂ be the function defined on Tn taking values in Matn(R) that solves

the (matrix of) difference equation

ϕ̂(θ + α)− ϕ̂(θ) + p1(θ) =

∫
Tn
p1(θ)

dθ

(2π)n
,

and let F : (θ, r) 7→ (θ+ ϕ̂(θ) · r, r). The diffeomorphism F restricts to the identity

at Tn0 . At the expense of substituting P 0 and Q with F ◦P 0 ◦F−1 and F ◦Q◦F−1

respectively, we can assume that

P 0(θ, r) = (θ + α+ p1 · r +O(r2), A0 · r +O(r2)), p1 =

∫
Tn
p1(θ)

dθ

(2π)n
.

The germs so obtained from the initial P 0 and Q are close to one another.

The proof will follow from Theorem 5.1 and the elimination of the parameter β ∈ Rn

obstructing the rotation conjugacy.

In line with the previous reasoning, we want to show that the map c 7→ β(c) is a local

diffeomorphism. It suffices to show this for the trivial perturbation P 0
c . The Taylor

expansion of P 0
c directly gives the normal form. In particular b(c) = A0 · c+O(c2),

while the map c 7→ β(c) = p1 · c+O(c2) is such that β(0) = 0 and β′(0) = p1which

is invertible by twist hypothesis, thus a local diffeomorphism. Hence, the analogous

map for Qc, which is a small C1-perturbation, is a local diffeomorphism too and,

together with Theorem 5.1, there exists unique c ∈ Rn and A ∈ Matn(R), such that

(β,B) = (0, 0). �

Remark 5.2. The theorem holds also on Tn × Rm, with m ≥ n, requiring that

rank

(∫
Tn
p1(θ) dθ

)
= n.

This guarantees that c 7→ β(c) is submersive, but c solving β(c) = 0 would no more

be uniquely determined.

Remark 5.3. Theorem 5.2 generalizes the classical translated curve theorem of Rüss-

mann in higher dimension, in the case of normally hyperbolic systems such that A

has simple, real, non 0 eigenvalues, for general perturbations.

We stress the fact that if P 0 was of the form

P 0(θ, r) = (θ + α+O(r), I · r +O(r2)),

like in the original frame studied by Rüssmann, we would need a whole matrix

B ∈ Matn(R) in order to solve the homological equations, and, having just n

characteristic frequencies at our disposal, it is hopeless to completely solve B = 0

and eliminate the whole obstruction. The torus would not be just translated.

Appendix A. Inverse function theorem & regularity of φ

We state here the implicit function theorem we use to prove Theorem A as well

as the regularity statements needed to guarantee uniqueness and smoothness of the

normal form. These results follow from Féjoz [13, 14]. Remark that we endowed

functional spaces with weighted norms and bounds appearing in propositions 4.1-

4.2 may depend on |x|s (as opposed to the analogue statements in [13,14]); for the
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corresponding proofs taking account of these (slight) differences we send the reader

to [21,22] and the proof or Moser’s theorem therein.

Let E = (Es)0<s<1 and F = (Fs)0<s<1 be two decreasing families of Banach spaces

with increasing norms |·|s and let BEs (σ) = {x ∈ E : |x|s < σ} be the ball of radius

σ centered at 0 in Es.

On account of composition operators, we additionally endow F with some deformed

norms which depend on x ∈ BEs (s) such that

|y|0,s = |y|s and |y|x̂,s ≤ |y|x,s+|x−x̂|s .

Consider then operators commuting with inclusions φ : BEs+σ(σ) → Fs, with 0 <

s < s+ σ < 1, such that φ(0) = 0.

We then suppose that if x ∈ BEs+σ(σ) then φ′(x) : Es+σ → Fs has a right inverse

φ′−1(x) : Fs+σ → Es (for the particular operators φ of this work, φ′ is both left

and right invertible).

φ is supposed to be at least twice differentiable.

Let τ := τ ′ + τ ′′ and C := C ′C ′′.

Theorem A.1 (Inverse function theorem). Further assume∣∣φ′−1(x) · δy
∣∣
s
≤ C ′

στ ′
|δy|x,s+σ(A.1) ∣∣φ′′(x) · δx⊗2

∣∣
x,s
≤ C ′′

στ ′′
|δx|2s+σ, ∀s, σ : 0 < s < s+ σ < 1(A.2)

C ′ and C ′′ depending on |x|s+σ, τ ′, τ ′′ ≥ 1.

For any s, σ, η with η < s and ε ≤ η σ2τ

28τC2 (C ≥ 1, σ < 3C), φ has a right inverse

ψ : BFs+σ(ε)→ BEs (η). In other words, φ is locally surjective:

BFs+σ(ε) ⊂ φ(BEs (η)).

Proposition A.1 (Lipschitz continuity of ψ). Let σ < s. If y, ŷ ∈ BFs+σ(ε) with

ε = 3−4τ2−16τ σ6τ

4C3 , the following inequality holds

|ψ(y)− ψ(ŷ)|s ≤ L|y − ŷ|x,s+σ,

with L = 2C ′/στ
′
. In particular, ψ being the unique local right inverse of φ, it is

also its unique left inverse.

Proposition A.2 (Smooth differentiation of ψ). Let σ < s < s + σ and ε as in

proposition A.1. There exists a constant K such that for every y, ŷ ∈ BFs+σ(ε) we

have ∣∣ψ(ŷ)− ψ(y)− φ′−1(ψ(y))(ŷ − y)
∣∣
s
≤ K(σ)|ŷ − y|2x,s+σ,

and the map ψ′ : BFs+σ(ε) → L(Fs+σ, Es) defined locally by ψ′(y) = φ′−1(ψ(y)) is

continuous. In particular ψ has the same degree of smoothness as φ.

It is sometimes convenient to extend ψ to non-Diophantine characteristic fre-

quencies (α,A). Whitney smoothness guarantees that such an extension exists.

Let suppose that φ(x) = φν(x) depends on some parameter ν ∈ Bk (the unit ball
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of Rk) and that it is C1 with respect to ν and that estimates on φ′−1
ν and φ′′ν are

uniform with respect to ν over some closed subset D of Rk.

Proposition A.3 (Whitney differentiability). Let us fix ε, σ, s as in proposition

A.1. The map ψ : D×BFs+σ(ε)→ BEs (η) is C1-Whitney differentiable and extends

to a map ψ : R2n × BFs+σ(ε) → BEs (η) of class C1. If φ is Ck, 1 ≤ k ≤ ∞, with

respect to ν, this extension is Ck.

Appendix B. Inversion of a holomorphism of Tns
We present here a classical result and a lemma that justify the well definition of

the normal form operator φ defined in section 2.3.

Complex extensions of manifolds are defined at the help of the `∞-norm.

Let

TnC = Cn/2πZn and TnC = TnC × Cm,

Tns =

{
θ ∈ TnC : |θ| := max

1≤j≤n
|Im θj | ≤ s

}
, Tns = {(θ, r) ∈ TnC : |(Im θ, r)| ≤ s} ,

where |(Im θ, r)| := max1≤j≤n max(|Im θj |, |rj |).
Let also define Rns := Rn × (−s, s) and consider the universal covering of Tns ,

p : Rns → Tns .

Theorem B.1. Let v : Tns → Cn be a vector field such that |v|s < σ/n. The

map id +v : Tns−σ → Rns induces a map ϕ = id +v : Tns−σ → Tns which is a

biholomorphism and there is a unique biholomorphism ψ : Tns−2σ → Tns−σ such that

ϕ ◦ ψ = idTns−2σ
.

In particular the following hold:

|ψ − id|s−2σ ≤ |v|s−σ

and, if |v|s < σ/2n

|ψ′ − id|s−2σ ≤
2

σ
|v|s.

For the proof we send again to [21,22].

Corollary B.1 (Well definition of the normal form operator φ). For all s, σ if

G ∈ Gσ/ns+σ, then G−1 ∈ A(Tns ,T
n
s+σ).

Proof. We recall the form of G ∈ Gσ/ns+σ:

G(θ, r) = (ϕ(θ), R0(θ) +R1(θ) · r).

G−1 reads

G−1(θ, r) = (ϕ−1(θ), R−1
1 ◦ ϕ−1(θ) · (r −R0 ◦ ϕ−1(θ))).

Up to rescaling norms by a factor 1/2 like ‖x‖s := 1
2 |x|, the statement is straightfor-

ward and follows from theorem B.1. By abuse of notations, we keep on indicating

‖x‖s with |x|s. �
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Appendix C. Fourier norms

Let A(Tns ,C) be the space of holomorphic functions on Tns with values in C,

endowed with the norm

‖f‖s =
∑
k

sup
|r|<s

|fk(r)| e|k|s, |k| = |k1|+ · · ·+ |kn|.

If f ∈ A(Tns ,Matm(C)), the definition of the norm is adapted in the obvious way

and the expression |fk(r)| denotes the standard operator norm sup|ξ|=1 |fk(r)ξ|. If

f : Tns → Cn, ‖f‖s = max1≤j≤n(
∥∥f j∥∥

s
).

Lemma 4. Let f ∈ A(Tns+σ,C) and let h ∈ A(Tns ,Cn) be such that ‖h‖s <
σ
e , then

‖f(θ, r + h(θ, r))‖s ≤
1

1− e‖h‖sσ
‖f‖s+σ.

Proof. Let f(θ, r + h(θ, r)) =
∑
n
Dnf(θ,r)hn(θ,r)

n! be the Taylor expansion of f .

‖f(θ, r + h(θ, r))‖s ≤
∑
k

sup
|r|<s

∑
n

1

n!

∑
`+k1+···+kn=k

|Dnf`(r)||hk1(r)| · · · |hkn(r)|

e|k|s,
where ki ∈ Zn, i = 1, . . . , n are the Fourier indexes. Since |k| ≤ |`|+

∣∣k1
∣∣+ · · · |kn|

≤
∑
k

sup
|r|<s

∑
n

1

n!

∑
`+k1+···+kn=k

|Dnf`(r)|e|`|s|hk1(r)|e|k
1|s · · · |hkn(r)|e|k

n|s


≤
∑
k

∑
n

1

n!

∑
`+k1+···+kn=k

sup
|r|<s

|Dnf`(r)|e|`|s|hk1(r)|e|k
1|s · · · |hkn(r)|e|k

n|s


≤
∑
k

∑
n

1

n!

∑
`+k1+···+kn=k

sup
|r|<s

|Dnf`(r)|e|`|s|hk1(r)|e|k
1|s · · · |hkn(r)|e|k

n|s


≤
∑
n

1

n!

∑
`

sup
|r|<s

|Dnf`(r)|e|`|s
∑
k1

sup
|r|<s

|hk1(r)|e|k
1|s · · ·

∑
kn

sup
|r|<s

|hkn(r)|e|k
n|s

≤
∑
`

(∑
n

nn

n!
sup
|r|<s+σ

|f`(r)|
‖h‖ns
σn

)
e|`|(s+σ),

where the last estimate follows from the fact that (Dnf)` = Dn(f`) and the clas-

sical Cauchy’s estimate by observing that for all |r| < s letting Rns+σ 3 ξ 6= 0,

the analytic function ϕ(t) = f(r + tξ) on the complex disc |t| < σ/|ξ| satisfies
dnϕ
dtn

∣∣
t=0

= Dnf(r)ξn. The factor nn coming from the classical bound on the norm

of a symmetric multilinear mapping by the associated homogeneous polynomial,

see for example [15].
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It thus follows that

‖f(θ, r + h(θ, r))‖s ≤ 2
∑
`

sup
|r|<s+σ

|f`(r)|s+σ
∑
n≥1

en√
2πn

(
‖h‖s
σ

)n
e|`|(s+σ)

≤ 2‖f‖s+σ
1

2
(

1− e‖h‖sσ
) ,

hence the stated bound. �

Lemma 5. Let f ∈ A(Tns+σ,C) and h ∈ A(Tns ,C) be such that ‖h‖s < σ, then

‖f(θ + h(θ), r)‖s ≤ ‖f‖s+σ.

For the proof see [9, Appendix B] for example.

Acknowledgments. The author has been supported by the ERC grant HamPDE’s.

The author is grateful for the mathematical (and moral) support and advises of
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(4), 42(2):193–219, 2009.



TRANSLATED TORI 23
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[20] A. N. Kolmogorov. On conservation of conditionally periodic motions for a small change in

Hamilton’s function. Dokl. Akad. Nauk SSSR (N.S.), 98:527–530, 1954.
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