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We investigated theoretically and experimentally internal solitary waves (ISWs) in a two-

layer fluid system with a top free surface. Laboratory experiments are performed by lock-

release, under Boussinesq and non-Boussinesq conditions. Experimental results are com-

pared with those obtained by the analytical solution of Korteweg-de Vries (KdV) weakly

nonlinear equation, and by the strongly nonlinear Miyata-Choi-Camassa (MCC) model.

We analyze the initial conditions which allow to find soliton solutions for both rigid-lid

(-RL) and free-surface (-FS) boundary conditions. For the MCC-FS model, we employ

a new mathematical procedure to derive the ISW-induced free surface displacement. The

density structure strongly affects the elevation of the free surface predicted by the MCC-

FS model. The free surface maximum displacement increases mostly with the density

difference, assuming non-negligible values also for smaller interfacial amplitudes. Larger

displacements occur for thinner upper layer thickness. The MCC-FS model gives the best

prediction in terms of both internal waves geometric/kinematic features and surface dis-

placements. The exsistence of a free surface allows the ISW to transfer part of its energy

to the free surface: the wave celerity assumes lower values with respect to ISW speed re-

sulting from the MCC-RL model. For ISWs with a very large amplitude, this behavior

tends to fade, and the MCC-RL and the MCC-FS model predict approximately the same

celerity and interfacial geometric features. For small-amplitude waves, also predictions of

the KdV-RL equation are consistent with experimental results. Thus, ISWs with an inter-

mediate amplitude should be modeled taking into account a free top surface as boundary

condition.
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The role of the free surface on interfacial solitary waves

I. INTRODUCTION

Nonlinear internal solitary waves (ISWs) are widespread features of the global ocean. They

propagate along a pycnocline, the layer of the water column with a strong, vertical density gra-

dient, due to differences in water temperature or salinity between the surrounding waters1. They

can be generated in a wide variety of ways, including by lee waves, tidal beams, resonance and

river plumes2–6. However, ISWs of large amplitude are primarily generated by the action of tidal

currents over bottom topography like sills, continental slopes, or sand banks7–9. ISWs generated

in each tidal period tend to be grouped together into an ordered packets, with the largest wave in

the lead10. The alteration of the sea surface roughness due to ISWs generation and propagation,

make them readily detectable by satellite images. During the propagation of ISWs packets, con-

vergent and divergent zones on the surface that move in phase with their troughs. These zones

cause variations in sea surface roughness that appear as distinctive features in synthetic aperture

radar (SAR)11.

ISWs can travel long distances, then they steepen due to non-linearity and disperse into trains

of internal solitary waves and/or ultimately breaking along continental shelf/slope. These break-

ing waves can transport deep ocean water and associated constituents towards the continental

margins and locally inducing sediment redistribution, turbulence and mixing, with important

effects on near-shore ecosystems12,13. Breaking ISWs have been widely investigated in the

past by non-analytical methods, such as laboratory experiments, numerical simulations and field

observations14–16.

The oceanic observations have shown that the heights of the ISWs compared to the vertical scales

of the stratification were large. Moreover, the fact that they preserve a finite amplitude for long

distances implied that dispersion was not dominant, but rather it balanced the non-linearity during

propagation. Nevertheless, weakly nonlinear theories have played the primary role in showing the

essential features of the observations. The Korteweg-de Vries (KdV) equation was the canonical

equation describing for the evolution of large amplitude ISWs. It considered the balance between

the weakly nonlinear wave steepening and linear dispersion is the Korteweg-de Vries equation17.

Following the KdV approach, the non-linearity is scaled by α = a/h (i.e. ISW amplitude divide

by the shallow water depth), while the non-hydrostatic dispersion is scaled by β = h/λ (where

λ is the ISW wavelength), such that: β = O(α) << 1. Comparing theoretical and experimen-

tal results, Grue et al. 18 showed that the KdV theory was relevant for small ISW amplitude but
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The role of the free surface on interfacial solitary waves

exhibited a systematic deviation from their laboratory experiments for amplitudes exceeding ap-

proximately 0.4 times the depth of the shallower (most commonly upper) layer. Useful upgrades

of the KdV equation included higher-order non-linear and/or dispersive terms19. For example, the

extended KdV (eKdV) equation included cubic term which was O(α2)20. As the waves become

narrower with increasing amplitudes, solitary wave solutions of eKdV and KdV models show

crucial differences even for relatively small amplitudes. However, once the amplitude tends to a

critical value, the ekdV solitary wave solution become inconsistent, generating large-amplitude

"table-top" solitons21.

To accurately describe properties of oceanic observations of relatively large-amplitude ISWs, com-

pared to the total water depth H, fully non-linear models have been employed. Fully nonlinear

ISWs can be obtained by solving the Dubreil-Jacotin-Long (DJL) equation22,which is equiva-

lent to the full set of the stratified Euler equations in the steady state. Since in the derivation

of the DJL equation, no assumption with respect to the nonlinearity of the fluid flow is made,

the resulting solutions are exact ISWs solutions in the inviscid limit. However, for non-constant

buoyancy frequency, the DJL equation does not have analytical solutions but it has to be solved

numerically23. The most recent analytical solution for fully non-linear ISWs was derived by Miy-

ata 24,25 , Choi and Camassa 26 : a two-layer theoretical model (MCC) considering full non-linearity

(i.e. O(a/H) = 1), and retaining only the weakly dispersive effects (β << 1). Investigations over

a wide range of stratified fluid domains proved that MCC solitary wave solutions are in good

agreement with both laboratory experiments27,28, and observations29.

Both theoretical and experimental studies concerning with lock-release ISWs were performed

in the past, mostly with the rigid-lid approximation or using a density difference too low to in-

duce surface manifestations18,30–32. For the first time, Kodaira et al. 33 studied large-amplitude

internal solitary waves propagating under the top free surface in a two-layer system of uniform

densities. For a better understanding of the surface manifestations induced by ISWs, they allowed

the top surface to be free when the interaction of internal solitary waves with relatively short

surface waves. By using two immiscible fluids with a non-negligible density jump at the inter-

face, they compared experimental results with those obtained by strongly nonlinear model (MCC),

under both the free surface (FS) and rigid-lid (RL) approximations. They performed a series of

laboratory experiments in which they generate 5 ISWs by lock-release. They used increasing

ratios between the interfacial displacement η and the shallow layer thickness h1 (within the range

0.6−3), in order to investigate how it affects the surface manifestations above ISWs.
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The role of the free surface on interfacial solitary waves

In the present work, we performed a series of 13 laboratory experiments in order to thoroughly

investigate which parameters affect the surface manifestations induced by ISWs. We remark that

our idealized experimental setting reproduce the physical processes involved in the real field, but it

does not simulate real field geometries and conditions. By producing a large density difference as

the one characterizing our initial setting, we indeed generated ISWs with visible and measurable

surface displacements, in a small scale apparatus. We compared our results with those obtained

using both weakly non-linear and fully non-linear theoretical models. We employed both the free

surface and the rigid lid approximation at the top free surface. In particular, we derive for the

MCC-FS model a new mathematical technique to obtain the free surface displacement for a given

interfacial amplitude. Analytical processing is performed by Wolfram MATHEMATICA34. We

deeply investigated how to properly set the initial conditions in order to solve the model equations.

To better understand the role of the free surface on the overall flow features, we investigated theo-

retically a wide range of interfacial amplitudes up to the limiting values resulting MCC model.

In our experiments, we generated different waves by varying some initial setting parameters: the

ratio η/h1 (from 1.4 to 34), the upper layer thickness within the ambient fluid, the initial sur-

face displacement δ0. Moreover, we set different ratios ρ1/ρ2, from 0.72 to 0.81, obtaining both

Boussinesq and quasi non-Boussinesq flow conditions. The latter have not yet been experimen-

tally investigated in the past, at the best of our knowledge.

This paper is organized as follows. In Section II we describe the model equations for ISWs and

their main features; Section III introduces the laboratory procedure adopted to generate differ-

ent ISWs and associated surface manifestations; we analyze the experimental evidences, with

particular mention to the observed surface manifestations, and the main parameters which affect

flow features. Moreover, in Section IV we compare the experimental evidences and the models

predictions. Finally, a general discussion and concluding remarks are inferred in Section V.

II. MATHEMATICAL MODELS

A. The KdV model for interfacial solitary waves

Let us consider a stratified system composed by two immiscible fluids whose uniform densities

and thicknesses are given by ρi and hi respectively, with i = 1 for the upper fluid layer and i = 2

for the lower layer (Fig. 1a). The spatio-temporal evolution of a weakly non-linear interfacial
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The role of the free surface on interfacial solitary waves
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FIG. 1. Sketch of the density structure and the main geometric parameters defined to describe the surface

and the interface displacements for (a) the rigid lid model and (b) the free surface model.

uni-directional wave, can be described by the Korteweg de Vries (KdV) equation35

ζt + c0ζx + c1ζ ζx + c2ζxxx = 0, (1)

where ζ (x, t) is the interfacial vertical displacement. For weak non-linearity, this simplified model

can be obtained by the the MCC-RL model with rigid lid assumption25,26 and by the MCC-FS

model with free surface assumption36,37.

The constant coefficients c0,c1,c2 in (1) depend on the densities ρi and thicknesses hi of the two

fluids at rest, although they are different for the two model FS and RL33. Homogeneous boundary

conditions at infinity are considered to find soliton-solution to equation (1), with the form ζ =

ζ (X), where X ≡ x− ct. Looking for soliton-solution to equation (1) of the form ζ = ζ (X), after

some mathematical manipulations and taking into account homogeneous boundary conditions at

infinity, the following first-order ordinary differential equation is obtained:

ζ 2
X =

c1

3c2
ζ 2(a−ζ ), (2)

where c is the celerity of the KdV model, obtained as:

c = cKdV ≡ c0 +
c1a

3
. (3)

This model requires that c2 > 0 and ac1 > 0 (see Eq. (2.22) and (2.23) in Kodaira et al. 33), namely

a and c1 have to be the same sign. This condition assures that the right side of Eq. (2) is positive
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The role of the free surface on interfacial solitary waves

either for a > 0 when 0 < ζ ≤ a (solitary wave of elevation), or for a < 0 when a ≤ ζ < 0.

It is important to note that the KdV model assures soliton solutions without implying limitations

to the amplitude modulus38. Moreover, the right side of Eq. (2) shows a significant mathematical

property: the polynomial cubic equation ζ 2(a− ζ ) = 0 has multiple roots (in this simple case

ζ = 0), and consequently the discriminant of the cubic equation must be zero.

It easy to verify that the function:

ζ (X) = ζ (x− cKdV t)≡ aSech2(X/λKdV ), (4)

with λKdV ≡
√

12c2/(ac1), is an analytical soliton solution of the KdV model, namely it satisfies

both the partial differential equation (1) and the ordinary first order non-linear differential equation

(2).

B. Rigid Lid Model

The rigid-lid model MCC-RL25,26 assumes that the sum of the local thicknesses η2 and η1

within the heavier and lighter fluid, respectively, has to be constant and equal to the sum of the

thicknesses at rest h1 +h2 (Fig. 1a). As a consequence:

η1 = h1 −ζ ,η2 = h2 +ζ , (5)

where ζ is the elevation of the separation surface.

To find a soliton solution, i.e. the unknowns depending on the variable X ≡ x − ct, from the

continuity and momentum equations for each layer, the following non-linear differential equation

in the ζ = ζ (X) unknown is derived33:

ζ 2
X =

3ζ 2(c2(ρ1η2 +ρ2η1)−g(ρ2−ρ1)η1η2)

c2(ρ1h2
1η2 +ρ2h2

2η1)
. (6)

The right side of Eq. (6) is set to zero for ζ = a, since the derivative of the interfacial profile ζ (X)

is zero at its maximum (a > 0) or minimum (a < 0). We thus obtain the wave-celerity as a function

of the amplitude a:

c = cRL ≡±
√

g(h1 −a)(h2+a)(ρ2 −ρ1)

ρ1h2 +a(ρ1−ρ2)+ρ2h1
. (7)

For a −→ 0 the MCC-RL celerity becomes the so-called linear-long-wave-celerity:

c0,RL ≡
√

gh1h2(ρ2 −ρ1)

ρ1h2 +ρ2h1
. (8)
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The role of the free surface on interfacial solitary waves

Unlike the KdV model, the rigid-lid approach implies the existence of a limit-amplitude ARL. For

ARL > 0 (soliton of elevation) the model does not admit solution for amplitude a > ARL, while for

ARL < 0 (soliton of depression) the model does not admit solution for amplitude a< ARL. A simple

mathematical approach to find ARL is to look for the maximum of the celerity cRL as a function of

the amplitude a. Imposing the constraints h1−ARL > 0 and h2+ARL > 0, i.e. the local thicknesses

must be positive, we solve dcRL/da = 0 with respect to a. After some algebraic manipulations we

obtain the analytical expression for ARL:

ARL =
h1 −h2

√

ρ1/ρ2

1+
√

ρ1/ρ2

. (9)

Substituting a with ARL in Eq. (7), the limit soliton celerity for the MCC-RL model is obtained:

CRL =±
√

g(h1+h2)
1−

√

ρ1/ρ2

1+
√

ρ1/ρ2

. (10)

Relations (9) and (10) are equal to those shown in Kodaira et al. 33 . A consequence of (9) is that

the MCC-RL model does not admit soliton solution when the condition h1/h2 =
√

ρ1
ρ2

is fulfilled.

Interestingly, setting equal to zero the right-hand of Eq. (6), a polynomial equation in the unknown

ζ is obtained. Owing to the factor ζ 2, this equation has two coincident solutions ζ = 0.

Similarly to the KdV model (see Eq. (2)), the polynomial equation has multiple roots, thus it has

zero as discriminant. This common feature of the considered mathematical models will be crucial

to set the initial conditions for the more complex model MCC-FS, herein discussed. To integrate

Eq. (6) it is necessary to substitute the expressions of both the celerity (Eq. (7)) and the local

thicknesses (Eq. (5)). After some algebraic manipulation it is possible to obtain:

ζ 2
X =

3(a−ζ )ζ 2((a+h2)(h2+ζ )ρ1+(a−h1)(h1−ζ )ρ2)

(a−h1)(a+h2)(h2
1(h2+ζ )ρ1+h2

2(h1−ζ )ρ2)
, (11)

where a is the wave amplitude (subject to the constraint |a| ≤ |ARL|). The initial condition for this

model is simply ζ (0) = a. For a deeper understanding about the meaning of the wave amplitude

limit value ARL, some remarks are needed. Interestingly, if the amplitude-wave constraint |a| ≤
|ARL| is fulfilled, the-right side of Eq. (11) results always positive for |ζ |< |a|, being the left-side

equal to a square. This leads the differential equation to admit soliton solution. Otherwise, if

|a| > |ARL|, for some value of |ζ | < |a| the right-side of Eq. (11) is negative and the model does

not admits solutions, owing to ζX
2 cannot be negative.
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The role of the free surface on interfacial solitary waves

(a) (b)

(c) (d)

FIG. 2. ISW profiles predicted by both the KdV and the MCC model, considering the rigid lid approximation

as well as the presence of a free surface. The two-fluid system is composed by h1 = 0.05 m and h2 = 0.25

m. The layers density is: (a,b) ρ1/ρ2 = 0.6 and (c,d) ρ1/ρ2 = 0.9. Two conditions on wave amplitude are

considered: (a,c) large amplitude, with a2/h1 ≈ 1, and (b,d) small amplitudes , with a2/h1 ≈ 0.1.

C. Free surface model

The free-surface model MCC-FS, assumes the existence of a free surface and removes the

rigid-lid assumption, namely that the sum of the local thicknesses η1+η2 has to be constant. With

respect to the full water-wave problem, the associated truncation error has magnitude O(H
λ )

4,

where λ is the characteristic wavelength, and H = h1 +h2 is the total water depth36,37. With this

approach the relations of the interface and surface displacements ζ2 and ζ1, respectively, with the

local thicknesses η1 and η2 are defined as (Fig. 1b):











η1 = h1 +ζ1 −ζ2

η2 = h2 +ζ2

(12)

We look for soliton solutions of the continuity and momentum equations for each layer (see

Appendix, Eqs. A.1, A.2) of form ηi = ηi(X),ui = ui(X),X ≡ (x− ct) (i = 1,2). It is possible to

show that ui = c(1− hi/ηi), obtaining the following non-linear second order differential system

8

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
20

62
1



The role of the free surface on interfacial solitary waves

of equations in the unknowns ηi(X)33:

α j1η
′′
1 +α j2η

′′
2 +α j3(η

′
1)

2 +α j4(η
′
2)

2 +α j5η
′
1η

′
2 = α j6, (13)

where j = 1,2 and the prime (′) denotes derivative with respect to X . The coefficients α ji are

non-linear functions of h1, h2, η1, η2, ρ1, ρ2 and c (see Appendix, Eqs. A.3,A.4). To obtain the

system (13), the third-order momentum equations (A.1) are integrated with respect to X , by using

the following boundary conditions at infinity (ηi → hi,ui → 0 as X → ±∞). From heavy non-

linear differential manipulations of the continuity and momentum equations for each layer, it is

possible to derive two other equations in conservation-law form, which represents the conservation

of momentum and energy for the two-layers fluid system33. In terms of the unknowns ηi = ηi(X),

those equations can be expressed as in (13) but with another set of coefficients α ji, with j = 3,4.

A useful conserved quantity Ham (namely the Hamiltonian of the two-layers fluid system) of the

differential equations (13) can be obtained as in Barros, Gavrilyuk, and Teshukov 37 . Once solved

the system (13) with respect to the second derivatives η
′′
1 ,η

′′
2 , those expressions are substituted

into the conservation of momentum or energy ( j = 3,4, respectively). Then, after heavy algebraic

manipulation, the following conserved quantity is obtained, which does not depend on second

derivatives:

Ham = β1(η
′
1)

2 +β2(η
′
2)

2 +β3η
′
1η

′
2 +β4, (14)

where the coefficients β j ( j = 1,2,3,4) are defined in Appendix.

The numerical integration of the differential system (13) requires to define a suitable set of initial

conditions in order to obtain soliton solutions. Barros and Gavrilyuk 39 addressed this issue by

studying the existence of embedded solitary waves, corresponding to homoclinic orbits in the

phase-space of the system. This can be achieved linearizing the system (13) in the neighborhood

of the critical point (ηi,η
′
i ) = (hi,0) and choosing suitable initial conditions from the analytical

solutions of the linearized system. In particular, they assigned the initial conditions in order to

stay as close as possible from the homoclinic orbit. They thus introduced a parameter k as a

measure of the infinitesimal shift to it. It has to be small enough to ensure a suitable nearness to

the critical solutions (ηi,η
′
i) = (hi,0), since this point belongs to the homoclinic orbit. However,

at the same time, it has to be large enough to avoid a great numerical precision for numerical

integrations. This powerful technique requires, however, a series of attempts in order to obtain

the sought solution, whose reliability strongly depends on the choice of the most appropriate k.

The surface and the interfacial amplitudes are indeed a posteriori obtained i.e., after assigning the
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FIG. 3. Surface (green lines) and interfacial displacement (blu lines) for an ISWs of (a) elevation and (b)

depression. The dimensionless abscissa ξ is linked to X as in Barros and Gavrilyuk 39 ) . The corresponding

initial conditions portraits are obtained for (c,d) smallest and (e,f) largest celerity. Red dots refer to the

undisturbed condition (η1/h1 = η2/h2 = 1); black dots are associated to the maximum or minimum surface

and interfacial displacements (η ′
1(0) = η ′

2(0) = 0).

Froude number F = c/
√

gh2, and computing the numerical integration of the differential system.

We here propose a new technique valid for single-humped interfacial solitons, based on the same

mathematical approach adopted for the MCC-RL and the KdV models. The authors are not able to

provide a rigorous proof of the equivalence of this technique with the one proposed by Barros and

10

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
20

62
1



The role of the free surface on interfacial solitary waves

Gavrilyuk 39 but its reliability is supported by lot of numerical tests. Basically, we assign as initial

condition the ISW amplitude, namely at the point of minimum of the solitary wave intarfacial

profile at X = 0 (the maximum is used in the case of ISW of elevation). Within the limits allowed

by numerical precision, following our approach, the initial conditions are not in close proximity

to the homoclinic orbit, but they exactly lie on it. To provide an heuristic explanation of this

technique, we can primarily observe that the first derivatives of both the surface and the interfacial

profiles are zero at X = 0, due to the wave symmetry. Here, the conserved quantity Ham solely

depends on the layers thickness η1(0) and η2(0). Moreover, the boundary condition at infinity (i.e.

X →±∞) requires η
′
i → 0 and ηi → hi, so it results Ham = 0 (see β4 in Appendix). Consequently,

both the critical point (h1, h2) and (η1(0), η2(0)) belong to the curve Ham = β4 = 0. For the two

examined cases, those special points are represented by red and black dots, respectively, in Fig.

3. The curve Ham = β4 = 0 is characterized by a loop shape very similar to an homoclinic orbit.

However, it does not represent an orbit but has in common with it the aforementioned special

points. We consider interfacial solitary waves of depression and elevation corresponding to the

following set of dimensionless parameters: ρ1/ρ2 = 0.7, h1/h2 = 0.2, F = c/
√

gh2 = 0.3199 and

ρ1/ρ2 = 0.6, h1/h2 = 2.5, F = c/
√

gh2 = 0.6108., respectively (see Fig. 3a,b). We plot the curve

β4 = 0 in the plane of dimensionless variables ηi/hi. The brown shaded area represents the zone

where the limit amplitude conditions are fulfilled and the interfacial and surface waves are 180

degrees out of phase and (see Fig. 3c-f). All the numerical tests show that this condition is always

fulfilled39. The special points have the maximum distance in the loop curve along the abscissa

η2/h2 since they represent the minimum and the maximum dimensionless displacements of both

the free surface and the interface. Since the black point represent a multiple root of the equation

β4 = 0 in the unknown η1(0)/h1, once the ISW amplitude is given, the corresponding elevation

of the free surface can be obtained. Furthermore, the wave celerity c to use in the equation β4 = 0

has to assure multiple root. For this reason, the curve β4 = 0 is tangent to the red line, as in

Figs. 3c-f. This condition leads to a fourth order biquadratic equation39 in the unknown c2, which

admits two real solutions. After a large number of numerical tests, we observed that the lowest

real solution always assures that the black point belong to the brown shaded region (as in Figs. 3c-

d); otherwise, considering the largest celerity, the black point is always placed outside of it, and

the corresponding numerical solutions of Eq. (13) shows a blow-up behavior, without physical

meaning.

We implement our technique following two steps: (i) finding the limit amplitudes of the MCC-
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The role of the free surface on interfacial solitary waves

FS model (the analogous of ARL for the MCC-RL model); (ii) evaluating the celerity c and the

amplitude of the free surface, assuming as input data ρ1, ρ2, h1, h2 and the amplitude of the

interfacial wave. Then, substituting η1 = h1 −amp1, η2 = h2 +amp2 into β4, with amp1 ≡ (ζ2 −
ζ1) and amp2 ≡ ζ2, and solving the equation β4 = 0 with respect to c, the celerity for the MCC-FS

model is obtained (c = cFS):

cFS ≡±
√

g(h1 −amp1)(h2+amp2)(amp2
2 −2amp1amp2ρ +amp2

1ρ)

amp2
2(h1 −amp1)+amp2

1ρ(h2 +amp2)
(15)

To obtain the limit value of the amplitudes Amp1 = ζ2max − ζ1max, Amp2 = ζ2max, following the

same approach used for the MCC-RL model, we look for the stationary points of the celerity cFS,

as a function of the amplitudes amp1,amp2, where ζ1max and ζ2max are the maximum surface

and internal displacement, respectively. Assuming as constraints h1 −Amp1 > 0, h2 +Amp2 > 0,

ζ1maxζ2max = Amp2(Amp2−Amp1)< 0, we solved numerically the following algebraic system of

equations:










∂cFS/∂amp1 = 0

∂cFS/∂amp2 = 0

(16)

Only one solution (Amp1, Amp2) has been found in many numerical tests satisfying both system

(16) and the adopted constraints. These means that the local thicknesses must be positive and to

an up (down) interfacial wave displacement a down (up) surface wave displacement is associated.

Coming back to the previous problem of initial conditions of the differential system (13), the

four values of ηi(0) and η
′
i(0) (i = 1,2) have to be assigned. If the minimum or maximum of

wave profile are in X = 0, it follows η
′
i (0) = 0. The displacements amp1,amp2 have to fulfill the

limitations |ampi| ≤ |Ampi|. However, those conditions together with amp2(amp2 − amp1) < 0

are necessary but not sufficient to integrate the differential system (13). Many numerical tests

show that integration of the MCC-FS model highlights solutions with a rapid blow-up behavior

without physical meaning, namely these solutions are not homoclinic orbits. Only when a very

accurate match between amp1 and amp2 is fulfilled, then the numerical solutions exhibit a soliton

profile. One interesting question is, once assigned the separation surface displacement ζ2 = amp2,

which value of the free surface displacement ζ1 = amp2 − amp1 can assure a soliton solution of

the differential system (13). To address this issue, we performed a large number of numerical tests,

and with a similar approach used for the KdV and the MCC-RL models, we found that amp1 must

satisfy a polynomial equation with multiple roots. However, differently from the other model, for

12

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
20

62
1



The role of the free surface on interfacial solitary waves

the MCC-FS model this condition has to be imposed.

As already observed (cFS,amp1,amp2) satisfy the equation β4 = 0 which can be written as a cubic

equation in the unknown amp1:

amp3
1 +b1amp2

1 +b2amp1 +b3 = 0 (17)

with:






























b1 ≡ (
c2

FS

g
−2amp2 −h1)

b2 ≡ amp2(2h1 +
amp2(g(amp2+h2)−c2

FS)
g(amp2+h2)ρ

)

b3 ≡ amp2
2h1(c

2
FS−g(amp2+h2))

g(amp2+h2)ρ

(18)

To assure real and multiple roots, the discriminant ∆ of the cubic (17) must be zero. For a cubic

equation, as well known, ∆=Q3+R2 where Q≡ (1/9)(3b2−b2
1) and R≡ (1/54)(9b1b2−27b3−

2b3
1). Assigning amp2,(|amp2| ≤ |Amp2|) the equation ∆ = ∆(amp2,cFS) = 0 can be numerically

solved with respect to cFS, by choosing the lowest positive real solution. Finally, solving the cubic

equation (17), the value of amp1 is obtained, choosing the multiple root.

In conclusion, to integrate numerically system (13), assigned the value of the separation surface

displacement amp2 : |amp2| ≤ |Amp2|, with the previous algorithm, it is possible to calculate

univocally cFS and amp1. Thus, the initial conditions at the point X = 0 of maximum or minimum

in order to obtain soliton solutions are:














































η1(0) = h1 −amp1

η2(0) = h2 +amp2

η
′
1(0) = 0

η
′
2(0) = 0

(19)

For all the performed numerical tests, ζ2 = amp2 and ζ1 = amp2 − amp1 have opposite sign,

namely to an up (down) interfacial wave profile corresponds a down (up) free-surface wave profile.

D. Theoretical ISW features

The ISWs size and the ambient fluid stratification affect the waves profile. We analyze theoret-

ical ISWs propagating into two stratified systems with fixed layers thickness (i.e., h1/h2 = 0.2),
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FIG. 4. (a) Relation between the dimensionless upper layer thickness h1/h2 and the dimensionless maxi-

mum displacement of both the interface ζ2max/h2 and the surface ζ1max/h2, for density ratios ρ = 0.7 and

0.9. (b) Relation, for different ISWs amplitudes (i.e. for 0.1 < a2/ζ2max < 0.9, with step 0.1) between ρ

and the ratio of ISWs celerities predicted by the MCC-FS and by the MCC-RL models. (c) Relation, for

different ISWs amplitudes (i.e. for 0.1 < a2/ζ2max < 0.9, with step 0.1) between ρ and the ISWs celerities

predicted by the MCC-FS model normalized by the linear long-wave speed c0,FS. The MCC-FS celerity

approaches the linear long-wave speed as a2/ζ2max tends to 0 (e.g. see the dashed line for a2/ζ2max = 0.01).

but different density ratios (Fig. 2). In particular, both Boussinesq (ρ = 0.9) and non-Boussinesq

(ρ = 0.6) flow conditions are set up40. Although the KdV model does not provide mathematical

limits for the the interfacial amplitude, the predicted wave profiles are consistent with our exper-

imental observations only for a2/h1 < 0.4, i.e. for small amplitude solitary waves18. We thus

investigate models results for both large and small amplitude ISWs (i.e., a2/h1 ≈ 1 in Fig. 2a,c

and a2/h1 ≈ 0.1 in Fig. 2b,d, respectively) .
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The role of the free surface on interfacial solitary waves

FIG. 5. Schematic view of the experimental set up and density distributions within the Perspex flume.

Internal solitary waves are generated in a stratified fluid system composed by Vaseline oil and a saline

mixture of sodium chloride, with density ρ1 = 856.0kg/m3 and ρ2 > ρ1, respectively. The vertical gate,

separates two regions having different density distributions: the lock on the left (x0 = 0.3 long) and the

ambient fluid on the right (L0 = 2.695 m long). Before the gate removal the initial interfacial displacement

η0 and the free surfaces displacement δ0 are produced. Lifting up the gate, the generation of an internal

solitary wave of depression occurs, characterized by an amplitude a2, a wavelength Lw and a celerity cw

(red dashed line). Associated with it, a surface soliton with the same celerity and wavelength propagates

downstream with amplitude a1 (black solid line). It is foregone by a train of 2-3 relatevely smaller surface

waves whose larger has an amplitude a3.

The almost overlapped wave profiles obtained for small amplitude ISWs propagating in a smoothly

stratified ambient fluid, confirm the reliability of the obtained results (Fig. 2d). Moreover, the top

free surface boundary condition does not considerably affect results, which are in accordance with

those obtained by mathematical models with a rigid lid approximation. This is also observed for

large amplitude conditions for cases with density ratio closer to 1 (Fig. 2c). The wave profiles

predicted by the strongly nonlinear MCC models are clearly broader than those resulting from the

KdV theory, which is unreliable for considerably large amplitudes waves.

Non-Boussinesq flow conditions enhance, instead, surface manifestations, also for small ampli-

tude ISWs. For both KdV and MCC models, the resulting wave profiles result narrower than those

obtained with rigid lid boundary conditions (see dashed lines in Fig. 2b). The four interfacial

displacements significantly diverge for large amplitude ISWs propagating into strongly stratified

fluids (Fig. 2a). Under those conditions, both the free surface and the strong nonlinearity affect

the models predictions, whose reliability needs to be tested by comparing theoretical results and
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The role of the free surface on interfacial solitary waves

experimental observations, as discussed herein (Section IV).

Contrary to the KdV theory, the MCC models admit upper limit amplitudes for both top free sur-

face and rigid lid conditions (ζ2max(MCC-RL)) and ζ2max(MCC-FS)). Associated to ζ2max(MCC-

FS), the corresponding upper limit for the free surface displacement is ζ1max(MCC-FS). We study

how those limit values change depending on the stratification features, i.e., for different layers den-

sity and thickness. The investigated density ratios are ρ=0.7 and ρ=0.9 (solid and dashed lines,

respectively, in Fig. 4a). Approximately for h1/h2 < 1 the resulting ISW has a facing upward con-

cavity. The associated maximum interfacial and surface amplitudes assume negative and positive

values, respectively. An opposite behavior occurs for h1/h2 > 1, approximately39.

The analysis of the limiting interfacial and surface amplitudes reveal some interesting features

of solitary waves with a very large amplitude. For 0.5 < h1/h2 < 1.5, the absolute value of the

free surface displacement ζ1max predicted by the MCC-FS model is almost linearly related with

h1/h2 (see solid and dashed blue line in Fig. 4a). This means that larger surface manifestations

are expected for ISWs of depression propagating in a stratified ambient fluid with a thinner up-

per layer, or a stronger stratification. Otherwise, for ISWs of elevation, the same behavior occurs

increasing the normalized upper layer thickness. Decreasing h1/h2 from 0.5 to 0, instead, the

dimensionless surface displacement remains roughly unvaried, although the interfacial amplitude

increases. For ISWs of depression, the convergence of ζ2max(MCC-FS) and ζ2max(MCC-RL) can

be clearly observed for decreasing upper layer thicknesses. Those results suggest that the effect of

the free surface on the overall flow field fades for interfacial profiles with larger amplitudes. The

opposite behavior occurs for ISWs of elevation: increasing h1/h2 from 1.5 to 2, the divergence

of ζ2max(MCC-FS) and ζ2max(MCC-RL), and the continuous increase of the surface displacement

are observed. For ISWs of elevation, the presence of a top free surface affects more and more the

flow features as the undisturbed internal interface is located at a larger depth.

To deeply investigate how the flow is affected by the free surface, we introduce the ratio between

the celerities predicted by the MCC model for different boundary conditions: cFS/cRL. The more

those celerities differ the more the free surface affects the ISWs features. This occurrence is ob-

served both for increasing density difference and solitary waves with lower amplitudes (e.g., see

solid black line in Fig. 4b). For a possible physical explanation of this behavior one should con-

sider that ISWs grow in size deepening, namely increasing their interfacial amplitude more than

the surface displacement (Fig. 4a). Moreover, the rigid lid condition ensures always a larger ISW

celerity because the flow is unable to transfer part of its energy in producing surface manifesta-
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The role of the free surface on interfacial solitary waves

tions (Fig. 4a). Thus, for larger waves, a lower amount of the wave energy is transferred at the

free surface, and the wave celerity is closer to that resulting from a rigid lid approximation.

For different dimensionless interfacial amplitudes, Fig. 4c shows the ratio between the celer-

ity predicted by the MCC-FS model and the linear-long-wave-celerity of the linearized MCC-FS

model33, defined as:

c0,FS =

√

1

2
g

(

h1 +h2 −
√

4h1h2ρ +(h1 −h2)2

)

. (20)

The celerity ratio grows with the dimensionless wave amplitude, since the celerity predicted by

the MCC-FS model assumes even more larger values with respect to the linear-long-wave-celerity.

For large amplitude ISWs, the relative growth rate of wave celerity with the dimensionless ampli-

tude becomes increasingly slower (Fig. 4c).

III. LABORATORY EXPERIMENTS

A. Experimental procedure

We performed a series of 13 laboratory experiments at the Hydraulics Laboratory of Roma Tre

University in a 3.0-m-long, 0.2-m-wide, and 0.3-m-deep Perspex tank (Fig. 5).

An immiscible two-fluid system is set up following the standard lock-release method30. Following

the same experimental procedure used by32, the tank is first filled with a uniform saline mixture

of sodium chloride (NaCl) of density ρ2. In order to visually distinguish the two layers and the

interface position, we add a controlled amount of methylene blue to dye the saline mixture. Later,

Vaseline mineral oil (ENOL SPRINT B/50) is slowly poured on the free surface composing a

second lighter layer of uniform density ρ1 = 856.0 kg/m3 and thickness h1. A 5 mm thick, Perspex

gate is then vertically inserted at x0 = 0.3 m from the left wall of the flume, dividing the tank into

two regions: the lock on the left and the ambient fluid on the right. The gate does not touch

the channel bottom, preserving the hydraulic continuity between the two parts. Thus, adding

Vaseline oil on the free surface of the lock region, a known amount of brine water flows into the

ambient fluid, creating the displacement η0 between the internal interfaces (Fig. 5). Reached the

hydrostatic balance, the lower layer in the ambient fluid reaches a thickness h2, and a displacement

δ0 forms between the free surfaces divided by the lock gate.
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The role of the free surface on interfacial solitary waves

Each experiment begins as the gate is manually removed. We take care to not completely lift the

gate away from the free surface, but just below it. The goal of this adjustment is to minimize the

disturb that a complete gate removal would induce. After the collapsing mechanism produced by

the initial interfacial displacement η0, the generation of an internal solitary wave of depression

occurs. It propagates downstream preserving its celerity cw and shape, i.e. amplitude a2 and

wavelength Lw (see dashed red lines in Fig. 5). Due to the large density difference characterizing

the stratification, also surface manifestations are observed. A surface solitary-like wave follows the

internal displacement such that they propagate with the same celerity and wavelength, but the first

with lower amplitude (a1 < a2 in Fig. 5). Ahead of the leading edge of the surface displacement,

also a train of small-amplitude, short, periodic waves are observed propagating with the same

internal displacement celerity. For each experiment, we characterize those waves by evaluating

the larger amplitude value they assume during motion (a3 in Fig. 5). As the group of internal and

surface manifestations reaches the right-hand side of the tank, a reflection process occurs. Each

experiment is considered finished as the leading edge of the reflected ISWs flows back again to

the gate. For all the performed cases, we observe that incident and reflected ISWs features slightly

change: a decrease of the ISWs amplitude and wavelength and an increase of their celerity occurs.

To associate an overall value of amplitude, wavelength and celerity to each incident and reflected

ISW, we evaluate their main features as they pass the cross section placed L0/2 away from the

gate. We checked, indeed, that the transient effects induced by the gate removal or by the reflection

process vanishes at this location, , i.e. each ISW reaches a steady state.

We remark that the effect of the lateral walls of the tank can be considered negligeble, as shown in

previous experimental studies15,41.

We obtain results from 13 laboratory experiments characterized by different initial conditions (see

Tab. I), to analyze how the initial setting parameters affected the flow features. For each case,

we evaluate the main wave features and the associated surface manifestations. We investigate

the effect of δ0 on the fluid dynamics, for three experiments, i.e. cases 3, 4 and 5. For those

cases, characterized by different ratios η0/h1, we set the free surfaces separated by the gate at

the same level. The gate is completely inserted, up to the flume bottom. Then, the light fluid

within the lock is gradually removed until all the fluid present in the tank reaches the same total

level. For all the other cases, the gate is inserted ensuring the hydraulic continuity between the

fluids it separates. We performed 7 experiments with increasing ratios η0/h1, to widen the range

investigated by Kodaira et al. 33 , and to evaluate the effect of very thin surface layers. Cases 9 and
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The role of the free surface on interfacial solitary waves

10 present values of h1 one order of magnitude lower with respect to the other experiments. A

crucial parameter affecting the flow features is the density ratio ρ characterizing the stratification.

The adopted combinations of fluids have density ratios always lower than those used by Kodaira

et al. 33 (i.e. 0.85). In particular, for most of the experiments we used ρ = 0.80÷ 0.81, while

ρ = 0.72 is set for three cases (i.e. 11, 12 and 13), a value in close proximity to non-Boussinesq

flow conditions. The Reynolds number is evaluated as42:

Rew =
a2C0

ν
(21)

where C0 = (g′h1h2/H))0.5 is the linear wave phase speed, and g′ = g(ρ−1 − 1) is the reduced

gravity. The kinematic viscosity ν is obtained as the mean kinematic viscosity weighted on

the layers thickness. Due to a larger kinematic viscosity, we obtain Reynolds numbers (i.e.

0.92×103÷4.70×103) with the same order of magnitude of those observed in previous experi-

ments, for which considerably lower density gradients have been used15.

B. Measurements techniques and errors

A density meter (Anton Paar DMA 4100M) was used to measure the density of both the saline

mixture and the Vaseline oil. Its measurement accuracy was 0.1 kg/m3. Based on the material

safety data sheet, the kinematic viscosity of the Vaseline oil is ν0 = 4×10−5 m2/s.

The saline mixture was prepared within the tank where a known amount of salty was properly

dissolved in fresh water. We checked that the concentration was uniform by measuring density

along the tank and at different depths. Accuracy of density and length measurements was assessed

by verifying that the measured free surfaces displacements were close enough to the theoretical

value, obtained by the hydrostatic balance (Fig. 6)

δ0 = η0
ρ2 −ρ1

ρ1
= η0

(

1

ρ
−1

)

(22)

where ρ = ρ1/ρ2 is density ratio characterizing the stratification. Once the initial setting of each

experiment was properly obtained we measured the actual layers thickness by using a ruler, with

an accuracy of 1 mm.

At a fixed distance from the front wall of the tank, a digital camera (Sony RX100 IV) with a

frequency of 50 Hz and a spatial resolution of 1920×1080 pixels was placed to record the flow
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The role of the free surface on interfacial solitary waves

TABLE I. Initial setting parameters (i.e., the density ratio ρ = ρ1/ρ2, the free surface displacement δ0, the

initial interfacial displacement η0, and the upper and lower layer thicknesses within the ambient fluid h1,2),

and main flow features (i.e. the surface solitary wave amplitude a1, the interfacial maximum displacement

a2, characteristic wavelength λ2 and celerity cw). Asterisks are used in superscripts to indicate the same

parameters described above after the ISWs was reflected from the right-end side of the flume.

initial setting incident phase post-reflection phase

Case ρ δ0 η0 h1 h2 a1 a2 λ2 cw h⋆1 h⋆2 a⋆1 a⋆2 λ ⋆
2 c⋆w

- cm cm cm cm cm cm cm cm/s cm cm cm cm cm cm/s

1 0.81 1.1 4.5 3.3 24.0 0.4 2.2 29.7 30.2 3.5 23.9 0.3 1.6 29.7 28.7

2 0.81 1.9 8.1 3.2 22.1 0.5 4.3 37.8 34.2 3.8 21.7 0.5 3.0 35.1 32.9

3 0.80 0.0 7.2 4.0 22.2 0.3 2.8 37.8 33.2 4.3 21.9 0.3 2.2 29.7 31.2

4 0.80 0.0 12.2 3.2 23.0 0.4 4.9 40.5 34.2 3.8 22.4 0.4 3.4 35.1 31.7

5 0.80 0.0 18.2 2.6 23.7 0.5 7.2 40.5 34.8 3.8 22.5 0.5 5.2 35.1 34.2

6 0.80 1.7 6.8 4.0 22.2 0.4 3.3 40.5 33.2 4.3 22.1 0.4 2.7 37.8 31.7

7 0.80 3.0 12.3 3.4 22.8 0.7 6.0 45.9 35.8 4.1 22.4 0.5 4.8 40.5 34.2

8 0.80 4.7 18.8 2.6 23.5 1.0 8.6 51.3 37.9 3.8 22.8 0.6 6.7 45.9 35.9

9 0.81 3.7 14.8 0.9 26.4 0.8 7.7 35.1 36.0 2.3 25.4 0.6 4.2 29.7 31.2

10 0.81 3.9 17 0.5 26.6 0.9 8.4 40.5 39.0 2.1 25.4 0.6 4.6 32.4 30.4

11 0.72 3.2 7.8 4.1 22.0 0.8 4.3 48.6 41.9 4.6 21.8 0.7 3.4 43.2 41.7

12 0.72 5.1 12.2 3.6 22.3 1.1 6.4 54.0 44.0 4.3 22.1 0.9 5.5 45.9 42.9

13 0.72 6.8 16.7 2.9 22.8 1.3 8.0 59.4 43.7 4.2 22.2 1.0 6.7 48.6 44.2

evolution. Each pixel had a resolution of about 1.7×1.7 mm2. Using image analysis, the instanta-

neous interface and free surface positions were inferred (see blue and yellow lines in Fig. 7a). We

then obtained some geometric and kinematic features of the ISWs, such as the wave amplitude

a2, the wave celerity cw, as well as the maximum surface displacement a1 (Fig. 5). We obtained

the ISW celerity as the first derivative of the trough’s position (see point C Fig. 7a). The error

committed for lengths measurements is about 1 pixel. Taking into account the camera acquisition

frequency and the pixel size, the celerity was affected by an averaged relative error of 2%. To

estimate the length of the leading internal waves, we evaluated firstly the wavelength Lw as the

horizontal distance between the wave ends (see Fig. 5). In presence of secondary waves, the
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The role of the free surface on interfacial solitary waves
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FIG. 6. Comparison between the measured free surface displacements and the expected values obtained by

hydrostatic equilibrium. Each mark refer to a defined initial setting condition, defined in the figure legend.

leading wave was confined upstream by the lowest point of the internal interface between the two

crests (see points A and B in Fig. 7a). We then estimated the ISW characteristic wavelength,

obtained as in31 by the following relation:

λw =
1

a2

∫ +∞

−∞
η(x)dx ≃ 1

a2

∫ B

A
η(x)dx =

Sw

a2
(23)

where η(x) is the interfacial vertical displacement compared to its original position, and Sw is the

ISW surface. The latter was evaluated as the area subtended by the displaced internal interface

with respect to its original position.

C. Flow features

The fluids divided by the lock gate interact as the watertight vertical gate is lifted up. Because

of their different density profiles, the ligth layer confined into the lock immediately slumps upward

into the shallower light water ambient, launching a train of hump-shaped internal solitary waves

of depression, which propagate downstream (Fig. 7a). The internal wave packet is composed by

gradually smaller (i.e. slower) ISWs. The gray-scale field obtained for case 11 in the horizontal

plane (x, t) at a fixed depth (y = 21 cm), shows the wave packet transition (Fig. 7b). Among all
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The role of the free surface on interfacial solitary waves

A B

C

FIG. 7. Case 11: (a) Snapshot of the flow field captured 4.78 s after the gate removal; (b) gray-scale field in

the horizontal plane (x, t) situated at a fixed depth (y = 21 cm); (c) gray-scale field in the vertical plane (t,y)

at 1.05 m away from the lock gate. By image analysis we obtained the instantaneous position of both the

free surface (solid blue line) and the internal interface (solid yellow line); the solid red lines indicate their

positions at the begin of the experiment. We inferred the instantaneous location of the internal wave trough

(point C and red dotted lines). The solid red lines indicate the free surface and the interface positions at

the begin of the experiment. Points A and B are the internal wave upstream and downstream boundaries,

respectively.

the performed experiments, Case 11 is chosen as representative in order to describe some common

flow features observed for the other cases. Each internal wave propagates with approximately

constant celerity cw depending on both the wave geometric features and the stratification struc-

ture. Being the wave packet composed by ordered in size ISWs, their mutual distance gradually

increases during motion (see the different slopes of the light bands in (Fig. 7b) for t < 7 s). The

leading wave thus separates from the following ones. The internal wave packet reaches the right-

end side of the tank where ISWs are reflected (Fig. 7b) for t > 7 s). Reflection process induces a
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The role of the free surface on interfacial solitary waves

FIG. 8. Comparison between the the initial interface displacement η0 and the resulting ISW amplitudes a2

(a,c) and celerities cw (b,d). Both ISWs amplitudes and interface displacements are non-dimensionalized

by using the top layer thickness h1, while ISW celerity is normalized by
√

gh1. Parameters with asterisk in

superscript refer to reflected ISWs (c,d). Experimental data are shown in logarithmic scales for both the x-

and the y-axis. Each mark is associated to a defined initial setting condition, defined in the figure legend.

partial dissipation of the internal waves causing a decrease of their main features (i.e. amplitude,

wavelength and celerity).

By image analysis, we estimate the instantaneous interface and surface profiles (yellow and blue

lines in Fig. 7a, respectively). This allows us to identify the internal wave trough (point C) and

the wave horizontal extent. The leading edge of the internal wave starts from point B where the

interface profile departs from its undisturbed position (lower red line). For all the performed ex-

periments, the ISWs present a slight asymmetry with respect to the trough position. The trailing

edge of the wave is confined by point A, located deeper with respect to point B. This occurrence

seems to be not related to the presence of the following waves, since it was observed also at later

stages, when the leading wave separates from the following one, as well as after its reflection.
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FIG. 9. Experimental (dots) and theoretical (lines) wave profiles for (a) incident and (b) reflected ISW

(Case 11). The free surface maximum displacement inferred from Case 11 is shown and compared with

the surface profile predicted by the MCC-FS model. The profiles are normalized by using the top layer

thickness h1. Measured celerity cw versus amplitude a2, non-dimensionalized by
√

gh1 and h1 respectively,

for (c) incident and (d) reflected ISW (Case 11). Dots, experimental data; black line, MCC-FS; black dashed

line, MCC-RL; blue line, KdV-FS; blue dashed line, KdV-RL. Red and green arrows refer to the horizontal

distances, measured along the wave mid-depth, from the wave crest to the experimental and theoretical

profile, i.e. de and dm(MCC-FS), respectively.

More properly, the wave profiles asymmetry could be caused by the shear across the interface,

which is expected to increase with both ISWs amplitude and density difference between the two

layers18. We observed shear stress instabilities mainly develop on the ISWs trailing edge, causing

discontinuities of the wave profile. The same behavior was observed by Kodaira et al. 33 , who

suggested that the surface tension between the two immiscible fluids opposed the shear-induced

overturning, thus avoiding the generation of Kelvin Helmotz billows.

After reflection, ISWs partially dissipate: a decrease of the wave geometric and kinematic features
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FIG. 10. The experimental and theoretical wave profiles are compared in terms of normalized difference at

the wave the mid-depth λ̄m for both (a) incident and (b) reflected waves. (c) The normalized difference in

wave celerity c̄w is used to compare theoretical and experimental results; (d) the wave amplitude for both

incident (dot-dashed line) and reflected (dashed line) waves. Blue empty circles, KdV-FS; blue +, KdV-RL;

black ×, MCC-RL; black empty squares, MCC-FS.

occurs. The reflected ISW features assume values different from the incident one by virtue of

changes in the stratified fluid throw which it propagate. After the propagation of the incident wave

packet, indeed, an increase of the upper layer thickness to h∗1 > h1 occurs. We take into account

of this occurrence in our computations, and all quantities associated to reflected ISWs are denoted

herein with a superscript asterisk (see Tab. I).

Associated to the interfacial displacement, also surface manifestations occur. The lock gate is

quickly lifted up vertically, but its lower edge is left few millimeters deeper than the fluid depth

in the ambient region. This allows us to avoid the generation of barotropic surface waves. Those

waves, observed for similar experimental procedure in Kodaira et al. 33 , propagate faster than the
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The role of the free surface on interfacial solitary waves

internal soliton. Thus, a wave absorber was used to avoid that, once reflected, they could interact

with the incoming flow. For all our experiments, we do not observe the generation of surface

waves induced by the gate removal. The gray-scale field in the vertical plane (y, t), placed at a

fixed distance from the lock gate, shows the evolution of both the internal interface and the free

surface (Fig. 7c). Before the leading internal wave transition (i.e. for t < 1.5 s), it is not observed

any free surface oscillation, and the free surface appears smooth and undisturbed. A packet of

short amplitude surface waves passes through the vertical section (i.e. for t < 1.5 s) before and

during the ISW leading edge transition. The surface waves packet is composed by four wave

crests characterized by comparable amplitudes (of the order of few millimeters) and a decreasing

wavelengths as they get closer to the ISW. Kodaira et al. 33 observed the generation of those waves

for η0/h1 > 1.8 and a2/h1 > 0.77 (with ρ1/ρ2 = 0.856). In our experiments, we observed their

generation for η0/h1 > 1.36 and a2/h1 > 0.68 (with ρ1/ρ2 = 0.807÷0.718). Our lower values are

probably due to the larger density difference adopted. The surface small-amplitude waves seem

to be transported by the ISW induced velocity field since they propagate with the same internal

wave celerity cw, until they dissipate. For most of the performed experiments the short surface

waves dissipate before or during the ISW reflection, while only for Case 13 they dissipate after

their reflection on the right-end wall of the tank.

During all the experiments, a surface displacement having the form of a surface solitary wave, is

observed on the free surface above each ISW (see blue line in Fig. 7a). Differently from the short

surface waves ahead of it, the surface solitary wave follows the associated interfacial displacement

also after its reflection (see Fig. 7c for t >10 s). The occurrence of such surface deformation is

then directly related to the ISW-induced velocity and pressure field.

Features of both the internal and surface manifestations depend on the stratification structures

characterizing the lock and the ambient fluid regions. Among all the initial setting parameters, the

ISWs amplitude is mostly related to the interfacial displacement η0 (Fig. 8a,c). The latter identi-

fies, indeed, the volume of light fluid initially confined into the lock, below the interface level of

the ambient fluid (the lock length and the tank width are kept constant). Although experimental

data appear aligned for the incident ISWs, they are ordered again depending on the different initial

setting conditions (Fig. 8). Experimental data obtained by Kodaira et al. 33 are in good agreement

with those obtained in the present work (see green circles in Fig. 8a). They used δ0 > 0 and

ρ = 0.9 , thus they are placed between cases without δ0 (red squares) and those with δ0 > 0 and

ρ = 0.8 (blue triangles and ciano stars), confirming ours results reliability.
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The role of the free surface on interfacial solitary waves

Unlike the ISWs amplitude, the dimensionless ISW celerity mostly depends on the density struc-

ture of the stratified system, rather than the initial interface displacement (Fig. 8b,d for incident and

reflected ISWs, respectively). This evidence appears even more clear for reflected ISWs, whose

celerity very slightly increases with the wave amplitude. Interestingly, the presence/absence of the

initial surface displacement δ0 does not imply relevant changes in the waves features. However,

ISWs generated with δ0 > 0 propagate slightly faster and, consequently present larger interfacial

amplitudes. For a given initial interfacial displacement η0, the ISW amplitude a2 depends on the

ambient fluid structure, i.e. layers thickness and density16. The presence of a volume of light fluid

within the lock, inducing a surface displacement δ0 with respect to the water level of the ambient

fluid, brings the ISWs generation mechanism closer to a steady release than an impulsive input.

As well as η0, it acts as a further forcing.

IV. COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

We compare all the incident and reflected ISWs features with those resulting from mathemati-

cal models. Internal waves profile and celerity predicted by the weakly non-linear KdV model and

by the strongly non-linear MCC model are evaluated (Fig. 9). For each, we implement both the

rigid lid and the free surface boundary conditions, in order to investigate how the presence of the

top free surface affects flow dynamics.

The relationship between normalized ISW speed and amplitude shows that wave celerity estimated

for Case 11 by the MCC-FS model is very close to the one observed experimentally, both for the

incident (Fig. 9c) and for the reflected wave (Fig. 9d). For larger amplitude, as the one measured

for the incident ISW, the wave speed is much more overestimated by weakly nonlinear models.

Moreover, the wave profile of the rightward-propagating ISW (Case 11), consistently shows good

agreement with the MCC-FS model (Fig. 9a). Although the wave profile appears slightly asym-

metric, the experimental points of both the leading interface (on the right) and the trailing one (on

the left) almost lie on the curve predicted by the strongly non-linear model, with a free surface

boundary condition. Consistently with that, also the predicted ISW-induced maximum surface

displacement shows good agreement with the experimental data. To improve figure readability we

show in Figs. 9a, b only the maximum surface displacements inferred from image analysis). After

reflection on the right-hand wall of the tank, the wave partially dissipates, and a slight increase
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FIG. 11. (a) The ratio (a1+h1)/a2 is related to the measured celerity, normalized by
√

gh1. (b) Comparison

between the measured ISWs amplitudes a2 and the associated maximum surface displacements a1, both

non-dimensionalized by using the top layer thickness h1. Incident as well as reflected ISWs are shown.

Experimental data are shown in logarithmic scales for both the x- and the y-axis. Each mark refers to a

defined initial setting condition, defined in the figure legend. Dashed and solid lines approximate results

obtained by the MCC-FS model for ρ equal to 0.7 and 0.8, respectively.

of the upper layer thickness occurs (h∗1 > h1). The reflected wave propagating trough the vertical

cross section placed at L0/2 away from the lock gate, shows indeed lower amplitude (Fig. 9b).

Again, the maximum surface displacement is well predicted by the MCC-FS model. Neverthe-

less, being the wave smaller, the interface profile agrees well with the solitary wave solution of

the weakly nonlinear KdV model, in accordance with results obtained by33 for the smallest wave

case. More properly, the KdV-FS model underestimates the interfacial displacement, which is bet-

ter predicted by the weakly non-linear model with rigid-lid boundary condition. Although limited

to only one case, those preliminary results suggest that the MCC-FS model appears the one able to

better predict the ISW celerity and the free surface displacement. The prediction of the ISW pro-

file, instead, seems to be related to the wave amplitude: for larger interface profiles, the strongly

non-linear the MCC-FS model should be implemented.

To compare theoretical and experimental interface profiles, at the interface mid-depth, we evaluate

the horizontal distance from the wave trough, for both experimental and theoretical ISW profiles
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The role of the free surface on interfacial solitary waves

(i.e., de and dm, respectively). The normalized displacement between theoretical and experimental

wave profiles is defined as (see Fig. 9a):

λ̄w =
dm −de

de

(24)

Experimental interfacial profiles are characterized by λ̄w = 0. To take into account the ISWs

asymmetry, we consider the leading edge of each ISW as representative for the estimation of λ̄w

(i.e., the right and left tail for the incident and reflected ISWs, respectively). Positive (negative)

values of λ̄w are associated to theoretical interface profiles larger (smaller) than the experimental

ones. For each Case, we estimate the wave profile displacements λ̄w both for incident and for

reflected waves (Figs. 10a and b, respectively). Except for Case 1, the MCC-FS model provides

the better prediction for incident waves profile, although λ̄w is overestimated. The wave profiles

resulting from a the strongly nonlinear model implementing a rigid lid condition are the widest

provided among all considered mathematical models. The KdV models, instead, always predict

tighter interfacial profiles, especially for larger ISWs. This occurrence is observed for cases 3÷5,

6÷8 and 11÷13, characterized by an increasing amplitude (Figs. 10a, c). Unlike the MCC model,

the KdV theory provides better results with the rigid lid approximation, rather than with the top

free surface.

As a consequence of waves reflection on the right lateral wall of the tank, ISWs partially dissipate,

assuming lower amplitudes. Again, for most cases the MCC-FS interfacial profiles are the closest

to the one observed experimentally. However, for small-amplitude ISWs also the KdV-RL theory

provides good predictions (see cases 1, 3, 4, 6 and 11 in Figs. 10a, c).

With a similar approach used for the wave profiles, the ISWs celerity evaluated experimentally

(cw,e), are compared with those predicted by theoretical models (cw,m). The dimensionless celerity

difference c̄w is introduced. It is given by:

c̄w =
|cw,m− cw,e|

cw,e
(25)

For each case, positive values of c̄w are associated to rightward propagating ISWs, while negative

values refer to reflected waves (Fig. 10c). Our results show that MCC theory provides the best

prediction for both incident and reflected ISWs. The top free surface and the rigid lid conditions

approximately give the same wave speed, with a deviation of 10%. Within this approximation,

we can conclude that the wave celerity is mostly affected by the wave amplitude rather than by

the surface manifestations. However, the MCC-FS model predicts celerities closer to the ones
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The role of the free surface on interfacial solitary waves

observed experimentally, as shown in Figs. 9c, d.

Further investigations on ISWs features observed experimentally, compared with those resulting

from the MCC-FS model, significantly point out that flow features are better predicted by the

strongly non-linear model associate with a top free surface condition. In particular, we investigate

how the ISWs celerity is related to the ratio between the largest distance between the free surface

and the undisturbed interface a1 + h1 and the internal amplitude a2 (Fig. 11a). Moreover, the

relation between the normalized interfacial amplitude a2/h1 and surface displacement a1/h1 is an-

alyzed (Fig. 11b). For each density ratio, theoretical results are shown by means of interpolating

functions (see dashed line for ρ=0.8 and solid line for ρ=0.7 in Fig. 11a).

Cases characterized by the same density ratio show a nonlinear behavior: the wave celerity in-

creases faster than the wave amplitude (Fig. 11a). This suggests that the contribution of the

surface displacement in decreasing the wave speed fades the more ISWs show larger interfacial

amplitudes. Nevertheless, increasing surface amplitudes are observed as the maximum interfacial

displacements become larger (Fig. 11b). However, the internal wave amplitude is always one

order of magnitude larger than the associated surface manifestations, and variation of the first

affects relatively more the wave speed. We argued the same conclusion analyzing the MCC-FS

mathematical limits for ISWs interfacial and surface displacements (Fig. 4a).

Interestingly, data appear aligned depending on the different initial setting conditions. As ex-

pected, a relative increase of the surface amplitudes a2 are associated to stratified systems char-

acterized by a larger density difference (see black solid circles for ρ = 0.7 in Fig. 11b). Among

the experiments characterized by the same density ratio ρ = 0.8, cases without the initial surface

displacement δ0 are characterized by lower surface amplitudes (red squares in Fig. 11b). Thus, the

density difference and the additional light fluid in the lock, act in the same way, inducing larger

surface manifestations.

V. DISCUSSION AND CONCLUSIONS

Large amplitude internal solitary waves have been studied experimentally in a system of two

fluids, Vaseline oil and salty water, obtaining density ratios in between the Boussinesq and non-

Boussinesq flow conditions. We obtained consequently pronounced surface displacements, which

in turn affect flow features.
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The role of the free surface on interfacial solitary waves

By image analysis, the main ISWs geometric and kinematic feature are estimated. The initial

setting parameters affect the generated solitary wave features and surface manifestations. The

presence of a volume of light fluid within the lock, inducing a surface displacement δ0 with re-

spect to the water level of the ambient fluid, brings the ISWs generation mechanism closer to a

steady release than an impulsive input. This parameter acts inducing slightly larger surface man-

ifestations and internal wave geometric and kinematic features. The latter mostly depends on the

volume of light-fluid released. In particular the ISWs amplitude is directly related to the internal

displacement η0, initially produced between the lock and the ambient fluid region. Interestingly,

the increase of the density ratio characterizing the undisturbed stratification, affects more the wave

celerity rather than the interfacial amplitude, producing more pronounced surface displacements.

Approaching to the non Boussinesq conditions, the ISWs-induced velocity and pressure fields,

obtained in the small scale apparatus, become closer to those developing in the coastal ocean

where packet of internal solitary waves propagate.

Experimental results are compared with those provided by weakly non-linear and strongly non-

linear models by considering both rigid lid and free surface as boundary condition at the top. We

develop a new a mathematical approach to derive the free surface displacement associated to a

well-defined ISW propagating in a two-layer stratified system. Our results are similar to those

obtained by Barros and Gavrilyuk 39 . Our approach is based on an analogy with the MCC-RL

and KdV model and valid for single-humped interfacial solitons. It allows to obtain all the soli-

tary wave features once the density structure and the interfacial amplitude are known, leading to

interesting theoretical predictions of the free surface. In our cases, each internal solitary wave

modelled with a top free surface is always narrower and slower than one resulting from a rigid

lid condition. The presence of a free surface become relevant for strongly-stratified two-fluid

systems, although it does not affect results for smooth density differences. Moreover, the MCC

models better describe the wave profile for ISWs with a larger amplitude, since model equations

present strongly nonlinear terms.

The analysis of the limiting interfacial amplitudes shows that the density structure strongly af-

fects the elevation of the free surface predicted by the MCC model. The free surface maximum

displacements increased mostly with the density ratio, and the layers thickness. Larger free sur-

face displacements were observed for cases with a thinner upper layer thickness, since the ISW

flow field propagated closer to the free surface. The MCC-FS model gives the best prediction in

terms of both internal waves geometric/kinematic features and surface displacements. The latter
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The role of the free surface on interfacial solitary waves

act transferring part of the internal wave energy to the free surface leading the waves celerity

to assume lower values with respect to those resulting from the MCC-RL model. Experimental

evidences and theoretical results show that the celerity of an internal solitary wave of depression

depends on both interfacial and surface displacement, although they act in opposite way. In par-

ticular, an ISW propagates faster if endowed with a larger interfacial amplitude, while the surface

manifestation contributes to decrease the wave speed. Surprisingly, the latter behavior fades as

waves assume larger internal amplitudes. For decreasing upper layer thicknesses, indeed, the free

surface displacements do not grow proportionally to the interfacial amplitudes, and, consequently

the MCC-RL and the MCC-FS celerity predictions tend to converge. This is also confirmed by the

theoretical limits for wave geometric features resulting from the MCC-FS model. Predictions of

the (KdV-RL) equation are consistent with experimental results for small-amplitude waves, mostly

observed after reflection. Thus, the reliability of a free top surface as boundary condition depends

on the wave amplitude and on the density difference. Our theoretical analysis highlights that,

under Boussinesq conditions, very good predictions of ISWs features are provided also by the

MCC-RL model, both for very large and for small amplitude ISWs.

The large amplitude ISWs observed in the Strait of Messina (Mediterranean Sea) propagate in a

two-fluid system characterized by a smooth density difference, i.e., ρ1/ρ2 ∼ 0.99, a2/h1 ∼ 1.7,

Lw ∼ 800m10,43. Under those conditions both the MCC-FS and the MCC-RL model predict a wave

profile very similar to the one resulting from a rigid lid condition (as in Fig. 2d). In particoular, to

an internal displacement of approximately 50 m a surface displacement of about 4 cm is predicted

by the MCC-FS model. Consinstently with our results, the presence of the free surface does not

significantly affect flow features for ISWs characterized by relatevely large amplitudes propagat-

ing in a stratified ambient fluid with a small density difference. By satellite it is not possible to

capture such a small surface slope. SAR images thus show only the existence of short surface

waves caused by variations of the short-scale sea surface roughness due to their interaction with a

variable surface current.
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Appendix

The continuity and momentum equations for each layers can be written as:


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
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




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∂η1

∂ t
+ ∂ (u1η1)

∂x
= 0

∂η2

∂ t
+ ∂ (u2η2)

∂x
= 0

∂u1
∂ t

+u1
∂u1
∂x

+g
∂ (η1+η2)

∂x
= 1

η1

∂
∂x
(1

3η3
1 G1 − 1

2η2
1 D2

1η2)

+(1
2η1G1 −D2

1η2)
∂η2

∂x

∂u2
∂ t

+u2
∂u2
∂x

+g
∂ (ρ1η1/ρ2+η2)

∂x
= 1

η2

∂
∂x
(1

3η3
2 G2)

+ρ1

ρ2

∂
∂x
(1

2η2
1 G1 −η1D2

1η2)

(A.1)

where ui = ui(x, t) are the depth-averaged horizontal velocity and Gi and Di (i= 1,2) are non-linear

differential operators defined as :

Gi ≡
∂ 2ui

∂x∂ t
+ui

∂ 2ui

∂x2
− (

∂ui

∂x
)2 =− 1

ηi
(D2

i ηi). (A.2)

The coefficients of differential system (13) are given by:
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η1

+2 h2
η1

−2η2
η1
)+2

h2
2

h2
1

−2
h3

2

h2
1η2

]

α43 ≡−ρc3h2
1

6η1
(2+3η2

η1
− h1

η1
−3 h2

η1
)

α44 ≡−c3h2
2

6η2
(2− h2

η2
+3ρ

h2
1

h2
2

h1
η1

η2
η1
)

α45 ≡−ρc3h2
2

2η1

h2
1

h2
2

(1−2 h2
η1

+2η2
η1
)

α46 ≡ c
2(η2(1− h2

η2
)2(c2 h2

η2
−gη2)+

ρ(1− h1
η1
)(c2 h1

η1
(η1 −h1)+gh(h1+2h2 −η1 −2η2)))

(A.3)
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The coefficients β j ( j = 1,2,3,4) are defined as:



















































































β1 ≡ ρc2h2
1η2

β2 ≡ c2(h2
2η1 +3ρh2

1η2)

β3 ≡ 3ρc2h2
1η2

β4 ≡−3c2(η1(η2 −h2)
2 +ρη2(η1 −h1)

2)

+3gη1η2((η2 −h2)
2

+ρ(η1 −h1)
2 +2ρ(η1 −h1)(η2−h2))

(A.4)
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