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Abstract Generating fine-scale time series of intermittent rainfall that are fully consistent with any given
coarse-scale totals is a key and open issue in many hydrological problems. We propose a stationary
disaggregation method that simulates rainfall time series with given dependence structure, wet/dry
probability, and marginal distribution at a target finer (lower-level) time scale, preserving full consistency
with variables at a parent coarser (higher-level) time scale. We account for the intermittent character of
rainfall at fine time scales by merging a discrete stochastic representation of intermittency and a continuous
one of rainfall depths. This approach yields a unique and parsimonious mathematical framework providing
general analytical formulations of mean, variance, and autocorrelation function (ACF) for a mixed-type
stochastic process in terms of mean, variance, and ACFs of both continuous and discrete components,
respectively. To achieve the full consistency between variables at finer and coarser time scales in terms of
marginal distribution and coarse-scale totals, the generated lower-level series are adjusted according to a
procedure that does not affect the stochastic structure implied by the original model. To assess model
performance, we study rainfall process as intermittent with both independent and dependent occurrences,
where dependence is quantified by the probability that two consecutive time intervals are dry. In either
case, we provide analytical formulations of main statistics of our mixed-type disaggregation model and
show their clear accordance with Monte Carlo simulations. An application to rainfall time series from real
world is shown as a proof of concept.

Plain Language Summary Rainfall is the main input to most hydrological systems. A wide range
of studies concerning floods, water resources and water quality require characterization of rainfall inputs at
fine time scales. This may be possible using empirical observations, but there is often a need to extend
available data in terms of temporal resolution satisfying some additive property (i.e. that the sum of the
values of consecutive variables within a period be equal to the corresponding coarse-scale amount). Hence,
rainfall disaggregation models are required. Although there is substantial experience in stochastic
disaggregation of rainfall to fine time scales, most modeling schemes existing in the literature are ad hoc
techniques rather than consistent generalized methods. This is mainly due to the skewed distributions and
the intermittent nature of the rainfall process at fine time scales, which are severe obstacles for the
application of a theoretically consistent scheme to rainfall disaggregation. We propose a consistent
disaggregation model that first generates lognormal time series of rainfall depths based on a random
cascade structure. Then, such time series are multiplied by binary sequences (i.e., rainfall occurrences) to
obtain intermittent rainfall time series with known summary statistics.

1. Introduction

Rainfall is the main input to most hydrological systems. A wide range of studies concerning floods, water
resources, and water quality require characterization of rainfall inputs at fine time scales [Bl€oschl and
Sivapalan, 1995]. This may be possible using empirical observations, but there is often a need to extend
available data in terms of temporal resolution satisfying some additive property (i.e., that the sum of the val-
ues of consecutive variables within a period be equal to the corresponding coarse-scale amount) [Berne
et al., 2004]. Hence, rainfall disaggregation models are required. Both disaggregation and downscaling
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models refer to transferring information from a given scale (higher-level) to a smaller scale (lower-level),
e.g., they generate consistent rainfall time series at a specific scale given a known precipitation measured or
simulated at a certain coarser scale. The two approaches are very similar in nature but not identical to each
other. Downscaling aims at producing the finer-scale time series with the required statistics, being statisti-
cally consistent with the given variables at the coarser scale, while disaggregation has the additional
requirement to produce a finer scale time series that adds up to the given coarse-scale total.

Although there is a substantial experience in stochastic disaggregation of rainfall to fine time scales, most
modeling schemes existing in the literature are ad hoc techniques rather than consistent general methods
(see review by Koutsoyiannis [2003a]). Disaggregation models were introduced in hydrology by the pioneer-
ing work of Valencia and Schaake [1973], who proposed a simple linear disaggregation model that is fully
general for Gaussian random fields without intermittency. However, the skewed distributions and the inter-
mittent nature of the rainfall process at fine time scales are severe obstacles for the application of a theoret-
ically consistent scheme to rainfall disaggregation [Koutsoyiannis and Langousis, 2011]. This paper reports
some progress in this respect. Our model exploits the full generality and theoretical consistency of linear
disaggregation schemes proposed by Valencia and Schaake [1973] for Gaussian random variables, but it
generates intermittent time series with lognormal distribution that are more consistent with the actual rain-
fall process at fine time scales.

The following sections expand on a stochastic approach to rainfall disaggregation in time, with an emphasis
on the analytical description of a model of the mixed (discrete-continuous) type. First, we generate lognor-
mal time series of rainfall depths with prescribed mean, variance, and autocorrelation function (ACF) based
on fractional Gaussian noise (fGn), also known as Hurst-Kolmogorov (HK) process [Mandelbrot and Van Ness,
1968]. Note that the lognormality hypothesis and our specific normalizing transformation (see next section)
enable the analytical formulation of the main statistics of the rainfall depth process. Second, we obtain the
intermittent rainfall process by multiplying the synthetic rainfall depths above by user-specified binary
sequences (i.e., rainfall occurrences) with given mean and ACF. The resulting stochastic model is of the
mixed type and we derive its summary statistics in closed forms.

We propose herein an evolution of the downscaling model by Lombardo et al. [2012], which is upgraded
and revised to include both a stochastic model accounting for intermittency and an appropriate strategy to
preserve the additive property. The latter distinguishes indeed disaggregation from downscaling. This mod-
ification required to set up a disaggregation model produces a more realistic rainfall model that retains its
primitive simplicity in association with a parsimonious framework for simulation. In brief, the advancements
reported under the following sections include:

1. Background information. A basic review with discussion about some improvements on the model struc-
ture is presented in the next section.

2. Intermittency. The main novelty of this paper is the introduction of intermittency in the modeling frame-
work, which is fully general and it can be used when simulating mixed-type processes other than rainfall
from the real world. The rainfall process features an intermittent character at fine (submonthly) time
scales, and thus the probability that a time interval is dry is usually greater than zero. Generally, the anal-
ysis and modeling of rainfall intermittency relate to the study of the rainfall occurrence process. Then,
we need to introduce the latter in our modeling framework. In order to achieve such an objective, in sec-
tion 3, we describe the entire rainfall process using a two-state stochastic process comprising a discrete
and a continuous component accounting for rainfall occurrences and nonzero rainfall, respectively. Our
modeling framework enables the analytical formulation of the main statistics of the discrete-continuous
rainfall process.

3. Additivity constraint. We utilize auxiliary Gaussian variables to disaggregate a given rainfall amount to a
certain scale of interest by means of the linear generation scheme proposed by Koutsoyiannis [2002].
Nevertheless, rainfall is effectively modeled by positively skewed distributions, i.e., non-Gaussian. Hence,
then an exponential transformation of the variables is used in a way that the transformed variables fol-
low a lognormal distribution with some important properties (see Appendix A). However, this means
that the additive property, which is one of the main attributes of the linear disaggregation scheme, is
lost [Todini, 1980]. To overcome the problem we apply an empirical correction procedure, known as
‘‘power adjusting procedure’’ (section 4), to restore the full consistency of lower-level and higher-level
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variables. This procedure is accurate in the sense that it does not alter the original dependence structure
of the synthetic time series [Koutsoyiannis and Manetas, 1996].

4. Monte Carlo experiments and comparison to observed data. In sections 5 and 6, we show, respectively,
some Monte Carlo experiments and a case study in order to test the capability of our model to reproduce
the statistical behavior of synthetic and real rainfall time series. We conclude our work with section 7,
where we give an overview on the key ideas and briefly discuss the applicability aspects of our
approach.

2. Basic Concepts and Background

In rainfall modeling literature, the currently dominant approach to temporal disaggregation is based on dis-
crete multiplicative random cascades (MRCs), which were first introduced in turbulence by Mandelbrot
[1974]. Despite the fact that more complex scale-continuous cascade models have been introduced [see,
e.g., Schmitt and Marsan, 2001; Schmitt, 2003; Lovejoy and Schertzer, 2010a,b], discrete MRCs are still the
most widely used approach as they are very simple to understand and apply [Paschalis et al., 2012]. MRCs
are discrete models in scale, meaning that the scale ratio from parent to child structures is an integer num-
ber strictly larger than one. These models are multiplicative, and embedded in a recursive manner. Each
step is usually associated to a scale ratio of b 5 2 (i.e., branching number); after m cascade steps (m 5 0, 1,
2, . . .), the total scale ratio is 2m, and we have:

Rj;m5R1;0

Ym

i50

Wg i;jð Þ;i (1)

where j 5 1, . . ., 2m is the index of position (i.e., time step) in the series at the cascade step m, and i is the
index of the cascade step. R1;0 denotes the initial rainfall intensity to be distributed over the (subscale) cells
Rj;m of the cascade, each cell being associated to a random variable Wg i;jð Þ;i (i.e., cascade generator, called

‘‘weight’’) where g i; jð Þ5 j
2m2i

l m
denotes a ceiling function which defines the position in time at the cascade

step i 5 0, . . ., m [see, e.g., Gaume et al., 2007]. All these random variables are assumed nonnegative, inde-
pendent and identically distributed, and satisfy the condition hWi51 where h�i denotes expectation. A
graphical example of a dyadic (b 5 2) multiplicative cascade with four cascade steps (m 5 0, 1, 2, 3) is shown
in Figure 1.

As detailed by Lombardo et al. [2012], the application of MRC models is questionable in the context of rain-
fall simulation. The random process underlying these models is not stationary, because its autocovariance is
not a function of lag only, as it would be in stationary processes. This is due to the model structure. For
example, it can be shown that for MRCs we may write lagged second moments after m cascade steps as:

Figure 1. Sketch of a dyadic (b 5 2) multiplicative random cascade.
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hRj;mRj1t;mi5hR2
1;0ihW2ihj;m tð Þ

(2)

where t is the discrete-time lag; since we have hj;m t50ð Þ5m for any j and m, then the exponent hj;m tð Þ can
be calculated recursively by:

hj;m tð Þ5
hj;m21 tð Þ11
� �

H 2m212j2t
� �

j � 2m21; t > 0

h2m2j2t11;m tð Þ j > 2m21; t > 0

h2m2j11;m jtjð Þ t < 0

8>><
>>: (3)

where H n½ � is the discrete form of the Heaviside step function, defined for an integer n as:

H n½ �5
0; n < 0

1; n � 0

(
(4)

Then, from equations (2) and (3), it is evident that the autocovariance for an MRC model depends upon
position in time j and cascade step k. We emphasize that several researchers and practitioners often
neglect this nonstationarity, which is simply inherent to the model structure. The problem of nonstatio-
narity in processes generated by discrete MRCs is indeed not new in the literature [see, e.g., Mandelbrot,
1974; Over, 1995; Veneziano and Langousis, 2010]. From a conceptual point of view, it is not always satis-
factory to model an observed phenomenon by a stationary process. Nonetheless, it is important to stress
here that stationarity is also related to ergodicity, which in turn is a prerequisite to make statistical infer-
ence from data. In fact, ergodicity is a topic dealing with the relationship between statistical averages
and sample averages, which is a central problem in the estimation of statistical parameters in terms of
real data. From a practical point of view, if there is nonstationarity then ergodicity cannot hold, which
forbids inference from data that represent the most reliable information in building hydrological models
and making predictions [Koutsoyiannis and Montanari, 2015]. Even though the two concepts of ergodic-
ity and stationarity do not coincide in general, it is usually convenient to devise a model that is ergodic
provided that we have excluded nonstationarity [Montanari and Koutsoyiannis, 2014; Serinaldi and Kilsby,
2015].

Most of the problems of MRC models reported above might be overcome by other disaggregation methods
in the literature [see, e.g., Marani and Zanetti, 2007; Gyasi-Agyei, 2011; Pui et al., 2012; Efstratiadis et al.,
2014]. However, MRC models gain their popularity due to their ease of use and understanding.

We propose a model characterized by a structure equally simple as that of MRC models, but it is based on a
different approach and it proves to be stationary. Indeed, we emphasize that this model is not an MRC; for a
detailed theoretical and numerical comparison of this model with discrete MRCs, the reader is referred to
Lombardo et al. [2012].

Our rainfall disaggregation model (see also Appendix B for a step-by-step implementation procedure)
exploits knowledge from an auxiliary Gaussian domain where HK process is simulated by means of a step-
wise disaggregation approach based on a random cascade structure. Then, we assume the given rainfall
amount Z1;0 at the initial largest scale (m 5 0) to be lognormally distributed with a given mean l0 and vari-
ance r2

0, and we log-transform it into an auxiliary Gaussian variable ~Z 1;0 with mean ~l0 and variance ~r2
0 given

by equation (A11), as follows:

~Z 1;05
1

a kð Þ log Z1;02b kð Þ
� �

(5)

where a kð Þ and b kð Þ are two functions given in equation (A10), that depend on a given disaggregation step
m 5 k, which is the last disaggregation step of interest. Hence, it is assumed that the desired length of the
synthetic series to be generated is 2k, where k is a given positive integer. The functions a kð Þ and b kð Þ are
introduced to preserve some scaling properties of the auxiliary Gaussian process, as then better described
in Appendix A.

The auxiliary variable ~Z 1;0 obtained by equation (5) is then disaggregated into two variables on subintervals
of equal size. This procedure is applied progressively until we generate the series at the time scale of inter-
est. Since this is an induction technique, it suffices to describe one step.
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Consider the generation step in which
the higher-level amount ~Z j;m21 is disag-
gregated into two lower-level amounts
~Z 2j21;m and ~Z 2j;m such that (see explan-
atory sketch in Figure 2, where j 5 3
and m 5 3):

~Z 2j21;m1~Z 2j;m5~Z j;m21 (6)

Thus, we generate the variable of the
first subinterval ~Z 2j21;m only, and that
of the second is then the remainder
that satisfies equation (6). At this step,
we have already generated the values
of previous lower-level time steps, i.e.,
~Z 1;m; . . . ; ~Z 2j22;m, and of the next
higher-level time steps, i.e., ~Z j;m21; . . . ;
~Z s;m21 where s 5 2m21. Theoretically, it
is necessary to preserve the correla-

tions of ~Z 2j21;m with all previous lower-level variables and all next higher-level variables. However, we
can obtain a very good approximation if we consider correlations with two lower-level time steps
behind and one higher-level time step ahead [Koutsoyiannis, 2002]. This is particularly the case if we
wish to generate HK time series with moderate values of the Hurst parameter H 2 0; 1ð Þ. In our work, we
are interested in positively correlated processes, therefore 0:5 < H < 1. The HK process reduces to
white noise for H50:5.

Even though the scheme sketched in Figure 2 is already good for most practical purposes, if we wish to
generate highly correlated time series, i.e., with high values of the Hurst parameter (e.g., H � 0:9), then we
could expand the number of variables that are considered in the generation procedure. An extensive
numerical investigation (not reported here) showed that we obtain the best trade-off between model accu-
racy and computational burden if we consider two more lower-level time steps behind and one more
higher-level time step ahead with respect to the sketch in Figure 2.

In either case, we use the following linear generation scheme:

~Z 2j21;m5hTY1V (7)

where Y is a vector of previously generated variables, h is a vector of parameters, and V is a Gaussian
white noise that represents an innovation term. All unknown parameters h and the variance of the inno-
vation term V needed to solve equation (7) can be estimated applying the methodology proposed by
Koutsoyiannis [2001] that is based on a generalized mathematical proposition, which ensures preservation
of marginal and joint second-order statistics and of linear relationships between lower-level and higher-
level variables:

h5 cov Y ;Y½ �f g21cov Y ; ~Z 2j21;m
� �

(8)

var V½ �5var ~Z 2j21;m
� �

2cov ~Z 2j21;m;Y
� �

h (9)

In short, the generation step is based on equation (7) that can account for correlations with other variables,
which are the components of the vector Y above. In the example of Figure 2, we consider correlations with
two lower-level time steps behind and one higher-level time step ahead, then Y5
~Z 2j23;m; ~Z 2j22;m; ~Z j;m21; ~Z j11;m21
� �T

where superscript T denotes the transpose of a vector. Hence, equation
(7) simplifies as follows:

~Z 2j21;m5a2~Z 2j23;m1a1~Z 2j22;m1b0~Z j;m211b1~Z j11;m211V (10)

where a2, a1, b0; and b1 are parameters to be estimated and V is innovation whose variance has to be esti-
mated as well. From equations (8) and (9), all unknown parameters can be estimated in terms of HK correla-
tions, which are independent of j and m:

Figure 2. Sketch of the disaggregation approach for generation of the auxiliary
Gaussian process. Grey boxes indicate random variables whose values have been
already generated prior to the current step. Arrows indicate the links to those of
the generated variables that are considered in the current generation step
(adapted from Koutsoyiannis [2002]).
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~q tð Þ5corr ~Z 2j21;m; ~Z 2j211t;m
� �

5jt11j2H=21jt21j2H=22jtj2H (11)

Therefore, in this case, we can write equation (8) as follows:

a2

a1

b0

b1

2
666666664

3
777777775

5

1 ~q 1ð Þ ~q 2ð Þ1~q 3ð Þ ~q 4ð Þ1~q 5ð Þ

~q 1ð Þ 1 ~q 1ð Þ1~q 2ð Þ ~q 3ð Þ1~q 4ð Þ

~q 2ð Þ1~q 3ð Þ ~q 1ð Þ1~q 2ð Þ 2 11~q 1ð Þ½ � ~q 1ð Þ12~q 2ð Þ1~q 3ð Þ

~q 4ð Þ1~q 5ð Þ ~q 3ð Þ1~q 4ð Þ ~q 1ð Þ12~q 2ð Þ1~q 3ð Þ 2 11~q 1ð Þ½ �

2
666666664

3
777777775

21 ~q 2ð Þ

~q 1ð Þ

11~q 1ð Þ

~q 2ð Þ1~q 3ð Þ

2
666666664

3
777777775

(12)

For the HK process, we can write ~r2
m5var ~Z 2j21;m

� �
5~r2

0=22Hm, where ~r2
05var ~Z 1;0

� �
[Koutsoyiannis, 2002].

Then equation (9) becomes:

var V½ �5~r2
m 12 ~q 2ð Þ; ~q 1ð Þ; 11~q 1ð Þ; ~q 2ð Þ1~q 3ð Þ½ � a2; a1; b0; b1½ �T
� �

(13)

Then, the two equations above depend solely on the Hurst parameter H and the variance ~r2
0 given by equa-

tion (A11).

In the implementation of such an approach, it can be noticed that the generation procedure is affected by
changes in equation (10) that occur at the boundary of the cascade (i.e., edge effects, see Figure 2). In prac-
tice for each cascade step, when we generate ~Z 2j21;m near the start or end of the cascade sequence, some
elements of the vector Y may be missing. In other words, some terms of equation (10) are eliminated at the
start or end of the cascade sequence, for each cascade step m, where m 5 0, . . ., k. To overcome this ‘‘edge’’
problem, we found a good solution by simultaneously disaggregating three independent and identically
distributed Gaussian variables (where ~Z 1;0 is the one in the middle), as shown in Figure 3. We use only the
synthetic series pertaining to ~Z 1;0 and discard the remainder. Then, the effects of the peripheral leakage on
the main statistics are practically negligible.

Finally, the disaggregated series with the desired length 2k generated in the auxiliary (Gaussian) domain
must then be transformed back to the target (lognormal) domain (actual rainfall) by the following simple
exponentiation:

Zj;k5exp ~Z j;k
� �

(14)

Figure 3. Illustrative sketch for simulation of the auxiliary process ~Z j;m . To eliminate ‘‘edge effects’’ in the generation procedure, we produce three (or five in case of H � 0:9) parallel
cascades, then use only the one in the middle for simulations, and discard the remainder.
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This transformation is simpler than that used by Lombardo et al. [2012]. In fact, we normalize the given
coarse-scale total Z1;0 by equation (5) in order to use a simpler inverse transformation, equation (14), at the
scale k of interest. This is more appropriate for a disaggregation approach resembling a top-down strategy.
As shown in Appendix A, the mean, variance, and ACF of the disaggregated rainfall process so obtained are
given, respectively, by:

lk5hZj;ki5l0=2k (15)

r2
k5var Zj;k

� �
5r2

0=22Hk (16)

qk tð Þ5corr Zj;k ; Zj1t;k
� �

5
exp ~r2

k ~q tð Þ
� �

21

exp ~r2
k

� �
21

(17)

where ~q tð Þ and ~r2
k5var ~Z j;k

� �
; respectively, denote the ACF (equation (11)) and the variance of the auxiliary

Gaussian process (i.e., HK process or fGn), H is the Hurst coefficient, t is the time lag, while l0 and r2
0 are,

respectively, the mean and variance of the given coarse-scale total Z1;0. Note that the ACFs of the HK pro-
cess, ~q tð Þ, and the target lognormal process, qk tð Þ, generally differ. Nevertheless, for small values of ~r2

k , as
encountered in disaggregation modeling of rainfall amounts, the experimental qk tð Þ closely resembles the
ideal form of ~q tð Þ. Specifically, in the small-scale limit of k !1 (i.e., very small ~r2

k ), the autocorrelation
function of the target process converges to that of the Hurst-Kolmogorov process, so that qk tð Þ ! ~q tð Þ.

In summary, our model assumes lognormal rainfall, and then it is reasonable to use a (scale-dependent) log-
arithmic transformation of variables (equation (5)) and perform disaggregation of transformed variables in a
Gaussian (auxiliary) domain, thus exploiting the desired properties of the normal distribution for linear dis-
aggregation schemes [Koutsoyiannis, 2003a]. Indeed, we simulate a HK process in the auxiliary domain
whose characteristics are modified (by equation (5)) based on the last disaggregation step of interest k, in
order to obtain (by equation (14)) 2k variables in the lognormal (target) domain with the desired statistical
properties given by equations (15)–(17).

3. Introducing Intermittency

The intermittent nature of rainfall process at fine time scales is a matter of common experience. In a statistical
description, this is reflected by the fact that there exists a finite nonzero probability that the value of the pro-
cess within a time interval is zero (often referred to as probability dry). Intermittency results in significant vari-
ability and high positive skewness, which are difficult to reproduce by most generators [Efstratiadis et al.,
2014]. Therefore, modeling rainfall intermittency is receiving renewed research interest [Koutsoyiannis, 2006;
Rigby and Porporato, 2010; Kundu and Siddani, 2011; Schleiss et al., 2011; Li et al., 2013; Mascaro et al., 2013].

In the literature, two strategies are commonly used. The simplest approach is to model the intermittent rain-
fall process as a typical stochastic process whose smallest values are set to zero values according to a spe-
cific rounding off rule [see, e.g., Koutsoyiannis et al., 2003]. The second strategy considers in an explicit
manner the two states of the rainfall process, i.e., the dry and the wet state. This is a modeling approach of
a mixed type with a discrete description of intermittency and a continuous description of rainfall amounts
[Srikanthan and McMahon, 2001]. The two-state approach is preferable for our modeling framework,
because it facilitates the analytical formulation of the main statistics of the intermittent rainfall process.

The rainfall occurrence process (a binary-valued stochastic process) and the rainfall depth process (a
continuous-type stochastic process) can be combined to give rise to a stochastic process of the mixed type.
For simplicity, we assume that the discrete and continuous components are independent of one another;
therefore, we can write the intermittent rainfall as the product of those two components.

In our modeling framework, we model the intermittent rainfall Xj;k on a single time scale setting at the last
disaggregation step k and time step j (5 1, . . ., 2k) as:

Xj;k5Ij;k � Zj;k (18)

where Zj;k denotes the continuous-type random variable pertaining to our disaggregation model (given by
equation (14)), which represents the nonzero rainfall process. Whereas, the rainfall occurrence process is
represented by Ij;k that is a discrete-type random variable taking values 0 (dry condition) and 1 (wet
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condition), respectively, with probability p0;k and p1;k512p0;k . The former denotes the probability that a
certain time interval is dry after k disaggregation steps, i.e., p0;k5Pr Xj;k50

� 	
. This is the probability dry at

the scale of interest, which is an additional model parameter. Clearly, this notation reflects a stationarity
assumption of rainfall occurrences, because the probability dry p0;k does not depend on the time position j
but depends only on the time scale k.

The above considerations imply the following relationships for the mean and variance of the mixed-type
rainfall process:

hXj;ki5 12p0;k
� �

lk (19)

var Xj;k
� �

5 12p0;k
� �

r2
k1p0;kl

2
k

� �
(20)

where lk and r2
k denote the mean and the variance of the series generated by the rainfall depth model

(see equations (15) and (16), respectively).

Note that equation (18) resembles the classical intermittent lognormal b-model based on MRCs [Gupta and
Waymire, 1993; Over and Gupta, 1994, 1996], but it is more general and embedded into our Hurst-
Kolmogorov modeling framework.

Since we aim at modeling a family of mixed-type random variables each representing the rainfall state at
time steps j 5 1, 2, . . ., we need to investigate the dependence structure of this particular stochastic process.
In other words, we analyze the pairwise dependence of two randomly chosen variables Xj;k and Xj1t;k sepa-
rated by a time lag t. This is accomplished through deriving the formulation of the autocovariance function
for the intermittent rainfall process. Let us recall that:

cov Xj;k ; Xj1t;k
� �

5hXj;k Xj1t;ki2hXj;ki2 (21)

where the last term of the right-hand side can be calculated from equation (19), while the lagged second
moment hXj;k Xj1t;ki can be expressed through the following joint probabilities:

p00;k5Pr Xj;k50; Xj1t;k50
� 	

p10;k5Pr Xj;k > 0; Xj1t;k50
� 	

p01;k5Pr Xj;k50; Xj1t;k > 0
� 	

p11;k5Pr Xj;k > 0; Xj1t;k > 0
� 	

(22)

Therefore, by total probability theorem and equation (18), we have:

hXj;k Xj1t;ki5p11;khZj;k Zj1t;ki (23)

For convenience, we express the joint probability p11;k in terms of the probability dry p0;k and the autoco-
variance of rainfall occurrences cov Ij;k ; Ij1t;k

� �
. The latter is given by [see also Koutsoyiannis, 2006]:

cov Ij;k ; Ij1t;k
� �

5hIj;k Ij1t;ki2hIj;ki25p11;k2 12p0;k
� �2

(24)

The derivation of this equation is based on the relationships hIj;ki5hI2
j;ki512p0;k , and hIj;k Ij1t;ki5p11;k . Thus,

from equation (24) we obtain:

p11;k5 12p0;k
� �2

1cov Ij;k ; Ij1t;k
� �

(25)

Substituting equations (19), (23), and (25) in equation (21), it follows:

cov Xj;k ; Xj1t;k
� �

5 12p0;k
� �2

1cov Ij;k ; Ij1t;k
� �� �

hZj;k Zj1t;ki2 12p0;k
� �2

l2
k (26)

Adding and subtracting the term cov Ij;k ; Ij1t;k
� �

l2
k to the right-hand side of equation (26), yields:
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cov Xj;k ; Xj1t;k
� �

5

5 12p0;k
� �2

1cov Ij;k ; Ij1t;k
� �� �

cov Zj;k ; Zj1t;k
� �

1cov Ij;k ; Ij1t;k
� �

l2
k

(27)

Hence, equation (27) expresses the degree of dependence of the intermittent rainfall process in terms of
the dependence structures of both the rainfall occurrence and depth processes.

A more common indicator of dependence of a stochastic process is the autocorrelation coefficient:

qX;k tð Þ5
cov Xj;k ; Xj1t;k
� �
var Xj;k
� � (28)

Recalling that var Ij;k
� �

5p0;k 12p0;k
� �

and substituting equations (20) and (27) in equation (28), after alge-
braic manipulations we obtain:

qX;k tð Þ5
12p0;k1qI;k tð Þp0;k
� �

qk tð Þr2
k 1qI;k tð Þp0;kl2

k

r2
k 1p0;kl2

k

(29)

where lk , r2
k , and qk tð Þ are given by equations (15), (16), and (17), respectively. The only unknown in

equation (29) is the ACF qI;k tð Þ of the rainfall occurrence process at the finer characteristic time scale
(i.e., the final disaggregation step k). When deriving the theoretical ACF in equation (29), note that we
have not made any assumption about the dependence structure or the marginal probability of the
process; the only assumption is that the process is stationary. Equation (29) is fully general and new, to
the best of our knowledge; it can be used to derive the theoretical ACF of a mixed-type stochastic pro-
cess in terms of its discrete and continuous components (provided they are independent of one
another).

In order to quantify the degree of dependence of the intermittent rainfall process, we must assume a model
for the dependence structure of rainfall occurrences. Generally, we could classify such models into three
types: (i) independence, which includes the Bernoulli case, characterized by one parameter only; (ii) simple
dependence, which includes Markov chains characterized by two parameters; (iii) complex dependence,
characterized by more than two parameters [Koutsoyiannis, 2006].

In early stages of analysis and modeling attempts, the Markov chain model was widely adopted for discrete
time representations of rainfall occurrences, recognizing that they are not independent in time [Gabriel and
Neumann, 1962; Haan et al., 1976; Chin, 1977; Rold�an and Woolhiser, 1982]. However, later studies observed
that Markov chain models yield unsatisfactory results for rainfall occurrences, despite being much closer to
reality than the independence model [De Bruin, 1980; Katz and Parlange, 1998]. Moreover, there exist other
types of models intended to simulate more complex dependence structures that are consistent with empiri-
cal data, such as positive autocorrelation both on small scales (short-term persistence) and on large scales
(long-term persistence) [see, e.g., Koutsoyiannis, 2006]. For the sake of numerical investigation, hereinafter,
we analyze the first two modeling categories of the occurrence processes:

1. Purely random model.
2. Markov chain model.

To summarize, we believe it is worth repeating here a short overview on some of the key ideas of our
model. A continuous model (described in section 2) to generate finer-scale time series of lognormal rainfall
depths with HK-like dependence structure, and an arbitrary binary model (e.g., Bernoulli, Markov, etc.) to
simulate rainfall intermittency are combined by equation (18) to give rise to a complete rainfall disaggrega-
tion model characterized by mean, variance, and ACF as in equations (19), (20), and (29), respectively. The
preservation of the additive property is guaranteed by applying equation (36) to the generated series (see
next section). The intermittent component refers exclusively to the target scale, and is combined with the
continuous component at that scale. Note that mean and variance in equations (19) and (20) are indepen-
dent of the specific model, while the ACF in equation (29) relies on the dependence structures of both the
continuous and binary components. In the following, we show how this ACF specializes for intermittent
components with Bernoulli and Markov structures.
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3.1. Random Occurrences
The simplest case is to assume that the rainfall process is intermittent with independent occurrences Ij;k ,
which can be modeled as a Bernoulli process in discrete time. This process is characterized by one parame-
ter only, i.e., the probability dry p0;k . Then, we can write that:

qI;k tð Þ5cov Ij;k; Ij1t;k
� �

50 (30)

Substituting equation (30) in equations (27) and (29), we obtain, respectively:

cov Xj;k ; Xj1t;k
� �

5 12p0;k
� �2

cov Zj;k ; Zj1t;k
� �

(31)

qX;k tð Þ5 12p0;k
� �

qk tð Þ r2
k

r2
k1p0;kl2

k

(32)

3.2. Markovian Occurrences
As a second example, we assume a very simple occurrence process with some correlation. In this model,
the dependence of the current variable Ij;k on the previous variable Ij21;k suffices to express completely the
dependence of the present on the past. In other words, we assume that the state (dry or wet) in a time
interval depends solely on the state in the previous interval. This is a process with Markovian dependence,
which is completely determined by lag-one autocorrelation coefficient qI;k 1ð Þ5corr Ij;k ; Ij21;k

� �
. Therefore,

the occurrence process is characterized by two parameters, i.e., p0;k and qI;k 1ð Þ. The autocorrelation of Ij;k is
(see the proof in Appendix C):

qI;k tð Þ5corr Ij;k ; Ij1t;k
� �

5qjtjI;k 1ð Þ (33)

Substituting in equation (29), we derive the autocorrelation of the entire rainfall process as:

qX;k tð Þ5
12p0;k1qjtjI;k 1ð Þp0;k

� �
qk tð Þr2

k 1qjtjI;k 1ð Þp0;kl2
k

r2
k 1p0;kl2

k

(34)

4. Adjusting Procedure

A shortcoming of the above-summarized model is that generated, back-transformed rainfall amounts, Zj;k ,
generally fail to sum to the coarse-scale total, Z1;0, which is a major requirement of disaggregation methods.
Therefore, analogous considerations apply to the corresponding intermittent rainfall process Xj;k , where the
coarse-scale total X1;05 12p0;k

� �
Z1;0 is known. This is what normally happens when a model is specified in

terms of the logarithms of the target variables, or some other normalizing transformation. In such cases,
adjusting procedures are necessary to ensure additivity constraints [Stedinger and Vogel, 1984; Grygier and
Stedinger, 1988, 1990; Lane and Frevert, 1990; Koutsoyiannis and Manetas, 1996], such as:

X1;05
Xs52k

j51

Xj;k (35)

A relevant question is how to adjust the generated rainfall time series without unduly distorting their mar-
ginal distribution and dependence structure. Koutsoyiannis and Manetas [1996] showed that this is possible
using appropriate adjusting procedures, which preserve certain statistics of lower-level variables. In particu-
lar, here, we focus on the so-called ‘‘power adjusting procedure’’ that can preserve the first-order and
second-order statistics regardless of the type of the distribution function or the covariance structure of Xj;k .
This procedure allocates the error in the additive property among the lower-level variables. Thus, it modifies
the generated variables Xj;k (j 5 1, . . ., 2k) to get the adjusted ones X 0j;k according to:

X 0j;k5Xj;k
X1;0Ps
j51 Xj;k

 !kj;k=gj;k

(36)

where
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kj;k5

Ps
i51 cov Xj;k ; Xi;k

� �
Ps

j51

Ps
i51 cov Xj;k; Xi;k

� � (37)

gj;k5
hXj;kiPs

j51 hXj;ki
(38)

The power adjusting procedure is more effective and suitable for our modeling framework than the classical
linear and proportional adjusting procedures [see, e.g., Grygier and Stedinger, 1988; Lane and Frevert, 1990].
Indeed, a weakness of the former is that it may result in negative values of lower-level variables, whereas
rainfall variables must be positive. Conversely, the proportional procedure always results in positive varia-
bles, but it is strictly exact only in some special cases that introduce severe limitations. The power adjusting
procedure has no limitations and works in any case, but it does not preserve the additive property at once.
Then, the application of equation (36) must be iterative, until the calculated sum of the lower-level variables
equals the given X1;0. Although iterations slightly reduce the model speed, the power adjusting procedure
greatly outperforms the other procedures in terms of accuracy.

5. Numerical Simulations

A Monte Carlo simulation is carried out to assess model performance and analytical results under controlled
conditions. We generate 10,000 time series assuming the following parameters to model rainfall depths as
described in section 2: k510, l051024, r05362:04, and H50:85. Then, according to equations (15) and
(16), we obtain the lower-level series, Zj;k , of size s 5 2k 5 1024, and unit mean and variance lk5r2

k51. In
order to simulate rainfall occurrences described in section 3, we generate binary sequences, Ij;k , with Mar-
kovian dependence structure by implementing Boufounos [2007] algorithm with three different values of
probability dry p0;k 2 0:2; 0:5; 0:8f g and the lag-one autocorrelation coefficient qI;k 1ð Þ50:7 as an addi-
tional model parameter. Then, the three mixed-type (intermittent) processes, Xj;k , are derived by applying
equation (18) to the synthetic series of Zj;k and Ij;k for each value of p0;k . Finally, we apply the adjusting pro-
cedure in equation (36) to let the generated variables Xj;k satisfy the additivity constraint in equation (35).

According to equations (19), (20), and the values of p0;k given above, the simulated intermittent rainfall pro-
cesses have mean hXj;ki 2 0:8; 0:5; 0:2f g and variance var Xj;k

� �
2 0:96; 0:75; 0:36f g. Figure 4 shows that

the adjusted variables fulfil the additive property, while Figure 5 confirms that summary statistics of the
generated variables are well preserved by the adjusting procedure.

Figures 6 and 7 show empirical versus theoretical ACFs of two different mixed-type processes assuming
respectively purely random and Markovian occurrences, Ij;k , with the same parameters as above (clearly, for
random occurrences we have qI;k 1ð Þ50). Note that both figures also depict the case with null probability
dry, i.e., p0;k50, which corresponds to the rainfall depth process, Zj;k . The ACF of the latter is used as a

Figure 4. Scatter plot of the calculated sum of disaggregated variables Xj,k (see equation (35)) versus the corresponding values of the
higher-level variables X1,0, generated with model parameters k510; l051024; r05362:04, H50:85, p0;k50:2; and qI;k 1ð Þ50:7 for all
10,000 Monte Carlo experiments. ‘‘Empirical’’ and ‘‘adjusted’’ stand for original synthetic series and modified ones according to equation
(36), respectively.
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benchmark to compare the two figures together in order to investigate the influence of each occurrence
model on the dependence structure of the entire process, Xj;k . As expected, both of our occurrence
models are generally cause for decorrelation of the intermittent process with respect to the process without
intermittency. This is particularly the case if we model rainfall occurrences by a white noise as in Figure 6.
For Markovian occurrences (see Figure 7), the autocorrelation is higher for small time lags than that for
random occurrences, while it tends to the random case asymptotically (compare Figures 6 and 7 for
p0;k 2 0:2; 0:8f g).

6. Application to Observational Data

In this section, we compare our model against real rainfall time series in order to show the capability of the
proposed methodology to reproduce the pattern of historical rainfall data on fine time scales. The data set
consists of 30 min rainfall time series spanning from 1995 to 2005 from a rain gauge in Viterbo, Italy. For fur-
ther details on the observational data, the reader is referred to Serinaldi [2010].

Figure 5. Ensemble mean, standard deviation, and autocorrelogram (from left to right, respectively) of the example disaggregation
process Xj,k as a function of the time step j and lag t. Same simulations as in Figure 4. Note the clear consistency between summary sta-
tistics of the original process Xj,k and those of the adjusted process X’j,k. The theoretical values of the statistics are given, respectively,
by equation (19) for the mean, the square root of equation (20) for the standard deviation, and equation (34) for the ACF of Markovian
occurrences.

Figure 6. Theoretical and empirical autocorrelograms of the entire rainfall process, Xj,k, for three values of probability dry, i.e.,
p0;k 2 0:2; 0:5; 0:8f g, in case of purely random occurrences. The theoretical ACF of the process Xj,k is derived from equation (32) for
random occurrences. Note that the ACF for p0;k50 equals that of the rainfall depth process, Zj,k.
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As the rainfall process exhibits seasonality at subannual time scales, we focus on rainfall records from each
month of the year separately, in order for the analyses to be consistent with the stationarity requirement of
our model with an acceptable degree of approximation.

As highlighted in section 3, the dependence structure of the rainfall occurrence process appears to be non-
Markovian (not shown). To a first approximation, we make the simplifying assumption that the autocorrelation
function qI;k tð Þ of the binary component (intermittency) of our model is given by equation (11), where the
only parameter H equals the Hurst parameter of the continuous component (rainfall depth) of our model.

Concerning the model calibration on observational data, the Hurst parameter H is estimated by the Least
Squares based on Variance (LSV) method as described in Tyralis and Koutsoyiannis [2011], which is applied
directly to each month of the 30 min rainfall time series. As this represents a realization of the lower-level
intermittent rainfall process, Xj;k , with mean and variance given by equations (19) and (20), respectively,
such statistical properties can be therefore estimated directly from data. Once the probability dry, p0;k , is
derived from data, we can solve equations (19) and (20) for the remaining two parameters to be estimated,

Figure 7. Theoretical and empirical autocorrelograms of the entire rainfall process for three values of probability dry, i.e.,
p0;k 2 0:2; 0:5; 0:8f g, in case of Markovian occurrences. The theoretical ACF of the process Xj,k is derived from equation (34) for Markovian
occurrences. The autocorrelation function for Zj,k (i.e., p0;k50) is used as a benchmark to compare the Figures 6 and 7 together in order to
investigate the influence of each occurrence model on the dependence structure of the entire process, Xj,k.

Figure 8. Comparison between the simulated (average, 1st and 99th percentiles) and empirical autocorrelograms for the data series
recorded at Viterbo rain gauge station in January 1999. In the left and right plots, we show, respectively, the ACF of the occurrence (binary)
process qI;k tð Þ and that of the intermittent (mixed) process qX;k tð Þ. Estimated model parameters are:
l05736:3; r05320:2; p0;k5 0:96; H50:83.
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i.e., the mean lk and variance r2
k of the rainfall depth process, Zj;k (the higher-level counterparts l0 and r2

0

are easily derived from equations (15) and (16)). For simplicity, here it is assumed that the desired length s
of the synthetic series to be generated is s 5 210, i.e., k 5 10, which is similar to sample sizes of the monthly
data series under consideration (i.e., number of 30 min intervals in each month). However, the model works
equally well (not shown) if one increases s to the next power of 2 and then discards the redundant gener-
ated items before performing the adjusting procedure. Hence, we have a very parsimonious disaggregation
model in time with only four parameters: k, l0, r0, and H.

We perform 10,000 Monte Carlo experiments following the procedure described in sections above. First, we
generate correlated series (section 2) of rainfall amounts, Zj;k , with ACF in equation (17). Second, we gener-
ate correlated binary series of rainfall occurrences, Ij;k , with ACF in equation (11) (for a detailed description
of the simulation algorithm, refer to Serinaldi and Lombardo [2017]). The outcomes of the two generation
steps above are therefore combined by equation (18) to obtain the synthetic intermittent series, Xj;k , with
ACF in equation (29). Finally, we apply to Xj;k the procedure in equation (36) to get the adjusted process,
X 0j;k , that satisfies the additive property in equation (35).

By way of example, Figures 8 and 9, respectively, compare the observed autocorrelograms for January 1999
and April 2003 data series against the ACFs simulated by our model. The ACF of the occurrence (binary)

Figure 9. Same as Figure 8 for the data series recorded at Viterbo rain gauge station in April 2003. Estimated model parameters are:
l05626:7; r0583:8; p0;k5 0:95; H50:7.

Figure 10. Hyetograph of the rainfall data (left plot) recorded at Viterbo rain gauge station in January 1999 along with the synthetic time
series (right plot) of equal length generated by our model.
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process qI;k tð Þ and that of the intermittent (mixed) process qX;k tð Þ are shown in the left and right plots of
each figure, respectively. In either case, the model fits on average the observed behavior satisfactorily. Other
summary statistics such as the mean, variance, and probability dry of the data series are preserved by con-
struction (not shown).

In Figures 10 and 11, we compare the historical hyetographs for January 1999 and April 2003 to typical syn-
thetic hyetographs generated by our model. In both cases, we can see that our model produces realistic
traces of the real world hyetograph. Other than similarities in the general shapes, we showed that our
model provides simulations that preserve the statistical behavior observed in real rainfall time series.

7. Conclusions

The discrete MRC is the dominant approach to rainfall disaggregation in hydrological modeling literature.
However, MRC models have severe limitations due to their structure, which implies nonstationarity. As it is
usually convenient to devise a model that is ergodic provided that we have excluded nonstationarity,
Lombardo et al. [2012] proposed a simple and parsimonious downscaling model of rainfall amounts in time
based on the Hurst-Kolmogorov process. This model is here revisited in the light of bringing it more in line
with the properties observed in real rainfall. To this aim, we upgrade our model to produce finer-scale inter-
mittent time series that add up to any given coarse-scale total.

Our main purpose is to provide theoretical insights into modeling rainfall disaggregation in time when
accounting for rainfall intermittency. Then, we propose and theoretically analyze a model that is capable of
describing some relevant statistics of the intermittent rainfall process in closed forms. The model combines
a continuous-type stochastic process (representing rainfall amounts) characterized by scaling properties
with a binary-valued stochastic process (representing rainfall occurrences) that can be characterized by any
dependence structure.

In particular, we adopt a top-down approach resulting in a modular modeling strategy, which comprises a
discrete (binary) description of intermittency and a continuous description of rainfall amounts. A stochastic
process with lognormal random variables and Hurst-Kolmogorov dependence structure gives the latter,
while the former is based on a user-specified model of rainfall occurrences. We provide general theoretical
formulations for summary statistics of the mixed-type process as functions of those of the two components.
We stress that these relationships are fully general and hold true for whatever stationary mixed process
independently of the specific form of the continuous and discrete components. For illustration purposes, it
is shown how formulae specialize for two different models of rainfall occurrences: (i) the Bernoulli model
characterized by one parameter only and (ii) the Markov chain model characterized by two parameters.
Monte Carlo experiments confirm the correctness of the analytical derivations and highlight the good per-
formance of the proposed model under controlled conditions.

Figure 11. Hyetograph of the rainfall data (left plot) recorded at Viterbo rain gauge station in April 2003 along with the synthetic time
series (right plot) of equal length generated by our model.
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Since our method utilizes nonlinear transformations of the variables in the generation procedure, the
additivity constraint between lower-level and higher-level variables, i.e., the mass conservation, is not
satisfied and must be restored. For this purpose, we use an accurate adjusting procedure that pre-
serves explicitly the first-order and second-order statistics of the generated intermittent rainfall. Conse-
quently, the original downscaling model by Lombardo et al. [2012] now becomes a disaggregation
model.

Intermittent rainfall time series from the real world are compared with simulations drawn from a very parsi-
monious four-parameter version of the proposed model, confirming its remarkable potentiality and accu-
racy in reproducing marginal distributions, correlation structure, intermittency, and clustering.

In order to make our stationary disaggregation model an operational tool, we need to account for seasonal
fluctuations observed in historical rainfall records at subannual time scales. To a first approximation, Marani
[2003] suggests assuming that different stationary stochastic processes generate the rainfall records from
each month of the year. Hence, we should estimate 12 sets of model parameters and then perform simula-
tions for the entire year accordingly.

Finally, our work provides a theoretically consistent methodology that can be applied to disaggregate
actual rainfall (or model outputs) at fine time scales, which can be used in several fields that have been sig-
nificant catalysts for the development of recent hydrological research. In fact, a wide range of studies con-
cerning, e.g., climate-related issues, resilience of urban areas to hydrological extremes, and online
prediction/warning systems for urban hydrology require accurate characterization of rainfall inputs at fine
time scales [Koutsoyiannis et al., 2008; Lombardo et al., 2009; Fletcher et al., 2013; Tabari et al., 2016; McCabe
et al., 2017]. Hence, complete rainfall disaggregation methods with solid theoretical basis together with reli-
able data series are crucial to meet these needs.

Appendix A

We assume that the disaggregated rainfall process at the last disaggregation step k is given by:

Zj;k5exp ~Z j;k
� �

(A1)

Consequently, its mean lk and variance r2
k are functions of their auxiliary counterparts ~lk and ~r2

k of the HK
process as follows:

lk5 exp
~l0

2k 1
~r2

0

22Hk11


 �

r2
k5exp

~l0

2k21 1
~r2

0

22Hk


 �
exp

~r2
0

22Hk


 �
21


 �
8>>><
>>>:

(A2)

In fact, recall that ~lk5~l0=2k and that we can write ~r2
k 5~r2

0=22Hk , where 0<H< 1 is the Hurst coefficient
[Mandelbrot and Van Ness, 1968].

Then, our primary goal is to let the target process Zj;k follow analogous scaling rules to those of the auxiliary
process ~Z j;k . In other words, we want the following laws to hold true for the target process Zj;k :

l052klk

r2
0522Hkr2

k

(
(A3)

where l0 and r2
0 are, respectively, the mean and variance of the initial rainfall amount Z1;0 at the largest

scale.

To accomplish our goal, we may write Z1;0 as:

Z1;05exp a kð Þ~Z 1;01b kð Þ
� �

(A4)

where a kð Þ and b kð Þ depend on the scale k of interest, and they should be derived to preserve the scaling
properties in equation (A3).

We first recall that equation (A4) implies:
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l05exp b kð Þ1a kð Þ~l01a2 kð Þ ~r
2
0

2


 �

r2
05exp 2b kð Þ12a kð Þ~l01a2 kð Þ~r2

0

� �
exp a2 kð Þ~r2

0

� �
21

� �
8><
>: (A5)

Substituting equation (A2) in (A3), equating the latter to equation (A5) and then taking the natural loga-
rithm of both sides, we obtain respectively:

klog 21
~l0

2k 1
~r2

0

22Hk11 5b kð Þ1a kð Þ~l01a2 kð Þ ~r
2
0

2
(A6)

2Hklog 21
~l0

2k21 1
~r2

0

22Hk 1log exp
~r2

0

22Hk


 �
21


 �
5

52b kð Þ12a kð Þ~l01a2 kð Þ~r2
01log exp a2 kð Þ~r2

0

� �
21

� � (A7)

Solving equation (A6) we obtain:

b kð Þ5klog 21~l0
1

2k 2a kð Þ

 �

1
~r2

0

2
1

22Hk 2a2 kð Þ

 �

(A8)

Substituting equation (A8) in (A7), after algebraic manipulations, we have:

a2 kð Þ5 1

~r2
0

log 22k H21ð Þ exp
~r2

0

22Hk


 �
21


 �
11


 �
(A9)

Without loss of generality we assume a kð Þ > 0, then we derive the following relationships for the functions
a kð Þ and b kð Þ:

a kð Þ5 1
~r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 22k H21ð Þ exp

~r2
0

22Hk


 �
21


 �
11


 �s

b kð Þ5klog 21~l0
1

2k 2a kð Þ

 �

1
~r2

0

2
1

22Hk 2a2 kð Þ

 �

8>>>><
>>>>:

(A10)

Finally, we recall that ~l0 and ~r2
0, respectively, denote the mean and variance of the highest-level auxiliary

variable ~Z 1;0. It can be easily shown that they can be expressed in terms of the known statistics l0 and r2
0 of

the given rainfall amount Z1;0 at the largest scale, such as:

~l052k log
l0

2k 2
1
2

log 22k 12Hð Þ r
2
0

l2
0

11


 �
 �

~r2
0522Hk log 22k 12Hð Þ r

2
0

l2
0

11


 �
8>>><
>>>:

(A11)

Appendix B

We provide herein some basic instructions to improve understanding of the implementation steps of our
model.

1. Input parameters

1.1. Hurst coefficient H: it is dimensionless in the interval (0, 1), but rainfall models require positively corre-
lated processes, therefore 0:5 < H < 1.

1.2. Last disaggregation step k: it is assumed that the desired length of the synthetic series to be generated
is 2k, where k is a positive integer.

1.3. Probability dry p0;k : probability that a certain time interval is dry after k disaggregation steps.

1.4. Mean l0 and variance r2
0 of the rainfall amount Z1;0 to be disaggregated in time, which are related to

their counterparts of the higher-level intermittent rainfall X1;0 by equations (19) and (20).
Estimating such parameters from rainfall data series is relatively straightforward [see also Koutsoyiannis, 2003b].
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In addition, it should be emphasized that our model fitting does not require the use of statistical moments of
order higher than two, which are difficult to be reliably estimated from data [Lombardo et al., 2014].

2. Auxiliary domain
By equation (5) we transform the initial lognormal variable Z1;0 into the auxiliary Gaussian variable ~Z 1;0 with
mean ~l0 and variance ~r2

0 given by equation (A11).

3. Disaggregation scheme
This is based on a dyadic random cascade structure (see, e.g., Figure 2) such that each higher-level
amount is disaggregated into two lower-level amounts satisfying the additivity constraint in equation
(6). The generation step is based on equation (7) that can account for correlations with other variables
previously generated. By equation (14), we transform lower-level variables generated in the auxiliary
(Gaussian) domain back to the target (lognormal) domain, but the additive property is not satisfied
anymore.

4. Intermittency
By equation (18), we introduce the intermittent character in the (back-transformed) synthetic series at the
‘‘basic scale,’’ which is represented by the last disaggregation step k.

5. Adjusting procedure
To ensure the full consistency between lower-level and higher-level variables, we apply the power adjusting
procedure to the disaggregated intermittent series. Then, the additive property is restored without modify-
ing the summary statistics of the original variables.

Appendix C

Let rainfall occurrences, Ij;k , evolve according to a discrete-time Markov chain with state space 0; 1f g. This
Markov chain is specified in terms of its state probabilities:

p0;k5Pr Ij;k50
� 	

p1;k5Pr Ij;k51
� 	

512p0;k

(
(C1)

and the transition probabilities (based on Koutsoyiannis [2006, equation (13)]):

p00;k5Pr Ij;k50jIj21;k50
� 	

5p0;k1q1 12p0;k
� �

p01;k5Pr Ij;k50jIj21;k51
� 	

5p0;k 12q1ð Þ

p10;k5Pr Ij;k51jIj21;k50
� 	

512p00;k

p11;k5Pr Ij;k51jIj21;k51
� 	

512p01;k

8>>>>>>><
>>>>>>>:

(C2)

where q15qI;k 1ð Þ is the lag-one autocorrelation coefficient of the Markov chain, and p0;k is the probability
dry. Both are model parameters. Clearly, we assume that the parameters are such that the probabilities in
(C2) are all strictly positive. Then, the Markov chain is ergodic, and, therefore, it has a unique stationary dis-
tribution. Hence, we can derive its autocorrelation function (ACF).

For a Markov chain, we can say that, conditional on the value of the previous variable Ij21;k , the current vari-
able Ij;k is independent of all the previous observations. However, since each Ij;k depends on its predecessor,
this implies a nonzero correlation between Ij;k and Ij1t;k , even for lag t> 1. In general, conditional indepen-
dence between two variables given a third variable does not imply that the first two are uncorrelated.

To derive the ACF of our process, it can be easily shown that the correlation between variables one time
period apart is given by the determinant of the one-step transition matrix P in (C2), such that:

det Pð Þ5q15qI;k 1ð Þ (C3)

Similarly, the correlation between variables t time periods apart is given by the determinant of the t-step
transition matrix P[t], i.e.,

det P t½ �ð Þ5qI;k tð Þ (C4)
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Recall that the Markov property yields [see Papoulis, 1991, equations (16–114), p. 638]:

P t½ �5Pt (C5)

and that the basic properties of determinants imply:

det Ptð Þ5 det Pð Þð Þt (C6)

Substituting equations (C5), (C4), and (C3) in equation (C6), we obtain equation (33).
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