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Abstract. This paper describes a recently created image database, TID2013, intended for evaluation of full-

reference visual quality assessment metrics. With respect to TID2008, the new database contains a larger 

number (3000) of test images obtained from 25 reference images, 24 types of distortions for each reference 

image, and 5 levels for each distortion. Mean Opinion Scores (MOS) for the new database have been 

collected by performing 985 subjective experiments with volunteers (observers) from five countries 

(Finland, France, Italy, Ukraine, and USA). The availability of MOS allows the use of the designed 

database as a fundamental tool  for assessing the effectiveness of visual quality. Furthermore, existing 

visual quality metrics have been tested with the proposed database and the collected results analyzed using 

rank order correlation coefficients between MOS and considered metrics. These correlation indexes have 

been obtained both considering the full set of distorted images and specific image subsets,  for highlighting  

advantages and drawbacks of existing, state of the art, quality metrics. Approaches to thorough 

performance analysis for a given metric are presented to detect practical situations or distortion types for 

which this metric is not adequate enough to human perception. The created image database and the 

collected MOS values are freely available for downloading and utilization for scientific purposes. 
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1. Introduction  

 

Digital images have become an important part of our everyday life and their quality is of primary importance for 

numerous applications [1-3]. Since humans are the main consumers of this type of information, it is important to 

address the problem of understanding the visual quality of digital images. To provide customers with high quality 

of service, image quality metrics adequate to Human Visual System (HVS) are needed. Many visual quality 

metrics have been exploited in applications such as image and video lossy compression, image denoising, quality 

control of image printing and scanning, remote sensing, watermarking [2-8], etc.  

 There are several unsolved problems in design, verification, and use of visual quality metrics, as 

demonstrated in [2-5]. One of the problems is that HVS is very complex and it is difficult to both study and 

model HVS. For this reason, existing metrics attempt to incorporate a limited number of HVS specific features 

trying to match HVS judgment as close as possible. The evaluation of such matching (correspondence) is a 

challenging task as well.  

One difficulty consists in the fact that performing subjective tests for collecting the mean opinion scores 

(MOS) is expensive and time consuming. Many observers are required for assessing the visual quality of a quite 

large number of distorted images collected in the so-called image databases. Then,  image quality are determined 

[9, 10] and further exploited. Note that different methodologies for database creation and carrying out 

experiments, have been proposed. There are also different scales for MOS, different ways to remove outliers 

(abnormal experiments), and various recommendations to observers [5, 9-11]. Because of this, the availability of 

databases of distorted images is quite reduced.  Chandler, in [5], mentioned 20 existing databases which can be 

used for assessment of visual quality metrics. Among them, most used are LIVE [10], TID2008 [11], and 

Toyama [12].   



 2 

Available databases need to be improved. There are, at least, four reasons behind this need. A first reason 

is that intensive use of a given database reveals its drawbacks and limitations. These can be, for example, a 

limited number of distortions types. This was the motivation for creating TID2008 database, containing 17 types 

of distortions to extend the 5 types of distortions present in the LIVE database. A second reason is in the 

technology evolution pushing new consumer electronic devices and new applications that are characterized by 

new types of distortions or combinations of distortion types. To adequately cope with these distortions, test sets 

containing the new impairments should be designed and their perceptual impact addressed. A third reason is that 

creation of a new database leads to a certain “competition” among researchers. MSSIM has been reported as the 

best metric applied to TID2008 in [11] but quite many new metrics have overcome this result later, in the period 

2009-2013. Such a competition is positive for both theory and practice since it results in more universal visual 

quality metrics or, at least, in designing metrics well suited for certain sets of distortion types. A fourth reason is 

in the suggestion we received to increase the number of color distortions and the JND distortions present in 

TID2008. 

 Based on these consideration a novel image database, TID2013, has been designed and published [13, 14]. 

Due to limited space in Conference Proceedings, quite many important aspects have not been discussed and 

described in [13, 14]. In particular, this relates to motivations for selecting new types of distortions for the new 

database and methodologies of their simulation. Besides, a limited set of visual quality metrics has been tested 

for TID2013. However, the most important aspects, to our opinion, concern the results already obtained for the 

database TID2013 and perspectives of its exploitation in future. 

 The rest of the paper is organized as follows. Requirements to distorted image databases and peculiarities 

of the database TID2013 that differ it from TID2008 are considered in Section 2. Section 3 pays a special 

attention to the description and motivation of the new types of distortions. Section 4 describes the methodology 

used in the subjective experiments and the collected results. Analysis of results obtained for a set of popular 

visual quality metrics is given in Section 5. Section 6 concerns a special analysis for some known metrics 

showing how to determine drawbacks of metrics exploiting TID2013. Finally, Section 7 describes the modalities 

for accessing to the database and gives an information that can be useful for people planning to employ TID2013.  

 

2. Peculiarities of the new database  

 

As it has been mentioned above, the database TID2008 is the predecessor of TID2013. The main purpose of 

TID2008 was the analysis and verification of full-reference metrics [13, 15]. To this aim, it has been extensively 

used  [16-20]. Meanwhile, TID2008 has been also used for auxiliary purposes as testing and efficiency analysis 

of blind methods for noise variance estimation [21, 22], colour image denoising techniques [23], and verification 

of no-reference metrics [24]. 

 There is a basic requirements to databases intended for HVS metric design and assessment. Such a 

database should contain a reasonably large number of etalon colour images of various content. TID2008 

contains 25 reference (distortion-free, etalon) colour images where 24 images were obtained (by cropping) from 

the Kodak database http://r0k.us/graphics/kodak/. One more, the 25-th reference image, was artificially created 

and added to 24 natural scene images - see all 25 distortion-free images in Fig. 1. As it can be seen, the test 

images are of different content, some of them are quite textural ones whilst others contain large quasi-

homogeneous regions. Thus, the abovementioned requirements are satisfied and, to our opinion, there was no 

need to use other test images in the new database TID2013.   

 Size of images in a database can be, in general, debated. However, there are some restrictions and 

recommendations. First, restrictions deal with methodology of experiment carrying out. Two or three images are 

usually displayed simultaneously at monitor screen and their quality is to be assessed (compared). This means 

that image size has to allow simultaneous full representation of these images at screen of devices used in 

experiments. For both TID2008 and TID2013 it was supposed that images were displayed at computer monitors. 

Because of this, all images were of the same fixed size 512x384 pixels in TID2008 and we have kept the same 

size for the images in TID2013. There are two things to be stressed here. First, image size might influence image 

perception and this motivates using the same size. Second, some participants of the conferences EUVIP2013 and 

ACIVS2013 have expressed a desire to have larger size test images being interested in such modern applications 

as HDTV. We are not able to satisfy them but stress that the need in a database for high resolution applications 

should be addressed somehow.       
 

http://r0k.us/graphics/kodak/
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Fig. 1. Reference images in databases TID2008 and TID2013 

   

 Another requirement to a database is that it should contain image distortions typical for practice and, 

simultaneously, these distortions have to relate to certain peculiarities of HVS. Almost everybody has nowadays 

met with distortions due to conditions of image acquiring – noise and blur, chromatic aberrations. Many people 

encountered distortions originating due to compression and data transmission errors. There are also distortions 

due to specific operations of image processing as denoising, mean and contrast changing, etc. Seventeen types of 

distortions were taken into account while creating TID2008. They are presented in 17 first rows in Table 1 with 

explanations what are the main applications a given distortion can be met and what peculiarity of HVS this 

distortion type relate to. More details concerning the reasons for including these distortion types into TID2008 

and their modeling can be found in [15].    

The main difference of TID2013 compared to TID2008 is that the new database includes 7 new types of 

distortions marked by items from 18 to 24 in Table 1. These types of distortions will be considered more in detail 

in Section 3 but here we would like to mention two main aspects. First, we have tried to pay more attention to 

“color” distortions (# 18, 22, and 23) since a percentage of grayscale images that are in use today decreases and 

preservation of color information becomes more and more important. Second, we attempted to consider new 

applications (distortion types # 19…22 and 24) for which images with the corresponding distortions are absent in 

existing databases and for which adequate visual quality metrics are expected to be of prime importance. 

 One more requirement to an image database is that images in the database should be challenging for visual 

quality assessment. This requirement means, in the first order, that number of situations when all quality metrics 

evidence in favor of a given image among two compared should not be large. Let us give examples of such 

situations. For instance, it might happen that an observer during an experiment will be asked to compare visual 

quality of images presented in Fig. 2. 
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Table 1. Types of distortions used in image databases TID2008 and TID2013 and their correspondence to 

practice and HVS 

№ 
Type of distortion  

(four levels for each distortion) 

Correspondence to practical 

situation 
Accounted HVS peculiarities 

1 Additive Gaussian noise Image acquisition Adaptivity, robustness 

2 

Additive noise in color components is 

more intensive than additive noise in the 

luminance component 

Image acquisition Color sensitivity 

3 Spatially correlated noise Digital photography Spatial frequency sensitivity 

4 Masked noise Image compression, watermarking Local contrast sensitivity 

5 High frequency noise Image compression, watermarking Spatial frequency sensitivity 

6 Impulse noise Image acquisition Robustness 

7 Quantization noise 
Image registration, gamma 

correction  

Color, local contrast, spatial 

frequency 

8 Gaussian blur Image registration Spatial frequency sensitivity 

9 Image denoising Image denoising Spatial frequency, local contrast 

10 JPEG compression JPEG compression 
Color, spatial frequency 

sensitivity 

11 JPEG2000 compression JPEG2000 compression Spatial frequency sensitivity 

12 JPEG transmission errors Data transmission Eccentricity 

13 JPEG2000 transmission errors Data transmission Eccentricity 

14 Non eccentricity pattern noise Image compression, watermarking Eccentricity 

15 
Local block-wise distortions of different 

intensity 
Inpainting, image acquisition Evenness of distortions 

16 Mean shift (intensity shift) Image acquisition Light level sensitivity 

17 Contrast change 
Image acquisition, gamma 

correction 

Light level, local contrast 

sensitivity 

18 Change of color saturation  
Image compression, Image 

acquisition 

Color sensitivity 

 

19 Multiplicative Gaussian noise  Image acquisition, image denoising Adaptivity, robustness 

20 Comfort noise  Image compression Eccentricity 

21 Lossy compression of noisy images 
Image compression, image 

denoising 

Spatial frequency sensitivity, 

local contrast sensitivity 

22 Image color quantization with dither Image registration 
Color sensitivity, local contrast, 

spatial frequency 

23 Chromatic aberrations  Image acquisition 
Color sensitivity, local contrast 

sensitivity 

24 Sparse sampling and reconstruction  
Image compression, image 

reconstruction 

Spatial frequency sensitivity, 

local contrast sensitivity 

 

Then, the decision is clear and fast since the right-hand image obviously has better visual quality and 

visual quality metrics also confirm this. Fig. 3 presents another undesirable type of comparison (quality 

assessment) situation when two images presented at a monitor screen are distorted by the same type but different 

levels of distortions. Then results of comparisons are clear and predictable. HVS-metrics usually have perfect 

correspondence to such images. This may cause an illusion that metrics perform well and there are no problems 

with adequate assessment.      

An example in Fig. 3 shows that, on one hand, there should not be a large number of distortion levels. Four 

or five levels are usually enough for a database [10, 11] and there were four levels of distortions in TID2008. On 

the other hand, the database TID2008 has been criticized for not having images with almost invisible (not 

apparent) distortions [25]. To get around this shortcoming, we have introduced the fifth distortion level for all 

test images and all distortion types present in TID2013. This added level approximately corresponds to a peak 

signal-to-noise ratio (PSNR) equal to 33 dB (recall that for images with other four levels of distortions in 

TID2008 and TID2013 the PSNR values are approximately equal to 30, 27, 24, and 21 dB). 
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Fig. 2. Example of undesired practical situation in pair-wise comparisons of visual quality of two distorted images  

 

  
Fig. 3. Example of undesired practical situation in pair-wise comparisons of visual quality of two distorted images 
 

 The presence of five levels of distortions is one more distinctive difference of the new database TID2013 

compared to TID2008. As a result, TID2013 contains 3000 distorted images (25 test images with 24 types and 5 

levels of distortions) in opposite to 1700 distorted images in TID2008. There are also some differences but they 

relate not directly to the database but to a methodology to obtain MOS and conditions to carry out  experiments. 

These differences will be discussed later in the next Section.    

 

3. New types of distortions  

 

Starting to create TID2013, we had to decide how many new types of distortions to be exemplified in a new 

database and what should be these types. Certainly, it was necessary to add such types of distortions which are 

valuable from both theoretical and practical points of view. We created a list of possible types of distortions that 

had more than ten positions. This list was discussed in teams of five countries the authors of this paper are from. 

Several factors were taken into account as does a new type of distortions considerably differ from the ones 

already existing in TID2008, how often customers and industry deal with a given type of distortion, has a given 

new technology perspectives in future, etc.  

One could ask why not to add more types of distortions? The answer is the following. Creating the database, 

we had to take into account some limitations. First, more types of distortions lead to a larger number of distorted 

images for a given reference image, resulting in a greater time spent for each experiment. Meanwhile, this time 

should not be too large to prevent observer’s tiredness. Second, for each reference image, we need to have an 

even number of distorted images for each reference image. Then it is possible to make each distorted image to 

participate in equal number of comparisons. 

These limitations can be still unclear without brief description of methodology of experiments. At a monitor, 

a pair of distorted images (in the upper part) and the corresponding reference image (in the lower part) are 
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simultaneously displayed (see an example in Fig. 4). An observer was asked to choose a better distorted image 

(between two ones). By “better” image we mean the image that differs less from the reference one. After the first 

and each next selection, a given pair of distorted images disappears and two different (new) distorted images 

appear. Then, comparison (selection) is done again. Each distorted image participates in equal number of pair-

wise comparisons (more in detail, nine comparisons, see next Section).   

 

 
Fig 4. Screenshot of the software used in experiments that illustrates positions of displayed images 

 

Since five levels of distortions are used in TID2013, we need even number of distortion types to have even 

number of distorted images for each reference one. 

Taking into consideration aforementioned peculiarities and limitation, we have decided to introduce just 

seven new types of distortions. As a result, we have got the total number of distortion types equal to 24 and a 

total number of 120 distorted images for each reference.  

Let’s consider each new type of distortions in more details. A change in color saturation (distortion type # 

18, see example in Fig. 5) may come as a result of different factors at the stages of image acquisition and 

processing. In particular, it can arise due to a large quantization of colour components in JPEG-based 

compression of images and video [26]. Such a distortion might also take place in colour image printing. All 

simulations have been carried out in Matlab. Modelling of these distortions has been performed after image 

transformation from RGB to YCbCr colour space using function rgb2ycbcr. The component Y (intensity) 

remained untouched and the components Cb and Cr were transformed as Cb=128+(Cb-128)*K and Cr=128+(Cr-

128)*K where K is a variable parameter. After such a transformation, the obtained image has been converted to 

the original color space using function ycbcr2rgb. K equals to 1 relates to distortion absence, the use of smaller 

values of K leads to making image less ‘colorful’. K equals to 0 makes a color image to look as a grayscale one. 

K values have been adjusted to provide a desired PSNR. In some cases, to provide low PSNRs (21 or 24 dB) we 

needed to use negative values of K that resulted in specific (inverse) color distortions. 

Multiplicative Gaussian noise (distortion type # 19, see example in Fig. 6) represents a wide class of signal-

dependent noise. As far as we know, there is no such type of distortions as signal-dependent noise in other 

databases. Meanwhile, signal-dependent noise takes place in images for many applications where visual quality 

of images is of a prime importance [27] including single- and multichannel radar imaging [28], multispectral 

remote sensing, medical imaging [29], etc. A multiplicative Gaussian noise has been simulated separately 

(independently) for each colour (RGB) component with equal variance of multiplicative noise 2
  in all 

components. The values of 2
  have been adjusted individually for each reference image and each distortion 

level to provide required values of PSNR. 

Comfort noise (distortion type # 20) is a specific type of distortions. It is known that humans do not pay 

much attention to a realization of the noise present in a given image. Similarly, humans sometimes cannot 

distinguish realizations of texture if the texture fragments have the same parameters. These properties are already 

exploited in lossy compression of video [30, 31] to simultaneously attain larger compression ratio and natural 

appearance of decompressed data. Such methodology leads to a quite large difference between reference and 

distorted images in terms of standard metrics such as MSE or PSNR whilst visually these images might look very 
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similar. Examples of comfort noise in images are shown in Fig. 7. Comfort noise distortions have been modelled 

as follows. An original image was converted from RGB color space to YCbCr. Then, a comfort noise was 

modeled separately for each components Y, Cb, and Cr. Let us explain a modeling procedure on example of the 

luminance (Y) component. The image Y is lossy compressed by the coder ADCT [33], then the image is 

decompressed and post-processed for blocking artifact removal. As a result, the reconstructed image Yr is 

obtained. It is supposed that losses introduced by the compression are mainly related to a noise. Then a noisy part 

of an original image can be roughly estimated as Yn = Y - Yr. Then, a comfort noise is simulated as Yr - Yn , i.e., 

noise with inverse “polarity” is added to the image. Thus, the image distorted by a comfort noise Yd is modelled 

as Yd = Yr + Yr - Y. Similar procedures are applied also to color components Cb and Cr. Then, an inverse color 

space conversion is performed using the function ycbcr2rgb. A desired PSNR is reached individually by varying 

a compression ratio (CR) for ADCTC (in fact, CR is controlled by a quantization step for this coder). 

Unfortunately, most reference images in TID2013 do not contain contrast noise-like textures. Because of this, a 

comfort noise (as we understand it) has been provided only for low levels of distortions (PSNR approximately 

equal to 33 and 30 dB). For larger distortion levels, information content of images occurs to be distorted as well. 

           

  
Fig. 5. Example of color saturation effect: distortion free (left) and distorted (right) images 

  

  
Fig. 6. Fragments of the same test image corrupted by multiplicative noise of different level 

 

The next new type of distortion is lossy compression of noisy images (# 21). Such type of distortions takes 

place in compressing both video and images acquired in non-perfect conditions [31, 32] making it very important 

for practice. Besides, it has been stated by many researchers that usually there are several types of distortions 

simultaneously present in images and video whilst databases commonly contain images with “pure” distortions. 

To make an impact of noise and lossy compression comparable, the distortion have been modelled as follows. 
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Additive white Gaussian noise with variance σ2 has been added to each colour component where noise was 

independent for colour components. After this, lossy compression has been performed using DCT-based coder 

ADCT [33] with the quantization step set equal to 1.73σ. Noise standard deviation has been individually adjusted 

for each test image to provide a desired value of PSNR. Examples of images with the considered type of 

distortions are presented in Fig. 8. As it can be seen, the distortions can be quite specific.  

Image colour quantization with dither (# 22) are typical in image printing. It is one more popular application 

which is paid particular attention nowadays [34]. Distortions of this type have been modelled using the Matlab 

function rgb2ind. It converts an RGB image to the indexed image using dither. To provide a desired PSNR, the 

number of quantization levels was adjusted individually for each test image. Examples of images with this type of 

distortions are shown in Fig. 9.     

        

  
Fig. 7. Fragments of the same test image corrupted by comfort noise of different level 

 

  
Fig. 8. Fragments of distortion-free (left) and distorted (right) image corrupted by additive noise and lossy 

compression 
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Chromatic aberrations (distortion type # 23) might take place at image acquisition stage but similar effects 

can also appear at stages of image transformations. It is quite annoying type of distortions especially in places of 

high contrasts and if a distortion level is high. An example is shown in Fig. 10. Chromatic aberrations have been 

modelled by carrying out mutual shifting of R, G, and B components with respect to each other. Besides, further 

slight blurring of shifted components has been performed. Shifting and blurring parameters have been adjusted to 

provide a desired PSNR.  

 

  
Fig. 9. Fragments of distortion-free (left) and distorted (right) image with dither 

 

  
Fig. 10. Fragments of distortion-free (left) and distorted (right) image with chromatic aberrations 

 

Finally, the last distortion type (# 24) relates to compressive sensing (sparse sampling and reconstruction) 

that has become a hot research topic [35, 36]. As far as we know, HVS-metrics have not been exploited in this 

area yet although their usefulness is expected. An example of distortions for this application is presented in Fig. 

11 though they can depend upon a method of compressive sensing used. For us, it was convenient to use the 

method [36] and available software for obtaining reconstructed images with distortions. As earlier, modelling is 

carried out separately for components Y, Cb, and Cr. Let us explain the details for Y component. This image is 

subject to the 2D discrete cosine transform (DCT) applied to the entire image getting 2D spectrum YDCT (matrix 
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of DCT coefficients). A sufficient part of coefficients in YDCT are assigned zero values (larger number of zeroed 

coefficients leads to larger distortions). The matrix YDCT after zeroing some coefficient was saved as a matrix 

YDCT0. Then the following sequence of operations is performed in ten iterations for YDCT. Carry out inverse DCT: 

Yr = IDCT2(YDCT). Process Yr by the modified BM3D filter [36] and obtain the filtered image Yf. Apply DCT to 

it: YDCT = DCT2(Yf). At the end of each iteration, correct those values in YDCT that are not equal to zero in YDCT0: 

YDCT(YDCT0>0) = YDCT0(YDCT0>0). After the last iteration, the distorted image is obtained by inverse DCT: 

Yd=IDCT2(YDCT). A required PSNR is provided by varying a number of DCT components to which zero values 

are assigned.  

 

  
Fig. 11. Fragments of distortion-free (left) and distorted (right) image obtained by compressive sensing  

 

 As it follows from the description presented above, the new types of distortions introduced in the database 

TID2013 are quite different. It took a lot of time to carry out extensive computations in order to provide desired 

levels of distortions. These computations have been partly automated to simplify the process. Most PSNR values 

for distorted images differ from the desired ones by no more than 0.2 dB.     

 

4. Experiments description and results  

 

Having a database, MOS is to be provided for each distorted image in it. There are several methodologies used to 

assess the visual quality of an image [37-39]. For example, the observers might be asked to assess the absolute 

quality of an image or its similarity to a reference one. Then, the subject judgment is expressed with a grading 

scale that can be of different type. Five gradations have been used in [37] with the corresponding five categories 

as “Bad”, “Poor”, “Fair”, “Good”, and “Excellent”. A drawback of this methodology is that it might be difficult 

for an observer to assign gradations to the distorted images, especially at the beginning of experiments when an 

observer has a little experience. This leads to the observer’s willingness to change the previously assigned grade. 

Because of this, the observers sometimes undergo a training phase where some examples of the distortions that 

will be met in tests are offered before just experiments.  

 When obtaining MOS for TID2013, we have used another methodology that has been previously 

employed for carrying out the subjective tests in TID2008. As it was mentioned above, three images have been 

displayed (tristimulus methodology, see Fig. 4) and an observer selects a better image between two distorted 

ones. This methodology of comparisons has been accepted by many experiment participants as less annoying.  

To provide an accurate estimate of MOS, it is needed to carry out enough number of experiments and to remove 

those ones that have been distinguished as abnormal [39].   

 More in detail, each observer in one experiment has carried out distorted image quality assessment for only 

one reference image. There are 120 distorted images (five levels and twenty four types of distortions) for each 

reference in TID2013. Each of 120 distorted images participated in nine pair-wise comparisons. The preferred 

image for each pair of displayed ones got one point. The winning points were summed-up with getting the final 
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score for each distorted image. “Competition” was organized in a manner similar to Swiss system in chess. After 

starting round which was absolutely random and a few other, pseudorandom rounds, “approximately the same 

strength players” (approximately the same visual quality images) competed in pairs.  

 Thus, each observer for one reference image had to carry out 540 pair-wise comparisons of visual quality. 

This took about 17 minutes on the average (recall that average time for one experiment in TID2008 was 13.5 

minutes). According to the recommendations of ITU [39], the time for performing one experiment should not 

exceed 30 minutes to avoid tiredness and its influence on experiment outcomes. No one experiment carried out in 

laboratory conditions lasted more than 30 minutes. Therefore, ITU recommendations have been met. 

 Before starting the experiments, the observers were instructed. Instructions related to preferred (favorable, 

recommended) conditions and a methodology of experiments. Protocol of each experiment including results of 

pair-wise comparisons has been documented and saved. After getting the protocols from all observers, they were 

processed in a robust manner. Abnormal results occurred with probability about 2% and they have been rejected 

from further consideration. After this, the results were averaged for each reference image. Thus, the obtained 

MOS has to vary from 0 to 9 and its larger values correspond to better visual quality.  

It is interesting that in resulting MOS there were no values equal to 0 or 9 (see MOS histogram in Fig. 12). 

Moreover, there were no MOS values larger than 7.5. This shows that conditions of comparisons were quite 

difficult especially for distorted images with rather high visual quality.    
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Fig. 12. MOS histogram for TID2013 

 

Experiments for TID2013 were conducted in five countries (Finland, France, Italy, Ukraine, USA). Three 

persons from other countries participated in experiments as well. This is because it was possible to carry out 

experiments both in laboratory conditions (under control of tutors) and distantly via Internet. The results obtained 

in different countries were in good agreement.  

Note that approximately equal number (over 30) of experiments was performed for each reference image. 

This allows stating that MOS is of approximately the same accuracy for all reference images.  

Some other data describing experiments and accuracy of the estimated MOS are presented in Table 2. As it 

is seen, TID2013 is a leader in total number of experiments and number of elementary evaluations. Due to this, 

an accuracy of MOS estimation is practically the same as for TID2008.  

Although experiment participants were instructed before starting experiments, subjective tests have been 

done in different conditions. In particular, different monitors were used, both LCD and CRT, mainly 19” and 

more with the resolution 1152x864 pixels. More than 300 observers have performed experiments via Internet. 

Most of participants were students although tutors and researchers also took part. Observation conditions varied 

in reasonable limits and we asked participants to use distance from monitors comfortable for them. All these do 

not correspond to stricter requirements imposed by ITU. However, in our opinion, visualization and analysis of 

image quality in slightly varying conditions provide reasonably good verification of quality metrics if these 

metrics are intended for visual quality assessment for practice in a priori unknown conditions. 
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Table 2. Comparison characteristics of Databases LIVE, TID2008 and TID2013 

N Main characteristics 
Test image database 

LIVE Database TID2008  TID2013 

1 Number of distorted images 779 1700 3000 

2 
Number of different types of 

distortions 
5 17 24 

3 Number of experiments carried out 
161 

(all USA) 

Totally 838 

(437 - Ukraine,  

251 - Finland, 150 - 

Italy) 

Totally 971 

(602 - Ukraine, 

116 - Finland, 

101 - USA, 

80 - Italy, 

72 - France) 

4 
Methodology of visual quality 

evaluation 

Evaluation using 

five level scale 

(Excellent, Good, 

Fair, Poor, Bad)  

Pair-wise sorting (choosing the best that 

visually differs less from original between 

two considered) 

5 
Number of elementary evaluations of 

image visual quality in experiments 
25000 256428 524340 

6 Scale of obtained estimates of MOS  

0..100 

(stretched from the 

scale 1..5) 

0..9 0..9 

7 Variance of estimates of MOS 250 0.63 0.69 

8 
Normalized variance of estimates of 

MOS  
0.083 0.031 0.035 

9 Variance of MOS - 0.019 0.018 

    

 Consider some other properties of MOS. Its values for all 3000 distorted images in the database are 

presented as scatterplot in Fig. 13 where first (leftmost) 120 points correspond to the reference image # 1, next 

120 points relate to the distorted images that have the same reference image # 2 and so on. This scatterplot shows 

that MOS values are most dense within the interval from 3 to 6 and, thus, the task of comparing image visual 

quality was not trivial.  
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Fig. 13. Scatterplot of MOS for all 3000 distorted images in TID2013 

 

 MOS values averaged for all observers that carried out experiments is presented for each distortion type 

and level in Fig. 14. Each 5 level points for a given type of distortions (24 totally) are connected to see a tendency 

if it exists. For most types of distortions, the tendency is clear and obvious – average MOS decreases if distortion 

level becomes larger. The exceptions are Distortion types # 15 and # 17. Recall that distortion type # 15 is Local 

block-wise distortions of different intensity where for level 1 one has a larger number of blocks than for other 

levels but contrasts of these blocks with respect to surrounding are smaller. The results in Fig. 14 show that for 

observers assessing visual quality it is more important what the total area of such blocks (that “hide” useful 

information) is than what the block contrasts are. Distortion type # 17 relates to Contrast change (see Table 1). 

Level 1 corresponds to small contrast decreasing, level 2 – to small contrast increasing, level 3 – to a larger 
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contrast decreasing, level 4 – to a larger contrast increasing, level 5 – to the largest contrast decreasing. The 

results in in Fig. 14 clearly show that contrast increasing is perceived as better than contrast decreasing. However, 

there is certain “optimal” contrast change that approximately corresponds to level 1. 
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Fig. 14. Dependence of MOS on distortion type and level 

 

   The results in Fig. 14 show other interesting facts. For example, spatially correlated noise (distortion type # 

3) is perceived as more annoying than additive white Gaussian noise (distortion type # 1) for the same level of 

distortions. Distortions due to JPEG2000 compression (distortion type # 11) are also annoying for observers if 

distortion level is high (5 or 4). The same relates to distortions due to compressive sensing (distortion type # 24). 

They look very unnatural especially for high levels. For other introduced types of distortions (# 18… #23) there 

is nothing special and MOS values are at approximately the same level as for additive Gaussian noise (# 1). 

Chromatic aberrations (distortion type # 23) are almost invisible for the degradation levels 1 and 2.  

Except MOS values, it could be interesting to analyze deviation values (characterized by Mean RMSE) of 

MOS depending upon distortion type and level. The obtained results are presented in Fig. 15 where again for 

each type of distortion we have 5 points corresponding to five levels (starting from the leftmost point that relates 

to level 1). There is an interesting tendency here. RMSE values usually diminish if distortion level increases. This 

means that it was more difficult to undertake decisions in comparisons for distorted images of quite high visual 

quality than if one or two compared images were considerably distorted.  

People had the smallest variations in judgments concerning the images with distortions # 13 (JPEG2000 

transmission errors) and # 3 (Spatially correlated noise). However, it was difficult for observers to assess the 

visual quality of images with distortion type # 17 (Contrast change), especially for images with large contrast 

increase (level 4). Mean RMSE values are almost the same for all levels for distortion types # 14, # 15, # 16, and 

# 18. All these distortion types can be referred to the class (subset) called Exotic [40].  

Note that the database TID2013 contains not only the file “mos.txt” of MOS values but also the file 

"mos_std.txt" of MOS standard deviations for each distorted image).          
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Fig. 15. Mean RMSEs of MOS for different types and levels of distortions 

 

 Consider now Mean RMSE of MOS depending upon reference image and distortion level. The 

corresponding data are represented in Fig. 16.   
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Fig. 16. Mean RMSEs of  MOS for different reference images and levels of distortions 

 

 Analysis shows that images which are more distorted are usually assessed more similarly  by all observers 

than images with higher level of distortions. Probably, the simplest for analysis is the test image # 4. Meanwhile, 

there are images for which judgments have more variations than for other images. These are, in the first order, the 

test image # 8, the artificial test image # 25  as well as the highly textural images # 5, 6, 13, 19. 

 

5. Comparative analysis for quality metrics  

 

Practice of analysis for visual quality metric using TID2008 has demonstrated that it is reasonable to study 

MOS estimated for all types of distortions as well as for particular subsets [11, 14, 41]. That is why we use this 

approach for analyzing data for TID2013.  

A subset is usually formed by researchers depending upon an application and it may include one or several 

types of distortions. Table 3 shows subsets used below for verification of quality metrics (distortions that belong 

to a given subset are marked by +).  
 

Table 3. Distortion types and considered subsets of TID2013 
№ Type of distortion Noise Actual Simple Exotic New Color Full 
1 Additive Gaussian noise + + + - - - + 

2 Noise in color comp. + - - - - + + 

3 Spatially correl. Noise + + - - - - + 

4 Masked noise + + - - - - + 

5 High frequency noise + + - - - - + 

6 Impulse noise + + - - - - + 

7 Quantization noise + - - - - + + 

8 Gaussian blur + + + - - - + 

9 Image denoising + + - - - - + 

10 JPEG compression - + + - - + + 

11 JPEG2000 compression - + - - - - + 

12 JPEG transm. Errors - - - + - - + 

13 JPEG2000 transm. errors - - - + - - + 

14 Non ecc. patt. Noise - - - + - - + 

15 Local block-wise dist. - - - + - - + 

16 Mean shift - - - + - - + 

17 Contrast change - - - + - - + 

18 Change of color saturation - - - - + + + 

19 Multipl. Gauss. Noise + + - - + - + 

20 Comfort noise - - - + + - + 

21 Lossy compr. of noisy images + + - - + - + 

22 Image color quant. w. dither - - - - + + + 

23 Chromatic aberrations - - - + + + + 

24 Sparse sampl. and reconstr. - - - + + - + 

 

The subset “Noise” contains different types of noise and distortions in conventional image processing; the 

subset “Actual” relates to types of distortions most common in practice of image/video processing including 

compression, the sunset “Simple” includes only three standard types of distortions; the subset “Exotic” 

corresponds to distortions that happen not often but are among the “most difficult" for visual quality metrics.  
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In addition to these subsets studied earlier, we consider also the subset “New” that includes all seven new 

types of distortions introduced to TID2013. The subset “Color” relates to distortion types that are in one or 

another manner connected with changes of color content. The column “Full” contains all 24 types of distortions 

and metrics that provide good results for this set can be considered universal.          

 Correspondence to HVS has been evaluated for the following metrics (quality indices): SFF [42], 

component-wise FSIM and its color version FSIMc [18], PSNR-HA and PSNR-HMA [41], SR-SIM [43], 

MSSIM [44], MAD index [45], IW-SSIM [17], MSDDM [46], IW-PSNR [17], color version of PSNR which 

takes into account color in a manner similar to PSNR-HA [41], VSNR [47], PSNR-HVS [48], PSNR-HVS-M 

[38], SSIM [9], NQM [49], DCTune [50], VIF and a pixel based version of VIF (VIFP) [51], UQI [52], WSNR 

[53], CW-SSIM [54], XYZ [55], LINLAB [56], IFC [57], BMMF [58]. Many of these metrics have been 

calculated using Metrix MUX Visual Quality Assessment Package [59].  

Table 4 presents the values of Spearman rank order correlation coefficients (SROCC) for the considered 

metrics and the aforementioned subsets. Similarly, Table 5 contains the corresponding values of Kendall rank 

order correlation coefficients (KROCC) [60]. We prefer to analyze rank order correlation coefficients between 

MOS and quality metrics because this allows avoiding fitting procedures that can be not unique.   
  

Table 4. SROCC values for the considered metrics for the database TID2013 
№ Metric Noise Actual Simple Exotic New Color Full 

1 PSNR 0.8217 0.8246 0.9134 0.5968 0.6190 0.5387 0.6395 

2 PSNRc 0.7691 0.8026 0.8759 0.5621 0.7772 0.7344 0.6869 
3 MSSIM 0.8733 0.8871 0.9053 0.8413 0.6314 0.5663 0.7872 
4 SSIM 0.7574 0.7877 0.8371 0.6320 0.5801 0.5057 0.6370 
5 VSNR 0.8691 0.8817 0.9121 0.7064 0.5888 0.5122 0.6809 
6 VIFP 0.7835 0.8151 0.8975 0.5574 0.5921 0.5094 0.6084 
7 VIF 0.8420 0.8589 0.9321 0.6282 0.5930 0.5210 0.6770 
8 NQM 0.8362 0.8572 0.8752 0.5891 0.6258 0.5418 0.6349 
9 WSNR 0.8804 0.8966 0.9335 0.4227 0.6471 0.5588 0.5796 

10 PSNR-HVS-M 0.9061 0.9175 0.9379 0.5644 0.6474 0.5572 0.6246 
11 PSNR-HVS 0.9172 0.9257 0.9507 0.6006 0.6471 0.5589 0.6536 
12 PSNR-HMA 0.9147 0.9337 0.9373 0.8139 0.7382 0.6745 0.8128 
13 PSNR-HA 0.9227 0.9384 0.9527 0.8247 0.7008 0.6323 0.8187 
14 FSIM 0.8969 0.9108 0.9485 0.8436 0.6494 0.5650 0.8007 
15 FSIMc 0.9022 0.9149 0.9472 0.8407 0.7878 0.7752 0.8510 
16 SFF 0.8787 0.9058 0.9495 0.8205 0.8502 0.8316 0.8513 
17 UQI 0.6482 0.6904 0.7575 0.5313 0.4935 0.4440 0.5444 
18 MSDDM 0.8740 0.8877 0.9112 0.7831 0.6341 0.5456 0.7694 
19 SR_SIM 0.9070 0.9211 0.9547 0.8555 0.6510 0.5611 0.8070 
20 DCTUNE 0.8827 0.8930 0.9096 0.4673 0.8443 0.8499 0.6198 
21 CW_SSIM 0.7869 0.8101 0.8447 0.3859 0.6356 0.6320 0.5616 
22 IFC 0.7218 0.7608 0.7792 0.3610 0.5444 0.4449 0.5400 
23 IWPSNR 0.8961 0.9097 0.9237 0.6510 0.6470 0.5533 0.6888 
24 IWSSIM 0.8783 0.8934 0.9173 0.8367 0.6287 0.5582 0.7774 
25 Linlab 0.8577 0.8701 0.8990 0.4374 0.8535 0.8432 0.6495 
26 MAD_index 0.8899 0.9032 0.9243 0.8006 0.6490 0.5623 0.7807 
27 XYZ 0.8666 0.8625 0.8616 0.5166 0.7473 0.8062 0.6872 
28 BMMF 0.9430 0.9490 0.9520 0.8450 0.6870 0.6660 0.8340 

 

 The first conclusion that follows from analysis of data presented in Table 4 is that even the best metrics 

(SFF and FSIMc) provide SROCC about 0.85 for all types of distortions (see data in column Full) and it is worse 

than the best metrics for the set Full of TID2008 (over 0.9). This shows that the database TID2013 is really 

challenging for HVS-metrics and, thus, we have gained one of our intentions.  

Consider now particular subsets. For the subset “Noise”, the situation is rather good since there are several 

metrics (BMMF, PSNR-HA, PSNR-HVS, PSNR-HMA, PSNR-HVS-M, FSIMc, SR_SIM) for which SROCC is 

larger than 0.9, i.e. appropriate adequateness is provided. For the subset “actual”, the situation is similar. There 

are quite many metrics that provide SROCC over 0.9 and reaching almost 0.95 for the best metrics. The situation 

is even better for the subset “Simple” where even the standard PSNR possesses SROCC over 0.9 with MOS and 

the best visual quality metrics possess SROCC values over 0.95.       
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In turn, the subset “Exotic” causes problems for many metrics. Only a few metrics have SROCC with 

MOS about 0.85 (SR_SIM, FSIM, MSSIM, BMMF), i.e. the task is still not fully solved. Similarly, the situation 

is problematic for the subset “New”. There are only three metrics that provide SROCC about 0.85 (LINLAB, 

DCTune, and SFF), for other metrics the SROCC values are less than 0.8. This means that, to be good enough, 

other metrics have to be modified and adapted to new types of distortions. The situation with the subset “Color” 

is at the moment not optimistic too. The best metrics provide SROCC about 0.85 and these metrics are LINLAB, 

DCTune and SFF. Note that all these metrics are intended just for assessment of color image visual quality.               

 

Table 5. KROCC values for the considered metrics for TID2013 
№ Metric Noise Actual Simple Exotic New Color Full 

1 PSNR 0.6236 0.6242 0.7452 0.4254 0.4728 0.4156 0.4700 

2 PSNRc 0.5619 0.5961 0.6892 0.3923 0.5761 0.5359 0.4958 
3 MSSIM 0.6802 0.6982 0.7210 0.6477 0.4952 0.4557 0.6079 
4 SSIM 0.5515 0.5768 0.6286 0.4548 0.4226 0.3823 0.4636 
5 VSNR 0.6761 0.6908 0.7312 0.5193 0.4374 0.3788 0.5077 
6 VIFP 0.5873 0.6217 0.7143 0.4066 0.4512 0.3930 0.4567 
7 VIF 0.6590 0.6729 0.7694 0.4634 0.4474 0.3998 0.5148 
8 NQM 0.6413 0.6665 0.6812 0.4120 0.4831 0.4087 0.4662 
9 WSNR 0.6963 0.7186 0.7728 0.2973 0.5150 0.4363 0.4463 

10 PSNRHVSM 0.7331 0.7495 0.7801 0.4032 0.5179 0.4409 0.4818 
11 PSNRHVS 0.7547 0.7661 0.8092 0.4356 0.5169 0.4486 0.5077 
12 PSNRHMA 0.7448 0.7775 0.7853 0.6101 0.5723 0.5073 0.6316 
13 PSNRHA 0.7603 0.7874 0.8182 0.6245 0.5416 0.4776 0.6433 
14 FSIM 0.7160 0.7371 0.7952 0.6555 0.5236 0.4524 0.6300 
15 FSIMc 0.7231 0.7427 0.7929 0.6519 0.6120 0.5925 0.6669 
16 SFF 0.6915 0.7316 0.8034 0.6179 0.6597 0.6347 0.6588 
17 UQI 0.4601 0.4976 0.5499 0.3776 0.3529 0.3154 0.3906 
18 MSDDM 0.6862 0.6978 0.7299 0.6072 0.4906 0.4237 0.5954 
19 SR_SIM 0.7342 0.7563 0.8118 0.6759 0.5271 0.4489 0.6417 
20 DCTUNE 0.7017 0.7167 0.7389 0.3168 0.6475 0.6488 0.4704 
21 CW_SSIM 0.6128 0.6409 0.6925 0.2733 0.4884 0.4851 0.4196 
22 IFC 0.5273 0.5630 0.5740 0.2579 0.3982 0.3209 0.3959 
23 IWPSNR 0.7240 0.7465 0.7705 0.4606 0.5185 0.4349 0.5250 
24 IWSSIM 0.6894 0.7110 0.7414 0.6414 0.4919 0.4411 0.5998 
25 linlab 0.6761 0.6942 0.7462 0.3055 0.6617 0.6483 0.4946 
26 MAD_index 0.7029 0.7256 0.7519 0.6045 0.5183 0.4384 0.6035 
27 XYZ 0.6746 0.6755 0.6828 0.3679 0.5371 0.6045 0.5110 
28 BMMF 0.7920 0.8030 0.8070 0.6400 0.5260 0.5160 0.6640 

 

 Analysis of data obtained for KROCC (Table 5) leads to the same conclusions. The only difference is that 

KROCC values are by about 15…30% smaller than the corresponding SROCC values. The metrics SFF and 

FSIMc produce the most “stable” results for all subsets and, due to this, they are the “winners” at the moment. 

Joint analysis of the results for both rank coefficients can be performed conveniently using representation in Fig. 

17. Here horizontal and vertical axes correspond to SROCC and KROCC, respectively. The best are those 

metrics the points for which are closer to the upper right corner. Positions of the points in this representation 

show that there is almost linear dependence between SROCC and KROCC that allows analyzing only one of 

these coefficients, e.g., SROCC.  

 We have also carried out specific analysis which, to the best of our knowledge, has not been done earlier. 

Recall that we have 3000 distorted images. i.e. more than in any other database and almost twice more than in 

TID2008. Let us divide these distorted images into three groups according to MOS obtained for them in 

experiments. Each group contains 1000 images and the first one is called “Bad quality” with MOS values from 

0.242 to 3.94. The second group called “Middle quality” includes images with MOS from 3.94 to 5.25. Finally, 

the third group contains “Good quality” images with MOS larger than 5.25.  

 Then, let us calculate SROCC and KROCC between the considered metrics and MOS separately for each 

group. The obtained values are presented in Table 6. The results might seem quite surprising. Only for the group 

“bad quality” rank correlations are high enough and the leaders are the metrics SR_SIM, FSIM, FSIMc and 

PSNR-HA. 
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Fig. 17. SROCC and KROCC values for the considered metrics 

     

Table 6. SROCC and KROCC values for three groups of distorted images 
Metric Spearmen correlation Kendall correlation 

MOS Bad quality Middle quality  Good quality  Bad quality  Middle quality Good quality 

FSIM 0.7292 0.4377 0.1977 0.5317 0.3074 0.1388 
FSIMc 0.7269 0.4776 0.2173 0.5280 0.3326 0.1516 

MSSIM 0.6581 0.4094 0.2109 0.4715 0.2854 0.1478 
NQM 0.4760 0.2808 -0.0125 0.3374 0.1914 -0.0061 
PSNR 0.5381 0.2642 0.1246 0.3742 0.1827 0.0909 

PSNRc 0.4462 0.3017 0.1583 0.3052 0.2056 0.1107 

PSNR-HA 0.7184 0.4426 0.2844 0.5308 0.3151 0.1959 

PSVR-HMA 0.6963 0.4547 0.1850 0.5151 0.3210 0.1255 

PSNR-HVS 0.6764 0.3523 0.0495 0.4981 0.2525 0.0427 
PSNR-HVS-M 0.6438 0.3479 0.0139 0.4709 0.2492 -0.0048 

SSIM 0.4476 0.2195 0.3550 0.3030 0.1522 0.2433 

VIFP 0.6414 0.1637 0.3694 0.4584 0.1115 0.2574 

VSNR 0.5245 0.3290 0.0365 0.3689 0.2268 0.0281 
WSNR 0.5320 0.3203 -0.0045 0.3837 0.2220 0.0029 

uqi 0.5175 0.1313 0.2143 0.3621 0.0906 0.1455 

Sff (c) 0.6891 0.4434 0.2355 0.5008 0.3067 0.1604 
dctune 0.3835 0.4080 0.0178 0.2700 0.2837 0.0203 

Sr_sim (g) 0.7527 0.4515 0.2105 0.5588 0.3198 0.1492 
msddm 0.6326 0.4287 0.1603 0.4438 0.3006 0.1161 
iwssim 0.6658 0.3973 0.1745 0.4809 0.2760 0.1231 

iwpsnr 0.5254 0.3508 0.1144 0.3905 0.2436 0.0848 
Mad index 0.6419 0.4288 0.1874 0.4637 0.2995 0.1317 

cwssim 0.2473 0.2579 0.0350 0.1695 0.1845 0.0313 
Ifc 0.5598 0.1354 0.2579 0.3896 0.0930 0.1746 

Xyz 0.4618 0.3704 0.0798 0.3225 0.2542 0.0591 
VIF 0.6490 0.2341 0.3609 0.4655 0.1625 0.2501 

linlab 0.4433 0.3825 0.0802 0.3146 0.2644 0.0647 

BMMF 0.6431 0.4842 0.4733 0.4653 0.3458 0.3263 
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 For the group “Middle quality”, rank correlations are considerably smaller (not larger than 0.48 for 

SROCC and 0.34 for KROCC). The leaders are the same and the metrics SFF and BMMF join them. Meanwhile, 

for “Good quality” image group, SROCC and KROCC values are small (even negative for some metrics). The 

best results are provided by the metric BMMF which is an obvious leader. Next positions are occupied by the 

metrics SSIM, VIF and VIFP. 

 

6. Methodology of metric drawback detection 

 

As it is seen, there is no universal metric that can be considered appropriate. Therefore, a task of further 

studies could be detection of drawbacks (difficult distortion types) for visual quality metrics with the aim to 

improve their performance. Below we describe one possible way to detect such distortion types.  Examples are 

given for the metric FSIMc which is among the best and most stable according to the results of analysis presented 

above. 
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Fig. 18. Examples of scatter-plots for pairs of distortion types for which the considered metric is adequate 
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Recall that for a good metric the scatterplot of MOS and metric values behaves as it is shown in Fig. 18,a. 

Data for two distortion types are presented here, additive white noise (# 1) and lossy compression of noisy 

images (# 21). ‘Additive white noise’ is chosen as a type of distortion most studied earlier for which most visual 

quality metrics behave properly (their values become worse if noise variance increases).   

 An obvious tendency to MOS increasing with increase of the metric values is observed, the points are 

clustered well along imaginary line fitted into scatterplot and the points for both types of distortions are clustered 

together. This means that the metric is able to adequately characterize visual quality of images corrupted by both 

considered types of distortions. 

 Consider now two other pairs of distortion types. The first pair is ‘Additive white noise’ and ‘Change of 

color saturation’ (# 18) – see the scatterplot in Fig. 19,a. It is seen that points for different distortion types belong 

to separate clusters that only partly intersect. The metric FSIMc over-estimates visual quality of images corrupted 

by chromatic aberrations assigning quite large values to them although observers do not highly assess their visual 

quality. An opposite case takes place for ‘Additive white noise’ and ‘Contrast change’ (#17) – see the scatter-plot 

in Fig. 19,b. There are two obvious clusters for ‘Contrast change’ distortion type which are outside the 

“mainstream”. These two clusters, in fact, correspond to images with increased contrast for which their quality is 

underestimated by the metric FSIMc.    
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Fig. 19. Examples of scatter-plots for pairs of distortion types for which the considered metric is not adequate 

 

 Therefore, pairwise analysis of scatter-plots allows detecting such distortion type(s) for which a studied metric 

is not adapted well. Below we present several examples of situations when FSIMc value votes in favor of better visual 

quality of a certain image in an analyzed pair of distorted images although MOS evidences the opposite. A first 

example is given in Fig. 20. Image numbers in TID2013, FSIMc values and MOS are given under images. As it is 

seen, FSIMc is slightly larger for the image placed left (distorted by ‘Change of color saturation’) although MOS and 

visual appearance are obviously better for the image placed right (distorted by ‘Contrast change’).   

  

 
i13_18_5, MOS=3.8, FSIMc=0.948 

 
i13_17_4, MOS=6.5, FSIMc=0.945 

Fig. 20. Example of contradiction between FSIMc and MOS for the test image # 13 

 

 
i25_14_5, MOS=3.1, FSIMc=0.959 

 
i25_08_2, MOS=5.1, FSIMc=0.957 

Fig. 21. Example of contradiction between FSIMc and MOS for the test image # 25 
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i03_24_5, MOS=0.4, FSIMc=0.693 

 
i03_13_4, MOS=2.9, FSIMc=0.671 

Fig. 22. Example of contradiction between FSIMc and MOS for the test image # 25 

 

 Another example is given in Fig. 21. Again FSIMc is slightly larger for the image placed left (distorted by 

‘Non eccentricity’ pattern noise). These distortions strike the eye and, because of this, MOS for this image is 

considerably smaller than for the image placed right distorted by ‘Gaussian blur’ of level 2. A third example is 

given in Fig. 22 for the test image # 3. The image placed left has larger FSIMc (this is the case of distortions due 

to compressive sensing). The image placed right obviously has better visual quality (it is corrupted by 

‘JPEG2000’ transmission errors) and this is confirmed by considerably larger MOS. 

 These examples demonstrate that even the best among existing visual quality metrics are not perfect. And 

this stimulates further research. 

   

7. Access to TID2013, conclusions and acknowledgements 

 

The archive TID2013 is available for free downloading from http://ponomarenko.info/tid2013.htm. The 

archive includes image files, the file containing the MOS values, the file containing the RMSE of MOS, the 

programs for calculation of Spearman and Kendall correlations, the readme file that explains how to exploit the 

database. Also, archive contains the values of most known quality metrics calculated for TID2013. Note that 

TID2013 occupies about 1.7 GB on a hard disk and about 900 MB in the archive. 

 We would like to underline the following advantages of TID2013. It contains many different types of 

distortion that deal with various peculiarities of HVS. Seven new types of distortions and one new level of 

distortions have been added to TID2013 compared to TID2008. The created database is not simple for existing 

visual quality metrics. One approach to analyze types of distortions difficult for a given metric is described.  

 The authors would like to thank all the people in Finland, Ukraine, France, Italy and USA who assisted in 

the experiments performance.  
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