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Abstract

This paper is aimed at assessing the ability of the Lattice-Boltzmann Method

(LBM) in reproducing the fundamental features of lock-exchange gravity cur-

rents. Both two- and three-dimensional numerical simulations are presented

at different Reynolds numbers (1000 ≤ Re ≤ 30000). Turbulence has been

accounted for by implementing an equivalent Large Eddy Simulation (LES)

model in the LBM framework. The advancement of the front position and

the front velocity obtained by LBM numerical simulations are compared with

laboratory experiments appositely performed with similar initial and bound-

ary conditions and with previous results from literature, revealing that the

dynamics of the gravity current as a whole is correctly reproduced. Lobes and

clefts instabilities arising in three-dimensional simulations and the entrain-

ment parameter are also analysed and comparisons with previous studies are

presented.
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1. Introduction1

Gravity currents are generated by density gradients. The buoyancy force2

drives the motion, which develops primarily in the horizontal direction. Tem-3

perature or concentration gradients cause density-driven gravity currents,4

such as thermal circulation in lakes or salt wedge at estuarine zones, while5

suspended sediments give rise to particle-driven gravity currents, such as6

turbidity currents, snow avalanches or pyroclastic flows [1]. Gravity currents7

are important and complex phenomena, with relevant implications in both8

natural and anthropic flows: for this reason they have been extensively in-9

vestigated by laboratory experiments and numerical simulations, resorting to10

simplified models as the constant-flow and lock-exchange techniques [2, 3, 4].11

In order to perform numerical simulation of unsteady gravity currents, real-12

ized by means of the lock-exchange technique, different numerical approaches13

have been used. Many of these approaches adopt the shallow water hypoth-14

esis and are able to give a simplified but technically satisfying description15

of the flow, mainly concerned with the advancement of the front position16

and the shape of the gravity current. These shallow water models can take17

quite easily into account complex issues, as the entrainment of ambient fluid18

and the frictional effects on the bottom [5, 6, 7, 8]. The detailed descrip-19

tion of the gravity current is obtained by means of high-resolution numerical20

simulations, based on the Navier-Stokes equation, with the Boussinesq ap-21

proximation. Both the Direct Numerical Simulation (DNS) and the Large22

Eddy Simulation (LES) approaches have been applied successfully, revealing23
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the main features of the flow in different settings. In the studies of [9, 10, 11]24

DNS were presented together with detailed analysis of the flow topology25

and the front velocity, with particular attention to the head region of the26

dense current and to the flow instabilities developing in this zone. LES of27

lock-release gravity currents at different Reynolds numbers propagating on28

a smooth bed and on a periodic array of obstacles were performed by [12]29

and [13], respectively, and an extensive description of energy budgets, drag30

and lift forces was given. In [14] mixing and entrainment in unsteady gravity31

currents with different initial excess density and different aspect ratio of the32

released volume were analysed by LES. The dynamics of density currents33

flowing down an incline were discussed in the works of [15, 16, 17] who per-34

formed two-dimensional and three-dimensional DNS, while in [18, 19] LES35

of gravity currents propagating up a sloping bottom were analysed in terms36

of front advancement, mixing and entrainment, and near-bed dynamics.37

An alternative to these models based on the continuum assumption, is given38

by the Lattice Boltzmann Method (LBM), defined in the framework of the39

kinetic theory, which describes the flow in terms of Probability Density Func-40

tions (PDF). The macroscopic flow quantities, i.e. flow density and velocity,41

are obtained as zero-th and first order statistical moments of the PDFs [20].42

The intrinsic simplicity and versatility of the LBM determined its tremendous43

development in the Computational Fluid Dynamics field [21]. The first suc-44

cessful attempt of LBM simulation of density driven flows, was made by [22],45

who considered simple cases of two-dimensional thermal natural convection,46

adopting the Boussinesque’s hypothesis in the Navier-Stokes framework. The47

first application of the LBM to gravity currents was performed in [23, 24, 25],48
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where different LBM formulations were developed in the framework of the49

shallow water theory. The latter gives a technical description of the gravity50

current, i.e. in terms of vertically average velocities and current’s depth.51

The results obtained from the LBM formulation of the shallow water theory,52

mainly regarding the gravity current’s front propagation characteristics and53

development phases, agree very well with those obtained directly from the54

shallow water theory ([23]). Moreover, the LBM formulation of the shallow55

water theory benefits from the intrinsic versatility of the LBM formulation,56

as shown in [24], where the interaction of the gravity current with an obstacle57

is considered.58

To the authors’ best knowledge, a LBM formulation equivalent to the Navier-59

Stokes equation with the Boussinesq approximation, has not yet been imple-60

mented and applied to the numerical simulation of lock-exchange gravity61

currents.62

This paper is then aimed at assessing the ability of the LBM formulation63

equivalent to the Navier-Stokes equation with the Boussinesq approxima-64

tion in reproducing the fundamental features of the dynamics of an unsteady65

gravity current, realised by means of the lock-exchange technique. Particular66

attention is paid to the simulation of the slumping and self-similar phases of67

the gravity current [26]. Both two-dimensional (2D) and three-dimensional68

(3D) numerical simulations are performed. Four different Reynolds num-69

ber are considered (Re = 1000, Re = 5000, Re = 10000, Re = 30000) in70

order to span from mildly unstable viscous density currents to fully devel-71

oped three-dimensional turbulent flows. Turbulence modelling is taken into72

account by means of a peculiar modification of the basic LBM [27], which73
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makes it equivalent to the LES. Furthermore, laboratory experiments were74

performed and used as benchmark to the numerical results. The agreement75

between numerical and experimental results is satisfying, then revealing that76

the fundamental features of the dynamics of the gravity current are correctly77

reproduced.78

The paper is organized as follows: In section 2 the LBM for density driven79

flows is presented; in section 3 relevant dimensionless numbers and the pa-80

rameters used for the implementation of the model are introduced; in section81

4 the experimental set-up used for the laboratory experiments is described;82

the results are presented and discussed in section 5, while conclusions are83

given in section 6.84

2. The Lattice Boltzmann Method for density driven flows85

The lattice Boltzmann method is based on a minimal (lattice) version of86

the Bhatnagar-Gross-Krook equation, in which the computational molecules87

stream along the links of a uniform lattice, and collide on the nodes according88

to a simple relaxation to a local equilibrium. For a comprehensive derivation89

of the method the reader is referred to [21], with particular attention to its90

supplementary material. In equations:91

fi(x+ ci∆t, t+∆t) = fi(x, t) +
∆t

τ
(f eq

i − fi(x, t)) +
∆t

c2s
ci · F (1)

where fi(x, t) is the discrete distribution function, representing the proba-92

bility of finding a particle at position x and time t with discrete velocity ci,93

being i the index spanning over the lattice discrete directions, i = 0, .., b,94

[28]. Finally, ∆t is the lattice time step. The left-hand side of the equa-95

tion (1) represents the free-streaming of particles within the lattice, which96
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hop from a lattice node to neighbor ones according to the direction defined97

by the lattice vector ci. The right-hand side includes the forcing term and98

the collisional relaxation of the set of distribution functions towards the dis-99

crete local equilibria f eq
i , i.e. truncated low-Mach number expansion of the100

Maxwell-Boltzmann distribution, which reads as follows:101

f eq
i = wiρ

[
1 +

(ci · u)
c2s

+
(ci · u)2

2c4s
− u · u

2c2s

]
(2)

where wi are weights of the discrete equilibrium distribution functions, cs is102

the lattice sound speed, u is the macroscopic flow velocity. The parameter103

τ in equation (1) is the relaxation time which controls the lattice kinematic104

fluid viscosity through the relation, [28]:105

ν = c2s

(
τ − 1

2

)
(3)

In this work, we shall use two classes of lattices, the D2Q9 and the D3Q19,106

both 4th order isotropic in two and three dimensions, respectively (see Fig. 1).107

The standard notation DnQm form discrete velocities in n spatial dimensions108

is used throughout. The weights coefficients wi depend on the considered109

lattice. For the D2Q9 lattice are defined as:110

w0 = 4/9 (i = 0)

wi = 1/9 (i = 1, ..., 4)

wi = 1/36 (i = 5, ..., 8) (4)

while the D3Q19 lattice are defined as:111

w0 = 1/3 (i = 0)

wi = 1/18 (i = 1, ..., 6)

wi = 1/36 (i = 7, ..., 18) (5)
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Figure 1: 2DQ9 and 3DQ19 Lattices

The relevant hydrodynamic macroscopic quantities, i.e. density, linear mo-112

mentum and momentum flux tensor, are given by statistical moments of the113

distribution functions:114

ρ(x, t) =
∑
i

fi(x, t) (6)

ρu(x, t) =
∑
i

fi(x, t)ci (7)

Π(x, t) =
∑
i

fi(x, t)Qi
(8)

where Q
i
= cici − c2sI, I being the identity matrix.115

According to the Boussinesq’s approximation [29], if the relative density116

variation is small (∆ρ
ρ

<< 1), as in the case of gravity currents due to salin-117

ity gradients in natural environments, the fluid can be considered as incom-118

pressible and the variation of density is retained only in the gravity force119

term:120

F = −ρm(x, t)g k̂ (9)
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where k̂ is the unit vector defining the vertical direction (upwardly oriented)121

and ρm is the density of the mixture which can be expressed as:122

ρm(x, t) = ρ (1 + βC(x, t)) (10)

being ρ the density of the ambient fluid (the fresh water) and C(x, t) the123

volumetric concentration. β = (ρs − ρ) /ρ with ρs the solute’s density. It124

can be shown [30] that equations (1), together with the definition of the125

external force (10), the equilibrium PDF (2) and the macroscopic quantities126

(8) are equivalent to the mass conservation and the Navier-Stokes equation,127

with the Boussinesq’s forcing term:128

∇ · u = 0

∂u

∂t
+ u · ∇u = −g(1 + βC)k− ∇p

ρ
+ ν∗∇2u (11)

In other words, equations (11) can be obtained expanding the probability129

density functions fi in equations (1), assuming the Knudsen number Kn as130

small parameter. The latter is defined as the ratio of the mean free path131

λ = ν/cs to a macroscopic length of the flow H and can be expressed as:132

Kn =
λ

H
=

ν

csH
=

ν

UH

U

cs
=

Ma

Re
(12)

being U the macroscopic velocity scale. Re,Ma are respectively the Reynolds133

and the Mach number of the flow (Re = UH
ν
,Ma = U

cs
). Equations (1) are134

equivalent to equations (11) if the Knudsen number is small (Kn << 1).135

For turbulent flows, such as the ones considered in this paper, the use of tur-136

bulence closure models is mandatory in order to contain the computational137

resources. In this paper a peculiar modification of the basic LBM, equivalent138
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to a Large Eddy Simulation (LES) closure based on the Smagorinsky formu-139

lation of subgrid turbulence stresses, is employed [27].140

In the filtered LES-LB equation, the effect of the unresolved scale motion141

is modelled through an effective collision relaxation time scale τ∗ = τ + τt,142

being τ the relaxation time controlling the kinematic viscosity of the model143

through the relation reported in Eq. 3 and τt the so-called eddy relaxation144

time. If the Smagorinsky closure is employed, the eddy viscosity νt, which145

is used to compute the turbulence relaxation time τt, is computed from the146

filtered strain rate tensor as follows:147

νt = (CS∆x)
2S (13)

148

S =
Π

2c2sτ∗
, Π =

√
2
∑
i,j

Πi,j Πi,j (14)

In the equations above, S and Π are the filtered rate of strain rate and the149

filtered mean momentum flux, respectively. CS is the Smagorinsky constant150

and ∆x = ∆x = 1 is the characteristic filter length scale. Once the strain151

rate tensor is computed and the CS fixed, the eddy relaxation time τt can be152

computed from equation (13) and the collision step is then performed with153

the effective local relaxation time τ∗. It is worth noting, that the filtered154

momentum flux can be locally computed as the second-order statistical mo-155

ment of the off-equilibrium part of the set of distribution functions. Thus,156

even the filtering step retains the local features of the LB, not requiring the157

computation of any macroscopic derivative.158

In order to simulate the advection-diffusion of the concentration C, needed159

to close the formulation (11), a second set of PDF is introduced, namely χi.160
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Its evolution is governed by the LBM algorithm:161

χi(x+ ci∆t, t+∆t) = χi(x, t) +
1

τχ
(χeq

i − χi(x, t)) (15)

for i = 0, 1, ..., N , where N is the number of allowed velocities in the chosen162

velocity set. In this study the velocity set is chosen to be identical to the one163

employed by the hydrodynamic solver; τχ is the dimensionless relaxation time164

for the concentration, while χeq
i is the equilibrium PDF for the concentration,165

relative to the ith direction of the lattice. The expression of χeq
i is identical166

to Eq. (2), with C instead of ρ. The flow velocity appearing in χeq
i is the one167

given by the hydrodynamic model: this, together with the forcing term Eq.168

(9) constitute the full coupling between the two models. The concentration169

C is then obtained as zeroth order statistical moment of χ:170

C =
N∑
i=0

χi (16)

Equation (15), together with the definition of the equilibrium PDFs and171

the equation (16) is equivalent to the advection diffusion equation for the172

concentration:173

∂C

∂t
+ u · ∇C = κ∇2C (17)

where κ is a diffusion coefficient, defined as:174

κ = c2s

(
τχ −

1

2

)
(18)

3. Scaling and computational aspects175

The considered configuration is the full-depth lock-exchange experiment176

[1], which, at the initial instant of time t = 0, consists of a parallelepiped177
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Figure 2: Sketch of the lock-exchange experiment

tank L×H ×W , divided into two parts by a vertical removable wall (figure178

2) placed at x = x0. The two parts are filled respectively with heavy fluid179

with density ρ0m for 0 < x ≤ x0, and with ambient fluid with density ρ < ρ0m,180

for x0 < x ≤ L. The aspect ratio of the lock R is defined as: R = H/x0.181

Upon removal of the vertical wall, the two fluids interact and a gravity cur-182

rent develops: the denser fluid flows on the bottom of the tank, beneath the183

ambient fluid, driven by the horizontal pressure gradient. The lock-exchange184

configuration considered in this paper is reported in Table 1.185

In order to set up the LBM simulations, a proper scaling has to be de-186

termined and the relevant non dimensional groups matched. As usual in187

buoyancy phenomena, the Rayleigh ( Ra = gβ∆Cl3/(νκ) ) number fully de-188

scribes the dynamics, being l a reference length scale. Moreover, the Schmidt189

(Sc = ν/κ) number measures momentum to solute diffusion. Since Sc is com-190

monly set to unity [9, 31, 32], Ra reduces to Grasshof (Gr = Ra/Sc). In191

addition, if one chooses the reference length l as the initial depth in the lock192

H and the reference velocity as the so called buoyancy velocity U =
√
g′H,193

where g′ = gβ∆C is the reduced gravity, Ra can be expressed as a function194
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of Re. Ra reads:195

Ra =
gβ∆CH3

ν2
≡ Re2 (19)

The grid spacing, identified by the value of H, is chosen to be sufficient to196

represent the boundary layer, avoiding the use of wall layer models. Specif-197

ically, it was a posteriori verified that the dimensionless grid size was such198

that ∆y+ < 2 at the bottom, where ∆y+ is the grid spacing made non-199

dimensional by uτ/ν, with uτ the friction velocity.200

In order to match the desired Re, the relaxation parameter is calculated by201

means of Eq. (3) as τ = 1/2 + ν/c2s, since ν = Re
√
g′H3. The only degree202

of freedom left is the value of the reduced gravity, which can be tuned to203

stabilize the code: within the range of stability no difference is experienced204

in the results. Its value is set to g′ = 10−4 for all simulations. It is clear205

from the above scaling that, once the Re has been matched, any value for206

∆C would yield the same results: in all simulation ∆C was set to unity.207

Initial values for fi and χi were chosen as the corresponding equilibrium208

PDFs. As for the hydrodynamic boundary conditions, no-slip Boundary209

Conditions (BCs) are set at all boundaries but the top, where a free-slip BC210

is imposed. For what regards the concentration, zero-gradient BCs are im-211

posed everywhere. Within the LBM framework, the hydrodynamics no-slip212

and free-slip BCs are obtained by means of the so called bounce-back and213

bounce-forward rules, respectively, for which a second order formulation in214

space and time is implemented in our code [33]. If applied to the distributions215

of concentration, namely χi, the bounce-back rule reproduces the required216

zero-gradient condition.217

For what regards the computational burden required, LBM has proven to be218
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Table 1: Numerical simulations. All length quantities are expressed in Lattice Units (LU)

NAME Re R H(LU) L/H W/H

Re1-2D 1000 1 90 30 0

Re5-2D 5000 1 261 30 0

Re10-2D 10000 1 431 10 0

Re30-2D 30000 1 504 10 0

Re1-3D 1000 1 66 20 1

Re5-3D 5000 1 39 30 1

Re10-3D 10000 1 66 30 1

exceptionally agile [34, 35]. The basic algorithm consists of extremely simple219

calculations of collided distributions and their successive shift in memory.220

The key point here is the abscence of any need to perform any kind of differ-221

entiation, at least in the basic streaming-collision-moments procedures. The222

resulting locality in memory provides LBM with parallel scaling properties223

unprecedented in numerical fluid-dynamics [36, 37], particularly suited for224

exploiting the full potential of modern architectures [38, 39, 40, 41]. The225

only drawback is the amount of memory required, being roughly 3-5 times226

larger than classical approaches based on discretization of continuous equa-227

tions. The resulting algorithms are thus mainly limited memory bandwidth228

[42]. The “home made” code employed here, which features a simple shared-229

memory OpenMP parallelization, scales poorly already above 4-5 cores. The230

computational times for the simulations carried out in this study range from231

1 to 5 days on 6 cores desktop machines. These timings are far to be consid-232

ered as accurate measures of the LBM algorithm capability, as they strongly233
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depend on coder’s ability, algorithm implementations, compiler’s settings,234

etc.235

4. Experimental Setup236

Laboratory experiments were performed at the Hydraulics Laboratory of237

“Roma Tre”University. A plexiglas tank with L = 3 m, W = 0.2 m and maxi-238

mum depth Hmax = 0.3 m was used to perform the experiments. The channel239

was filled for 0 ≤ x ≤ x0 with salty water (density ρ0m) and for x0 < x ≤ L240

with tap water with density ρ. The corresponding β is equal to: β = 1.16.241

The desired Reynolds number (Table 2) was obtained by setting a suitable242

height of the lock H and, for the low Reynolds cases (Re = 1000, Re = 5000)243

by adding small quantities of Glycerol [43]. Dye (E171, titanium dioxide)244

was added to the dense fluid in order to ensure the visibility of the gravity245

current. A CCD video camera with a resolution of 768 x 576 pixels and an246

acquisition frequency of 25 Hz was used to record the experiments. Black247

and white images were then analysed and converted in matrices of grey lev-248

els, with an accuracy related to the resolution of the recording camera (∼ 2249

mm). The density field was inferred from dye concentration calibrating each250

pixel with images with a known concentration of uniformly distributed dye251

acquired at the end of the experiment [as in 44, 14, 18].252

Experimental images captured by the camera during the laboratory experi-253

ments are shown in Fig. 3 for the different Re tested. In the figure, changes254

in behaviour of the gravity currents with varying Re are clearly visible, with255

an increase of the flow complexity and the development of turbulent patterns256

with the increase of Re.257
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Table 2: Laboratory experiments.

NAME Re H g′0 ν lvis/x0

E-Re1 1000 0.08 0.125 6.804 10−6 7.5

E-Re5 5000 0.08 0.140 1.731 10−6 11

E-Re10 10000 0.08 0.193 1.000 10−6 14

E-Re30 30000 0.12 0.515 1.000 10−6 19

Figure 3: Images captured during the laboratory experiments at t̃ = 11 (a)Re = 1000;

(b)Re = 5000; (c)Re = 10000; (d)Re = 30000.
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5. Results and discussion258

5.1. General considerations259

2D and 3D numerical results are presented in this section and compared260

with experimental results obtained in the same conditions. The main dy-261

namics of lock-release gravity currents can be described as essentially two-262

dimensional, since the buoyancy force driving the motion predominantly acts263

along the x−y plane. The three-dimensional features developing in the span-264

wise direction are generally neglected for the description of the main flow and265

averaged quantities along the cross-sectional direction of homogeneity are266

considered (spanwise-averaged quantities are indicated with the symbol ⟨ ⟩)267

[12, 13, 15, 14, 18]. The spanwise averaging is performed on all 3D numerical268

data. The dimensionless density field, ρ̃, is defined as269

ρ̃(x, y, z, t) =
ρm(x, y, z, t)− ρ

ρ0m − ρ
(20)

The interface between the gravity current and the ambient fluid is defined270

through the analysis of the spanwise averaged density fields, ⟨ρ̃⟩, and the271

iso-density level corresponding to ⟨ρ̃⟩ = 0.02 is here selected as threshold for272

the interface, in agreement with previous studies [45, 14, 18, 4, 46].273

Results relative to the instantaneous dimensionless front position x̃f versus274

dimensionless time t̃ and to density and velocity fields are analysed.275

Dimensionless time t̃ and front position x̃f are defined as:276

x̃f =
xf − x0

x0

, t̃ =
t
√
gβC0H

x0

(21)

being xf the dimensional front position. From the experimental point of277

view, the front position is defined as the position of the foremost point of the278
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nose of the gravity current along the streamwise direction. From the numer-279

ical point of view, the definition of the front position differs between 2D and280

3D numerical simulations. As for 2D numerical simulations, the definition281

of the front position is the same as in the experiments, i.e. the location of282

the foremost point of the nose of the current. As for 3D numerical simula-283

tions, the definition of the front position is inferred from the analysis of the284

spanwise-averaged density fields. The front velocity uf is defined as uf =
dxf

dt
285

and it represents the velocity of the front of the gravity current.286

As well known [26], three phases can be distinguished in the evolution of the287

gravity current: the slumping, the self-similar and the viscous phase. After288

the removal of the gate dividing the dense and the ambient fluids, the dense289

current forms and starts to propagate downstream at constant velocity, de-290

veloping the flow regime known as the slumping phase. During the following291

self-similar phase, buoyancy forces are balanced by inertial forces, the cur-292

rent decelerates, and the front position evolves according to the theoretical293

power law of t̃2/3. As the current continues to decelerate, viscous forces can294

become important and the viscous regime can occur, characterized by a de-295

crease of the front velocity proportionally to t̃−4/5. The first phase occurs296

for x0 ≤ xf ≤ 9 x0, the second phase for 9 x0 < xf ≤ lvis, the third phase297

for xf > lvis. The ratio of the viscous length lvis to the lock’s length x0 is298

defined as [26]:299

lvis
x0

=

(
R×Re

) 2
7

(22)

The ratio lvis/x0 is reported in Table 2 for the considered cases. The gravity300

current with Re = 1000 develops the viscous phase directly after the slump-301

ing phase and the self-similar regime is not developed.302
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During the propagation of the current, ambient fluid is entrained into the303

body of the dense current, changing both the density field and the main fea-304

tures of the flow. These changes affect deeply the dynamics of the current305

as a whole. For this reason, the entrainment of ambient fluid during the306

propagation of the dense current is investigated too. Mixing between the307

dense current and the ambient fluid is usually modelled by the use of the en-308

trainment parameter, E, which represents a dimensionless vertical velocity309

of ambient fluid directed into the dense current. In fact, during its propaga-310

tion, the gravity current entrains ambient fluid, with a consequent increase311

in volume of the dense current and a decrease of its concentration. Following312

the approach of [2, 14, 18] it is possible to define the entrainment parameter313

as the ratio between the entrainment velocity, We, and a velocity scale [47]:314

E(t) =
We(t)

2 U(t)
(23)

where U(t) is defined as xf (t)/t and it represents a bulk velocity of the flow315

used as velocity scale. The entrainment velocity is defined as:316

We(t) =
∆V (t)

∆t

1

S(t)
(24)

where ∆V (t) is the variation in volume of the dense current delimited by the317

iso-density level ⟨ρ̃⟩ = 0.02, at each t, with respect to the initial volume of318

the lock fluid V0 at the initial time t0; ∆t is the time interval from t0 to t;319

S(t) is the area of the interface dividing the dense and the ambient fluids.320

Since the entrainment parameter is related to the variation in volume of the321

dense current, it can be affected by the definition of the interface dividing322

the dense and the ambient fluids. As mentioned before, in the present work323

the iso-density threshold ⟨ρ̃⟩ = 0.02 was chosen to define the interface of324
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the dense current, so that most of the fluid with a dimensionless density325

greater than zero is considered as part of the dense current, in agreement326

with previous studies [44, 4, 14, 18] . Variations of this threshold in the327

range of 0.01 ≤ ⟨ρ̃⟩ ≤ 0.05 do not significantly affect E. Further discussions328

on the dependency of E on the threshold used to define the current can329

be found in [14]. The entrainment parameter is analysed in the following,330

and results obtained from 3D simulations are compared with the values of E331

observed during the laboratory experiments.332

Results relative to 2D and 3D numerical simulations are analysed separately333

in the following subsections.334

5.2. 2D simulations335

The dimensionless front position x̃f versus dimensionless time t̃ is shown336

in Fig. 4 for the cases considered in Table 2. The linear behaviour, typical for337

the slumping phase, is revealed by both numerical and experimental results.338

For the cases Re = 1000 and Re = 5000 (Figs. 4a and 4b) the numerical339

front position decelerates at about x̃f ∼ 6x0, indicating that the inertial340

and viscous forces start to affect the motion and that a transition in regime341

occurs, in agreement with [26]. For the cases Re = 10000 and Re = 30000342

(Figs. 4c and 4d) a constant value of the front velocity is observed up to343

x̃f = 8. On the other hand, experimental results do not show any visible344

deceleration up to the distance of 9x0, indicating that, during the laboratory345

experiments, the transition to the following flow regime occurs slightly after346

the prediction of [26].347

The density and velocity fields of the gravity currents at dimensionless time348

t̃ = 11, versus dimensionless abscissa x̃ and ordinate ỹ (x̃ = x/x0, ỹ = y/H),349
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Figure 4: x̃f versus t̃. Dashed lines refer to the two-dimensional simulations and circles

mark the laboratory experiments. (a)Re = 1000; (b)Re = 5000; (c)Re = 10000; (d)Re =

30000.
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are shown in Figs. 5 and 6, respectively. Density and velocity fields change350

thoroughly with Re and their shape corresponds qualitatively to the exper-351

imental gravity current shape shown in Fig. 3 for the four cases considered352

in Table 2.353

For Re = 1000 the interface between the dense and the ambient fluids is354

smooth and well defined (Figs. 3a, 5a, 6a), corresponding to a strong hori-355

zontal stratification of the dense fluid, visible in the body of the current (Fig.356

5a). The gravity current is characterized by a rounded head followed by a357

horizontal body and a tail region with a decreasing thickness.358

For Re = 5000 the interface of the current becomes irregular, as can be359

clearly observed (Figs. 3b, 5b, 6b).360

For Re = 10000 and Re = 30000 the presence of irregularities at the interface361

characterize the behaviour of the dense currents, due to the development of362

Kelvin-Helmholtz instabilities. In these high-Re cases, mixing between the363

dense current and the ambient fluid occurs and it is clearly observable in364

Figs. 3c-3d, 5c-5d and 6c-6d.365

The increase of the complexity of the flow field with the increase of Re is366

highlighted in Fig. 6. High intensities of the velocity module are visible in367

the head and in the body of the dense currents, while lower values are ob-368

served in the tail regions. Finally, peaks of the velocity module are found in369

correspondence of the Kelvin-Helmholtz billows (Figs. 6b-d).370

5.3. 3D simulations371

Three-dimensional numerical simulations were performed for Re = 1000,372

Re = 5000 and Re = 10000. The dimensionless front position x̃f is shown373

in Fig. 7. A satisfying agreement can be observed between the numerical374
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Figure 5: Dimensionless density field of two-dimensional simulations at t̃ = 11 (a)Re =

1000; (b)Re = 5000; (c)Re = 10000; (d)Re = 30000. Iso-density contours are draft for

ρ̃ = 0.02, ρ̃ = 0.05, ρ̃ = 0.08, ρ̃ = 0.10, ρ̃ = 0.20 and ρ̃ = 0.50.
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Figure 6: Dimensionless velocity field of two-dimensional simulations at t̃ = 11 (a)Re =

1000; (b)Re = 5000; (c)Re = 10000; (d)Re = 30000. Contourmaps refer to the velocity

module intensity. Quantities are made dimensionless with ub. The Iso-density level ρ̃ =

0.02 is also draft to show the interface of the current.
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Figure 7: x̃f versus t̃. Solid lines with dots refer to the three-dimensional simulations and

circles mark the laboratory experiments. (a)Re = 1000; (b)Re = 5000; (c)Re = 10000.

and the experimental front positions of the gravity currents. The slumping375

regime is well reproduced by the 3D simulations for all the considered Re.376

The behaviour of Re = 1000 is similar to that obtained with the 2D simula-377

tions: with respect to experimental results, numerical results move the start378

of the viscous phase up, in agreement with [26]. The development of the379

three phases of the gravity current’s evolution is highlighted in Figs. 8a-8b,380

where bi-logarithmic plots x̃f versus t̃ are shown. Numerical results are plot-381

ted in Fig. 8a, experimental results in Fig. 8b. For Re = 1000, the sudden382

transition from the slumping phase to the viscous phase, without the devel-383

opment of the self-similar phase, is confirmed in both the simulation and the384

experiment (although in the laboratory experiment the decrease in velocity385

of the front was observed with a slight delay if compared to the simulation,386

at a distance of about 10 x0). For Re = 5000 and Re = 10000 the slumping387

phase is followed by the self-similar phase and the start of the viscous regime388

is observed too.389

Following [48], the front velocity uf made dimensionless with ub is plotted390
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Figure 8: x̃f versus t̃ in a bilogarithmic scale. Solid lines refer to Re = 1000, dashed

lines indicate Re = 5000 and grey lines with dots mark Re = 10000. (a)3D simulations;

(b)laboratory experiments.

versus x̃f in Fig. 9, in a bi-logarithmic scale. The theoretical trends of the391

slumping, the self-similar and the viscous phases are also reported with solid,392

dashed and dotted lines, respectively. The passage through the different flow393

regimes is highlighted by the use of x̃f as abscissa, which causes abrupt394

changes in trend of the lines marking the different phases. The ratio uf/ub395

is commonly known as Froude numbed FD, evaluated considering the initial396

height of the dense current h0 [48, 49]. The mean value of FD during the397

slumping phase increases with Re and assumes the values of 0.39, 0.41 and398

0.42 for the Re = 1000, Re = 5000 and Re = 10000 cases, respectively, in399

agreement with values observed in literature [48, 49, 10, 4, 14]. The constant400

velocity phase is clearly detected in Fig. 9 and a mean value of FD = 0.41 for401

the present simulations is marked by the solid line. After the dense current402

has travelled for a distance of about 6.5 lock-lengths, an abrupt decelera-403
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Figure 9: Log-log plot of ũf versus x̃f . Solid line indicates the slumping phase and refers

to FD = 0.41, dashed line marks the self-similar phase and dotted lines refer to the viscous

phase. Circles, squares and triangles indicate Re = 1000, Re = 5000 and Re = 10000 3D

simulations, respectively.

tion of the front and the transition to the viscous phase can be observed for404

Re = 1000, in agreement with [26]. The self-similar phase is also developed405

in the other simulations and the passage to the viscous phase is observed at406

x̃f ∼ 11.5 for Re = 5000 and x̃f ∼ 14 for Re = 10000. This indicates a407

better agreement with [26] of 3D simulations than 2D simulation.408

The spanwise-averaged density fields obtained by the three-dimensional sim-409

ulations are shown in Fig. 10. The increase of Re affects the density fields,410

as already seen for 2D simulations, with the arise of turbulent patterns at411

the interface between the two fluids and a more complex behaviour in the412

internal part of the dense current. Kelvin-Helmholtz billows develop due to413
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shear stress at the interface, but in 3D numerical simulations they appear414

less strong and less coherent than in the 2D simulations. This fact was ob-415

served also in [10], where a stronger effect of the Kelvin-Helmholtz billows in416

2D numerical simulations rather than in 3D ones was found, because of the417

break of the spanwise coherence by turbulent disturbances developing along418

the third dimension. In fact, although Kelvin-Helmholtz billows are known419

to be mainly two dimensional vortices occupying all the spanwise direction,420

they can decay during the propagation of the current and their coherence421

can be broken and overridden by turbulent disturbances developing along422

the spanwise direction. This process, obviously, can not occur in 2D simula-423

tions and thus the strength of Kelvin-Helmholtz billows remains well active424

during all the propagation of the current.425

Figure 11 shows the dimensionless density field of Re10-3D at different426

times and at different positions along the spanwise direction (z̃ = H/2 and427

z̃ = H/4). The time evolution of the turbulent structures arising in the cur-428

rent can be followed by looking at the panels from the top to the bottom of429

the figure. On the other hand, the same instant at different spanwise loca-430

tions can be observed by looking at Fig. 11 from left to right. Strong and431

coherent billows develop at the rear part of the head of the dense current432

which can be detected at all z̃-planes. Except for these rollers at the head433

of the current, different shape and size of the turbulent structures are gener-434

ally detected with varying z̃. For example, a well-defined KH billow can be435

observed to grow and develop at x̃ ∼ 2, at the plane z̃ = H/2 (Figs. 11 a436

and c); this structure loses its coherence at the following times (Fig. 11 e)437

and disappear at t̃ = 19 (Fig. 11 g). The same billow, at the plane z̃ = H/4,438
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Figure 10: Spanwise-averaged dimensionless density field of three-dimensional simulations

at t̃ = 11 (a)Re = 1000; (b)Re = 5000; (c)Re = 10000. Iso-density contours are draft for

the same levels as in Fig. 5.

is less defined and less strong since t̃ = 8 (Fig. 11 b); it breaks up earlier439

than in z̃ = H/2 (Fig. 11 d), and at t̃ = 16 it is already hardly discernible440

(Fig. 11 f). This indicates the destabilization of the large billows due to441

the spanwise instabilities and the arise of turbulent structures with varying442

shape and size depending on z̃ and t̃.443

The three-dimensional density iso-surfaces are shown in Fig. 12 for simula-444

tions Re1-3D, Re5-3D and Re10-3D. The presence of an increased amount of445

three-dimensional irregularities at the interface is clearly observed with the446

increase of Re. For Re = 1000 (Fig. 12a) the density iso-surface sharply447

divides the dense and the ambient fluids: the interface is smooth and contin-448

uous. Furthermore, the field is essentially two-dimensional, with the absence449

of interface discontinuities along the spanwise direction. For Re = 5000 (Fig.450

12b) the three-dimensionality of the flow arises: lobes and clefts structures451
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Figure 11: Dimensionless density field of Re10-3d at fixed planes in the spanwise direction

corresponding to z̃ = H/2 (left panels) and z̃ = H/4 (right panels), at different times:

(a)-(b) t̃ = 8; (c)-(d)t̃ = 12; (e)-(f)t̃ = 16; (g)-(h)t̃ = 19. Iso-density contours are draft for

the same levels as in Fig. 5.

develop under the nose of the dense current and propagate upstream along452

the current’s head, until they break up and generate chaotic turbulent pat-453

terns along the spanwise direction. Finally, for Re = 10000 (Fig. 12c) the454

flow is clearly three-dimensional, with much more fully developed lobes and455

clefts structures than in Re = 5000 .456

Following [50, 10, 11], the time evolution of the lobes and clefts instabilities457

is shown in Fig.13, by the visualization of the top view of the front advance-458

ment of the current at a (x̃, z̃)-plane close to the bottom of the domain,459

defined by the iso-density contour ρ̃ = 0.02. At the beginning of the simula-460

tions the front is almost continuous along the spanwise direction, but when461
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Figure 12: Density iso-surfaces (ρ̃ = 0.02) of three-dimensional simulations at t̃ ∼ 11

(a)Re = 1000; (b)Re = 5000; (c)Re = 10000.

it reaches x̃ ∼ 3, disturbances develop, quickly evolving in well-defined lobes462

and clefts structures. Consequently, the front of the current varies along the463

spanwise direction due to the presence of lobes and clefts instabilities which464

evolve in time, shifting along the spanwise direction, rearranging, merging465

and dividing. A complex pattern can be observed in Fig.13, with several466

merging of cleft and splitting of lobes. As expected, the complexity of these467

dynamics increases with increasing Re (Fig.13 c) and decreases as the time468

advances. In fact, it is known that the mean length scale of the lobes and469
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clefts patterns, depends on the instantaneous Reynolds of the flow [50, 10],470

ReF =
ufhH

ν
, that is defined with the time-varying characteristics of the flow471

at the head of the dense current: the front velocity uf , and the height of472

the head of the current h̃H [10, 11]. Following the approach of [50, 11], the473

number of lobes, n, and their size, λ̃, can be derived by observing Fig. 13474

and counting. For each simulation, two times for each phase of spreading475

were selected and analysed. The times selected and the relative variables are476

resumed in Table 3. The dependence of the mean lobe size, λ̃, versus the in-477

stantaneous Reynolds number, ReF , is shown in Fig.14, where the empirical478

relation derived by [50] is also draft:479

λ̃

h̃H

= 7.4Re−0.39±0.02
F (25)

Data referring to the different simulations are marked with different sym-480

bols, while colors are used to indicate the different flow regimes at which the481

current is flowing. As can be observed in Fig.14, the present results are in482

agreement with the prediction of [50](the curve which best fits our data goes483

as Re−0.408
F ), with an inverse proportion between the local Reynolds num-484

ber and the mean lobes’ amplitude. The simulation Re1-3D is characterized485

by a low Reynolds number and thus the number of lobes developing in the486

spanwise direction is small (Fig.13 and Table 3) and the lobes’ amplitude is487

larger than the other cases (Fig.14). With increasing Re, the flow becomes488

turbulent, the number of lobes detected increases and their mean amplitude489

decreases, in agreement with [10] (in ascending order, stars, squares and490

circles in Fig.14). Further, advancing in time, ReF decreases, because the491

current passes from the slumping regime, up to the viscous regime, and thus492

spanwise instabilities reduce in number and lobes become larger (in order:493
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Table 3: Quantitative information for the evaluation of the number and the amplitude of

the lobes and clefts instabilities.

Simulation x̃f t̃ uf/ub h̃H n λ̃/h̃H ReF phase

Re1-3D 3.9 10.0 0.40 0.52 3 0.65 204 slump.

Re1-3D 6 15.3 0.38 0.45 4 0.56 167 slump.

Re1-3D 9 25.3 0.24 0.27 3 1.24 64 visc.

Re1-3D 10 30.6 0.14 0.20 2 2.5 28 visc.

Re5-3D 4.7 11.0 0.40 0.55 3 0.61 1094 slump.

Re5-3D 6 14.2 0.41 0.51 3 0.65 1044 slump.

Re5-3D 9.2 23.0 0.33 0.48 3 0.69 786 self-sim.

Re5-3D 10.9 28.5 0.30 0.44 3 0.76 669 self-sim.

Re5-3D 15.1 47.1 0.18 0.39 3 0.86 342 visc.

Re5-3D 17.1 60.3 0.13 0.37 2 1.37 235 visc.

Re10-3D 4.0 9.3 0.43 0.51 5 0.39 2184 slump.

Re10-3D 6.2 14.4 0.41 0.51 5 0.39 2084 slump.

Re10-3D 9.0 22.2 0.33 0.42 4 0.60 1390 self-sim.

Re10-3D 11.3 28.4 0.31 0.44 4 0.57 1370 self-sim.

Re10-3D 15.0 44.0 0.21 0.39 4 0.65 824 visc.

Re10-3D 17.0 55.3 0.16 0.37 3 0.90 576 visc.
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Figure 13: Time evolution of the lobes and clefts instabilities inferred from a top-view

of the iso-density contour ρ̃ = 0.02 on a (x̃, z̃)-plane near the bottom of the domain:

(a)Re = 1000; (b)Re = 5000; (c)Re = 10000.

full-black symbols, empty symbols and full-grey symbols in Fig.14). A simi-494

lar trend was already observed by [11].495

The entrainment parameter, E, is evaluated for the 3D numerical simula-496

tions and compared to the values observed during the laboratory experiments.497

The entrainment is known to be dependent on a bulk Froude number, Frb,498

and a bulk Reynolds number, Reb, [2, 51] respectively defined as:499

Frb =
U√
g′m

H
2

(26)

500

Reb =
U H

2

ν
(27)

where g′m is an averaged value of the reduced gravity assumed at the be-501

ginning (g′) and at the end (g′f ) of each simulation. Furthermore, it was502
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Figure 14: Lobes amplitude made dimensionless with the height of the head of the current

versus the local Reynolds number. Stars mark the Re1-3D simulation, squares indicate

the Re5-3D simulation and circles are for Re10-3D simulation. Full-black symbols indicate

the slumping regime, full-grey symbols refer to the self-similar regime and empty symbols

are for the viscous regime. The empirical prediction of [50] (Eq. 25) is also shown as black

solid line.

observed that E depends on the length of the path travelled by the dense503

current [2, 18]. Thus, for each simulation and each experiment, the value of504

E after the dense current has travelled for 10 lock-lengths is considered here,505

which is about the maximum length of the path travelled by the current in506

the Re = 1000 case, before it stops. The values of E versus Frb and E507

versus Reb are plotted in Figs. 15a and 15b, respectively. As expected, the508

values of Frb and Reb increase with the increase of Re and, in agreement509

with literature, E increases as a consequence [2, 51, 14, 18]. This trend is510
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verified both in the numerical simulations and in the experiments. The order511

of magnitude of E is 10−2 for the cases with Re = 5000, Re = 10000 and512

Re = 30000 and is slightly lower for Re = 1000 (E ∼ 0.008). E evaluated in513

the simulations is fairly comparable with the one observed in the experiments514

and, in addition, is in agreement with previous evaluations of the entrain-515

ment in lock-release gravity currents [14, 18, 5, 46]. Entrainment evaluations516

of LES and laboratory experiments of lock-release gravity currents presented517

in [14] are also plotted in Fig. 15 for comparison purposes (grey symbols).518

Also for these data, E was evaluated after the dense current has travelled519

for the same distance used in the present experiments. The values of Re520

in the dataset of [14] ranged between 34000 and 68000, so they were higher521

than the ones considered in the present study (1000 ≤ Re ≤ 30000). For522

this reason, the values of E evaluated with the dataset of [14] are slightly523

higher than those of the present study, and are close to the point referring to524

E-Re30. However, the order of magnitude of 10−2 is observed in both stud-525

ies. Entrainment parametrizations derived by previous studies on steady and526

unsteady gravity currents are also reported in Fig. 15(a). The relations of527

[52, 53, 51] derive from the analysis of laboratory experiments and field mea-528

surements of density currents fed by a constant discharge of dense water,529

i.e., steady gravity currents. These currents are generally characterized by530

larger Froude numbers (Frb ≥ 1) and lower Reynolds numbers than the ones531

observed in lock-release flows. When Frb < 1, these parametrizations pre-532

dict values of E ranging between 10−4 − 10−3, if not null as in [52], and thus533

are unsuitable to be used in applications simulating unsteady flows. On the534

other hand, the entrainment parametrizations of [5, 54] were proposed to take535
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into account the entrainment in two-layer shallow-water models simulating536

lock-release rectangular cross-section and axisymmetric gravity currents, i.e.537

unsteady gravity currents, as the ones of the present study. For this reason,538

for Frb < 1, they supply values of E comparable to the present entrainment539

evaluations and are in agreement with the entrainment parameters observed540

for subcritical lock-exchange gravity currents [5, 46, 14, 18].541

This fact confirms the capability of the Lattice Boltzmann Method to cor-542

rectly reproduce not only the advancement in time of the front propagation543

of the gravity current and its main features, but also its increase in volume544

due to the entrainment of ambient fluid.545

546

6. Conclusion547

In this paper the ability of the Lattice Boltzmann Method (LBM) in548

reproducing the fundamental features of lock-exchange gravity currents was549

assessed. Both 2D and 3D numerical simulations were considered at different550

Reynolds numbers: Re = 1000, Re = 5000, Re = 10000 and Re = 30000.551

Laboratory experiments were performed and compared with numerical re-552

sults, showing a good agreement. The different phases of the gravity current553

evolution were revealed at a satisfactory extent. In the low-Reynolds cases554

(Re = 1000 and Re = 5000) the numerical results tended to move up the555

onset of the inertial and viscous phases. In particular, for Re = 1000 numer-556

ical results showed the abrupt transition from the slumping to the viscous557

phase, without developing the inertial phase. The effect of the increase of558

the Reynolds number, mainly consisting in the decrease of the characteristic559
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Figure 15: Entrainment parameter evaluated in 3D numerical simulations (full black sym-

bols) and laboratory experiments (empty symbols): (a) E versus Fr; (b) E versus Re.

Entrainment evaluations of lock-release gravity currents presented in [14] are also plotted

with grey symbols. Entrainment parametrizations for both steady and unsteady gravity

currents are finally draft: [52] (dashed line); [53] (grey line with dots); [54] (solid line with

circles); [51] depending on Reb (black solid lines); [5] (solid line with crosses)
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length-scale of the turbulent structures, was highlighted both by 2D and 3D560

numerical simulations. By means of the latter, turbulent structures along the561

spanwise direction, as well as lobes and clefts structures were clearly high-562

lighted. The time evolution of lobes and clefts instabilities was analysed,563

revealing an increase of the amount of lobes detected in the flow with the564

increase of ReF , in agreement with literature [50, 10, 11]. Finally, through565

the evaluation of the entrainment parameter, the capability of the numerical566

model to correctly reproduce also the increase in volume of the dense current567

during its propagation was demonstrated. In conclusion, the LBM can be568

considered as a valid tool for the investigation on gravity currents.569
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