REDUCIBLE KAM TORI FOR THE DEGASPERIS-PROCESI EQUATION

ROBERTO FEOLA, FILIPPO GIULIANI, AND MICHELA PROCESI

ABSTRACT. We develop KAM theory close to an elliptic fixed point for quasi-linear Hamiltonian perturbations of the dispersive
Degasperis-Procesi equation on the circle. The overall strategy in KAM theory for quasi-linear PDEs is based on Nash-Moser
nonlinear iteration, pseudo differential calculus and normal form techniques. In the present case the complicated symplectic
structure, the weak dispersive effects of the linear flow and the presence of strong resonant interactions require a novel set of
ideas. The main points are to exploit the integrability of the unperturbed equation, to look for special wave packet solutions and
to perform a very careful algebraic analysis of the resonances.

Our approach is quite general and can be applied also to other 1d integrable PDEs. We are confident for instance that the same
strategy should work for the Camassa-Holm equation.
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1. INTRODUCTION AND MAIN RESULT

In this paper we prove existence and stability of Cantor families of quasi-periodic, small amplitude, solutions for
quasi-linear Hamiltonian perturbations of the Degasperis-Procesi (DP) equation

Ut — Ugat + Ugpgr — 4’U/$ — Ulgge — 3umuww + 4uuw +N8(U, Ugy Uz, ua:a::v) = 0 (11)

under periodic boundary conditions z € T := R/27Z, where

NS(U7 uza uat:w uzzm) = *(4 - amx)ax[(auf)(u)] 9 (12)
the “Hamiltonian density” f belongs to C>°(R,R) and is such that
fu) = O(u?), (13)

where O(u”) denotes a function with a zero of order at least nine at the origin. The equation (I.I)) is a Hamiltonian PDE
of the form u; = J VH (u) where VH is the L?(T, R) gradient and the function

H(u) = /“; — %3 +fw)dr, J=(1—0p)  (4— 0pe)0s (1.4)
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is defined on the phase space H(T) := {u € H*(T,R) : [ udx = 0}. The equation (II) for f = 0 is the DP equation
which was first proposed in [29]] in the form

Uy + CoUg + YUgzxr — a2uzmt = <7%u2 + CZ(Ui + uumm)) ’ (15)
where cg, ¢1, 2,7, € R, @ # 0. By applying Galilean boosts, translations and time rescaling to one obtains
equation (I.I) with f = 0.

The DP equation can be regarded as a model for nonlinear shallow water dynamics and its asymptotic accuracy is
the same as for the Camassa-Holm equation and a degree more than the KdV equation [23]]. There is a rather large
literature on this equation starting form the paper [28] in which the complete integrability is proved. The local and global
well-posedness, for instance, have been extensively studied as well as existence of wave breaking phenomena (peakons,
N-peakons solutions). Without trying to be exhaustive we quote [21]], [20], [22], [118]], [48], [S4] and we refer to [32] and
references therein for more literature about Degasperis-Procesi equation.

Actually many of these results (notably the wave breaking) are studied in the dispersionless case, which corresponds to
(I.I) with f = 0 and u ~~ u+1. In the present paper the presence of the dispersive terms —4u, +, is fundamental. Our
main purpose is to prove existence of quasi-periodic solutions in high Sobolev regularity by following a KAM approach.
In this setting a quasi-periodic solution with v € N frequencies is defined by an embedding

T 3 ¢+ U(p,z) € HL(T,R) (1.6)

and a frequency vector w € R”, with rationally independent entries, such that u(¢,x) = U(wt, ) is a solution of (I.I)
and U(p,z) € HP(T"T1 R) for some p sufficently large .
Notice that, in a neighbourhood of u = 0, (I.1I]) can be seen as a perturbation of the linear PDE

Vg — Vgt + Vpze — 40 = 0, (1.7)
whose bounded solutions have the form
N . A+ 3j .
_ § L I(A()t+gx) L _
’U(tyx)— Uje (J J ) )\(]) =] 1+]2_J+1+j27 ]€Z7 (18)

JET
where j — A(j) is the linear dispersion law. It is easily seen that all solutions of (I.7) with compact Fourier support are
periodic, but with period depending on the support. In this context it is natural to investigate whether equation (T.1)) has

periodic or quasi-periodic solutions close fo to small amplitude linear solutions (I.8). We remark that, since the solutions
of (T.8) are all periodic, the existence of quasi-periodic solutions, if any, strongly relies on the presence of the quadratic

nonlinearity in (I.1).
In the present paper we construct quasi-periodic solutions mainly supported in Fourier space at v > 2 distinct tangential
sites

St={3,....7,}, S=8TuU(=-8T), 7,eN\{0}, Vi=1,...,v, (1.9)
where, without loss of generality, we shall always assume that 7, = max;—; .., J;. We denote by
. (71(4+7%> Iy (4 +7)
L+7 777 147

the linear frequencies of oscillations related to the tangential sites. More precisely our solutions will have the form

) cQ” (1.10)

u(t,7;6) =2y /& cos(wit +7,2) +o(y/[¢]),  w=m+O([¢]), (1.11)

=1

where o(4/|£|) is meant in the H*-topology with s large. It is well know that in looking for quasi-periodic solutions
“small divisors” problems arise. To overcome such problems we shall require that ST satisfies a wave packet condition
and that the unperturbed amplitudes £ belong to an appropriate Cantor-like set of positive measure.

The following definition quantifies the wave packet condition.

Definition 1.1. Forr € (0, 1), we say that a set of natural numbers S* = {7,,...,7,} is in V(x) if
1

min j; > — and
i=1,...,v r

”1‘§r; (1.12)
J1
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v

ji v
l; #0, YWeZ’: |t|=4. .
;:1 Ll g (1.13)

Denoting by B(0, o) the ball centred at the origin of R” of radius ¢ > 0, our result can be stated as follows.

Theorem 1. Letv € N, v > 2, and consider f € C(R,R) satisfying (1.3). There exists a constant ro > 0 such that,
for any choice of ST in V(x), with 0 < r < 1o, there exist s > 1, 0 < ¢ < 1 and a positive measure Cantor-like set
A C B(0, o) such that the following holds. For any § € 2, the equation (I.1)) possesses a small amplitude quasi-periodic
solution u(t, x;€) = U(wt, ; €) of the form (LI1) where U(p,z) € H*(T*T1 R) and w := w(&) € R is a diophantine
frequency vector. Moreover for 0 < ¢ < /o, the set 2l has asymptotically full relative measure in [€2,22]".

Moreover we have the following stability result.

Theorem 2. (Linear stability) The quasi-periodic solutions u(t,x) = U(wt,z) of equation are linearly
stable and reducible in the following sense. Consider equation (I.1)) linearized at the embedded torus U(p, x), then the
corresponding operator has purely imaginary spectrum and there exists a change of variables H*(T,R) — H*(T,R),
quasi periodic in time with frequency w, which diagonalizes it in the directions normal to the torus. As a consequence the
Cauchy problem of the linearized equation is stable, i.e. the Sobolev norms are uniformly bounded in t.

Theorems are formulated in the typical style of results on reducible KAM tori for PDEs. For the proof we use the
overall strategy of [4], which however has to be substantially developed to deal with (L.I)). Let us briefly explain the main
new issues.

e The dispersion law is asymptotically linear as for the Klein-Gordon equation, studied for instance in [6]], [7]. As
explained in those papers, the fact that the dispersive effects are very weak (essentially time and space play the
same role) creates a number of difficulties even in the study of KAM theory for semi-linear PDEs. Of course,
since (I.T)) is quasi-linear, there are additional serious difficulties coming from the strong perturbative effects of
the nonlinearity.

e The DP equation is resonant at zero and does not depend on any external parameters. This is a fundamental differ-
ence w.r.t. the Klein-Gordon equation, where one modulates the mass in order to avoid resonances. Moreover the
DP has non-trivial resonances already at order four (see section [I.3), differently from the previous KAM results
for quasi-linear PDEs. As a further difficulty the algebraic structure of the resonances is quite complicated. In
order to avoid the inherent problems we rely on the presence of “many” (precisely eight) approximate constants
of motion of coming from the integrable structure of the DP equation. Dealing with the problems related to
resonances is the core of this paper and requires a set of new ideas and a careful analysis.

e The very strong restriction of the tangential sites ST is exploited several times to simplify the problems arising
from the rational and asymptotically linear dispersion law. Physically we are looking for solutions mainly sup-
ported in Fourier space on modes which are relatively close to each other.

It seems reasonable that such condition could be weakened, but it is not clear to us how to deal with the technical
difficulties which would arise.

e As in other resonant cases, the diophantine constant -y is related to the size of the solution one is looking for
(see (I.11)). Moreover, due to the linear dispersion law, we are forced to impose very “weak” non-degeneracy
conditions on the linear frequencies of oscillations. As a consequence we need a refined bifurcation analysis in
order to find a very good first approximate solution and fulfil the smallness conditions required for the Nash-
Moser scheme.

Some comments on equation (I.1I)) and on Theorems|[I] 2] are in order.

The unperturbed DP equation. We look at (I.T)) as a perturbation of the linear equation (I.7), in order to fit the typical
perturbative setting of KAM for PDEs , we refer to subsection[I.T]for more details.

Actually, since the Degasperis-Procesi equation is completely integrable (see [28]) it would be very natural to try to
construct solutions of which bifurcate from quasi-periodic solutions of the unperturbed DP equation

Up — Ugpt + Ugge — Uy — UlUgpr — SUgUzy + duu, = 0, (1.14)

which corresponds to (I.1)) with f = 0. Indeed, near zero, the (I.1) can be seen also as a perturbation of (I.14). Unfortu-
nately even though algebro-geometric finite-gap solutions have been already constructed in literature for the DP equation
(see [42]) it is not clear to us whether they are real quasi-periodic solutions in the sense of (I.6). Of course if one were
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able to bifurcate from finite-gap solutions of then it would be possible to prove existence of large quasi-periodic so-
lutions, by requiring that f is small. Such a strategy has been followed successfully for the KdV and cubic NLS equation
on the circle. Actually for those equations one can prove the existence of Birkhoff coordinates [43]], [41] (the cartesian
version of action-angle variables), which trivialize the dynamics (in the sense that the solutions turn out to be all periodic,
quasi-periodic or almost periodic) and provide a fundamental tool for investigating the dynamical consequences of small
perturbative effects, also far from the origin, see [14].
For 1d integrable PDEs one would expect this to be the typical scenario at least in a neighborhood of zero, see [46],[5]];
however, as far as we know, up to now such results are available only for the KdV, the NLS and the Toda system. Theorem
[[]provides, again as far as we know, the first existence result of quasi-periodic solutions, in the sense of (I.6), for (I.14).
It would be interesting to apply our KAM approach to the Camassa-Holm equation, which is a well-known integrable
PDE with an asymptotically linear dispersion law, but with a different symplectic structure. Even though we have not
performed the computations, we expect to be able to prove the equivalent of Theorems [I] 2] also for this equation. We
remark that in this case, the finite gap solutions are known to be quasi-periodic tori, see [20].
One could start by comparing them with the solutions predicted by our method and then possibly develop KAM theory
close to large finite gap solutions.

Approximate constants of motion of (I.1). Even though we do not fully exploit the integrability of it is fundamental
for us that (the non integrable) has at least eight approximate constants of motion (up to an error of order O(u?)).
It is interesting to notice that, as shown in [29], no other equation with the same dispersion law, and the same symplec-
tic structure, has eight approximate conserved quantities. This means that in (I.I) we cannot consider any quadratic
nonlinearity, but we really need the DP structure.

The request of the presence of such approximate conserved quantities it is not only a technical matter. In order to im-
plement a Nash/Moser-KAM algorithm one looks for a family of approximately invariant tori of (with a sufficiently
good approximation) such that the dynamics on the tori is integrable and non-degenerate, while the dynamics normal
to the torus is non-degenerate at the linear level and satisfies the Melnikov conditions. If there are external parameters
modulating the linear frequencies, then we can consider as approximate solutions the linear ones. Otherwise the mod-
ulation must come from the initial data and, hopefully, this can be achieved by means of Birkhoff normal form (BNF),
see for instance [4]],[39]. In this case, where the the dispersion law in (1.8) is a rational number and is asymptotically
linear, such procedure is very difficult. One has to explicitly compute some potentially dangerous resonant terms in the
Hamiltonian and show that they vanish. This is the same type of computations which have been done for water waves,
see Craig-Worfolk [27] where the authors verify (by computing them) the vanishing of the coefficients of fourth order
resonant interactions, the so called Benjamin-Feir resonances. In our case we have to deal with higher order resonances
(up to etght), so this would be computationally extermely heavy. Our approach is to use the approximate constant of
motions. This will be explained more in detail in subsection[I.3] Once we have constructed the approximate invariant tori
we have to impose the non-degeneracy and Melnikov conditions. Differently form the KdV case, this will not be possible
for any choice of the tangential set, and it is where we will use the condition ST € V(x), see Deﬁnition

Linear stability. The linear stability result of Theorem [2]is of course a relevant dynamical information in the study of
evolutionary PDEs, but it is also the consequence of a fundamental ingredient of our proof: the reducibility of the lin-
earized equation at any quasi-periodic approximate solution. Reducibility for the Degasperis-Procesi equation linearized
at a quasi-periodic function has been obtained in [33], under some appropriate diophantine conditions on the frequencies.
Unfortunately, due to the resonances, our case does not fit such hypotheses, and a major point will be to overcome this
difficulty. Here we shall use such result (appropriately adapted) inside a nonlinear algorithm to prove the existence of
quasi-periodic solutions. This is a classical feature of the literature of KAM theory.

1.1. Some literature. Proving existence and stability for quasi-periodic solutions for PDEs close to an elliptic fixed
point is a natural extension of the classical KAM theory for lower dimensional tori [S1]. The first results in this direction
were for model PDEs on an interval with no derivatives in the nonlinearity and with either Dirichlet, [44, |53} 47, |51]
or periodic, [26, [16} [19], boundary conditions. For extension of KAM theory to higher spatial dimension we mention
(17,130,152} 18} 1114 251 [34]. While KAM methods for constructing quasi-periodic solutions for PDEs on the circle with no
derivatives in the nonlinearity are by now well established, generalizing to cases with derivatives is in general not at all
trivial, even in the semi-linear cases (where the derivatives in the nonlinearity are of lower order w.r.t. the linear terms).
We mention [45] for the KdV, [49] for the derivative NLS, and [6, [7]] for the derivative NLW. Recently an innovative
strategy was proposed, [3} 4] to deal with quasi-linear and fully nonlinear PDEs on the circle. This approach was first
developed for the KdV equation but can be applied to many equations of interest in hydrodynamics, such as NLS, [37, 38]]
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Kirchoff [50] or directly the water wave equation [[15, 2]]. While these methods were first thought for PDEs on the circle,
of course a very interesting point is the generalization to higher dimensions.

Equation (L.I) is a quasi-linear PDE on the circle and in our study we shall follow the general strategy of [4], extended
and adapted to our case. Let us briefly explain the point of view of [4]], referring also to [2] for more details.

1.2. The general strategy. We describe the strategy to prove existence and linear stability for small, reducible quasi-
periodic solutions of completely resonant quasi-linear PDEs.

(7) The starting point is a Nash-Moser theorem of hypothetical conjugation following [9]. The strategy is to construct
quadratically convergent sequence of families of approximately invariant (isotropic) tori. Such construction is based on
tame estimates on the inverse of the operator associated to the equation linearized at an approximate torus and
restricted to the normal direction. This is proved by exploiting the Hamiltonian structure and exhibiting symplectic
variables adapted to each approximate invariant torus, which essentially decouple the linearized dynamics. Then the
bounds on the inverse are achieved by removing all the “bad” values of the parameters. We mention also [24]] for a
parallel strategy which does not rely on the Hamiltonian structure.

(i) To construct the sequence of item (¢) we need a good starting point, i.e. a first family of approximately invariant tori
parametrized by real vectors £ € R”.
As explained before this is achieved by BNF techniques. In particular, in the quasi-linear context, it is convenient to
perform a Weak BNF, i.e. to exhibit a change of variables, close to the identity up to a finite rank operator, such that the
following holds. The Hamiltonian H transforms to Hp;,x + R where R is a small remainder, and

1. the finite dimensional subspace Usg := {u; = 0, Vj ¢ S} is invariant for Hp;x;

2. the Hamiltonian restricted to Ug is integrable and non-degenerate in the sense that the “frequency-to-amplitude”

map is invertible.

In order to describe in a simpler way the dynamics in a neighborhood of Ug it is convenient to define action-angle
variables. This allows to distinguish the tangential and normal dynamics to the approximately invariant tori.

We remark that, for semi-linear PDEs, typically one performs a stronger BNF preliminary step, in order to “normalize”
also the linearized dynamics normal to the torus, i.e. the terms in the Hamiltonian which are quadratic in the normal
directions. In this case the Birkhoff map is close to the identity up to a bounded operator (at most one-smoothing),
see for instance [51], [47]. Compared to the latter approach, the weak procedure has the disadvantage that the normal
form depends on the angles; on the other hand we do not have to address well-posedness issues, since these changes of
coordinates are time-one flow maps of an ODE. Note that the recent papers, [[10l], [36], [35] directly study the full Birkhoff
normal form for quasi-linear PDES.

(4i7) The third key point is to study the invertibility of the linearized operator restricted to the normal directions. Thanks to
the very “mild” conjugation procedure of item (i7) (with a map = identity+finite rank) it turns out that such linear operator
is pseudo differential (with non constant coefficients) up to a finite rank remainder. This is the most important reason for
adopting the weak procedure described in (7).

The invertibility of the linearized operator, with appropriate tame estimates, is based on a reducibility argument which is
divided into two parts:

(a) a reduction in decreasing order procedure which conjugates the linearized operator to a pseudo differential
one with constant coefficients up to a remainder which is a bounded/regularizing term i.e. maps H*(T,R) to
H**P(T,R), p > 0. The choice of p depends of course on the problem one is studying;

(b) a quadratic KAM scheme (for bounded operators) which completely diagonalizes the bounded/smoothing re-
mainder of the previous step.

We want to point out the following:

e the step (a) strongly relies on the pseudo differential structure of the operator;

e the normal form contains angle-dependent terms and some of them turn out to be not perturbative for the KAM
scheme (b). The conjugation to constant coefficients of such terms relies on purely algebraic arguments. We refer
to this procedure as linear Birkhoff normal form;

e as a consequence of having applied the weak and the linear Birkhoff procedure, the normal form around the
approximately invariant tori has constant coefficients also in the normal directions.

In order to perform the diagonalization procedure of step (b) one needs the second Melnikov conditions, which essentially
amount to requiring that the operator has simple eigenvalues with a lower bound on the differences. Once one has
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diagonalized the operator, the bounds on the inverse follow trivially from lower bounds on the eigenvalues, i.e. first
Melnikov conditions.

(iv) In the scheme above, at each step we have removed some bad values of the parameters £ where the Melnikov
conditions do not hold. Hence the last (but not least) step is to prove that at the end of the procedure one has still a positive
measure set of parameters. Note that often it is more convenient to express such conditions in terms of the frequency of
the quasi-periodic solution. This can be done thanks to the invertibility of the frequency-to-amplitude map.

1.3. Main novelties and scheme of the proof. We describe the structure of the paper following subsection[I.2] and with
particular attention to the main novelties.

In section 2] we introduce the Hamiltonian formalism for the DP equation and the functional spaces on which we shall
work.

In section |3| we perform the weak Birkhoff normal form explained in item (ii) of the previous section. The result is
stated in Proposition[3.2] In order to reach a sufficiently good first approximate solution we need to perform 6-BNF steps.
As is well-known, at the n-th step of this procedure one has to take into account the denominators (recall (1.8))

A1) + - 4 Alnt2)- (1.15)
We say that a (n + 2)-uple of integer indices (j1,. .., jn+2) is a resonance, and hence may appear in Hgiy, if (LI3)=
0 and the momentum condition holds, namely Z;ﬁf ji = 0. We say that a resonance is trivial if it has the form

(i,—1,4,—7,...) so that the corresponding monomial is integrable.

As mentioned before a major difficulty comes from the fact that the DP equation has many non-trivial resonances (already
at order four) and in principle there is no reason why the Birkhoff Hamiltonian restricted to Ug should be integrable. By
the fact that the Hamiltonian density f is of order O(u?) the perturbation does not affect the leading terms of the Birkhoff
Hamiltonian and we can exploit the integrability of the DP equation. Indeed the same Birkhoff transformation should
normalize simultaneously all the commuting Hamiltonians. This means that a resonant monomial contributes to Hp;,y if
and only if it is resonant for all the constants of motion. This was proved in detail in [32] at the level of formal power
series. Here we adapt this result to the equation (I.T) which is only approximately integrable (close to the origin) and we
reformulate it in a way better suited to the weak Birkhoff normal form context, see Proposition

Once we have shown that the Hp;-dynamics restricted to Ug is integrable, in section El, we prove that it is non-
degenerate, i.e. that the frequency to amplitude map is a diffeomorphism. We have a very explicit description of this
map and hence this step amounts to proving that the matrix A in 6] (which depends only on ST) has determinant
bounded away from zero (the so-called twist condition), see Lemma A big difference with [4] is that, in our case, the
determinant of A is a rational function of several variables J; that could accumulate to zero as |J;| — oco. By imposing
the wave packet condition we restrict the study of its asymptotic behaviour to regions in which it behaves like a one
variable function. Then we use continuity arguments to guarantee the invertibility of A for every choice of ST € V(r)
(see Deﬁnition for r small enough. Outside V(r) the proof of lower bounds for det A should rely on purely algebraic
arguments and not on perturbative ones.

In section [5] we introduce the Nash Moser hypothetical conjugation theorem (see Theorem [5.4) and in section [6] we
explain how to prove the invertibility of the linearized operator at an approximate solution by only studying it in the
normal direction. Since there is no difference with [4] we only give a synopsis.

In sections [7] and [7.3| we prove the Theorems [7.1] and which provide the reducibility of the linearized operator
following item (iii) of subsection As we already mentioned, in [33]] we provide a reducibility result for the DP
equation (I.T) linearized at sufficiently small quasi-periodic functions under appropriate diophantine conditions on the
frequencies . Unfortunately in our case the diophantine constant -y is related to the size of the approximate solutions (see
(5:3)) and then the smallness and diophantine conditions above cannot be met.

In [4] this issue appears only in the step (b) of the strategy, where it is solved by the linear Birkhoff normal form method.
A first difficulty in our case is that this problem appears also in step (a). So that we first need to perform some preliminary
steps (see section [/.1), more precisely we need changes of coordinates, preserving the pseudo differential structure,
that conjugate the leading order of the linearized operator to a diagonal one plus a correction, which is unbounded but
perturbative in the sense of [33]]. In such steps the provided changes of coordinates are similar in structure to those of step
(a) but they are proved to be well-defined not by using perturbative arguments, but by algebraic computations involving
the Birkhoff resonances (see Lemma[A.T). These difficulties appear also for the quasi-linear generalized KdV [39]], but
here we have several further problems due to the complexity of the symplectic structure of the DP equation. The first step,
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removing terms of order ¢, is straightforward. Already at the second step we encounter the difficulties arising form the
presence of non-trivial resonances of order 4, and a priori there is no reason why the normal form should be integrable.
Here it does not appear simple to apply the strategy of the weak BNF, using the constants of motion. On the other hand,
computing the normal form explicitly by hand, as done in [39], is unmanageable. To bypass this problem we take a
different point of view, based on an a posteriori identification argument of normal forms. More precisely in Theorem[7.9]
we prove that the normal form obtained after the weak BNF, the preliminary steps and the linear BNF coincides with the
one that we would obtain by performing the full formal BNF and then projecting on the quadratic terms in the normal
variables. This result strongly relies on the fact that all the resonances contributing to the formal normal form are trivial.
A similar identification argument has been used, for instance, in [[12], [13]].

A further point is that, due to the rational dispersion law A(j), it is possible that a denominator in the linear BNF is
not zero but is still uncontrollably small. In the third step, in order to deal with this problem we need to take into account
in the unperturbed Hamiltonian also the integrable terms of order €2 coming from the previous steps of linear BNF. For
this reason it is important to know the exact expression of the main order of the correction at the eigenvalues given by the
perturbation, see for instance @ This is also needed in the KAM scheme (b), in order to impose the second Melnikov
conditions. Computing these corrections by hand would be a very difficult task, but this comes for free from Theorem[7.9]

In the first part of section[§] we show the convergence of the Nash-Moser algorithm (see Theorem [8.T), which requires
the ratio between the size of R = H — Hgiy and 77/ 2 to be small (see the smallness condition (8:3)); in the second part
we prove that the set of ”bad” parameters, i.e. the frequencies which do not meet the first and second Melnikov conditions,
has small measure (see (8.23)), note that such sets are indexed by three parameters ¢, 7, k).

In Lemma 8.4 we provide the measure of the single bad set. Here we use the algebraic arguments provided by Lemma
which guarantees the non-degeneracy of the leading terms of the small divisors. In section [8.1.2) we deal with the
summability of the bad sets in j, k for fixed ¢.

The key difficulty is that the spectral gap A(j) — A(k) is asymptotically constant, hence there is a bad separation property
of the eigenvalues. The same occurs for the wave equation [6], [7]. Due to the asymptotically constant spectral gap, these
sets are infinitely many. Then the key ingredient is to show that for j, k£ sufficiently large the second Melnikov conditions
are implied by the first ones. This is possible provided that we consider two different diophantine constants. More
precisely we have to impose second order Melnikov conditions with 3/2 (see (8:6)), which is clearly much smaller than
~. This is why we have to perform many steps of Birkhoff normal form in order to obtain a very good first approximate
solution.

We point out that, differently from [2]], our Melnikov conditions do not imply a loss of regularity in space. In [2]] this
loss is acceptable, since in the regularization step ((a) page [5) the diagonalization is perfomed up to a very smoothing
remainder. In this procedure it is fundamental that the diophantine constant v is independent of the size of the solution.
Of course in our case this is not true and thus in the regularization step we end up with a remainder of order —1, and then
in the measure estimates we put some extra efforts to prove second Melnikov conditions without loss of regularity.

Acknowledgements. The authors wish to thank Andy Hone, Luca Biasco, Livia Corsi and Marcel Guardia for useful
discussions and comments. The authors also thank the anonymous referees for their helpful remarks.

2. FUNCTIONAL SETTING

Hamiltonian formalism of the Degasperis-Procesi equation. For any u, v in the space

H(T) := {u € L*(T,R) : /Tudx = 0}

we define the non-degenerate symplectic form
Qu,v) == /(J_lu)vdx = (J  u,v) e 2.1
T

where J is defined in (T.4) and (-, -) 2 is the L?(T, R) scalar product. To any C* function H : H(T) — R we associate
a vector field Xy by requiring
dH(u)[h] = (VH(u),h) > = Q( Xy (u),h), Yu,hec HT).

The Hamiltonian vector field X g is uniquely determined since the symplectic form € in (2.1 is non-degenerate, in
particular Xz (u) = JV H (u). The Poisson bracket between two C*! functions F, G : H}(T) — R is

{F,G} := Q(Xp, Xq) = (VF, JVG) 2. 2.2)
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In this way

X¢rey = [Xr, Xg], where [X,Y]:=dX[Y]—-dY[X]. (2.3)

Finally, given a Hamiltonian H we define its adjoint action as the operator
ady[]:={H,}. (2.4)
Consider now two Hamiltonians H, G and let 4 be the time-1 flow map of the vector field X . Then we have (formally)

(—1)k _ 1 _
Ho®g=>)_ e adG[H], Hodg'=)Y_ Had’&[H] , adi[H] == adg[adSUH]],  25)
k>0 k>0

where ad% := I is the identity map.
Functional space. We consider functions u(p, ) defined on T” x T. Passing to the Fourier representation

2) =3 ui(p) e = " gy N () =ui(p), U =ug;- (2.6)
JEL €€z jEL
We define the scale of Sobolev spaces
H*® .= {u(%m) eLX(T LR : fluf2 o= Y Jug[(€.5)* < oo} (2.7)
LETV JEL

where ((,j) := = 37 ,|¢;]. We shall work on the phase space H* N H}(T,R). We denote by
$B8,.(0, X) the ball of radius r centered at the origin of a Banach space X.

Lipschitz norm. Fix v € N* := N\ {0} and let O be a compact subset of R”. For a function u: O — FE, where
(E,||-||g) is a Banach space, we define the sup-norm and the lip-seminorm of u as

u(ewr) — u(ws)l

sup — sup,O — su uw(w)|| g ” lip — lip,O su ” .

[ull g™ == llullg wegll @le,  lullg” = llullg i PN (2.8)
w1 Fw2

If E is finite dimensional, for any v > 0 we introduce the weighted Lipschitz norm

(9 sup, lip,
lull 5 = ul 5™ +Alul . 2.9
If E is a scale of Banach spaces, say £ = H?, for v > 0 we introduce the weighted Lipschitz norm
el = 1lall3PC + Allull 2, Vs = [v/2] + 4 (2.10)

where we denoted by [r] the integer part of r € R.

Linear operators. Let A: TV — L(L?*(T,R)), ¢ — A(yp), be a p-dependent family of linear operators acting on
L?(T,R). We consider A as an operator acting on H*(T**1 R) by setting

(Au)(p, 2) = (A(p)ulp,-))() .
This action is represented in Fourier coordinates as
Aulp,e) = 3 A7 = N DT AT yug P 2.11)
3,7 €L LELY JEL L ELY j €L

Conversely, given a Topliz in time operator A, namely such that its matrix coefficients (with respect to the Fourier basis
in ¢, x) satisfy

A=A -0y Ve 0 e, (2.12)
we can associate it a time dependent family of operators acting on H*(T) by setting
Ah= > Al (Ohy e, Vhe H(T,R).
4.4’ €Z,L€T”
Form = 1,...,v we define the operators 0,,, A(p) as
O AT = 3 St = ) A (€~ Oy 0. )

LeELY JEL L' €LY j' €L
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We say that A is a real operator if it maps real valued functions in real valued functions. For the matrix coefficients this
means that

AT (0) = A7T (—0).

J —J

Hamiltonian linear operators. In the paper we shall deal with operators which are Hamiltonian according to the follow-
ing Definition.

Definition 2.1. We say that a linear map is symplectic if it preserves the 2-form  in 1)), similarly we say that a linear
operator M is Hamiltonian if Mu is a linear Hamiltonian vector field w.r.t. Q in 2.1). This means that each J~'M is
symmetric respect to the real L*-scalar product. Similarly, we call a family of maps ¢ — A(y) symplectic if, for each
fixed @, A(p) is symplectic, same for the Hamiltonians. We shall say that an operator of the form w - 0, + M () is
Hamiltonian if M () is Hamiltonian.

Notation. We use the notation A < B to denote A < C'B where C is a positive constant possibly depending on fixed
parameters given by the problem. We use the notation A <, B to denote A < C(y)B if we wish to highlight the
dependence on the variable y of the constant C'(y) > 0.

Linear Tame operators. Here we introduce rigorously the spaces and the classes of operators on which we work.
Definition 2.2 (o-Tame operators). Given ¢ > 0 we say that a linear operator A is o-tame w.r.t. a non-decreasing
sequence {M (o, s)}5_,, (with possibly S = +00) if

[Aulls <Ma(o,s)|ullso+o +Malo; so)ulls+o  we H”, (2.14)
forany so < s < S. We call M 4 (o, s) a TAME CONSTANT for the operator A. When the index o is not relevant we write
Ma(o,s) =Ma(s).

Definition 2.3 (Lip-c-Tame operators). Let ¢ > 0 and A = A(w) be a linear operator defined for w € O C R”. Let us
define
Alw) — A(w")

jw —o'|

Ay A= , ww €0. (2.15)

Then A is Lip-o-tame w.r.t. a non-decreasing sequence {M 4 (o, s) f:so if the following estimate holds

Sug | Aul|s, v S;lp ||(Aw,w’A)||s—1 <s zqu(UvS)HuHSO-&-tf + 9:71}(0, s)ulls4o, we H®. (2.16)
we wHw’

We call M, (0, s) a LIP-TAME CONSTANT of the operator A. When the index o is not relevant we write M} (o, s) =
M (s).
A

Modulo-tame operators and majorant norms. The modulo-tame operators are introduced in Section 2.2 of [15]. Note
that we are interested only in the Lipschitz variation of the operators respect to the parameters of the problem, whereas in
[15] the authors need to control also higher order derivatives.

Definition 2.4. Let u € H®, s > 0, we define the majorant function u(p,x) = ZEEZ”,jGZ'ufj|6i(z.¢+jx)' Note that
l[ulls = flulls.
Definition 2.5 (Majorant operator). Let A € L(H?®) and recall its matrix representation 2.11). We define the majorant
matrix A as the matrix with entries
(D] () =[] (O 5J € ter”.
We consider the majorant operatorial norms
M|l zcasy == sup [[Mul|s. (2.17)

flulls<1
We have a partial ordering relation in the set of the infinite dimensional matrices, i.e. if
M XN & [M] ()] <N (O] Vi, ¢ = IM]lzrey < INllgsy,  [1Mulls < [[Mulls <|[Null,.  (2.18)

Since we are working on a majorant norm we have the continuity of the projections on monomial subspace, in particular
we define the following functor acting on the matrices

MI'(6) if|(| < K,

Oy :=1—Igk.
0 otherwise K K

HKM = {
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Finally we define for by € N

((0p) ™ M) (€) = (0) M (€). (2.19)
In the sequel let 1 > v > 73/2 > 0 be fixed constants.

Definition 2.6 (Lip-c-modulo tame). Let o > 0. A linear operator A := A(w), w € O C RY, is Lip-o-modulo-tame

3/2
w.rt. a non-decreasing sequence {DﬁﬁAV (o, s) o—s, If the majorant operators A, A, .+ A are Lip-o-tame w.r.t. these
constants, i.e. they satisfy the following weighted tame estimates: for o > 0, for all s > sy and for any u € H?,

A 3/2|| Ay s Autl)s < T e 2.20
SlelgH Aulls, :up V7] A Aulls (0, 50)[[ulls+o + 25" (0, 8)||ullsot0 - (2.20)

The constant imfiﬁ (0, 8) is called the MODULO-TAME CONSTANT of the operator A. When the index o is not relevant
/ 3/

we write 93??473 ’ (0,8) = zmﬁﬂs ’ ().

Definition 2.7. We say that A is Lip-—1-modulo tame if (D,)*/?> A(D,)'/? is Lip-0-modulo tame. We denote

3/2 3/2 3/2
m’t&’y (_175) = m?gz>l/2A<Dz>l/2(O’S)7 Dﬁ&'y (—1,8,@) = mﬁ'}’

3/2

Ya(Dy)1/2A(D, )1/2(078), a>0. (2.21)

In the following we shall systematically use —1 modulo-tame operators. We refer the reader to the Appendix of [33]]
for the properties of Tame and Modulo-tame operators.

Pseudo differential operators. Following [[15] we give the following definitions.

Definition 2.8. Let m € R. A linear operator A is called pseudo differential of order < m if its action on any H*(T,R)

with s > m is given by
A Z ujeij“' = Z a(m,j)ujeij” ,
JEL JEL
where a(x, j), called the symbol of A, is the restriction to T X Z of a complex valued function a(x,y) which is C* smooth
on'T X R, 2mw-periodic in x and satisfies

|8§‘85a(:z:,y)| < C’aﬂ<y>m75, Va,3€N. (2.22)
We denote by Al-] = Op(a)[-] the pseudo operator with symbol a := a(x,j). We call OPS™ the class of the pseudo

differential operator of order less or equal to m and OPS™ := (,, OPS™. We define the class S™ as the set of
symbols which satisfies [2.22).

We will consider mainly operators acting on H*(T, R) with a quasi-periodic time dependence. In the case of pseudo
differential operators this correspond to considering symbols a(p, z,y) with ¢ € T”. Clearly these operators can be
thought as acting on functions u(yp, z) = 3"z u;(p)e™ in H*(T“+!,R) in the following sense:

(Au)(p,2) =Y alp,z,)u;(@)e’”,  alp,z,5) € S™.
j€L
The symbol a(p, x,y) is C>° smooth also in the variable . We still denote A := A(p) = Op(a(yp,-)) = Op(a).
Definition 2.9. Let a := a(p,z,y) € S™ and set A :== Op(a) € OPS™,

— m+f
|Alm.s.a Or<né%x supHB a(-,y)lls{y)~ . (2.23)

We will use also the notation |a|m, s, = |Alm,s,a-

Note that the norm |- |, s, is non-decreasing in s and . Moreover given a symbol a(¢, ) independent of y, the norm
of the associated multiplication operator Op(a) is just the H* norm of the function a. If on the contrary the symbol a(y)
depends only on y, then the norm of the corresponding Fourier multipliers Op(a(y)) is just controlled by a constant.

As in formula 2:10), if A = Op(a(w, ¢, z,y)) € OPS™ is a family of pseudo differential operators with symbols
a(w, @, z,y) belonging to S™ and depending in a Lipschitz way on some parameter w € O C R”, we set

Op(a(w y Py Ly —alw2, ¥, T, m,s—1,«
|A|m 5, = Sug |A|m,s,a + Y sup | p( ( LY y) ( Eikd y))| o1, . (224)
we

w1,w2€0 ‘wl —(.d2|

Isince w is diophantine we can replace the time variable with angles ¢ € T”. The time dependence is recovered by setting ¢ = wt.
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For the properties of compositions, adjointness and quantitative estimates of the actions on the Sobolev spaces H*® of
pseudo differential operators we refer to Appendix B of [33]].

3. WEAK BIRKHOFF NORMAL FORM

The aim of this section is to construct a &-parameter family of approximately invariant, finite dimensional tori support-
ing quasi-periodic motions with frequency w(§). We will impose the map £ — w(&) to be a diffeomorphism and we will
consider such approximate solutions as the starting point for the Nash-Moser algorithm.

In order to state the main result of this section, we need some preliminary definitions.

We write the DP Hamiltonian in (T.4) in the following way:

H(u) = H®(u) + H® (u) + HE? |

H® (y) := %/uzda:, H® (u) := —é/u?’dm, HE (u) ::/f(u)dx.
T T T

Recall S in (T.9) and define S© := Z\ (S U{0}). We decompose the phase space as

3.1

HYT):= Hs ® Hy, Hs:=span{e'’®:jec S}, Hz :=span{ei?®:jc S}, 3.2)

and we denote by I1g, H§ the corresponding orthogonal projectors. The subspaces Hg and H Lé are symplectic orthogonal
respect to the 2-form 2 (see (2.1))). We write

u=v+z, v::Hsuzzg uje zzHéu:: E uje .
jE€Ss jeSse
For a finite dimensional space

E:=FEc:=span{e”:0<|j|<C}, C>0, (3.3)

let Iz denote the corresponding L2-projector on E. The notation R(v*~929) indicates a homogeneous polynomial of
degree k in (v, z) of the form
R 929 =M[ v,...,v ,z,...,2], M = k-linear.
—_——  ——

(k—q)—times gq—times
We denote with H(=k) (k) - [r(7<F) the terms of type R(v™~* 2°), where, respectively, s > k,s = k,s < k, that
appear in the homogeneous polynomial H,, of degree n in the variables (v, z). Given an n-uple {j1,...,j,} C Z\ {0}
and aset B C Z \ {0} we define

8({j1,-.-,Jn}, B) := number of j; belonging to B .

Now we start the “weak” Birkhoff normal form procedure, i.e. we look for a change of coordinates which normalizes
the terms in (3.I) independent and linear in the normal variable z.

As it is well known, one of the main problem of the Birkhoff normal form procedures is to deal with the resonances
given by the equations (I.15)= 0 which arise from considering the kernel of the adjoint action ad ;=) (see ([2.4)). It turns
out that when n. > 2 there are many non-trivial solutions of (T.13)=0. A way to deal with this problem is to exploit the
integrability of the DP equation.

In [32]) the authors construct an infinite number of conserved quantities K,, for the equation (T.I)) with f = 0 starting
from the ones given in [28]]. By an explicit characterization of the quadratic part of each K, they deduce that, at a purely
formal level, the Birkhoff normal form of the Degasperis-Procesi equation is action preserving (or integrable). Here we
rename these constants of motion in the following way, writing only the quadratic parts (which are fundamental for the
study of the Birkhoff resonances at u = 0)

1

Ko(u) := H(u), Ki(u) := B /(J_luw)udx, Ko := /(6;}10)2 dr +0w®), n>0, (3.4)
T T

where we denoted by
wi=Atui=u— gy, A= (1-0,)"" . (3.5)

We remark that K is the momentum Hamiltonian arising from the translation invariance of the equation.
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Definition 3.1. Given a quadratic diagonal Hamiltonian Q(u) = 3", 1(j)
the kernel of the adjoint action (recall .2) and J = diag;c7(A(j)))

adg(K) Z (Z[]Z 2> i Wiy - U Z Kj  jauj, ... uj,. (3.6)

J1seedn =1 1r0dn

2, we define HKer(Q) as the projection on

We define the projector on the range of the adjoint action as HRg(Q) =1- HKer(Q)~

We say that K, as in (3.6), “preserves” momentum if and only if

(ZJZ) j1ogn =0 Vj17"'7jn€Z\{0}'

The main result of this section is the following.

Proposition 3.2. There exist v > 0, depending on S (see (1.9)), and an analytic symplectic change of coordinates
®p: B.(0, HY(T)) — Hy(T), Pp =1+, U=IlpoVolly (3.7)
where E is a finite dimensional space as in (3:3), such that the Hamiltonian H in (3:1)) transforms into
H=Hobp= H® 4 340 4 3/(6,0) 4 3/(8,0) 4 3/(29,<1) 4 9/(23,22) , (3.8)

, 1 1
243.>2) ._ 7,/U22dx77/23d:c,
2 T 6 T

(40 . 1 % wlt A(J1 + J2) w2l |2
H T2 Z 2)\(])—)\( ‘ J| Z /\(]1) /\( ) /\(] + jo )| 31| ‘ ]2|

where

jest j1.d2€8T, (3.9)
Jj1—Jj2#0
A(J1 — J2) 2 2
+ . . —— [, ||, |
Z " A1) = AG2) = AL —g2) 70
J1,J2€8
J1 ]2?60

and H*0) = HKer(H@))H( 0) with k = 4,6,8 depend only on |u;|*>. The same change of variables ® g puts all the
Hamiltonians in (34) in weak Birkhoff normal form up to order eight as in (3.8). In particular we have K1 o ®p = K.

In order to prove the Proposition [3.2]above we need some preliminary results proved in detail in [32]].

Definition 3.3 (M -resonances). Fix M € N, M > 3. We recall that the quadratic part of H and K., 2 < r < M, in

(34) are
EP )= Y 0+ 702 |l HOw) =) Jul.

jez\{o} Jj>1
We say that an n-uple {j1,...,jn} C Z\ {0}, withn < M, is a M-resonance of order n for the DP hierachy if
Sai=0, YAG) =0, S (+% NG =0 Vr=2,... M+1. (3.10)
i=1 i=1 i=1

Proposition 3.4. Fix M € N, M > 3. All the M -resonances of the DP equations (3.4) are trivial, namely there are no
resonances of odd order and the even ones are, up to permutations, of the form

(iv_ivjv_jvkv_kvpv _p,"')~ (311)

Proof. Since this Proposition is proved in [32] with different notations, for completeness we restate here a concise proof
by induction on M. For M = 3 the thesis follows trivially: indeed direct computations show that

3 3
D di=0, D> AGi)=0 & ji=—ja, js=0
=1 1=1

up to permutations, and this solution is incompatible with j; € Z \ {0}.
Let us now suppose that the thesis is true up to M — 1 > 3 and prove it for M. We start by noticing that if n < M then
(3:10) with » < M — 1 can hold only if {ji, ..., jn}is a M — 1 resonance of order n. The inductive hypothesis then says
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that {j1, ..., jn} is trivial. Similarly if {j1, ..., j,} contains a trivial resonance, i.e. if j;, + j;, = 0 for 1 < iy,is < n,
then j;, , ji, do not appear in (3.10) and hence {j1, ..., j,} is an M-resonance of order n if and only if
{1y, Jn}t \{Ji1+ Jdin}, isan M — 2resonance of order n — 2.
Without loss of generality we assume that n = M and that j;, + j;, 7 0 forany 1 < i;,is < M.

Up to a permutation we can assume that for some M > k > 1 and oy, ..., > 1 one has
{jlw"ajﬂ} = {3\17"'73\17"‘7./7\16?"'73\]@}'
—— N——
(o5} (677

Consequently rewrite the third equation in 3:10) as S°%_; o (1 + 7:2)2 52 ~2A(5i) = 0,Vr = 2,..., M + 1. Then we
can extract k equations from these ones and write them in the form
1 . 1
N ~ 1 LD 0
72 7.2 a( +]1 )2 A1)
. . =1 :]. (3.12)

i e ar(1+ 5622 G 0
jlz(k n o ]kQ(k 1) k( 767)* A(w)

The determinant of the Vandermonde matrix in (3.12) is [, »(3:2 — 12) # 0, since, by hypothesis, J; # 475,. Then the
only possible solution corresponds to 7; = 0 for all ¢, which is not compatible with 7; € Z \ {0}. O

Remark 3.5. Notice thatif j1, ..., jn € Z\{0}, j1+---+jn = 0and #({j1,....jn},5°) < 1, thenmax;—1 _ n|ji| <
(N — 1)71. Thus, the vector field X pv.<1), generated by the finitely supported Hamiltonian
o D o o P (3.13)

J1i---JN
jit-+in=0
#({j1,--in 13,89 <1

is finite rank, and, in particular, it vanishes outside the finite dimensional subspace I := E(n_1);, (see (33) ) and it has
the form
XF(N,gl) (u) = HEXF(N,gl) (HEU) .

Therefore its flow ) is analytic and invertible on the phase space HL(T), provided that |l pu| is appropriately small.
In order to prove Proposition [3.2] we need the following result.

Proposition 3.6. Fix M € N, M > 2 and consider H in (14) and K,,, m = 1,...,M, in (34). Then, for any
N < M — 2, there exists v > 0 and an analytic symplectic change of coordinates ®%': B,.(0, H}(T)) — H}(T) of the
form

Oy =1+Ty, Py=1I Upy(u)=goTUyollg, (3.14)
where E is a finite dimensional space as in (3.3), such that
Ho (I)JQI —H® 4 Z(SN+2’O) + R(2N+3’§1) + HI(VZ&ZQ) Kiody = K,
(3.15)
Koo ®y 1 K(z)+W(<N+20)_~_Q(>N+3<1)+K7(§ 22 )’ m=2,...,M,

where Z( N+2.0) W(<NJr2 0 ¢ N Ker(K K )) N Ker(H®)).

Proof. The terms of degree at most 2 in the variable z are not affected by the procedure that we are going to describe.
We argue the result by induction on the number of steps N. For N = 0 it is trivial since ® is the identity map.

Suppose that we have performed N steps. By the fact that { H, K,,,} = 0 then {H, K,,,} o ®* = 0. For the latter, we are
interested in the corresponding equations for the terms of homogeneity at most NV + 3 and degree in the variable z less or

equal than one. So we consider the projection IT(SV+3,<1) ({H, K)o <I>R,1) = 0 and we get, foranym = 1,..., M,
the following system of equations { H(?), K )} =0 and
{H(Q),W](V])VJQ’O)} + {ZJ(VN+2,0)7K7(73)} + H(§N+2){ZJ(VN+2,O) W N+2 0)} —0,
H(N+3){ZZ(VN+270)7WJ(VJYT:er,o)} T {H(Q),Q%\f;{,?”gl)} + {RS\],VHSI),KS?} =0.
By the inductive hypothesis WJ(V]YJZO), Z(N+2’O) € ﬂM_ Ker(K(2)) N Ker(H®)), hence
{H N+20)} {Z (N+2,0) K(2)}—0
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and
{H(Q) Q(N+3 <1 }+ {R(N+3,§1) K(Z)} _ O m = 17 » .,M, (316)

since {H®, QN1 =V} € Rg(H®) and {R{ =Y KD} € Rg(K).

We note the following fact, which derives from the Jacobi identity: if f € Ker(H ) then {f, K,(,?L)} € Ker(H®).
Then we have that {HKer(H(g))RE\J,V+3’S1), K,(,%)} € Ker(H®) and by (3.16)

N+3,< N+3,<1 3,<1
{HKer(H(2>)R§V +3,<1) K(z)} — _{HRg H(2>)R( + ) K(Q)}—&—{H(Q) QN N+ )} eRg(H(Q))

Thus {HKCI' H(g))R(N+d <1) K(2)} = (0 and

(N+3,<1) _ (N+3,<1)
HKer(H<2>)R = HKer(H@))HKer(Kff))R :
By symmetry HKGI‘(K(Z))Q(N-H)) <1) HKer(H<2>)HKer(K@))Q(NJF&_l)' Hence
(N+3,<1) _ (N+3,<1) _ .
HRg(H(z))HKer(Kﬁf>)Qm7N HRg(K(z))HKer(H(g))R 0, m = 17 e 7]\4 . (317)

In order to obtain the Birkhoff normal form at order N + 3 we consider a Birkhoff transformation ® p(~v+s,<1) with
generator F(N+3):<1 of the form (3.13)) ( with N ~» N + 3) and we define ® ;1 := ® pvi3.<1) 0 Py. By Remark
the flow ® p(~v+3,<1) is well defined in an appropriately small ball and it has the form Identity plus a finite rank operator.
Note that, since F'(V+3:<1) is Fourier supported on (j1,...,jn13) such that j; + --- + jy43 = 0, the Hamiltonian K
commutes with F(N+3:<1) and, by the inductive hypothesis, K o @&}H = K. The function F(N+3:<1) 5 chosen in
order to solve the homological equation

N+3,<1) BID) N+3,<1
{I—[(?)7 F(N+3,§1)} — HRg(H(Q))RSV ) L HRg(KTf))HRg(H(?))REV ) )

We now show that F(V+3.<1) solves also the homological equation for the commuting Hamiltonians K, o <I>]’Vl, m =
1,..., M. Indeed, by the fact that ad;ﬁm commutes with adK(2> on the intersection Rg(H(?)) N Rg(Kﬁ)), we have

_ (N+3,<1
{Kr(fb)’ F(N+3,§1)} ad (2){ R (K(2))HRg(H(2>)R + )} ’
and by (3:16), (3-17) we get

N+3,<1 N+3,<1
K Mg e MRgeren Ry ="} = LH® Ty o TRg s @y~

By (3:17) we have that the resonant term Z](Vj\rf <D = Uger(m) Ry
and by Proposition [3.4{these terms are supported only on n-ples of indices of the form (i, —i, j, —j, k, —k,...). By the
symmetry of the tangential set .S this is possible for a set of indices with at most one outside S if and only if all the indices
belong to S. Hence ZI(VA_L? ) = 0 and we define ZJ(V<+]\{+3 0= ZJ(VAES 0y Z](VSNH’O). We do not compute explicitly the
radius 7 of the ball in which we can perform the Birkhoff change of variables, however one can easiliy check that r — 0
as N — oo or as r — 0 in Definition [0l ]

(V+3,<1) belongs to the intersection of the kernels

Proof of Proposition[3.2} We apply Proposition 3.6 with N = 6 and M = 8 and we obtain (3.7), (3-8) by setting
dp = <I>R,1. To prove (3:9) we have to show explicitly the computations of the first step of Birkhoff normal form.

First we remove the cubic terms independent of z and linear in z from the Hamiltonian

1 1 1 1 1
H(?’):—f/u?’dm:—f/Ude—f/v2zdx—f/v22dm—f/z3dx. (3.18)
6 Jr 6 Jr 2 Jr 2 Jr 6 Jr

We consider ¢, := (<I>tF(3,§1>)|t:1 as the time-1 flow map generated by the Hamiltonian vector field X s, <1), with an
auxiliary Hamiltonian F'3<1) of the form (3.13) with N = 3. The transformed Hamiltonian is H; := H o ®]' =
H® + B + HY 1 HZY with

1
H1(3) — {F(?”Sl),H(Q)} + H® , H1(4) — i{F(&Sl)’ {F(?”Sl),H@)}} + {1:*(3&1)7]1((?0}7 (3.19)
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and where H 95) collects all the terms of order at least five in (v, z). We choose F(3=<1) such that the following homo-
logical equation holds
{F(?)Sl)7 H(2)} + HO® = gB22) o {H(Q), F(37S1)} — HRg(H@))H(g’Sl) ) (3.20)

Recalling (2.2) and (3.18), the solution of the equation (3.20) is given by F'®=<1) as in (3.13) with N = 3 with coefficients
defined as

1
I : i if $({j1,72,73},9¢) <1, j1+ja+4j3=0,
F%=D = {61(A(1) + AG2) + A(js) A Jenda) 5 4 b2t 3.2

J1j27J3 .
0 otherwise .

The Hamiltonian F(3:=<1 is well defined since, by Proposition there are no non-trivial 3-resonances of order 3. Since
HRg(Hu))H(S’Sl) = H®=D we get (see (3.19), (3.20))

1
HE = g322) Y = 5{F(s,g)?H(z’»,sn} +{FBs) G229y (3.22)

In the second step we normalize the terms of total degree 4 and < 1 in the variable z. The term HKer( H<2>)H 1(451)

is Fourier supported on the set of 4-resonances of order 4, which are trivial by Proposition 3.4 By Proposition [3.6
4,1
HKer(H@))H{ )

(4,0) _ 0 1 A(j1 + j2) S
%" = URergreny M7 = 8 Z AG1) + AG2) = G + g 192t (323

= (. Thus we have to compute only HKer(H(2>)H£4’O)~ We have

J1,72,33,J4€S,
J1+Jj2+js+7a=0
J1+7J2#0, ja+7a#0,

> h_ i Ak)=0
The remaining steps of this procedure do not affect the terms with degree of homogeneity less or equal than 4. Hence by
(3:23), the fact that A(—j) = —A(j) (see (I.8)) and the symmetry of .S we obtain (3.9). a

4. ACTION-ANGLE VARIABLES

On the submanifold {z = 0} we put the following action-angle variables
T" x [0,00)" — {2 =0}, (&I)i—H}zZ\/fjeiej e, @.1)
jes
Note that this change of coordinates is real if and only if /_; = I; and #_; = —0;. The symplectic form in (2.1)) restricted
to the subspace Hg transforms into the 2-form ), o+ ﬁd@ A dI; . We have that the Hamiltonian H(=8) (¢, 1,0) =
Siest L + HEO(I) + HOEO(I) + 1 EO)(I) depends only by the actions I and its equations of motion read as

GJ:A(]) 8IJH(§8)(07]70)’ jES+a

. “4.2)
I; = =A(j)09, H=¥)(0,1,0) = 0, jest,
where, by (3:9),
A(27) :
HEDO.1,0) =1+ — L T b [, I? + 4.

81]7{ (07 70) +4)\(])_2)\(2]) ]+ Z - jk k+0( )v JES y ( 3)

keSSt k#j

2 14+ E2)(1+ §2)(2 + k2 + 42
oy e 2 (LHR)LE ) ) w

3(B3+k2+52+kj)(3+k>+52—kj)’
In order to highlight the fact that we are working close to zero, we introduce a small parameter € > 0 and we rescale
I — €21, so that the frequency-amplitude map can be written as
w(I) ~ a(l) =@+ AT+ 0(e?), (4.5)
where @ is the vector of the linear frequencies (see @)),
bj if j#k,

4.6
0 ifj=k. (4.6)

=Ly g A(2)) ) — ding(\(i b
A= 2]D) diag (2)\(],) ESYCTY +D B, D:= dlag(/\(J))jegw B} :=
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The submanifold {z = 0} is foliated by tori, parameterized by the actions, supporting small amplitude quasi-periodic
solutions for the truncated system with Hamiltonian (<%). We shall select some of them as starting point of the Nash-
Moser scheme, by fixing I = & (here £ is a parameter), so that appropriate non-resonance conditions on the frequency
a(T) hold.

In order to work in a small neighbourhood of the prefixed torus {I = £} it is advantageous to introduce a set of
coordinates (0,y,z) € T x RV x Hz adapted to it, defined by

u=A(0,y,2) = cv.(0,y) + " — Uy = eVE NGy € e, €S, 4.7
u; = ez, jese,
with b > 1 and where (recall u; = u_;)
=&, §>0, yj=y;, 053=-0;, 0;cT,y;cR, Vjes.
The parameter b will be chosen close to one, to this purpose we shall set
a:=2b—-2, 4.8)

and fix a > 0 appropriately small. For the tangential sites S* := {7;,...,7,} we will also denote 03, = 0i, y3, = Vi
&, =&, 1 =1,...,v. The symplectic 2-form 2 in (2-1), up to rescaling of time, becomes

v 1 1 14
W= 3" do; A dy, + 52;0 o) 4 A 4 = (gdei A dyi) ® Qg (4.9)

i=1
where Qg is the symplectic form €2 in (2.I) restricted to the subspace Hg in (3:2). The Hamiltonian system generated
by H in (3.8) becomes
He=ec?HoA.. (4.10)
In the following lemma we prove that, under an appropriate choice of the tangential set (I.9), the function (£.3) is a
diffeomorphism for € small enough and then the system (4.2) is integrable and non-isochronous.

Lemma 4.1 (Twist condition). There exist o, c, > 0 such that, for any choice of the tangential sites ST € V(r) with
0 < r < rq (see Definition , one has |det A| > c, j:f” .

Proof. The proof is postponed in Appendix (|

As a consequence of the non-degeneracy condition in Lemma .1 the map in (.5) is invertible and we denote

£ =€) =0 Dw) =e A (w-B) + O(c?). (.1

5. THE NONLINEAR FUNCTIONAL SETTING

We write the Hamiltonian in (#.10) (possibly eliminating constant terms depending only on £ which are irrelevant for
the dynamics) as
Ha = N+ P7
1 1 1 (.1
N@O,y,z) =w-y+ §(N(9)Z’ 2)r2, i(N(Q)Z’ 2)p2 = 5((DZVZHE)(9, 0,0)[z], 2) Lz,

where N describes the linear dynamics normal to the torus, and P := H. — N collects the nonlinear perturbative effects.
Note that both N and P depend on w through the map w +— &(w).

We consider H. as a (w, €)-parameter family of Hamiltonians and we note that, for P = 0, H. possess an invariant torus
at the origin with frequency w, which we want to continue to an invariant torus for the full system.

We will select the frequency parameters from the following set (recall (@.11))

Q. ={weR”: {w) €1,2)"}. (5.2)

Setting (see (@.7))
v = e 1:=20U+6, (5.3)
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we define the non-resonant sets
GV = {weQ |w-f >~y ()7, VL ez \{0}}, (5.4)
G = {w €0 |- £+ ALW) L+ A" = AG) + NG =AY > C, (5.5)

S g+ =i =0, V0 <3, L€ 2\ {0} j.j € S, (£,4.5) # (0.5.5) }
i=1

for some constant C' depending on S, where A is defined in #.6) and

(o2 Z (14731 + 532443 +5°)
! (3472 — joj + 52 B+ 42 + j2j + 52)

& (W) - (5.6)

Je2€S+
We require that
we G =6 ng". (5.7
Lemma 5.1. We have that |, \ Go| < C.e?*= Vv for some C, = C,(S) > 0.

Proof. The proof is postponed in Appendix [A] ]

Remark 5.2. The diophantine condition w € géo) is typical of KAM scheme. The lower bound in gé” involves resonances
of order five with two normal modes. As explained in the introduction, in order to impose such lower bounds we need to
take into account also the corrections of order 2. The matrix A comes from the weak BNF of section|3| The terms |;
come from the linear BNF procedure of subsection[/.2] In particular they are evaluated explicitly using the identification
argument of Theorem[7.9]

Remark 5.3. Note that the definition of ~y in (5.3) is slightly stronger than the minimal condition for which is possible
to prove that Q(()O) has large measure, namely v < ce?, with ¢ > 0 small enough. Our choice turns out to be useful for
proving that the Cantor set of frequencies of the expected quasi-periodic solutions has asymptotically full measure (as
e —0).

‘We look for an embedded invariant torus

T =T xR x Hg, ¢~ i(p) = (0(¢), y(), 2(¢)) (5.8)

of the Hamiltonian vector field X p_ (see (3.1))) supporting quasi-periodic solutions with diophantine frequency w € Go.
For technical reason, it is useful to consider the modified Hamiltonian

Hec(0,y,2) = H(0,y,2) +(-0, (€R". (5.9)

More precisely, we introduce ¢ in order to control the average in the y-component in our Nash Moser scheme. The vector
¢ has no dynamical consequences since an invariant torus for the Hamiltonian vector field Xy, . is actually invariant for
X H. itself.

Thus, we look for zeros of the nonlinear operator F (3, () = F(i,(,w,€) := w - 0yi(p) — Xn(i(p)) — Xp(i(p)) +
(0,¢,0) defined as

w - 9,0(p) — 9, P(i(¢))
F(i,Q) = | w-0py(p) + 590(N(0(9)2(#)) L2(m) + Do P(i()) + ¢ (5.10)
w - Bpz(p) = IN(0(0)) 2(0) — JV =P(i(y))

where ©(p) := 0(¢) — @ is (27)"-periodic. We define the Sobolev norm of the periodic component of the embedded
torus

J(p) ==1i(p) = (#,0,0) == (O(p), y(9), 2(#))  ITs == [1Olls + llylls + 2l (5.11)

where z € Hg, = H® N Hg (recall (3:2)) with norm defined in (2.7) and with abuse of notation, we are denoting by
I - ||s the Sobolev norms of functions in H*(T¥,R"). From now on we fix sg := [v/2] + 4.

Notice that in the coordinates (4.7)), a quasi-periodic solution corresponds to an embedded invariant torus (3.8). There-
fore we can reformulate the main Theorem[I] as follows.
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Theorem 5.4. There exists a small constant * > 0 such that, for any ST € V(r) (see (I.9) and Definition |I. , there
exists 9 > 0, small enough, such that the following holds. For all ¢ € (0,¢q) there exist positive constants C = C(v),
wu = p(v) and a Cantor-like set C. C Q. (see (5.2)), with asymptotically full measure as € — 0, namely

lim C|
e—0 |QE|

such that, for all w € C., there exists a solution i (¢) = iso(w,€)(p) of the equation F (i, 0,w,e) = 0 (see (5.10)).
Hence the embedded torus ¢ — i~ () is invariant for the Hamiltonian vector field X p_, and it is filled by quasi-periodic
solutions with frequency w. The torus i~ satisfies

llios (0) = (2,0, 0)I3

Moreover the torus i is linearly stable.

—1, (5.12)

9—2b
So-‘ru <Ce v

We can deduce Theorem|T]from Theorem [5.4] indeed the quasi-periodic solution w in (I.1T) is
u(t, ) = (ch 0 A5>ioc(wt)

for w = w(€) € C., where w(§) is the frequency amplitude map @.3).
The rest of the paper is devoted to the proof of Theorem [5.4]

5.1. Tame estimates of the nonlinear vector field. We give tame estimates for the composition operator induced by the
Hamiltonian vector fields X n and X p in (5.10). Since the functions y — /€ + £2(0-Dy, § — €'% are analytic for £ small

enough and |y| < C, classical composition results (see for instance Lemma 6.2 in [3]]) imply that, for all ||J ||;Y(;O <1,
14-(0(2), y (), 2(N17C s €1+ [13]17°9) -

In the following lemma we collect tame estimates for the Hamiltonian vector fields X, Xp, Xp_, see (3.1). These
bounds rely on tame estimates for composition operators and their proof is completely analogous to the one in Section 5
of [4]].

Lemma 5.5. Let J(y) in (3.11)) satisfy ||JH’SYO(31 < €972y~ 1 Then we have

18, PG)I7C Ss €7 + 2329, 196 PG| 7€ S €921 + ||3||8+1>
IV.PG7C <o 80490378, IIXpG)[1C Se 272 + 23|79,
. _ . 5.13
1060, PG)IITC So € + 87 BI2S, 10, V.POI7C S e5F 4 & 9, (5.13)
52b
||8ny( ) _ 7AQH'y ,O < €5+2b + 56+2b _1”3”3—1-1 ,

and for all v := (@, Uy 2),
18,D: X p ()17 < 62bil(HAHSH + 1313213 30)
ID: X &, (1) [2] + (0,0, J3)||3’0 s eI + IBIET %) -
107 X a1, (@ N7 S e(RITSIRILS + 132G 5307 -

In the sequel we will use that, by the diophantine condition (5.7), the operator (w - d,,) ! is defined for all functions u
with zero @-average, and satisfies

_ _ o —_
- 0p) ulls S5 v ullsrs 1@ 80) Ml 7€ So v M ulliiSr 4 -

6. APPROXIMATE INVERSE
We want to solve the nonlinear functional equation (see (5.10))
F(i,0) =0 (6.1)

by applying a Nash-Moser scheme. It is well known that the main issue in implementing this algorithm concerns the
approximate inversion of the linearized operator of F at any approximate solution (i, (, ), namely DF (i, (). Note that
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DF (in, () is independent of ¢,,. One of the main problems is that the (6, y, z)-components of DF (i, (,) are coupled
and then the linear system

DF (i, Gu)[f ¢) = w - 97— D X (i) [i] — (0,,0) = g = (9, g¥, g) (6.2)
is quite involved. In order to approximately solve (6.2) we follow the scheme developed by Berti-Bolle in [9] which
describe a way to approximately triangularize (6.2). This method has been applied in [4]], [39]. Since the strategy is
identical to [39] we only summarize it and underline the differences which mainly come from the symplectic structure.
For a fully detailed expository presentation see [40].

We now study the solvability of equation (6.2)) at an approximate solution, which we denote by (ig, (o), i0(p) =
(Bo(), yo(p), z0()) in order to keep the notations of [4], [39] . Assume the following hypothesis, which we shall verify
at any step of the Nash-Moser iteration,

e Assumption. The map w +— ip(w) is a Lipschitz function defined on some subset Oy C Gy, C €. (recall

©7),(5-2)) and, for some pg := po(v) > 0,

1301375, <777 12155, <7 v =€, 63)
where Jo(¢) 1= io(¢) — (¢, 0,0) and Z is the error function
Z(p) = (21, 22, Z3) () := Flio, C0) () = w - Opin(p) — X, ., (io(p))- (6.4)

By estimating the Sobolev norm of the function Z we can measure how the embedding ¢, is close to being invariant for
Xu. .- If Z = 0 then i is a solution. In general we say that i is “approximately invariant” up to order O(Z). We
observe that by Lemma 6.1 in [4] we have that if 7 is a solution, then the parameter (y has to be naught, hence the
embedded torus 7o supports a quasi-periodic solution of the “original” system with Hamiltonian H, (see (5.1)).

By [9] we know that it is possible to construct an embedded torus is5(p) = (6o(¢), ys(¥), 2z0(¢)), which differs from
i only for a small modification of the y-component, such that the 2-form W (recall (@.9)) vanishes on the torus i5(T"),
namely i; is isotropic. In particular is5(y) is approximately invariant up to order O(Z) (see Lemma 7 in [9]) and, more
precisely, there exists p := p(v) > 0 such that
lis — ioll 7% <. 1301722, (©6.5)
The strategy is to construct an approximate inverse for DF (g, () by starting from an approximate inverse for the linear
operator DF (ig, (). The advantage of analyzing the linearized problem at i; is that it is possible to construct a symplectic
change of variable which approximately triangularizes the linear system thanks to the isotropicity of ¢s. For the details we
refer to [9] and [4], here we only give the relevant definitions and state the main result. We define the symplectic change
of coordinates

0 ® 0o ()
y | =Gs| n | =1 vs(e) +[0:00(£)] ="+ [(9pZ0) (B0 ()] T w (6.6)
z w z0(p) +w
where %y := 29(6; *(#)). We denote the transformed Hamiltonian by K := K (¢,n,w, (o). We then define
Ew =W ago - JK02(S0) ) (67)
where Ky is the linear operator representing the terms quadratic in w of K, i.e.
1
5 Koa(9)w],w) := T2 K = 1" 2 H. 0 G (6.8)

L, corresponds to the w-component of the linearized operator after the change of variable G.

In [9] (see also [4]],[39])) the following result is proved.

Theorem 6.1. Assume and the following
Inversion Assumption: There exist p1 := p1(v) > 0and a set Qo C Gy C Q. such that for all w € Qo and every
function g € H527+1 Hé‘, there exists a solution h := L' g of the linear equation L,h = g which satisfies

— Qoo — ,Qoo — ~N 70 1900
12519139 S v~ al2sm s + v 21361257 lg127) - (6.9)
Then there exists p := u(v) such that, for all w € Q. there exists a linear operator T such that:
1. forall g := (g9, g™, ¢(*)), one has

Qoo — , Qoo - ,O Qoo
ITogll 2% Ss v (gl + v 213oll350 gl 350 - (6.10)
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2. Ty is an approximate inverse of DF (i), namely

. Qoo b—1,_,— : ,O Qoo
|(0F (o) 0 To = Dl <. 2~y (117 Gios o)1 e lglI2S

. ,O — . ,O ~ ,O Qoo
+{IIF (o, G 150 + v~/ F (o, Co)I\ZO+Z||J0||Z+lf}||g|\30+u) :
6.1. The linearized operator in the normal directions. Recalling the assumption (6.3)), in the sequel we assume that
Js = TJ5(p;w) =is5(p; w) — (g, 0, 0) satisfies, for some p; > 0,

13511298, < 972yt 6.12)

6.11)

We note moreover that G in (6.6) is the identity plus a translation plus a finite rank linear operator; moreover, assuming
({6-12), one has that G5 is O(°72*y~1!)-close to the identity in low norm. Returning to the initial variables we set (see

@7).6.5)

Ty := A(Gs(9,0,0)) = evs + 20, v = Y /& + 2 2|A(j) ya (p) !0 005 () (6.13)
jes
and we have, for some o := o(v) > 0,
125(T5)[7°° See M+ 113122, ID:@B(TH) s Ss e(llillsso + [1Tsllstollillsora) - (6.14)
By following Section 7 in [4] (see Lemma 7.1), K2 in (]@) has rather explicit estimates.

Proposition 6.2. Assume (6.12). Then there exists 0o = oo(v) > 0 such that the following holds. The Hamiltonian
operator L, in (6.7) has the form

Ly =Tg(w- 8y = Jo (1 +ag(p, ) + o), ao(p, ) == —(®p(T5) + 01 f(P5(T5))) - (6.15)

Recall that Ty is defined in (6.13), @ is the Birkhoff map given in Proposition[3.2) f is the Hamiltonian density in (T.3).
The operator Qy is finite rank and has the form

1
Qo(p)w =Y / (w, (7, )) L2(v) X5 (T, ) d. (6.16)
il<c 0
In particular we divide Qg = Z;Ll e'R; + R~s5, where the R;, R~5 are finite rank operators. Moreover we have
, ,O ~
laoll3?* Ss (1 +11351250) s IDsaolillls Ss e(illstoo + 175l s+00lfEllso) - (6.17)
The remainders R ; do not depend on J5 and satisfy

lg52N3% + I 1 Ss 1, (6.18)

while R~ satisfies

g7 132 x5 1,20 + g5

LGP IT Ss e+ 21T6105° (6.19)

S0

1Dig5° 115 ® 5o + 110295 [l 152 s + 1197 > o DX Wl s + 1972 1 [1Dex ;2 56 (6.20)
Ss 52|m|s+0 + EijéHS“FUHﬂlSOJ”U .

Finally, recalling the Definition 2.3} we have

,O
MY, (0,5) S €21+ [1T5[1 250 (6.21)
My 0,0(0:8) Ss 2 [Wlsto0 + €7 Ts 00 [ s - (6.22)

Proof. The expression (6.15) follows from the definition (6.8) by remarking that G5 and the weak BNF transformation
® 5 is the identity plus a finite rank operator, while the action angle change of coordinates is a rescaling plus a finite rank
operator (acting only on the v). Then, in applying the chain rule, we get

Doy Vi (H. 0 Gy) B e=2 (D (H 0 A) 0 G5 + Ry = (D.V.H) 0 A 0 Gy + Ry 62

€D p V. (Ho®p)oA 0Gs+ R =(D.V.H)o®poA oGs+ Ry + R

where the finite rank part contains all the terms where a derivative falls on the change of variables. Then (6.13) follows
from the definition of H in (T.4). Regarding the estimates, (6.17) follows from (6.14); regarding the bounds (6.18), (6.19),
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we split the finite rank part R1 + R as follows. The operator R; contains all terms arising form derivatives of G5. By
tame estimates on the map G (see for instance Lemma 6.7 in [4]), it satisfies the bounds (6.19) and we put it in R~5.
The finite rank term Ry comes from the Birkhoff map. This is an analytic map so we consider the Taylor expansion

5
Op(u) =u+ Y Wi(u)+ Use(u), (6.24)
1=2

where each ¥;(u) is homogeneous of degree i in u, while Us¢ = O(u®) and all map H{ (T) in itself. We have to evaluate
® and its derivatives (up to order two) at u = T5 = cv;s + £°29. We denote by T the function

B, x) = Y /G Um0 = A (,0,0) (6.25)

JES
where 1(7;) is the i-th vector of the canonical basis of Z" and is such that 1(—7;) = —1(7;). We observe thaﬂ
lvs = w17 < 1136117,
and hence we can expand
5
Op(Ts) =cv+ » WD) +§ =95 +4, (6.26)

=2
where ¢ is a remainder which satisfies

1179 S5 €® +ellT5l17% . IDsadlls Ss e(lfills + 1Tssflls, ) - (6.27)
Then in R; we include all the terms homogeneous of degree ¢ coming from derivatives of &5 — I, evaluated at ¢ = 0; we
put in R~ 5 all the rest. The (6.21)), (6.22)) follows by (6.18), (6.19) and (6.20). O

Remark 6.3. The motivation for separating the R; and R 5 is the following. Consider the Hamiltonian H. as a function
of € instead of w. Then in all our expressions we can, and shall, evidence a purely polinomial term Z?:O €' f; (where the
fi are ¢ independent) plus a remainder, which is not analytic in ¢, of size €% + ¢||J5|7°°. By the assumption (6.3), this
means that in low norm s = so + p1 all these remainders are negligible w.r.t. terms of order €. This distinction is needed
because, due to the resonant nature of the DP equation, we need to perform (see subsections[7.1]and five steps of the
order reduction and of the linear BNF by hand, before entering in a perturbative regime.

In this framework R~ 5 is purely a remainder, while the R; are homogeneous polynomial terms. One could apply the same
division to the non finite rank terms, one would get

113 (w(€) - Oph — T [(1 — @5(T5) — D2 f(@5(T5))) = I (@ ph + 2AL - Oph — J (1 — @5’ (e0)h + gh  (6.28)
where g satisfies the same estimates as (6.19).

6.1.1. Hamiltonian of the linearized operator. Following Remark|[6.3] we evidence the terms homogeneous in the Hamil-
tonian of L, let us call it H, whose Hamiltonian vector fields have degree < 5, since they are NOT perturbative. As
explained in (6.26) this entails expanding the map ® 5(7T) in powers of & up to order five plus a small remainder q.

We consider the symplectic form in the extended phase space (p,7,2) € R” x RY x Hg

Qe(p,m,2) i=dpNdn+ Y
jeSe

1
~——=dzj Ndz_; 6.29
g €2
with the Poisson brackets (recalling {-, -} defined in (2.2))

{F,G}. == 0,F0,G — 8,F0,G + {F,G} . (6.30)
The Hamiltonian of the operator (6.13) respect to the symplectic form (6.29) is (see (6.28))
5 5
Hi=Hy+ Y e'Hi+ Hos+ Y e'Hr, +Hr, (6.31)

=1 =2

The function ev represents a torus supporting a quasi-periodic motion which is invariant for the system G.I) with P = 0, namely it is the
approximate solution from which we bifurcate.
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with
Ho=w-n+= [ 22de, Hi=—= [ 0z°de, Hy=Af-n—= \Ilg()z dz ,
2 Jr 2 Jp 2 632)
1 _ R :
Ho=—y [wi@dr, 3<is, aa 1 [+ 3D

for some ¢ > 0. The functions Hg,, Hr_, are the quadratic forms associated to the corresponding linear operators, thus
the estimates on the Hamiltonian vector fields can be deduced from (6.19), (6-18). It is easily seen that

Ho + Ze i +Hg,) = 24 T9=2(1(ST 6 4,))|

Of course one can be even more explicit and write everything in terms of the original Hamiltonian (T.4) and of the
generating functions of the weak BNF, for example one has

Ho = (H® o A})|y

—n, H B (HGD 6 4y,
0=¢ 10 =¢ (6.33)
M+ Hr, = (1255 0 Ay o+ (PO, HOY) 0 Ay =

The terms H; can be computed explicitly, however we only need to prove that they fit the following definitions.

Definition 6.4. We say that a matrix B := ((B)gl =0 )) is almost diagonal if there exists a constant C > 0
1,4/ €LV €T

such that, if (B), (I — ') # 0, then (j — j/,1 = I') < C forall j,j' € % 1,I' € Z".

Let B(p): H*(T) — H*(T) be a Tépliz in time operator (recall 2.12)). We say that B(yp) is almost diagonal if its
associated matrix is almost diagonal.

Let H := H(y) be a quadratic Hamiltonian of the form H = (A(p)z, z) 2, where A(y) is a Topliz in time operator. We
say that H and its vector field are almost diagonal if A(p) is almost diagonal.

Remark 6.5. It is easy to verify that if X and Y are almost diagonal operators then X +Y, X oY are almost diagonal.

Definition 6.6. Let p € N and m € R. We say that a pseudo differential operator B = Op(b(ip, x, j)) (recall Definition
is homogenenous of degree p in the function v in (6.23)) if its symbol b(p, x,j) € S™ has the form

b(p,x,j) == Z Chrrin V& - - &, €T FIR)T AU T A20p)) ¢ (6.34)

Definition 6.7. Let p € N. We say that a Hamiltonian is pseudo differential and p-homogeneous if it has the form

1 1 1
z):f/fp(ﬁ)z“zdx—i-f/%pz~z+*/73pz'2, (6.35)
2 Jr 2 Jr 2 Jr

where f, is a homogeneous real valued function of U (of degree p) of the form
fp() == Z Fodivrio € - - &, €01 T 302 QG+ 410 2 (6.36)
.jlv"'!j;lles

B, € OPS™2 is a p-homogeneous pseudo differential operator according to Deﬁnitionwhich is self-adjoint w.r.t. to
(+,-) 12 finally R, is a finite dimensional operator of the form (6.16) with g;, xj p-homogeneous functions of .

Lemma 6.8. The Hamiltonians H;+Hg, in (6.31) are almost diagonal according to Definition[6.4|and pseudo differential
homogeneous Hamiltonians according to Definition[6.7]

Proof. It follows by Proposition [6.2] and Remark [6.3] O

Lemma 6.9. Let p, q € N and consider Hy,, G, two pseudo differential and homogenous Hamiltonians of degree respec-

tively p and q. Then there is a pseudo differential and (p + q)-homogeneous Hamiltonian H such that X 5 =X(m, .}
where {-, -} are defined in (6.30) and Xy denotes the Hamiltonian vector field generated by H.
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Proof. By assumption H,, and G, have the form (6.33) for some f,,, f, real valued and some self-adjoint pseudo differ-
ential homogenenous operators B, and B,. Then we have (recalling (2.2), (T.4) and (3:3))

{H,,G,}e :/Alz~zdx+/A2z-zdx, Ay = fp0050 fy,
T T
Ay = fpoJo By +ByoJo fy+B,0Jo0B,+3f,0A0,0 f,.

One has that the Hamiltonian

ﬁ::}/(Al+Af)z~zdx+1/(A2+A§)z~zdx
2 Jr 2 Jr

is equivalent to { H,,, G4 }. in the sense that they generate the same vector field. Here A7, i = 1, 2, denotes the adjoint of
A; w.rt. the L? scalar product. Notice that

A+ AT = fpfqax + fp(fq)x - fq 00y 0 fp = fpfqam + fp(fq)m - qupax - fq(fp)a: = fp(fq)z - fq(fp)m

which is an homogeneous function of ¥ of degree p+ ¢. Using the results on compositions of pseudo differential operators
in Section 2 of [33], the fact that J is skew-self-adjoint, 98, ¢ = p, g, are self-adjoint, and f,, f, are real valued, we deduce
that the operator A, is a skew-self-adjoint operator in OPS~!. Hence, using the formula (2.13) in [33] for the adjoint,
we have that A, 4+ A% is pseudo differential homogeneous operator (according to Definition in OPS—2, O

7. REDUCTION AND INVERSION OF THE LINEARIZED OPERATOR

The aim of the section is to prove the claim in (6.9). As explained in the introduction, first one should reduce the
unbounded parts of £,, and then use classical KAM reducibility results to diagonalize. The difficulties arise from the fact
that a few steps of this procedure must be done by hand, since they do not fit the typical smallness conditions, see [33].
The key result of this section is the following.

Theorem 7.1. Consider L,, = L,,(Js) in (6.13) and fix
T:2V+6, bg = 6T—|—6, b =Dbg + s0. (71)

There existS > so and 1 = py1(v) > 0 such that, if condition (6.12)) is satisfied with p1 = p, then the following holds.
There exists a constant m(w) defined for w € Q. with

) 2
Im —1— ()| <et, m'"™ <1, cw):=7-€ T=-(1+7), k‘zl,...,l/ (7.2)

3

such that for all w in the set O%), where (recall that O C Gy, see (5.7))
2
#, Ve ez, Vi e 5°Y, 1.3)

there exists a real, bounded linear operator T = T (w) : Hé, — Hgy, forall s < s < S, such that

0% =0%(i):={we O : |w-l—mw)j| >

L:="TLY =15 (w- 0y — mJ — D (w) + Po) (7.4)
where D (w) is the diagonal operator of order —1 defined as © := D (w) = diag(ix;) jege, with
K= ki (w) = AJ) (W) —c(w)) €R, x| <1471, (7.5)

where |; is defined in (5.6). The constant m depends on i and for w € 0% (i1) N O (iz) one has
[Avom| S ellin — dallso+p » (7.6)

where Ajom := m(i1) — m(iz). The remainder Py in (T4) is defined and Lipschitz in w belonging to the set O%) and is
Lip-—1-modulo tame (see Definition[2.7) with

3/2 B Cin
MY (—1,8,b0) s €73 + ey T6l| 750 (7.7
1/2 1/2 1/2 1/2 Sy
1(D2)"* AaPo(Da)leqaren), D) B1200,)* PotDa) P lleiron) S &~ lin = et (7:8)
forallw € OX (i) N O (ia). Moreover if u = u(w) depends on the parameter w € O%) in a Lipschitz way then
0% 0% _ i 0%
0% S, 7% 4+ ey 351780 ullRO% s < s <S. (7.9)

3Notice that £ = &(w), recall @IT).
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The result above has two relevant consequences. Firstly it shows that the operator £, in can be conjugated to
an operator (see (7.4)) which is “diagonal”, at the highest order of derivatives, plus a remainder which is —1-smoothing.
In addition to this, thanks to a linear BNF procedure (performed in subsection [7.2), the non-diagonal term Py in has
a size much smaller than ¢ (see estimates (7.7)), (7.8)). In particular it is “perturbative” w.r.t. the constant + in (5.3). This
allows us to apply the reducibility scheme of [33]] in order to complete the diagonalization of the operator £ (see Theorem
[7.13). Then the inversion assumption follows directly from Proposition[7.14).

Strategy of the Proof of Theorem|/.1

o Reduction at the highest order.  The first step is to exploit the pseudo differential structure of the operator L,
in order to conjugate it to an operator which has constant coefficients up to a smoothing remainder of order —1. To this
purpose we use changes of variables generated as the time-one flow map ®7|,—; of Hamiltonians of the form

By, )
S(t,p,2 :/bT, 1) 22 dx b(r,p,2) i= ———————, 7.10
(7., 2) (7,0, 2) (7, ¢, %) T 75, (0 7) (7.10)
0,07u = Mg[(J o D)IIF[®7w]],  ®u=u, (7.11)
where 3 is some smooth function. In Proposition we show that @7 is well defined as symplectic map on Hg, (see

Lemma |C.1) and study the structure of ®”£,,(®7)~!. Proposition gives an explicit formula for the new coefficient at
the highest order (see (C.17))). Then Corollary 3.6 of [31] (see also Proposition 3.6 in [33]]) provides the solution for the
equation (C.17)=const provided that some smallness condition is satisfied. This smallness condition has the form

Cs1)y MlaolZC <1 (7.12)

for some sp + p1 > s1 > sp and some constant C(s1) > 0. As shown in [33], due to the Hamiltonian structure, this
reduces L,, to constant coefficients up to a correction of order —1.

Unfortunately, since here v = 2+9, a > 0, by (6.17), the coefficient aqg(p, z) in £, does not satisfy (7.12). This is
why we have to perform some preliminary steps in order to enter in the perturbative regime where we apply the scheme
described in the proof of Corollary 3.6 in [31].

We first “regularize” the purely polynomial terms H; (see (6.32)) by hand, by exploiting their homoegeneity according
to Definition After that we are left with only unbounded terms which satisfy the smallness conditions of [33]. We
“regularize” them by applying the results of [33]] adapted to our slightly more general setting, see Proposition|C.2]

Remark 7.2. In order to determine the correct change of variables in the regularization of H;, it will be convenient to use
the Formal Lie expansions. We recall that H o (®7) ! satisfies, for T € [0, 1],

O-(Ho (®7")™1) ={S(r),Ho (®7)"'}. (7.13)
By setting S := S(0), the Lie expansion of the conjugated Hamiltonian H o ®~1 is the following:

Ho(®7) ' =H+7{S H}. + %2({5, {S,H}c}e + {(0-5)(0), H}e> +..., (7.14)

where the Poisson brackets {-,-}. are in (6:30). Recall that ® is a C* map from H® to H*~*. Therefore the Taylor
expansion of the conjugated Hamiltonian coincides with the Lie series of the generator up to any order 7",

e Linear BNF. The second step is to diagonalize the bounded terms. Here we diagonalize ’by hand” the terms up to
order 2, by exploiting the fact that they are almost diagonal according to Deﬁnition and applying a linear BNF. Once
this is done, the full diagonalization follows by a standard KAM reducibility theorem (see Theorem|[7.13).

7.1. Reduction at the highest order. In the following we shall assume that the (6.12) holds with some p; > 1. The loss
of regularity p; will be determined explicitly at the end of the section. In order to perform the non-perturbative steps, we
construct changes of coordinates 3;, i = 1,2, 3,4, 5, as the time-one flow maps generated by Hamiltonians as in (7.10).
Then we set Ly := L, and define iteratively £; := B,L; 1B, 1 Note that Lo is pseudo differential plus a finite rank
operator. Even though the ; preserve the pseudo differential structure, in order to have a good quantitative control on the
symbols we shall fix appropriate values
p>Sy, p>8S+67+9, (7.15)
and write
L;=B,L;,_ 1B =15 (w 0, — Jo (14 &%ci(w) + ai(p,x)) + Op(ai) + /Q\z) (7.16)
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where ¢;(w) is a constant, a;, q; are symbols, Op(q;) is of order —1 and /Q\i € £, p. This is a class of operators of order

—p which we introduced in [33]] (we recall it in Definition . Note that by Lemma Qo =: Oy belongs to L, ,, for
all p, p, with bounds on Mé (s,b) given in the same lemma. Then one proves iteratively that
0

; ~ 170 S
laill 29 Ss € + el 35 o sona s 2 50, [1B12ailly Sp (L + [1Tsllprootoria) lir = i2llprootors-  (7-17)

,O ~ 17,0
1917 0 0 Ssiap €L+ 113500 +0040)s 82 S0,

~ . . (7.18)
‘A12qi|—1,17,06 5P7Q;P 5(1 + HJ5HP+<70+0i+3)||Zl - Z2||P+0'0+0'i+3’

Note that the size of a; (in the low norm) is decreasing in 7. Regarding the remainders, the numbers M % (s, b) control the

i

norm of the corresponding operator, see Definition[C.5] We have

.0
MY (5,5) Sop €0+ 105075 4mys): S0S5<S,  0<b<p-2, 1o
MA]zé\i (p7 b) Sp,ﬁ 5(1 + |‘j5|‘P+Uo+U7’,+3)||i1 - i2||p+00+t71‘+3a 0<b<p-3,
with o defined in Proposition[6.2Jand ;.3 > 07 = 1,..., 5, depending only on v (essentially o; 3 are the losses coming

from the application of Proposition [C.2). Note that we can obtain (7.16) for any p, p satisfying (7.13); however, if we

want to hold for some given p, we have to assume a smallness condition (6.12) with p + o¢ + 043 < p1.

Step (¢). Consider the Hamiltonian
1

S(r) == / bi(T, @, ) 2% de = Sy + €278y + 37283 + S4(1), b : £h1
T

1 1 1
Sy = 5/51 22dr, Sy:= _Z/am(ﬁf)f dr, S3:= 5/51(61)iz2dx, (7.21)
T T T

with Sy(7) ~ O(73e*) and for some function 3; of the form (6.36) with p = 1 and some coefficients (31);, j € S, to
be determined. The Hamiltonian system associated to S(7) is of the form (7.I1) with b ~» b;. We call B; the flow at
time-one generated by S(7), then the Hamiltonian of the conjugated linearized operator B; £, B; " is (recall (6:31), (6:32)
and Remark[7.2))

HoBi' = Ho+eHM + 2H 4+ 3HY +0(e®),  HY = {S), Ho}e + Hy, (7.22)
1 1
H = {51, {81, HobeJe + {S1. Hi}e + 5 {2, HoJe + Ha 4 Hz, | (7.23)

where, by Lemma H él) is some pseudo differential 3-homogeneous Hamiltonian of the form (6.33)). Notice that also

H fl) and Hél) (for n = 0) are pseudo differential and 1—homogeneous, resp. 2-homogenenous, Hamiltonians according
to Definition[6.7] We want to solve the following equation

HY = Hy + {S1,Ho}e = Hi + {S1, Ho} + @ - 0,5 = /%1(2) zdz, (7.24)

where 9B is some pseudo differential operator of order —2. Recalling (6.32)), and expanding {S1, Ho} as in the proof of
Lemmal6.9] we note that the equation (7.24) is equivalent to the following one

w0y — (B1)e =V =0. (7.25)
Hence we choose 81 = £(Ad,)~'v and we note that
B3 Ss 1, Vs> s0. (7.26)
With the choice in (7.23)) we have
B, = [3A0,, B1]. (7.27)

In this way the Hamiltonians in (7.22)), (7.23)) become
1 1 1
Hgl) 2:/%1(2)2d{£, Hgl) = H2+§{SQ,H0}6+HR2 +5{51,H1}+§{51,/%1(2)2d1’} (728)
T

By the smallness assumption of Lemma [C.1]is satisfied. By (6.17), (6.21)), (6.22)) and using the assumption (6.12)

with p; sufficiently large the condition (C.13)) holds. In this case g ~» 0 (see (C13)).
Then Proposition applies and the new linearized operator £, := B;£,B; " has the form in (7.16) with i = 1 and
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¢1 = 0. By [726), (6:21), (C-19), (C-17), (6.13), we have that Q; € £, ,(O) (see Definition|C.5) (with p, p satisfying
(7-13)) and (7.18), (7.19) hold for i = 1.

The only estimates that are not given by Lemma [C.2] are (7.17). The coefficient a; is given by (C.I7) with m ~ 1,
a ~ ag, ay ~ a; and 3 such that z — x + ﬁ is the inverse of x — x + (1. By the choice of 1 in (7.23) we have
eliminated the e-terms from a;. Hence by (7.26) and (6.17) we get (7.17) for i = 1.

Step (c?). Now we deal with the terms of order €2 of the Hamiltonian (6.31). We consider the auxiliary Hamiltonian

a 1 2 2O T 2/82

S(T)=2/Tb2(ac,<p)z dx =e*Sy + S4(1), bo = 1+752(ﬁ2 ﬂzz dz, (7.29)
where S, (7) := S(r ) — 285 ~ O(7e*) and 3 is some function of the form (6.34), with p = 2, to be determined. Notice
that (9,5)(0) ~ O(g*). The Hamiltonian system associated to S(7) is of the form (7.11)) with b ~» by. If By is the flow
at time-one generated by S(7), then the Hamiltonian of the conjugated linearized operator Ly := ByL1 By is (recall

7.22).(728).(7.14))

HoB o Byt =Ho +eHY +e2HY) + &HY + o(?)
H = HY 4 (o, HoYe,  HEY = HYY 4 (S5, HIVY. .

We want to solve the equation

(7.30)

H§2) — H(21) +w- a(psb —+ {SVQ, HO} =c+ / %Q(Z) zdr + H'RQ, (731)
T

where B, is some pseudo differential and 2-homogeneous operator of order —2 (see Definition [6.6)), ¢ is some constant
to be determined and Hg, (possibly different from the one in (6:31)) is a Hamiltonian with the form (6.33). By Lemma

We have that H" + {85, Ho} can be written in the form (8-33) with, in particular (see (6:24) for the definition of W)

1 1
f2(0) ==, (v) + 8mr(ﬂ1) ﬁle + 2”(61)1:7 (7.32)
and some B, € OPS~2, asin Deﬁn1t1on. up to a finite rank remainder. Hence the equation (7 is equivalent to
W+ 0pB2 — (B2)z + [2(0) = c. (7.33)

Since f3 in (7.32) has the form (6.36) with p = 2, we look for a function (2 of the same form in (6.36) with some
coefficients (02),, j, € C. Hence equation (7.33) reads

(A1) + AG2) = G+ 52)](B2)jrgo + (f2)jrgo = 0, for  A(j1) + A(j2) — (j1 + j2) # 0,
(f2)jrgo = ¢ for A(j1) + A(j2) — (j1 +j2) = 0.

We have that, for ji,jo € S, A(j1) + A(J2) — (j1 +72) =0 if and only if j; + jo = 0, since j1jo # —1. The terms with
j1 = —ja corresponds to the average in z of the function f5(7). Hence we set

/ f2(T (7.35)

and we evaluate explicitly it. The functions U5 (7) and am(/sl) do not contribute since they have zero average in space.
Recalling that 8; = % (Ad,)~'v we have

/fg(ﬁ)dx = 3/ ((A*laglam 5 — (A0 '7) .m)dx = 1/(1\*1@) 7dz & 1/(@2 +72).
T 6 Jr 3Jr 3Jr
Then the constant ¢ = ¢(w) (recall the @IT)) in (7.33) is given by

(7.34)

1 ‘ 2 )
W) =32 0+& =3 > 1+ (7.36)
JES jeSsSt
By noting that
I€2B2117°C Ss €2 Vs > s0, (7.37)

by (7.18)-(7.17) with ¢ = 1 and using the assumption (6.12)) with p; sufficiently large the smallness assumption of Lemma

[CI]and the condition (C.13) are satisfied. In this case q ~~ qi, hence by (7.18), the bounds (C.13), (C.14) hold with

ky ~ €, kg ~ €, kg ~ ¢, f ~> TJ5. Then Propositionapplies and Lo := <I)2£1<I>2_1 with ¢ = 2 and ¢a(w) = ¢(w)
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given in (7.36). By (7.37), (6.21), (C.19), (C.17) we have that = £,,(0) (with p, p as in (7.13)) and (7-18), (7.19)
hold for i = 2. By (7.37)), (7-18)-(7-17) for i = 1, (C.20), we have that (7.18)-(7-17) holds for i = 2.

Steps (¢2)-(¢*)-(¢®). Consider i = 3,4,5. We proceed exactly as in the previous steps. We consider a change of
coordinates 3; as the time-one flow map of

ur =Tg[(Jobi(m) ul, bi= Hif(ﬁ)

for some smooth function 3; of the form (6.36) (with p = i) to be determined. Using Lemma [6.9] for the Hamiltonians of
order €%, i = 3, 4, 5, we can choose f3; in order to solve an equation like the following

W 0,8 — (Bi)z = fi(V), (7.39)

where f; is a homogeneous function as in (6.36) (with p = ). The condition (T.13) implies that the equation for
1 = 4 is solved up to remainders of the form

(7.38)

d(w) = d(Ew) = Y d(j1,42).5 - (7.40)
J1,j2€8
By (A.3) there are no small divisors for if i = 3 ori = 5. By (7.18), and by noting that
I€8:117° Ss ' i=3,4,5, Vs > s, (7.41)

the smallness assumption of Lemma [C.1] and the condition (C.I3) are satisfied for the system (7.38). Arguing as in the
previous steps we obtain that L5 := BsB4L38; ' B * has the form withi = 5 and ¢5 = 3 +£2d(€). Moreover the

bounds (7.18)-(7.17) hold for i = 5.

Remark 7.3. Since the symplectic maps B;, i = 1,...,5 are smooth in €U (see (6.23) and Remark[7.2) and the Hamilton-

ian H has the Taylor expansion (6.31), then the operators Op(as), Qs in (T-16) may be expanded, in degree of homogeneity
of €U, in the following way (see Remark|[C.3)

3 3

Op(as) = > e'af’ +afY, Q5= 0 + QY
i=1 i=1

with

>4)v,0 ~ 17,0 ~ 17,0
5™ 70 S €+ T8I0 MG () Sep € el 35357 (7.42)

1,s,a ~S,x )
5

for some o > 0. Following Remarkthe /Q\(;), @524) are in £y v, as is habitual we rename them p, p.

. . . > > .
By (631)) and the fact that the generators f3; in (T.10) are Js-independent, it is clear that o{=* and O contain
terms of size *, which are functions just of v, and terms dependent also on Js of "size” O(g||Ts||s+0 ), see the estimates

(717), (T18), (T.19). By the uniqueness of the Taylor expansion we have that 3 ;_; & (qéi) + @S)) coincide with the
vector field — Z?:l e? JV K; where, recalling (7.22), (7.30), (7.23), ({7.36),

Ki=HY 2o+ Ky =HP,  zg:=AL-n+ @/% dz (7.43)
T

and K3 is some pseudo differential 3-homogeneous Hamiltonian as in (6.39) with the corresponding function f3(v) = 0.
Now we apply Proposition 3.6 in [33] (or Corollary 3.6 in [31]) in order to make constant the coefficient a5 of the

linearized operator L5, namely we find 3 such that
w0y — (14 e?c(w) + e*d(w) + as(p,z))(1 + B;) = constant. (7.44)

Note that, by (7.17) with ¢ = 5 and (6.12)), the smallness condition (7.12) is satisfied by the function as. We have the
following.

Proposition 7.4. There exists () (¢, ) such that (¢, z) — (p,z + () (¢, z)) is a diffeomorphism of the torus T*+1
with the following estimates (recall (T.3)),

022 - .0 - ~ o
S S MasllSr s, Vs> so, |A128|, Spey M1+ ||J6||p+;)||21 - 12||p+f;v (7.45)
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Sor some G > 0, and the following holds. If § is the function such that (p,z) — (o, x + B(p,x)) is the inverse of the
above diffeomorphism and Bg is the flow of the Hamiltonian PDE

p
s =M1&[(Job , b(r) :=b(r, 0, 2) = : 7.46
ur =Hg[(Tobm)uw],  b(r):=br.¢,2) = 77 (7.46)
then the conjugated of the operator L5 in (T.16) with i = 5 is
Lo:=Bo L5 B85 = 1I% (w L8, —mJ + 96) : (7.47)
where Qg = Op(qg) + @6 is of order —1, as in Proposition and m is a constant such that
Im — 1 — e%c(w) — etd(w)|” <972, |Iml'P <1, |Aram| S ellin — i2lsgr2, Yw € OX. (7.48)
Moreover, for any s > sy,
o7, Se e+ 13617) |A1296] Spev A+ 1135l )i — a2l 5 (7.49)
61 -1,5,0 s sllgio ) 1296|-1,p,a0 p €Y Sllpya/lite — 220l 5 .
and @6 € L, p for so < s < S, satisfies
M (s,b) S e(1+ 9] 7%), 0<b<p-2, (7.50)
6 s+o
M, 5,00 Sperv '+ 13l )i —d2ll, 5, 0<b<p-3 (7.51)

With o = oo+ 09 + p+ 81 — So for some oy, possibly larger than og (recall with 1 = 5 and sy given in Proposition
3.6 in [33]).

Proof. The first order linear differential operator (recall (7.36)), (7.40))
w0y — (14 c(w) +e*d(€) + as(p, 7)) 0, (7.52)

defined on HZ, (T**1) is associated to the vector field on T***

0 0
Xo:=w- 5 (1+€%c(w) +*d(&) + as(p, 7)) i (7.53)

For p; in (6.12) large enough, i.e. if p; > 0o + 51 + 03, and by (7.17) with i = 5, we have
2y
Cls1)7 Has |37~ < Csn)e' ™ = 5" <1,

provided that ¢ is small enough. This is the condition (7.12)), hence Proposition 3.6 in [33] applies to the vector field
(7.53). Thus there exist 5(>) and m such that the bounds (7.45), hold. In particular the second bound in
follows by Lemma 3.7 in [33]. Moreover the operator (7.52)) conjugated by the transformation

Thr : w0, ) = ulp, @ + B (p,2))

is associated to the vector field

(Taee) )+ Xo = w - 9 + (Taeo) ™" (W 10,8 — (14 %c(w) + *d(€) + as(p, z) (1 + 59(500))) é% ;

dp
and by Proposition 3.6 in [33] we have that
w- 9,8 — (1 +e%c(w) + etd(w) + as(p, x))(1 + L)) = —m., (7.54)

By Lemma 11.4 in [T] the function 5(>) satisfies the bound (7.45). By (7:43) and p; large enough, for £ small enough,
the function 3(°°) satisfies the smallness condition of Lemma|C.1] indeed

O _ 7(')2;! _ ~ O (6.12) _
185G, < Clsy M asl i Tasarea = Cls)v (S +elBslySe,) = Clspet=. (755

Hence Bg is well defined. By (7.17), (7.18), (7.19), i = 5, the bounds (C.13), (C.14) hold with k; ~ €%, ky ~ ¢,
k3 ~ ey~ ! and Propositionapplies and the thesis follows. |
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Let us define
62266085034083082061. (756)
Then the Hamiltonian of the operator Lg is (recall (6.31)), (7.43)) and (7.47))

K:=HoB !'=Hy+eck;+¢? (Zo + /Cz) + &3 K3+ o(e%), (7.57)

Notice also that {Hp,Zo}. = 0. The expansion (7.37) allows us, together with Remark to give a more precise
expression of the remainder Qg in (7.47). This is the content of Lemmain the next section.

7.2. Linear Birkhoff Normal Form. The aim of this section is to eliminate /', K3 and normalize the Hamiltonian Ko
from (7.57). Our first point is that the —1 smoothing remainder o(e*) belongs to a special class of operators defined in
Definition and denoted by €_; . It turns out that this class is preserved under the changes of variables used in the
linear Birkhoff normal form procedure (see Lemmata [C.8] [C.9).

Remark 7.5. In the following steps of linear Birkhoff normal form we shall use the relation

S ali+i —i=0, i [(|<3, Vj j €5°, (7.58)

=1

which holds by the conservation of momentum.

Lemma 7.6. Recall (7.47). We have

Lo =105 (w-0p —mJ —eXx, —* X, — * X, +R) (7.59)
where Xy, := JVK;, i = 1,2, 3, are almost diagonal and in € _1(O2) (recall Deﬁnitionsand satisfying
Bl ok, (8) S€"Cls), k=1,2,3. (7.60)
The remainder R belongs to €_1(02) and satisfies
Ri= Qg +eXk, +°Xx, +° X, - (7.61)
Bh(s) Ss €% 4oy 172, Bawm(so) Sev i —all,, 5 (7.62)

for & given in Proposition

Proof. By the discussion of subsection Ki, i = 1,2,3, are of the form (6.35) with f; = 0 for ¢ = 1,2,3. Hence
the vector field X, are pseudo differential of order —1 up to a finite rank term. In addition, they are almost diagonal
by (6.34) and the momentum condition (7.58). By Lemma|C.8}-(ii) e Xx,, &% Xx,, &> Xk, belong to €_; and, by (7.27),
(7:26), (7:33), (7:37), (7-41), satisty (7.60). By Proposition [7.4] the choice of p as in (7I5) and by Lemma|C.8} (i) taking
p = sp and p; large enough, Qg € €_;. Thus R € €_;.

Note that only Qg in (7.61)) depend on the torus embedding i5, then the second bound in (7:62) follows by Lemmal[C.8} (i),

(i1), (7:49) and (7.5T1). To prove the first bound in (7.62) we reason as follows. By (7.43) and (7.17) with i = 5 we have
that

020 - —1)~ 17,0 02 -
1BNTOR Sy ey ey TSI o 1BNLE S et (763

Then the map Bg leaves invariant (using Remark the terms of size ¢, 2, &3 in Ls, and hence, by Remark [7.3| those
terms in Qg are given by —eJV K1, —2JV Kq, —e3JV K.
From the proof of the bounds (C.18), (C.20) in Propositionone can notice that the operators Op(qg) and Qg admit a
“formal” expansion in 3(°°) (by expanding the flow in 7). Of course, by the discussion above, the biggest term in 9 are
the ones which are linear in 3(°°). Such term comes from the conjugation of L5 under the map B, more precisely from
the conjugation of

(J — 0) 0o (1 +e%c(w) + e*d(w) + as (e, ).

We refer to the formula (3.11) in Proposition 3.1 of [33] to see the term bounded by the norm of 3(°°). Comparing the
bounds (7:63) and (7.42)) one can deduce the first bound in (7.62). O
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In order to normalize the vector fields £'.JVK; we will look for changes of coordinates T; generated as one-time flow
of quadratic Hamiltonians H,, described by almost diagonal matrices A; (see (C.47), (CA48) ,(C-49), (C:50)). We remark
that the Hamiltonian £2Z; is left invariant by these changes of coordinates, since {Hyp,Zp}. = 0. At any step of the
procedure we shall verify that JB; (see (C.49), (C.30)) are almost diagonal and belong to €_; in order to apply Lemma
[C:13] which guarantees well-posedness and tame estimates of ;.

Step one (order ¢). At this step we want to eliminate € X, from . ‘We have
KW = CoYT! = Hy + eV 4 2 (z0 n /cg”) + 3K +o(e?) (7.64)
K = Ky + {Hay Hobe = K1 + @ - 9, Hy, + {Hy,, Ho},
K8 i Koo S (i, Hol b+ (i K)o (1.65)
=Ky + %{HAI,IC?)} + %{HAl,Icl}.

‘We choose A; such that

K" =@ 0,Hy, + {Hy, ,Ho} + Ky = 0. (7.66)
Recalling that K1 := H{", we have (see (7.27). (7.28))
Ki(w)= > (B1)] () ujruj. (7.67)
jj'ese

Then we choose By = B, in (C:49). By recalling the definition of B4 in (7.27)) it is easy to see that JB; € €_1, since it
is a pseudo differential operator of order —1. Moreover it is almost diagonal because J, 3A0,, are diagonal operators and
(1 is a function supported on the finite set .S.

Given X € €_; to shorten the notation in the following lemma we write (recall (2.3))

adx|[]:=[X,]. (7.68)
Under this notation we have the following lemma.

Lemma 7.7. The transformed operator is (recall (7.59), (7.64))

Lrh = Tlﬁgrfl = HJS‘ (o.) . 89@ —mJ — 62XK<21) - 63X}C§1) + R7) (7.69)
where
1
X = IVESY = X, + adx,, [Xx,] + zad%,, -9, —mJ], (7.70)
1 1
Xy = JVESY = X, + adx, [Xx,] + 5ad%, [Xe,) + gadk, (w0, —mlJ], (7.71)

the operator Ry € €_1 with
—3a — ,O — . .
Bh, (s) Ss e+ ey 36175 Bawr.(s0) Sev (14 [1Tsllsora) lin — dallsyra, (7.72)
for some & > G (recall the loss of regularity in (T.49), (7.50), (7.51)).
Proof. By using (C.58) we have that formule (7.70), (7.71)) hold and that

2
R7:=R+ceadx,, €% Xy + R] + %adiﬁn [~e* Xk, — * X, + 9]

, " (7.73)

ForY € € define Z,, := 3", %ad];(h [Y] for any n > 1. By Lemma and using (C:34), we deduce that
IB%}R (s) Ss C(s,n)By (s0) + C(s0,n)By-(s)

(7.74)
Ba,,z,(50) S C(s0,m) (BY(SO) + BAIQY(SO))
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for € small enough. In (7-73) there are terms of the form ad%, [Y7], for some k > 1, with Y = Xy, X, , Xc,, % which
belong to €_; by Lemmata[C.8|and[7.6] We note that by

ady, [w-0, —mJ] = —eXk, — (W= W) 0p Xy, — (m —1)[Xy,,J] € €4 (7.75)

since A; is almost diagonal. Hence (w — @) - 0, X4, , [Xa,,J] € €_; (see the proof of Lemma |C.13) and by Lemma
(ii7) the remainder R; € €_1. By (7.73), (C.43), (C:44), (7.74), (7.73), (7.60), (7.62) and the fact that |w — ©| < &2
we get the bounds ([7.72)). O

Step two (order =2). At this step we want to normalize £2.X KD from (7.69). We have

K@ = KW 0Tt = Ho + €2 (zo + /C;Q)) +3KP +0(e®), KP i={Hy, Hole + KV, (7.76)

where k") is given in (see also (7.70)). We choose A; in order to solve the following equation
D OpHy, + {Hy Ho} = K57 — Ty K3 - (1.77)

Hence we choose By = VHRg H )IC( ) in (C.49). Note that Xy, is pseudo differential of order —1 and JA;, Xi,
belong to €_; and so also their Poisson brackets Hence JB, € ¢_;. By Remark @ we have that JB, is also almost
diagonal.

In order to perform the third step in the linear BNF we need to explicitly compute the corrections O(¢2) coming from

HKer(HO)’Cél)' The point is that a priori, it is not clear whether the resonant terms HKer(HO)’Cél) are supported only on

trivial resonances. Our approach is then to show that the normal form we obtain must necessarily coincide with the formal
one, which is relatively easy to compute.

Definition 7.8. Recalling the notations used in Section |3} we denote by 119=<F, respectively 11%==F, the projector of a

homogenous Hamiltonian of degree n on the monomials with degree less or equal than k, respectively equal k, in the
normal variable z, i.e.
HdZSkH(n) — H(n,gk)7 Hdz:k:H(n) — H(n,k}).
We denote by i, the projection onto trivial resonances (of the form B.11)), i.e. monomials of the form
UjU— Ui U—g o o URU— [

The following proposition allows to easily compute the resonant terms HKer(HU)ICgl) in (B.17).

Theorem 7.9. (Normal form identification). Consider the symplectic change of coordinates A. in @7). Then

| (ZO . Kél)) _ [HtriVHdz:2<% (3®, H(s)}ﬂ o Ay, (7.78)
0

where Ay := A, _ , Hoisin (6-32) and we set (recalling @A) §® = [ad g | " H® with H®) in @.1).
Proof. The proof is postponed to the Appendix U
As a consequence of the identification above, we have, by (7.78), (3:21)), @)

(5 s 2 4 Mg K8) = & 32 (7.79)

jeSse ]ESC
where (recall (I.8))
= A2 + J) -2y U A+ PB4 (7.80)
< A(J2) +AG) = AG2 +4) 73 A2 (3475 —j2g +52) (345 + j2g +5%)7
j2€ j2€S
We define the diagonal operator (recall (7.36))
D :=9(§) = diag (ik;)jese, ki =A(j) (; — c(w)) € R. (7.81)
Lemma 7.10. We have
Ry =AG) (G =), illsgl <€ Vjess, (7.82)

for an appropriate constant C > 0 depending on the set S.
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Proof. Recalling the definitions (7.36) and (7.80) we have, for j € S¢,

(1+46)(7 + 54 + jg + 35°) P()

2
b =5 2 BT E i PG R T P Q) 789
It is easy to prove that |A(j)| < 4[j], 3+ j& + j% £ joj > 35% and (1 + j3)(7 + 553 + ji + 35%) < 14j5j2. Hence
() S WY jes 46 O
Lemma 7.11. The transformed operator is (recall )
L= Yol T5! = I1L (w 0, = mJ — £2D(€) — £ Xy + Rg) (7.84)

where ICgQ) = ICél), D (&) is the diagonal operator of order —1 defined in (T81)), Rs € €_; satisfies

B (s) Ss 7% + ey T3 Bawrs(s0) S ey 1+ Tsllsora)llin — d2llsotas (7.85)
for some & possibly larger than the one in Lemmal[7.7}
Proof. The proof follows by using the same arguments of the proof of Lemma([7.7] In particular, expanding the left hand

side of (7.84) using (C.38) we get
2k

e
Rs = Ry +c’adx,, [-*D(£) — €3X,C§2> +Rsl+ Y —r 24, [Lr]. (7.86)
E>2

By (7-77) and Theorem[7.9| we have that
ady,, [w- 0, — mJ] + K& = —=D(€) = (w =) - 0pXay — (m — 1)[Xa,, J].

By (7.10) ©(£) € €_; and by the fact that A, is almost diagonal we have that (w — @) - 9,Xa,, [Xa,, J] € €_;1. Then
Rs € €_;. The bounds (7.83)) are obtained by using the estimates (C.43), (C:44), (7.74), (C.54) and (7.72). O

Step three (order £%). At this step we eliminate e X > from (7.84). Recalling that IC:())Q) is given in Lemma|7.11| we
3

have
K® = K@ ors!' = Hy+ 2K + 265 + o(e?),

g? (7.87)
K5 = {Hyg Ho + €248 -0+ 5 3 ()2 25} + K57
jeSe
Note that we consider in the normal form also the £2-terms. We want to solve the equation
2
€
Do te2aeHa + {Hag, Ho + 5 ST 4Oz 2 + K =0. (7.88)

jeSe

Hence we choose the matrix B3 := VKél)(u) (note that IC:(,,I) = Ing)). Recalling (7.71])) it is easy to see that JB3 is sum
of Lie brackets of elements of €_;, hence by Lemma@it belongs to €_;. By the fact that 4; is almost diagonal and by
Remark[6.5] we have that /B3 is almost diagonal.

Lemma 7.12. The transformed operator is (recall (7.69))

Lo =MoLy M5! =11k (w0, —mJ — *D() + R ) (7.89)
where D (€) is the diagonal operator of order —1 defined in (T81), Ro € €_; satisfies
By (s) Ss €72 + ey M 31200, Baro(s0) S i —dallsots » (7.90)

for some & possibly larger than the one in Lemmal[7.11]
Proof. The proof follows the same arguments used for proving Lemma[7.7] By (C:538) we deduce

1
R :=Rs + {:?gadxAS [7€3XK(32) + Rs] + Z Ead];% [Ls]. (7.91)

k>2
We note that by (7.88) we have (recall (4.3)) and (7.36))
adx,, [w+ 0, —mJ — 2D(¢)] = 53XK(2> + (w— @ — e2A) - Ophs — (m —1— e2c(w))[Xa,, J] € €1,
3
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since A3 is almost diagonal . Hence the bounds (7.90) follows by (C:54)), (7-83)) and by using Lemma|[C.9] O

Proof of Theorem We choose (11 = & given in Lemma We consider p and p; so that
so+p1—0>p>sg, o9gtogt(s1—80)tor+tp+1<a, g <p1, (7.92)

where & is the loss of regularity in Lemma([7.12] o has been introduced in Section[7} see estimates (6.17)- (6:22), o1 > 0
and s; are given respectively in Lemma|C.1]and in Proposition 3.6 in [33].

We define the map (recall (C48)), (7.36)

T:="T30T50T108B.
By Proposition [7.4] the map B is defined for w € 02 (see (7.3)), and so also Y. By (7.26), (7.37), (7-41), (C53). (C-34),
(743), (7.17) (with ¢ = 5) and Lemma|[C.T] we have (7.9).

The result follows by setting £ := Lg (see (7.89)), Py := Ry, and m is the constant given by Proposition [7.4} Indeed

(7-48) implies (7.2) and (7.6). Moreover, by Lemma [7.12] we have that Py € €_; and satisfies (7.90). Lemma
implies that Py is —1-modulo tame together with by derivatives in the variable ¢ (recall the Definition [C.32]and the fact

that 73/2 < ~). The bounds (7.7), (7.8) follow from (C:43)- (C46) , the definition of B}, (s) (see (C:32).(C:34)) and
(790). By Lemma[7.10| we deduce (7.3). O

7.3. KAM reducibilty and Inversion of the linearized operator. In this subsection we prove the claim (6.9) by diago-
nalizing the operator £ in (7.4). We first write

Li=w-d,~My, My:=Dy+Py, Dy:=diag(id )jes:, d :=d”(w)=m(w)A()+ek;j(w). (7.93)

Notice that (by the smallness condition (7.94)) Proposition 4.1 in [33] applies to the operator £ in (7-4). Hence by
following almost word by word the proof of Theorem 1.7 in [33]] one has the following.

Theorem 7.13. (Reducibility) Fix 7 € [y*/%/4,4~%/?]. Assume that w + is(w) is a Lipschitz function defined on

O C . (recall (6:3)), satisfying (©12) with p1 > py where py := py(v) is given in Proposition[7.1] There exist
8o € (0,1), No > 0, Cy > 0, such that, if (recall that by @8) v = £2*¢)

NOCOE473G’}/73/2 _ N0C'0617(9/2)a < 6o, (7.94)
then the following holds.
(i) (Eigenvalues). For all w € ). there exists a sequenceﬂ
A5 (w) = d° (w, 15 (W) = m(w, i5(w)) A(J) +€%hj(w) + 757 (w, is(w)),  j € S, (7.95)
with m and r; in (T4R) and (T81) respectively. Furthermore, for all j € S¢

sup([ri 77 S et e = o (7.96)
J

All the eigenvalues 1d3° are purely imaginary.

(ii) (Conjugacy). For all w in the set

N 3 25
0O = 0 (i) := {w €0X i |w- L+ dP(w) — dP(w)| > # Ve TZY, Vi k€S j# k} (7.97)
there is a real, bounded, invertible, linear operator ®o(w): HE . (TY 1) — HE, (T 1), with bounded inverse
® L (w), that conjugates L in (T.4) to constant coefficients, namely

Loo(w) i= Pog(w) 0 LoD (w) =w -y — Doo(w),

. oo (7.98)
Do (w) = diag;ege{id;° (w)}
The transformations ® .., P are tame and they satisfy for so < s < S (recall j11 in Theoremm)
2,02 0 - - oy 0%y A-a, - 2.0
[(@X = Dnll So (472072 4+ ey 2135|250 115, +et 32 ) ~ (7.99)

Moreover @, D are symplectic, and L, is a Hamiltonian operator.

4Whenever it is not strictly necessary, we shall drop the dependence on 5.
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(ili) (Dependence on is5(w)). Let i1(w) and iz(w) be two Lipschitz maps satisfying (6.12) with J5 ~ ix(¢) — (¢,0,0),
k = 1,2, and such that
i1 — izl sgps S PN~HY (7.100)
for N sufficiently large and 0 < p < v*/% /4. Fix v € [v*/%/2,27/?] and v5 := v1 — p. Let rj(oo)(w, ir(w)) be
the sequence in (T93) with 5 ~ ~y, for k = 1,2. Then for all w € Q12 (i1) we have, for some k > (3/2)7,

¥ Arem| + sup ()| Areri™| < ey i — dallsgsp, + TN (7.101)
J

Proof. The proof of items (7)-(i7) follow by Theorem 1.9 in [33]]. The only point left to prove is item (iii). We apply
Theorems 1.4, 1.5 in [33]]. We have that

7 m ) (iz) = m(in)| + )™ (i2) =7 @) S e in = s+ THNTE (7102)
where s > 7. Here m(™) (iy), r ( )(22) are defined in (1.39) of [33]] and they are an approximation of m(is) and r( )<i2)
satisfying

v Hm M) (i) — m(iz)| + () r™ (i) — {7 (i) S 173N (7.103)
The bounds (7.102)), (7.103) imply the (7.107). O

7.4. Proof of the inversion assumption (6.9). We are in position to give estimates on the inverse of the operator L, in

(6:13). Let us now define (recall (3.3))

2
Fl(is) ={w € Op: |lw- € — d*(w)| > o Ve e 7V Vj e S} (7.104)

We deduce the inversion assumption (6.9) by the following result.

Proposition 7.14. Assume the hypotesis of Theorem[713] (6.12) with p1 > p1 + 27 + 1, where p is given in Theorem
Then for all w € Qs = Q2 (i5) N F2(i5) (see (TI7), for any function g € HET*™ (T 1) the equation
th = g has a solution h = ﬁwlg € Hg, (Tv*+1), satisfying
_ _ Qoo _
125 al77 So v gl s + ey 21351757 191 37)- (7.105)
Proof. We conjugated the operator £, in (6.13)) to a diagonal operator Lo, = xL,x !, see (7.98), with (recall and
Theorem[7.1) x := P, o T. Moreover, by (7.9) and (7.99) we have the following estimates
el 5 :

A

S+
We have 90
Llg=) Tt ) (7.106)
; l(w -l — d;’c(w))
and then || L g7~ < v s+27+1 Thus we get the estimate (7.103). O

8. THE NASH-MOSER NONLINEAR ITERATION

In this section we prove Theorem[5.4] It will be a consequence of the Nash-Moser theorem 8.1}
Consider the finite-dimensional subspaces

B, = {3(p) = (0.4.2)(¢) : © = 11,0,y =Ty, 2 = TI,,2}

where
N,:=NYX", n=0,1,2,..., x:=3/2, Ng>0 (8.1)
and II,, are the projectors (which, with a small abuse of notation, we denote with the same symbol)
I1,0(p Z Oy et ? I, y(p Z ygew“",whereG Z@gele“’,y ):Zygeie'“’
[l|< Ny, [£| <Ny Lezv Lezr
(8.2)
IL,z(p, ) := Z 205 9T where  z(p,x) = Z 2 €EPTIT)
1(€.5)|<Nn €Ly jeSe

We define IT;- = I — II,,. The classical smoothing properties hold, namely, for all o, s > 0,
T30 355 < N (13611279, VI(w) € H . |T3)3° < Nyo9)2S, VI(w) € B (8.3)
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Recall (3.3), (.8) for the definition of b we set a := 2b — 2. We define the following constants

aO;:3M—|—37 OtZ:3OCO+1, O[l::(a_gu)/Q’
i ) e (9/2)a> 1-(9/2)a (84)
ki=3ao+p7)+1,  Pri=6ag+3p™ +3, 3 Cilta)) S Clita)

where p := u(v) > 0 is the “loss of regularity” given by the Theorem and C is fixed below.

Theorem 8.1. (Nash-Moser) Assume that f € C™ (see (1.3)). Let T := 2v+6. Then there exist C1 > max{ag+a, Co}
(where Cyy := Cy(v) is the one in Theorem , 00 := 0o(v) > O such that, if

Ngleb*+17_7/2 <6y, yi=erTr=¢® Ny:=(ev Y, b, =9-2b, (8.5)
then there exists C, = C(S) > 0 such that for all n > 0 the following holds:

(P1),, there exists a function (J,,,(,): Qn CQ = By xR we (Tp(w), Ch(w)), (Jo,¢) :=(0,0), E_q := {0},
where the set Gy is defined in (5.7) and the sets G,, for n > 1 are defined inductively by:

27,
Gni1 1= ﬂ AY L with ALY = {w €Gn: |w-l+mlin)j| > Vje S le Z”}

<€>”

. 279
AD), = {w €G- L+dP(in)| > ﬁ

Ay = {w € Gn: [w £+ d(in) — diF(in)| >

Vje S Le Z”} , (8.6)
9~3/2
Z@ Vi keSe Ak e ZV} :

where 7y, = (1 +27"), 45 = /21 4 27") and d°(w) = d°(w,in(w)) are defined in (T.93) (and

ds° (w) = 0). Moreover |, SINFU)NL
~ 5g’!1, * - 5g77. *
HJn”ZO—i-p S C*gb Y 17 ||-7:(Un)||30+#+3 S C*eb ) (87)

o~

where Uy, := (in, Gu) with i, () = (p,0,0) 4+ J,,(¢). The differences J3,, := J,, — J,_1 (where we set SO :=0)
is defined on G,,, and satisfy

31125, < Cue® ™, [13al15 < Cue®yINY, Wn>2. (8.8)

(P2)n IF (U In < C,eP N, % where we set N_y = 1.

] - )g'n, %
(P3)n (High Norms). (3,737, < Coe "INk | and | F( ,L)||ZO_Hal < C.e*NF_|
(P4),, (Measure). The measure of the “Cantor-like” sets G, satisfies

9\ Go| < C.e®¥ V| 1G, \ G| < CLe®HAN L (8.9)

Proof. To simplify the notations we omit the index ~, G,, on the norm ||-|5.
Proof of (P1)o, (P2)o, (P3)o. Recalling (5.10), we have, by the second estimate in (3.13)),
IF(Uo)lls = IF((#,0,0),0)ls = | Xp(¢,0,0)[ls S5 ™.

Hence the smallness conditions in (P4 )o, (P2)o, (P3)o hold taking C. large enough.
Assume that (P1)n, (P2)n, (P3)n hold for some n > 0, and prove (P1)n+1, (P2)n+1, (P3)n+1. By €4) and €-3)
NOClEb*+1,y—7/2 _ E1—(9/2)(1—/)C’l(l-‘,-a) < d

for £ small enough. If we take C; bigger than Cy in Theorem then holds. In (6.12) we consider po = p1 + P,

where p1 := p1 + 27 + 1 and p appears in (6.3). Since p > po implies (6.3) and so (6.12), and Proposition [7.14]
applies. Hence the operator L, := L, (w, i, (w)) in (6:13) is defined on Oy = G,, and is invertible for all w € G,, 11 since

Gni1 C Q2 (zn) N F2 (i) and the (7.103) holds. This means that the assumption (6.9) of Theorem [6.1|is verified
with Qoo = Gp41. By Theorem-there exists an approximate inverse T, (w) := To(w, i (w)) of the linearized operator

Ly (w) :=DF(w,in(w),(n) = DF(w,in(w),0), satisfying (6.10). By (83), (8-7)
HTngHs N (”g”eru +ev 5/2{||Jn||s+u + 7_1H~Jn||80+ﬂ||]:( )||S+H}||g||80+u) (8.10)
ITngllso S 1gllso+s (8.11)
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and, by (6.11), using also (8:3), (8-7), (8-3),

I(Ln 0 T = Dglls S~y 2UNF Un) lsoullgllstn + 1IFOn) sl gll o+

+ 72| TnlloruIFUn) s allgllso) (8.12)
1(Ln © Tr = Dgllsy Sy 2N F U)o+ + Ty F(Un)lsot1) 191 50-41 (8.13)
S 2N (IF U)o + N ™ IF U)o, ) s - (8.14)
Now, for all w € G,,+1, we can define, for n > 0,
Upir:=Up + Hny1, Hpp1 = OnitsCns1) = —IL,T,IL,F(U,) € E, x R” (8.15)

where T1,, (3, ¢) := (11,7, ¢) with IT,, defined in (82). By construction we have
F(Uny1) = F(Un) + LnHpy1 + Qn,
Qn =QUn,Hyy1), QU,,H)=FU,+H)-F{U,) —-L,H, HeE,xR".
Then, by the definition of H,, ;; in (§.13), using [L,, II,,] and writing IT,- (7, ¢) := (T3, 0) we have
F(Ups1) = F(U,) — L LT, 0, F(Uy) + Qn = F(Uy) — LT ILF(U,,) + LT, 1L, F(U,) + Q,
= F(Un) = M Ly T I, F(Un) + (LTl — T L) ToIL F(Uy) + Qp = My F(Up) + R + Qn + Q)

where ~
R, = (L7 — 1L L)T,IL,F(U,), Q) :=—1,(L,T, — DIL,F(U,). (8.16)
Lemma 8.2. Define
wp = ey I FUnllso s Brni=ey U Tnllsors + v IFUn)llsors - (8.17)
Then there exists K := K (sg, 81) > 0 such that, for all n > 0, sefting ag := 3+ 3
Wpi1 < KNP =PiB 4 KN®w? | B,y < KNt 'B,. (8.18)

The proof of Lemma [8:2]follows almost word by word the proof of Lemma 9.2 in [4].
Proof of (Ps)n+1. By (8:18) and (Ps),,

Boi1 < KNP ' B, < 20, Keb- 1y 2 Noots ' N

n—1

< C,ebTly=2NF (8.19)

provided 2K Neo+r =k Nk < 1 \p > 0. Choosing k as in (8:4) and Ny large enough, i.e. for € small enough. By

(817) and the bound (8-19) (P5)n+1 holds.
Proof of (P2)n+1. Using (8:17), (8:18) and (P2),,, (P3)r, we get

Wotr < KNGOTP PB4 KNSow? < KNGot? —P1o0,ebH1y"2NE_ | 4 KN2O(CLeb iy 2N, %)
and wy, 41 < C,e¥T1y~2 N2 provided that
AKNeote  =hitank < 9K (C,eb Iy Nt N2 < ]y >0, (8.20)

The inequalities in (8:20) hold by (8:3), taking « as in [8:4), C > ap + a and d in (8:3) small enough. By ([8:17), the
inequality w,, 1 < C.e?* 1y 2N implies (P2 )nt1.

Proof of (P1)n+1. The bound (88) for 3; follows by (8-13), (8-10) (for s = so + 1) and || F(Up) lsot2i Ssotau €2 - The
bound (8B) for J,, 1 follows by (82), (P2), and (84). It remains to prove that (8-7) holds at the step n + 1. We have

n+1
||3n+1||80+u < ZijHSO+M < C*Eb*'y_l ZNkiaf < C*Eb*'y_l (8.21)
k=1 E>1

taking o as in (8.4) and Ny large enough, i.e. £ small enough. Moreover, using 8.2), (P2)n+1, (P3)n+1. (8.4) we get
IF Uni)lsorpt1 < NEHFUnia)llso + NP F Unin)llso 14
< C*Eb* erlt-i-l—a + C*Eb*Nﬁ+1_Bl+k < C*Eb* ;

which is the second inequality in (8.7) at the step n + 1. The bound |G, 1|7 < || F(Uny1)l|2, is a consequence of Lemma
6.1 in [39].
To conclude the proof of Theorem (8:1)) it remains to show the bounds (8:9). This is done in the next section. O
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8.1. Measure estimates. Let us define for 0 < n <7} /e, 0 > landn € N

Rfjk(nva-) = Rfjk(invnao-) = {OJ € gn : |(U ' €+ d?o - li:.o| < 277<€>_0}a (822)
Qej(n,0) := Quj(in,n,0) :={w € Gn : [w- L+ mj| < 2n()"}, (8.23)
Pyrj(n,0) := Puj(in,n,0) :={w € Gn : |w - £+ d57| < 2n(0)"7}. (8.24)

Recalling (8:6) we can write, setting 1 ~> -, for the sets Q;(n, o) and Py;(n, o), n ~» . for the set Ry;i(n, o), and
T~ T,

gn \gnJrl = U (Réjk(inv'}/;aT) U ij(ina'yan) U Plj(ina’yna’r)> . (825)
LeL ,j,keSe

Since, by (5.7) and v > 73/2 (see (83)), Ryji(in) = 0 for j = k, in the sequel we assume that j # k. We start
with a preliminary lemma, which gives a first relation between ¢, j, k which must be satisfied in order to have non empty
resonant sets.

Lemma 8.3. Let n > 0. There is a constant C' > 0 dependent of the tangential set and independent of ¢, j, k,n, iy, w
such that the following holds:

o if Ryji(in,n,0) # 0 then 6] > CIA(j) — A(K)| = § |7 — k

L4 lerj(vanao') 7£ @ then w‘ Z O|]
o if Pyj(in,n,0) # 0 then |{] > Clj].

Proof. If Ry (i,) # 0, then there exists w such that
|d5° (win(w)) — dif (W, in(w))] < 29{0)77 + |w - £].

Moreover, using (7.93), (7.96), (7:2), (7.3), we get |d5° (w, in(w)) — di°(w, in(w))| = $|A(j) — A(k)|. Thus, for & small
enough

i

5

_ 1 2n . 1 .
2] > w1 > (5 — o ) AG) — AR 2 TAG) A
3 (O7IAG) = AR)] 4
and this proves the first claim on Ryjx. If Q/; # 0 then we have |mj| < 21(¢) =7 + |w - £|. Hence, for € small enough, we
have

G w1 = |m|
Il < — < =14, =
Im| — C 4|w|
Following the same arguments and by using that |d;| > C|j| for some constant C' > 0 we get the last statement. O

8.1.1. Measure of a resonant set. The aim of this subsection is to prove the following lemma.
Lemma 8.4. There is tg > 0 such that, for any 0 < r < rq, and any choice of ST € V(r) we have that

|Reji(n,0)] < K2~ Dn(6)=7 (8.26)
for some K = K(S). The same holds for Q.;(n, o) and Py;(n, s).

The proof of the lemma above involves many arguments and we split it into several steps.
In several bounds we will evidence the dependence of the constants on the tangential set S in order to highlight that the
smallness of the amplitudes £ depends on the choice of the tangential sites.

Let us first consider the set Ry, which is the most difficult case. We study the sub-levels of the function w — ¢r(w)

defined by (recall {#.3)),(7-93))
Pr(w) = iw - £+ d5°(w) — di¥ (w) = iw - £ + im(w)(A(F) — A(k)) +ie(rj — kr) (W) + (75° = 77°) (w). (8.27)
We recall that (see (7.2)), (7.48))

m=1+ecw) +rmw), cw)=7-Ew), T=2/3)1+T)im R, k(W) =0 §w), (8.28)
where x; is defined in (7.3) (see also (7.40)) and
T = eld(w) + 0™, rp|” STiet,  |Vorm| S7,62 +0(e1%973). (8.29)

We first study some properties of the function ¢ (w) in ([§:27).
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The small divisor ¢ (w) as an affine function of w. It will be useful to consider ¢ (w) in ([:27) as a small perturbation
of an affine function in w

Or(w) = ajr + bk w+ qe(w),  LEZY, j ke S (8.30)
where
ajp = i((/\(j) —AR)[1 = 7+ AT + (g — ;) A—lw) , 8.31)
biji = 1(@ + (AG) = AE)ATT+ AT (@ — wk)) : (8.32)

and the remainder g (w) satisfies
|aje(@)|*? S Tretli — k| + et

‘ 4 . (8.33)
|4(@)" < [ (@)IPING) = AR+ |r5° = r° [P S ye?]j — k| + et

Lemma 8.5. Denoting p; = A(j)U + W;, we have the following bounds:
g5l Sl SR 1B Bl ST kL [ = @] ST I R

Proof. The first bound follows by the fact that 3-+72-+ 24757, > 3+222t > £ and (1452)(1472)(2+52+72) <70 5.
The others follow similarly. O
Fix a € (0,1/2) and let

0<pB<(2-a)o+1) L (8.34)

We have the following estimates for sets Ry;j, with |¢

“large”.
Lemma 8.6. Let |(| > ¢=P. Then Ryj(n, o) satisfies (8.26).

Proof. In this proof we shall denote by C'(.S) a running positive constant depending on the set S. Suppose that |j — k| <
col] with ¢ = ¢¢(S) small. By Lemmataandwe have |A~T(p; — pi)| < 715 — k| < |£]/2 for cq sufficiently
small. This means that |bg;,| 2 |¢|/2. Now suppose that |j — k| > co|¢|. Then

, AT — @,
a3l 2 NG) = AW (1 - 471 5] - S
EDED | 1 CO)i—kN -, 1 ., .
> k(-2 ) > i —k|(=—2 F) > 15— k|/4
> L= H(g o) 2 H(G - 2a C) 2 15— M)
for e small enough. By (8:22)), (8:33)
_ 1 2n gh3a\ 1.
2oejel3] > bl > lage] = lousu)| ~lagn()] > (3 = ber = O = e )l =K = Gl —

for € small enough and o > 1. Again we have shown that |b;| > d]¢] with § := ¢o/2|w]. Splitw = sb + b where
b:=b/|b| and b+ - b = 0. Let Up(s) := ¢r(sb+ b'). For e small enough, by (8:33), we get

51—411

, , o1, .
Wis1) = V(o) > (]~ gl )ss =51 > (6= CS)e? = = ) i = kllss =9l > i = bl |1 = .

The lemma follows by Fubini’s theorem. U

We now prove that if the main term (in size) of ¢ (@) is big enough and |¢| is bounded by some constant then the bad
set Ryji(n, o) = (0. We remark that

Or(@) — k(@) = aji + beji, - W =W - £+ A(j) — A(k).
Lemma 8.7. If|{| < e P and [w- £+ \(j) — (k)| > 70(€) =7, where vy = €%, then Ryji(n,0) = 0.
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Proof. By definition

|w - €4 d5° = di?| = 70(0) ™7 — |bej|lw — @] — 2|g; "
By Lemma 8.3 (recall (8:27)) we have |j — k| < C|¢| and so

[bejillw — @] + 2|gsk]* P < C(S)E2 (€] + |5 — k) S C(S)e*] S C(8)e* P <evtof /2 < 2&30 (8.35)

for some C'(S) > 0, for € small enough, by (8.34). O
Lemma 8.8. Let |{| < e % and [w- £ + \(j) — A(k)| < 70(€)=°. Then Ryj(n, o) satisfies (8.26).

Proof. Letuscall p :=w - ¢+ A(j) — A(k) and note that |p| < 79 = €. We also remark that ¢ # 0 since for j # k one
has [A(j) — A(k)| > 1/2. We substitute p in the definition of b, (see (8:32))

|bejk| = )é + (- l+p AT+ AT (0 — wk)‘ 20— AT e+ AT () — k)| + €.

Then, using (A.3) in Lemma (A.T) we have |bg;| > |¢]0/2 for £ small enough. The thesis follows reasoning as in Lemma
O

Proof of Lemmal8.4l For the sets Ry, the lemma follows by Lemmata [.6] [8.8] The proof for the sets Q;; and
Py; follows using the same arguments used for ;. Lemmata@ are identical, with the only difference that the
non-resonance condition now reads respectively [& - £ + 7| > 7o (€) =7, [@ - £+ A(j)| > 10 (¢) 7 in the case of Q; and
Py;. Regarding Lemma 8.8] it follows from (A.4) in the case of Q; and from (A.6) in the case of Py;. O

8.1.2. Summability.
Lemma 8.9. Forn > 1, |{| < N,,_1, one has Ry (in), Qej(in), Pej(in) = 0.

Proof. We first note that, by Lemma if IN(J) — (k)| > O] (for some C; = C1(S)) then Ryjp.(in) =
Ryji(in—1) = 0, so that our claim is trivial. Otherwise, if

ING) — ME)| < CTHe| < O EN,
By (with igl) ~ iy and i§2) ~ ip_1, N ~ N,_1) and (8:8) we have for all j, k € S°
(d5° — d°)(in) — (d3° — d°) (in—1)| < €732N2) Yw € Gn, (8.36)
where a := min{x, a} (recall & in (8.4) and  in (7.13)). Now for all j # k, [¢{| < N,,_1, w € G, by (8.36)
o €4 5% (1) = )| 2 o0+ € 5 (i) = (i) = (057 = ) () = (45" = ") i)

8.37
> 25 ()T — SN 2 2y () ®3D
since e4-30y=3/2 N7 ~(2/3)29n+1 < 1 Since by definition Ry (in) C Gy, then Ryjp(in) = 0.
Now we prove that Q¢ (i,—1) C Qe;(in). We have
) ] L (7.48) ) ) (3.8 o
(i) = mli-)l] 2 Ce i = fnlgali] 2 O N 5.35)
< CePT3y7IN ||
and then o ) ) ) . )
- € m(in)jl > |+ €+ min1)] = in) — mlin_)IIj
(8.39)

> Dy ()T — b A3y IN AL S 00 gy
since |¢] < Njp_.
As before, by (7.101), for all j, k € S¢
|d5° (i) — d3° (in—1)| < 2N 2) Yw € Gp. (8.40)
Forall j # k, |(| < N,,—1,w € G, by (8:36)
0 AP ()] 2 [0 € A5 (i) — A5 (i) — 3 (i)
> Ma ()T — SN, 2 20,(0) (G40

since 64’3‘17*1NZ_(2/3)2‘2"+1 < 1. O
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We have proved that

G\Gus1 € | (Renin) UQui(in) U Pri(Gn)), ¥ > 1. (8.42)

j,kes®
M|>Nn—1

Lemma 8.10. There exists C > 0 such that if |, |k| > C(€)*+2~y~(/2) then (recall that T = 2v + 6 > v + 2)
Reje(v*/2,7) € Quj—i(y,v +2). (8.43)
Proof. We have that
w4 d5° = d°| > |w - £+ m(f — k)| = [m|[A(G) = j + k= A(k)| = 2 w; —wy| = 15 = 7]

2y , C Ce?
> =20 =kl — =
{eyr+2 lIE] min{]], [k[}
2 Oy CARA o (2 o ce ) (8.44)
= <£>u+2 C<€>2(u+2)71 C<£>y+2 - <€>u+2 2c<€>u+1 QWC
3/2
> il > B
A Ok
for C big enough and since £2(,/7) ™! <« 1. O
We are in position to prove (8:9). We have, by ([8:42),
U Ruslin)] < > [ Reji(in)| + > | Reji (in)]-
tez jkese 1> N1, |71, R ZC(€) 727~ (/) 11> N1, |31, K 20(€) +24~ 1/
On one hand we have that, using Lemmata 8.4]and [8.10]
> [Re(in)| SK Y S0y S RSy Y ()
[e]> N1, |5, | k[ = C () 2y =(1/2) j—k=h,|n|<C|¢| [€]=Nn -1
< Kez(”_l)'erjfl.
On the other hand s
: - |£1¢6)”
Z [ Rejin (i) §K7(3/2)€2(u Y Z =y
[01>No— 1~k <O @3N, VT

5], k| <2c(e) 71y~ (1/2)
S Kyt S T
[€|>Np—1
S Eye? YN
The discussion above implies estimates @

8.2. Conclusion of the Proof of Theorem Theorem [8.1] implies that the sequence (J,,,(,) is well defined for
W € Goo 1= Np>0Gn, Iy, is a Cauchy sequence in ||~H7’g°° (see (8:8)) and |(,|” — 0. Therefore J,, converges to a limit

So+p
Joo in norm ||| zﬁr"; and, by (P2),, for all w € G, ico (@) := (,0,0) + T (¢) is a solution of
Flin,0)=0  with  [|T|757 < ¥ Pyt (8.45)

by (8-7), (8-3). Therefore ¢ — i (i) is an invariant torus for the Hamiltonian vector field X . (recall (3.1)). By (8.9),
19\ Gool <12\ Gol + D 1Gn \ Gnpa| <2C.2 Dy + C Dy Y N S Cle 1y,

n>0 n>1

The set . in (5.2)) has measure |Q.| = O(¢?"). Hence |Q: \ Goo /|| — 0 as e — 0 because v = o(e?), and therefore
the measure of C, := G, satisfies (3.12).

It remains to show the linear stability of the embedding i, (). By the discussion of Section |§| (see also [4]] for further

details) and Section since i (¢) is isotropic and solves the equation (8.43), it is possible to find a change of coordinates

G (of the form @)), so that in the linearized system of the Hamiltonian H. o G (¢, 1, w) the equation for the actions
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is given by 7 = 0. Moreover, by Section [7] the linear equation for the normal variables w is conjugated, by setting
w =T o @ (2) to the diagonal system 2; — id;°(w)z; = fj(wt), j € S¢, where f(wt) is a forcing term.
Since d;’o € R a standard argument shows that the Sobolev norms of w do not increase in time. For further details see [4],

(401, [2].
APPENDIX A. NON-DEGENERACY CONDITIONS

Proof of Lemmal@.1l Recalling (#.6) we introduce a matrix K so that A =: (2/9) diag ()\(ji)(l + j?)) K. Now we show
that the entries of K are bounded by some constant independent of the 7;. After some direct computations we have that
1+ 42 (1+ k) (2+ k> +5%)

A (B+K? 452+ kj) 3+ k2 + 52 —kj)
Obviously |K;;| < 2; regarding the off-diagonal terms, we note that 0 < 2kj < k? + j2, hence |K;x| < 12if j # k.
We consider the variables x, po, . . ., p, defined as

h=1/z, 3 =p/z, 0<p; <1, (A.1)

so that P(z, p;) = det(K) is a rational function. It is easily seen that K computed at p; = 1 for all 7, coincides with the
matrix

ij: j€S+, Kjk:?) j7k65+,j7ék.

(1 +a2%) (I+2g9(2) (U~1),  gla):= (32" +1)7",

where U is the matrix with components U;; = 1 forany 4,5 = 1, ..., v. Its determinant is
L+2%\" ., v—1(n.2

We note that the absolute value of (A2)) is > 1 at z = 0. We conclude that there exists 0 < ro < 1 such that
if 0<z<ry, |pi—1]<re then |P(z,p;)|>1/2.
This implies the thesis. O

Lemma A.1. There exists 0 < rq < 1 such that, for any ST € V(r) with 0 < r < rq (see Definition , the following
holds true:

o |Zl+72£|> 40, YezZ’, |(|=1,2,35; (A.3)

[det(1- A~T5@)" )| = 15 (A4)
o |0— (1 - A’TE(E)T)AA’T(@ — @) =6,  LezZ’, jkesSe (A.5)
o |0 (1 - A—Tﬁ(w)T)_lA—ij\ >6le, tez”,jese (A.6)

Here U and w; are defined in (8.28) (see also (7.3)), w in (I.10) and ¢ is some appropriately small pure constant.
Proof of (A3). The case |[¢| = 1 is trivial. For |¢| = 2 we use the fact that the 7, are all distinct. For |[¢| = 3,5 we pass to

the variables (A1) and we get
hlZ Tl IZ e g il = L),

We notice that L(0,1) = | >, 4] > 1 (smce > 4; has the same parity of |¢|) so, by continuity, there exists 0 < rg < 1

such that L(z,p) > 1/2forall 0 < x < rg, |p; — 1| < ro. This implies the result. O
Proof of (A4). We first note that (recall (8.28))
det(I—A Ty =1-A"19.@. (A7)
Consider the change of variables (A.T). One can note that the matrix A in @.6) at p; = 1,7 = 2,...,v, is given by
1
A=d(@)[I+e(@)U], A l:= e} [1—f(=)U],
x
(A.8)
2(42% +1)(3z* + 222 + 1 222 e(x
) = 2 .. ) PR

923(3z2 + 1) ’
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By (AZ8) at p; = 1 we have
20422 +1) - - 422 + 1)(322 + 1
atym= 20T T gy, (o + 1)(3c” + 1) :
3z (422 4+ 1)(Bz* +2(1 + v)a?2 4+ 1)
We note that, for = = 0, one has |det(I — A~ 5w?)| = 3 — 1 > 2. Thus there is 0 < ro < 1 so that forall 0 < 2 < rq,
Ipi — 1| < ro one has | det(I — A~ tow®)| > 1. O

Proof of (A3),(A.6). We systematically use the variables (A.I). We define Q = diag(w;), V = diag(¢;) and write
A = QHV where

(A.9)

2?2+ 1 2
H = I
[ +(3x2—|—1)

- (U = D]+ 0(p 1) = ~3(1 = 20) + O(lp ~ 11, |

Then w; in (8:28) can be written as w; = QV b; with
AG)(7 + 557 +3i + 35%)
AT B +52)7 + (6 + 5277 +77)
where e; is the i-th vector of the canonical basis of R”. In the new coordinates (z,p) in (A:I), and setting ¢ = j(7,) ",
this reads as

bj'Gi:—

bj c e =1 b(t,(E,p) c €y = f(tvm)g(tvxapz) + tg(t7x7pi)a
3t a2 (22 + p2)(T2* + 52%p? + p} + 32%?)

t = t = .
o= ga SOoP) = T (G + £ + (622 + 2E 4 70)
We claim that ;
b(t -1 —1], Jz]). A.10
(t2,p) =~ 1+ Op — 1], [2)) (A.10)

where the term O(|p — 1|, |«|) is uniform in .
By direct computations we have

lg(t,z,p) — g(t,0, )| S C(lz|+ p— 1) A+ )", [g(t,z,p)| <CA+)7",

with C independent of ¢, and for z, p in a neighborhood of (0,1). Moreover sup,|f(t,z)| < 3|z|?/2. Thus, for z,p
sufficiently close to (0, 1), we have that

[b(t, z, p) — b(t, 0, )| < [tllg(t, z,p) — g(t,0, )+ |f (&, 2)|lg(t, =, p)| S O(lp — 1] [])
which implies the claim (A-10). Hence, setting s = k(7,) !, we have
(= QY HT - U) 7 Q(b(t, x,p) — b(s,z,p)) = £ —3(1 +v) " h(t,s) T+ O(|p — 1|, |z]),
where
h(t,s) :=t(t* + 12+ 1) —s(s* +s2+1)7.
We note that |t (t* + ¢? + 1) 71| < 0.41, hence each single component satisfies
13(1+ )" h(t,s) + O(lp— 1], |z]) - es] <31 +v)" 11 —6) < (1—14)
provided that [p — 1], |z| < r(¢ small enough. Hence, if v > 2, one has |¢; — (M T+0(p-1, |z])) - ei] > 6]4;].

14+v
This concludes the proof of (A.5). The proof of (A.6) is the same just setting h(t) = ¢ (t* +¢2 + 1)1, O

Proof of Lemma[5.1} It is well known that, thanks to the choice of 7 in (3.3), |2 \ g(§0>| < Ce2*=D~ for some
C = C(S) > 0. Thus we focus on the estimate for the measure of gé”. For indexes ¢ € Z \ {0}, j, k € S¢ satisfying

<3, and > 3li+j=k, (A.11)
=1

we define the sets Tpjx, := {w € Qe : |- £+ 2AL - L+ A(j) — Mk) +2(A(H)l; — A(k)lk)| < Cv}. Recalling (3.3) we
have that Q. \ GS" = (J T; where the union is restricted to £, j, k satisfying (A.IT).
Let us first study the e-independent part of our small divisor. By (I.8) and (A-TT)) we have

_ . - Ji J i1 7:ti+9)
4+ —XMk)=3 l; -3 .
@ L+ AG) = M) Zlm— T+72 T+ (0 176+ )2

(A.12)
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By Lemma(see (A3)) if |j| > Ci (S), which is easily computed in terms of r, (A.12) is bounded from below by r /4.
By (ATI), [A(j) — A(k)| < C(S). Since 0 < |¢] < 3 and substituting [; = ¢(w) + £;/A(j) (recall Lemma|7.10|), where
c(w), k; are defined in (7.2)), (7.5))

@ £+ A8 - 0+ (1 + %c(w)(A(H) — A(k)) + % (k; — Ky)| > 1/8
for ¢ small enough (depending on r) and by using the fact that £; — k. is uniformly bounded in j, k. This implies that
Tyji = 0 for e small enough.
We are left to deal with the case |j| < C(S). We write (A.12) as P(7;,7)/Q(F;,7) where P, Q are polynomials with

integer coefficients and @ has no real zeros. We remark that 1 < @ < C(S) due to the condition |j| < Ci (S).IfP#0
then |P| > 1 and again (A.T2)) is larger than some K (S). We conclude that Ty;, = () by reasoning as in the case j large.
Now we study the case in which P = 0. Fixed ¢ in (A.12), then P has degree four in j and so the condition P = 0 fixes
at most four choices of j that we call 71, 72, 73, 74. For P = 0 (which is (A:12)= 0) we have

WL+ A8 L+ AG) (1 +€2) — AE) (1 + %) = (A6 £ — (@ - 0T - €+ (w; —wy) - ), (A.13)
where 7' is in (8:28) and x; = wj; - £ with ; in (7.3). These are a finite number (depending only on v) of linear functions
of £&. We compute the derivative in £ which is

(AT + 5=T)e + (ws—wy), (A.14)

where 7€ {71, 72,73, 74} Now (A.5) implies that the quantity (A.14) is bounded from below by a constant depending on
S. This lower bound and Fubini Theorem imply that |Ty;%| < C(S)e?*~Y+ for some C(S) > 0 depending on S. By the
discussion above we have

001 D Tl SOE)PCTy,
[€1<3,15],|k| <K (S)
where K (S) > 0 and C(S) > 0 are constant depending on the set S. This implies the thesis. O

APPENDIX B. NORMAL FORM IDENTIFICATION

Proof of Theorem[7.9] The core of Theorem [7.9]is to show that the terms in the Lh.s. of (7.78), which are obtained
through a rather complicated sets of bounded changes of coordinates, coincide with the ones obtained by a purely formal
full Birkhoff Normal Form procedure. In [32] it has been shown that, at purely formal level, the latter is well-defined and
not resonant, i.e. the resonant Hamiltonian is supported only on trivial resonances as in (3.11). We procede as follows.
Step 1. The first step is to show that resonant terms at order 2 of the Full Birkhoff normal form coincide with the ones
obtained by using the weak BNF procedure in Section[3] passing to action-angle variables and finally using a formal linear
BNFE.

Step 2. In order to conclude we note that the bounded maps we applied in subsections and are, as functions of ¢,
C3 with values in £(H#, H*~3) . Therefore the Taylor expansion of the Hamiltonian associated to the operators in (7.69)
coincides with the Lie series of the generator up to order 2 (see also (7.71)). Then we show that the Lie series coincides
(up to order £2) to the one obtained in step 1. Even though we taylor our proof to the particular set of changes of variables
that we use in section (7} the argument is quite general and is essentially that the /inear BNF up to order £2 is coordinate
independent.

Formal equivalence between weak + linear and full BNF procedure. One step of formal BNF means that we apply
the formal change of variables generated by

3P = [ad | TH® (B.1)
which removes completely H(®) and conjugates H (using Z3))to Ho Q-1 = H® 4 %{8’(3), H®}+ ho.t.
The scecond step of formal BNF removes all the non-resonant terms of degree four thus we get
1
H® + §HKer(H(2>){S(3), H®} 4+ hot.
In [32] it has been proved that (HKer( H2)Y) ~ Htriv) {33, H®)} = 0 (see the notation of Deﬁnition and hence
Hdz:QHKer(Hm){@(S)a HO)} = Hdz:QHtlriv{g(g)’ HOY. (B2)
We claim that
My {33, B9} = N OV, HOVY = M (32, HOV} = Ty {30, B2} = 0. (B.3)
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This implies that
T er(aron 1 F Y, HO = gy 172 ({500, HOSD) 4 (500, HO21))
Ty 12 (502, HOO) + (500, HOD ) 4 (509, HODY) (B.4)

= HtriVHdzzz ({3’(361)71_](3&1)} + {3(3’2),H(372)}> .

Proof of the claim (B.3). Let us consider the term {F>1), H(33)}, where

(3.1) — e s (3,3) — O o s U s
S - C]1]2]3u.71u.72u.73 ’ H - O]1]2]3u]1u]2 Ujg »
J1,J2€5,j3€5°¢ J1,J2,43€5°
Ji+j2+73=0 J1+j2+353=0

for some coefficients C, j, ., Cj, j,j, € C. Using (2.2) one gets

{3, HG3} = > P ok ko Ujy Uja Uk Uk s Pjijakik, € C (B.5)

J1,J2€8, k1,k2€S°
Jj1+je+ki1+k2=0

A monomial uj, uj,uk, uy, is supported on trivial resonances (3.11) only if j; = —jo and k1 = —ko, since j; € S,
k; € S¢ i = 1,2. On the other hand, by the momentum condition, we have that j; + jo = —(k1 + ko), which is not
possible since 0 ¢ SUS® (see (I.9)). Hence the (B3) holds. The others equalities in (B:3) in follows in the same way. [J

Let us now perform the same Birkhoff procedure by first cancelling the terms of degree < 1 in z (weak BNF) and then
the terms of degree two (linear BNF) .

By the discussion in Section 3] recall the notations of Proposition [3.6] we have that, after two steps of weak Birkhoff
normal form, the Hamiltonian of degree less or equal than 4 is

Hd54(Ho @2—1) —g® 4 22(4’0) JrH§3,22) +H2(4’22). (B.6)
Here Z2(4’0) is defined in (3:23),
H2(3,2) _ H1(3’2) — H32), H2(422) _ HYL’ZQ), (B.7)

where H £3), H 1(4) are defined in (3:19). The monomials of degree greater than 4 will be not involved in this computation,
so we omit them. It is important to notice that, by direct inspection, §*<1) = F(3=<1) defined in formula (3.21). By
Proposition[3.6] we know that the same change of variables puts one of the constants of motion (lets say K3 and drop the
subindex 3) into normal form,

Hd§4(K o ‘I)z_l) —_ K(Q) 4 W2(4’0) + K2(3722) + K§4722).
The step of formal linear BNF entails applying the formal change of variables generated by
FG2 = fadye ) THE? (B.8)

Again, by direct inspection, one can note that F(3:2) = §(3:2) .= 11%=250) where F®) is given in (B-1). Thus obtaining
the Hamiltonian

. 1 .
H® 4 740 4 g9 4 5 (302, HP =Y 4 H? 4 hot. (B.9)
Since (B-8) puts in normal form also K o &5 ! following the same reasoning as in [32] and Proposition we get that

- 1 3,>2 4,>2 - 1 3,>2 4,>2
e 2HKer(H<2))(§{g(372)’H2( 2 )} +H2( 2 )) — I1¢4- ZHtriV(§{g(372)’H§ 2 )} +H£ 2 ))
_ 1 1
= Hdz_QHtriv(i{g(g’z)a H£3’2)} + 5{5(351)’ H@=D) 4 (36D g6
1 _ 1
@ §Hdz—2ﬂtriv({g(3,2)7H2(3,2)} + 5{5(3,§1)’ H(3,§1)})

N5 -
@:@) §Hdz 2Htriv{s(3), H(3)} )

(B.10)
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We now want to pass to the action-angle variables introduced in (4.7). Since the rescaling with the parameter ¢ is covariant
under the change of variables that we use, we consider instead of A. the symplectic change of variables A; := A

Cle=1"
By recalling that
Ho := H® o Al\yzo , Hi:= H£3’2) o A1|y:0 , Hdz:Q(Hg + HRQ) = H2(4’2) o Al\y:o
O=¢ O=¢ O=¢
and setting
T(3,2) ._ (3,2
FOD =300 Ay . (B.11)
0=¢
we have that (B.10) reads
_ 1 ~ 1 _
M= era) (5 LY Hi} + Ha 4 Hey) = 5 [ =20 (8@, HO Y o 4y (B.12)

0=

The rigorous procedure of subsections and the linear BNF. Since the rh.s. of (B:12) is the r.h.s. of (7.78)
it remains to show that the £2-terms of the Hamiltonian associated to the operator £7 in (7.69) coincides with the Lh.s.
in (B:12). We remark that the operator L7 has been constructed through a rigorous procedure providing also “tame”
estimates of the remainder of higher order in €. As already explained the maps B, T, i = 1,2, are, as functions of ¢,
C? with values in L(H*, H*~3) . Therefore the Taylor expansion of the Hamiltonian associated to the operators in (7.69)
coincides with the Lie series of the generator up to order 2 (see also (7.71)).

Let us then Taylor expand the Hamiltonian K(?) = Ho B=1o Y o Ty (see (7.36), (7.57), (7.63) and (7.76)) up to
order 2. Itis sufficient to consider B; the flow generated by the Hamiltonian in (7.20) and Y; the flow of the Hamiltonian
H,, (which has the form (C:47) and satisfies (7.66)). We have that

Miere,) (zo n /cgl)) T 1y Ho B o T1 + O(?) (B.13)

CTD gy 4 My apyy (M2 + 5 (Fy, (Fy Hodede + (Hy Ka)e) + O()

(DCDCD EQHKCI‘(HO) (Hgl) + %{HAN {Hp, s Hotele + {Ha,, Hite + {Hy,, {51, HO}e}e) +0(E).

Dy 4 Tlgerge (5051, 151 Hodede + {51, Hake + 2 {82, Hole + Ho + Hr, (B.14)
+ 5 (Hy, (Hy Hodede + (B, Hde + (i, €51, Hole e ) + ().

Using the Jacobi identity we have

1 1
5{517 {Slv HO}e}e + §{HA17 {HA17 HO}e}e + {HA17{SI7 HO}e}e =

] ) (B.15)
= 5{51 + Ha, s {51+ Hay, Hotede + §{Ho, {51,581 + Hy, }e -
Moreover, setting F1 := S + H,,, we note that

{F1,Ho}e = {Ha,,Ho}e + {S1,Ho}e By (B.16)

Since Tgery,) {52, Hote = 0, by (B-13), (B.13)), and we get

_ _ 1
T~ (20 + K8 = 192y, (5 {F1 Hike + Ha + Hr, ) (B.17)
Since Ker(H(?)) is trivial on cubic monomials, we deduce that

Fi = —ady!(H)) = FG®? (B.18)

and this concludes the proof. |
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APPENDIX C. TECHNICAL LEMMATA

C.1. Flows of hyperbolic PDEs. In this subsection we study some properties of the flow of (7-11). We start by studying
the time-one flow map of the pseudo differential PDE

09" (u) = (Job)U" (u), Oy =u, (C.1

and how this differs from ®”. Proposition 3.1 in [33] guarantees that the flow of (C.I) is the composition of the diffeo-
morphism of the torus

A"h(p, ) := (1 + 16:(p, x)) M0, 2 + TS (0, 2)), peT ,zeT,
(A h(p,y) i= (L4 By (1,0, 9) ko, y + B(T,0,9)), ¢ €T, yeT,

where B(T; x, &) is such that

(C.2)

x»—)y:]}—FT,B(()O,Q]‘) = y'—>$=y+5(7'7%0a33), TE[O71]7

with a pseudo differential operator of order —1 up to smoothing remainders belonging to the class £, , (see Definition
2.8 in [33]) forany p € N, p > 3, p > sg. For completeness we restate the definition of £, in Appendix @ (see
Definition @) The class £, ,, has the property of being closed w.r.t. changes of variables as &7 (see Lemma 5.10 in
[33]]). Moreover, in Lemma we show that £, ,, is contained into €_; which is another class of “tame” operators.
Such class is introduced in Definition[C.6|and is included in —1-tame operators, see Lemma [C.10}

We refer to Proposition 3.1, Corollary 3.2 and Appendix A in [33]] for properties and estimates of U™ and A in (C.2).

Lemma C.1. Fix p > 3 and p > so. There exist 6 < 1, 01 := o1(p, p) such that if

HB”SO“FUI < 4 (C3)

then the following holds. Let U™ be the flow of the system (C.1), then the flow of (T11) ®7 is well defined for |7| < 1 and
one has ®' = ML WIS o (I+ R) where R is an operator with the form (6.16). Moreover R belongs to £, ,(0) and
satisfies

, O
Mz (5,0) Ss 181255, s Mawpr(P,b) Sp [1A128]p40, - (C4)

Proof. Proposition 3.1 in [33] provides 6, oy such that if the smallness condition (C.3) is satisfied with such parameters,
then the flow U7 is well-defined for |7| < 1. Let us define Y7 as the flow of the following Cauchy problem

0 Y u = —(\I/IZ) T u, Tou=u (C.5)

with

Zu = (J o b)[Igfu] + g(J o b)Hfg[u] = Z (gj(T),u)L2 X; (1) + Z (gj(T),u)L2 X; (7).
JjeS jES

6= % =, X = ()Y, Gy = AG)TIEb(r) €97
Equation (C.3)) is well posed on H* since its vector field is finite rank. By the following computations
(O, (YTu) + T (0, YTu) = (J o H)IIE [T (Y7u)] — g[(J o b)Hg:[\I!T(TTu)]
= (Job)UT(T7u) — ((J o b)IL[T7(T7w)] + Ms[(J o b)H§[xIﬂ(TTu)])

we have that @™ = II¢ o U7 o Y7 is well-defined on H* and solves (7.T1).
Now we show that Y7 — T is of the form (6.16). By Taylor expansion at 7 = 0 we get

YTTu—u= —T(\IJIZ(TTU))ITZO + /OT(l — 1) (0T (w)) dt . (C.6)

Note that
WIZ(TTu) = 3 ((97);(r), ) o (U7 og (1) + D (27)°35(7). ) 1o (1) 755 (7)
jeSs jES
has already the form (6.16) and (¥7Z(Y7u)) , = Zu. We denoted by (U7)*, (®7)" the flows of the adjoint PDEs

-

Oy (U ) u = —bJ((UT)*u), 07 (®7)*u = —TIE b J TS [(D7)*u] .
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We have
/(l—t)att“ft dS—Z/ 1—1)(g;(t dt+Z/ 1—t)(g;(t),u) . £5(t)dt
Jjes Jjes
where
gi = (= (L32)"(2°)" = (C)bJ(L))(g5), &= —(Tob)((T)")x; + (L) 1T (¥ (s)e")
g = (= (L32)"(2*)" = (T*)"bJ((¥*)")) (g;) + (2*) AU ()], £5 == —(Job)((¥*)7)x; -
Thus by (C.6), for 7 = 1 we get
T'u —u=Ru, Ru = Riu+ Rou, (C.7)
1
Riu = —Zu, Rou := / (1 =)0 X" (u) dt, (C.8)
0
where R1 has the finite dimensional form (6.16) and R has the form (6.16). Hence by Lemma|[C.7] we have
M, (5,0) Ss Y sup (I£5(n)II7 % llgg (DIL + 1£5 (P13 llgs ()17 (€9
lj|<C T€[0,1
Mg, (s,0) Ss Do sup (15017 1&g (M3 + 15 (D17 1&g () 17:°) - (C.10)
jl<c el
By using the estimates in Proposition 3.1 and Corollary 3.2 in [33]] we have
. ,O ,O S s , O
1£5129°, N 112°7 s MBI + 100, NI llgs 129 s BT +2 (C.1D

In the same way, the bounds for the variation on the i-variable (the second in (C.4)) follows by the estimates on the
derivatives of the coefficients g;, g;, X, X; whose depend on the variation A1 of the flows ®7, U” and their adjoints.
We have proved that T!u = u + Ru and hence ®*u = ¥! o (I + R)u. By (C.9), (C.10) and (C.IT)) we obtain (C4). O

The system is a Hyperbolic PDE, thus we shall use a version of Egorov Theorem to study how pseudo differential
operators change under the flow ®7. This is the content of Theorem 3.4 in [33]] which provides precise estimates for the
transformed pseudo differential operators.

The following proposition is the counter-part of Proposition 3.5 in [33]]. It describes the structure of an operator like £,
conjugated by a flow of a system like (7.11]).

Proposition C.2 (Conjugation). Let O be a subset of R”. Fix p > 3, « € N, p > sg and consider a linear operator
L= Hjs‘(woawaO(m+a(cp,m))+Q) (C.12)

where m = m(w) is a real constant, a = a(w,i(w)) € C(T"*!) is real valued, both are Lipschitz in w € O and a is
Lipschitz in the variable i. Moreover Q = Op(q(p, z,&)) + Q with Q € £, ,(0) and q = q(w,i(w)) € S~ satisfying

a7, o Sea K1+ 2|l FIT5 (C.13)
|A12q‘—1-,p,0t NP, k3(||A12pr+a + ||A12f||p+a||f”p+a) . (C.14)

Here k1,ky, k3,0 > 0 are constants depending on q while f = f(w,i(w)) € C®(T¥*1Y), is Lipschitz in w and in the
variable i . There exist & = G(p) > 0 and d, := d.(p) such that, if

||/8H50+a' + ||aHso+a' + k2||f||50+o' + kl + Mé(s()?b) S 6* ) (Cls)

the following holds for p + o < so + 6. Consider ® := ®! the flow at time one of the system (T.11)), where b is defined in
(7-10). Then we have

Ly = ®Le =T1E (w0, — T o (m+ay(p,2) + Q4 ) (C.16)
where

m+as(p,x) = —(w - 9,B) (¢, x + Blp, 2)) + (m + alp,z + B(p, 2))) (1 + Ba(p, 2 + B0, 2))) (C.17)
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with 3 the function such that x + B(y, x) is the inverse of the diffeomorphism of the torus = — x + (i, ). The operator
Q.+ = Op(a+(p,z,§)) + O, with

|q+ lsa NSOéPk1+k2|‘f||s+o' S+U+Ha”s+o” (C 18)
[A1204 |~ 1p.0 Spap K3([|[Ar2fllprs + D12 fllprsll fllprs) + [[A128]lp+5 + [[Ar2a pre
and @Jr € £,,(0) with, for sy < s < S,
M’é (S b) S_,s P M’y (S b) + Hﬁl s+a + kl + k2|‘f||a+o + ||a’| 5-&-0’ (Clg)

+

forany 0 <b < p—2and
MAmQ (p7 )Nlh MAIQQ(p’b)

(C.20)
+ k(1A fllp+a + [[Dr2fllp+alfllp+a) + [[A128]lp+6 + [[Ar2allp+s
forany0 <b < p—3.
Proof. The strategy is the following.
e We conjugate
L0 :=w-0, —Jo(m+a(p,x)) +Q (C21)

by the flow U7 in (C.I). In order to do this we use Proposition 3.5 in [33]].

e The operator £° differs from £ by a infinitely regularizing operator of the form (6.16)). By using this fact and Lemma
[C.1] we estimate the difference between ®7L(®7)~! and W™ LO(¥7) !

Let U™ be the flow in (C-I)). The (C:13)-(C.14) imply that £, in (C:21)) satisfies the hypotheses of Proposition 3.5 in [33].
Hence, if y := 2 + B(p, ), then we have

LOh = WLOU = w-d,h — J{(m+ay(p,2)) b} + Op(ay) + Ouh
m+ai(p,x) = —w-0,8(p,y) + (m + ale,y)) (1 + By (2. 9)) -
In particular q and O, satisfy bounds like (C18)-(C.20). By Lemmawe have (recall (C.7), (C3))
Q,, = PLO ™ — MELOTIE = MEWLOU g + Mg WL U™ 4 WMWY ! + WLRY !
+URLTU ! — UL U ™! — U LITE WL
We define the remainder §+ = Q* + /Q\H. To conclude the proof we show that /Q\** satisfies the bounds (]@[) and

(C20). We note that

MEWLO Msh = Y (h, i )axY g = evm, (= wetwtele,

JES
qu,ﬁo —1p — Z (h 9(2) 2X] 7 (2) — Oy leij:r7 X;?) :eijgc7
JES
y y (C.22)
WL =3 (h, g )rax” gy = ()7, x P = wefel
jes
VI LIEU ™ h =3 (h, g ) ax(Y gl o= (L tyrelin (= welie
Jjes

Thus by Lemma|[C.7] Corollary 3.2 in [33] (for the estimates on V) and (C.21) we get the bounds (C.19) and (C.20) for
the operators (C:22). The bounds on WLI'W ! WLRY 1 URLTY ! follow by Proposition 3.1 in [33] and (C4). O

Remark C.3. Assume that the symbols a,q and the smoothing operator @ in (CI12) admits an expansion in € (actually
in degree of homogeneity of T in (6.23))) of the form

3 3
a= Z ga 44V q= Z e'lq® +q=Y, 9= Z e'QW 4+ 9= (C.23)
j i=1
where a') | q") have the form respectively @ (634), and a (=4) (=4 satisfy estimates like (7:42). The remainders
Q(Z are almost-diagonal (see Def. |6. H) and Q(>4 satisfies estimates like (T.42). Assume also that (3 in (T10) has an
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expansion as in (C.23). Then the symbols a*,q" and the operator Q% in (C.16) admit the same expansion in € as
in (C23). This fact can be deduced by following the proof of Proposition 3.5 in [33]. More precisely one reasons as
follows. First of all, by linearity, the conjugate of a sum as in (C.23)) is the sum of the conjugates. The conjugate of a
é\(i) in (C.23) under the flow of (T.11) is a smoothing remainder by applying Lemma B.10 in [33]|. Of course in order to
obtain homogeneous terms of degree < 3 in € we must Taylor expand the flow, following Remark|[7.2|this implies that the
remainders are in £,_3 p, (of course since p is arbitrary this is not a problem).

The conjugation of the pseudo differential operators J o a(p, x) and Op(q(p, x, €)) is based on the Egorov Theorem 3.4
in [33]]. This is a constructive perturbation scheme so we can Taylor expand up to order three. In conclusion (CI8)) holds
for each term in the homogeneity expansion, possibly with a larger 6. On the other hand expanding the remainder Q%
gives an estimate as (C.19) but with p ~~ p — 3.

Remark C.4. We point out that the remainder in Proposition is of the order of 3, i.e. of the generator of the torus
diffeomorphism. This will create problems in fulfilling the smallness conditions in the KAM reducibility scheme of Section
where a term is perturbative if it is small w.r.t. v*/? (and v < €2 ).

C.2. Classes of “smoothing” operators. In the first step of our reduction procedure (see Theorem [7.1)) we need to work
with operators which are pseudo differential up to a remainder in the class £, ,, defined as follows. This class of smoothing
(in space) operators has been introduced in [33]].

Definition C.5. Fix so > (v + 1)/2 and p, S € N with so < p < S with possibly S = +o00. Fix p € N, with p > 3 and
consider any subset O of R”. We denote by £,, = £,,(0) the set of the linear operators A = A(w): H*(T**1) —
H*(TV*1), w € O with the following properties:

e the operator A is Lipschitz in w,
e the operators 8344, [(“)E)A, dy), forallo = (by,...,b,) € N” with 0 < [b| < p — 2 have the following properties, for
any sg < s < S, with possibly § = +oc:

() for any mi,my € R, my,my > 0 and my + mo = p — |b| one has that the operator (D )mlabA< )2 s

Lip-0-tame according to Definition[2.3|and we set

zmgbA( p+bl,s):=  sup g5 A ya (005) (C.24)
mi+ma=p—|b| ©
mi,m2>0

(i) for any mi,mo € R, mi,my > 0 and my +my = p — |b| — 1 one has that (D)™ [abA 0 |{Dy)™ is
Lip-0-tame according to Definition[2.3|and we set

g 5 — . v
Sm[ab A0, ]( p+[bl+1,s):= m1+m:1=lg—|ﬁ\—1 My (08 A,0:](Dz)™2 (0,5). (€25)
ml,mgzo
We define for0 <b < p—2
MOy (s,5) o= max max (900 (o4 [B1,9). 90 ) (o B4 1,5) ) 26
0<[5|<b oA

Assume now that the set O and the operator A depend on i = i(w), and are well defined for w € Oy C Q. for all i
satisfying (6:12). We consider iy = i1(w), i2 = i2(w) and for w € O(i1) N Oliz) we define
A12A = A(Z]_) - A(Zg) . (C27)
We require the following:
e The operators QEAHA, [85,A12A, Oz), for 0 < |§| < p — 3, have the following properties, for any sqg < s < S, with
possibly S = 4o0:
(iii) for any my,mg € R, my,mo > 0and my +mo = p — |b| — 1 one has that (D, >m13bA12A< )™2 is bounded
on HP into itself. More precisely there is a positive constant Nz o, 4(—p+ |b|+ 1, p) such that, for any h € H?,
¥

we have

sup (D)™ 0 A2 (D)™ hllp < Ngs 4 (—p + 6] + 1, p)l|ll ; (C.28)
m1+m2:p;\0‘5\71 i
mi,m2 2
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(iv) for any mi,my € R, my,mg > 0 and my + my = p — |b| — 2 one has that (D >m1[8bA12A O [{Dy)™2 is
bounded on HP into itself. More precisely there is a positive constant Mgz n . 4 5 ]( p + |b| + 2, p) such that
g Oz
for any h € HP one has
sup (D)™ (03 A12A, 8a)(Da)™* hllp < Mg p,,0.0,1 (=P + Bl + 2,0) 12l (C.29)

mi4+mae=p—|b|—2
m1,m2>0

We define for0 <b < p—3

Ma,,a(p,b) = Oglla’;b max (magAmA(—P + [b| + 1, p), mag[Ale,az](—P + o + 2727)) . (C.30)

By construction one has that My (s,b1) < M)i(s,b2) if b1 < by < p — 2 and Ma,,a(p,b1) < Ma,,a(p,b2) if
by <by<p-—3.

We shall also deal with “tame” operators in the following class.

Definition C.6. Fix S € N with possibly S = +oo. Fixb = sg + 67 + 6 and consider O C R"Y. We denote by
€_1 := €_1(O) the set of the linear operators A = A(w): H*(T"™1) — H*(T"*!), w € O which satisfy the following
forany s) < s < S:

o (Dy)V2A(D,)Y2, (Do) 208 A(Dy)Y/?, (Da)/2[05, A, 0,)(Dp)'/?, form = 1,...,v,0 < by < bare Lip-0-
tame operators (see Deﬁnition@fand we define

v L ap
m buplmA( 1,8) o m( » >1/26b1 A(D )1/2(078)7 (C.31
v o '
Qﬁ 93, 14,05 ]( L8) = i)ﬁ<Dm>1/26;1m [A,8:](Dg)1/2 (0,s),
Bal)i= s, e (9 A1) I (-118). €32
m=1,.

Assume now that the set O and the operator A depend on i = i(w), and are well defined for v € O C RY for all i
satisfying (6.12). We consider i1 = i1(w), ia = ia(w) and for w € O(i1) N O(iz) let A1 A as in (C.27). We require the
following:

o (Dg)205 A1pA(DL)Y2, (Dy)Y2[05 A1p A, 0,)(Dy)Y/? form = 1,...,v, 0 < by < b are bounded operators
on H*® into itself. More precisely there are positive constants ma:,lm A,,a(—1,80), and ‘)’I[azlm A1z A,0,] (=1, s0) such that,
forany h € H®0, we have / '

1(D2) 1208 Ay AD) 2 llay < Mis a4 (— 1 50) 1Bl

(C.33)
(D) 2108, Aiz A, 0,1 (Da)*hllay < RWigis a4 0y (L 50) 1l
We define
Bana(so) = max max (M x4 (=100 My 15,0001 50)) - (C.34)
m=1,...,v

The next Lemma shows that the finite rank operators of the form (6.16) are in £, .

Lemma C.7. Fix p > 3. Let R be an operator of the form (6.16), where the functions g;(7), x;(7) belong to H® for
7 € [0, 1] and depend in a Lipschitz way on the parameter w € O C R¥. Then there exists 01 = o1(p) > 0 such that R
belongs to £, , and

Mp(s,0) So 30 sup (b MIZS, 195155, + IGO0, g (DITS,) ©35)
jl<c TElo1]
Marp:0) S5 30 sup (180267 ot [95tos + 06T s 181205t ) (€.36)
ljjl<c T

Proof. The Lemma follows by reasoning as in the proof of Lemma B.2 in [33] and using the explicit formula (6.16). O
We conclude this section by showing the connection between the class £, , and the class €_; in Definition[C.6]

Lemma C.8. Consider b € N and p € N with p > b + 3. The following holds.



REDUCIBLE KAM TORI FOR THE DEGASPERIS-PROCESI EQUATION 51
(i) IfAe £, (see Deﬁnition@) then A € €_1 (see Deﬁnitlbn@) with

BZ&(S? b) Sms Ml(s’ p— 2) ) EAle(pv b) Sp,p MA12A(p7 p— 3) . (C37)

(ii) Consider a symbol a = a(w,i(w)) in S™ withm < —1 depending on w € Oy C R in a Lipschitz way and on i
in a Lipschitz way and let A := Op(a(x,§)). Then one has that A € €_1 with

0
BZ(Sab) <s |CL Z%SOJFbJrQ’()a BA12A(p3 b) <s |A12a|m,p+b+3,0~ (C.38)

(iii) Let A,B € €_1. Then Ao B € €_1 with
B p(s,b) <s B (s,b)B)(s0,b) + B (s0,b)B)(s,b) (C.39)
BAIQ (AoB) (pa b) Sp,p BAlgA(p7 b)BB(pa b) 5 +BAlgB(pa b)[BA (p7 b) . (C40)

Proof. Let us check item (7). The fact that (D,)"/2A(D,)'/? is Lip-0-tame follows by (C.24) since p > 1. Indeed
(D)~ is bounded in x and for any h € H®

(D22 A(D,)2 1|70 < [(Dy) ™"+ ({Da) P~ 2 A(D,)2) hI|7O0 <o D (—p, 8) (IR 1,°0 + D04 (—p, 50) |2 9.

By studying the tameness constant of the operators QEA, [A, D.], [(’)EA, 0] A124, agAlgA, [A12A4, 0], [82A12A, 0]
for b € N¥, |b| = b, following the same reasoning as above, one gets the (C37).

In order to prove item (i7) one can follow almost word by word the proof of Lemma A.4 in [33]]. Let us check (C.39). Let
b € N and consider 0 < b; <b,m =1,...,v. One has

(Da)?0% (Ao B)(Dy)s = Y Cler,c)(Dy)? (9, A) 02, B)(D,)* . (C.41)
c1+c2=b;

We show that each summand in (C.41) is a Lip-0-tame operator. We have for h € H*

1

(D2) % (95, A) (D2, BY(Da)2hl|T < |[(Da)? (95, A)(D2) 2 (D) (D)2 (952, B)(Dy) 2 h
<s (B4 (5,0)BY (50, b) + B (s0,b)B (5,0)) [ 2], + B (s0, b)B (50, b)[[ A2

7,00
S

(C.42)

In (C42) we used the fact that (D)= (0 A) (D,)? and (D,)2 (022 B) (D)7 are O-tame by hypothesis (see Definition
(C.6)). This proves (C.39) for the operators A o B and 92! (Ao B) forany 0 < b; <b, m = 1,...,v. One concludes
the proof of (C:39) and (C.40) followings the same ideas used above. For further details we refer to the proof of Lemma
B.1in [33]. O

Lemma C.9. Let X,Y € €_ then ad%[Y] € €_; for any k > 1 (recall (T.68)). Moreover for any k > 1 we have

k-1 k
Bk 1v1(8) Ss Bx () (Bx(s0)" B (s0) + (B (50)) B (s)- (C.43)
Moreover if X, Y depend on some parameter i we have
Bayadt v)(50) S Y BY ) (50) Basx (50) B ) (50) By (iy) (s0) + B i) Bassy (s0)- (C.44)
Jitje2=k—1

Proof. Tt follows by using the formula

Apady[Y] = > adl,, ada,xadg, [V(i1)] +ady ) [AY]
Jitije=k-1
and applying iteratively the estimates of Lemma [C.8] ]

Lemma C.10. Let A € €_; then A is a Lip-—1-modulo tame operator according to Definition[2.7) Moreover

3/2 2

3/2 3/2 3/
M (s) < max Uzmg;gn o, (—1:5), ML (5,b0) < P Ex mz’fé‘ffbo [A,az](_l’ s), (C.45)
(D)2 A1 ADY || £are0ys [1{D2)* A12(0,)* ADY |l £ 10y < Bz a(s0,b0) . (C.46)

Proof. Tt follows arguing as in the proof of Lemma A.4 in Appendix A of [33]] using the definition of €_; in Definition
IC.0 |
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C.3. Linear Birkhoff normal form. The next lemma regards almost diagonal vector fields which belong to €_.

Lemma C.11. Let X 5 := JA € €_1 with A almost diagonal in the sense ofDeﬁnition. Then |A§:l’l/| < C{j,j")?
for some constant C > 0.

Proof. The operator B := (D,)'/2JA(D,)"/? belongs to £L(H?®) for any s. Then |B§:l’l/\ < Cforallj,j’ € Z,1,I' € Z".
The thesis follows by the fact that

i i . i i . .

BN = A1) 2 GO PG 2 1AL 1G22

and |j| > (§)%/2(;')}/2, since A is almost diagonal. O

We now study the flows generated by operators belonging to the class €_; given in Definition
In subsection we look for symplectic changes of variable Y;: HZ, (Tv+1) — Hg, (T*+1), i = 1,2, 3, that are the
time-1 flow of quadratic Hamiltonians

Hy(w)=c Y (&) (9)uy T, (C47)
3,j'€ese

where A; () is a self-adjoint operator V¢ € T" and thus

JA;)?
Ti = eXP(SJAi):IHSL +€JA¢+E2%+€3R1', Rz ::Z
k>3

€k73
a (Ja)k. (C.48)

Given linear operators B;, 7 = 1, 2, 3 define the matrices A;, 7 = 1,2, 3 as
(B)) (1= 1)
O35
(Bs)) (1 - 1)

or ’

ljj’

W) =) a-1) =~ L Gy £0, i—j <23, [1-U|<i, i=1,2, (C49)

(As)iil/ = (a)) (1= 1) = -
where, recall (1.8), (.6),(3.6),
Sejjr =W L+ NG) = A(J'), 0550 1= e + 2(AE L+ NG — AG)). (C.51)

Lemma C.12. Let j,j' € S€, j# j. IfY 7174 +7— 3 =0,0 < |0| <2, 655 # 0, where &5, are given in (C51),
then there exists a constant C depending on the set S such that |§¢;;/| > C.

Sy A0, 1i—4'1<63,, [1-1]<3, (C.50)

Proof. If |¢| = 1 we have by the preservation of momentum

. -/ . -/ 3”,‘*./3 7' — )2
Oe g0 = A =3 = AUG) + AU = (ij+(;2)(i )ijjg)](jl :—r((j— j’))2; '

It is easy to verify that (recall that |j — j/| < 27;)
G M= 3B +35"+ G =12 15517 A+ A+ 0+ G =) < Klj 577t

Which implies the thesis for |¢| = 1. Now suppose |¢| = 2 and consider ji, jo € S. We can write 0,5, = A(j1) + A(j2) +
A(j) — A(j") and by the conservation of momentum

A1) + A(2) + AG) = A" = (G +52) G + 5) (G2 + 5) P, Ja, 5) (C.52)
and P is the rational function
Py, 2) = 3+ 2+ + 22 +ay+az+yz+ayz(r+y+2)
(1+2?)(1+y?) (1 +22) 1+ (z+y+2)?)

If || > N, where N = N(5) is a large constant to be fixed and which depends on the set S, then
|G+ d2) (G + ) (G2 + ) > Ca 52
for some constant C'y := C1(N) > 0 (possibly small), provided that N is large enough. Moreover
(U 5152)3% + T2+ 3133)3 + 34 57 + 351 > Co % 11+ +53)(1+ %)+ (G + 52 +5)°) < Ca j°

(C.53)
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for some small constant Cy := Cy(N) > 0, provided that N is large enough, and some big constant C3 := C3(S) > 0.
Thus [A(j1) + A(72) + A(7) = AG')| = C1C2C57t > 0,
Now consider |j| < N. Then we have

G1 + 52)Gr + ) Ga + DA+ G1g2)i? + (GPde + 5172)7 + 3 + 32 4 32| > M,

(L4501 +53) A+ 52 A+ (1 + j2 +§)°| < My

for some constant M7, Ms > 0 depending on S. Set Cy := M; /Ms.
Therefore |A(j1) + A(j2) + A(5) — A(J')| > C4 > 0. At the end we choose C' > max{Cy, C1C2/Cs}. O

Lemma C.13. Assume that B;, ¢ = 1,2, 3 are such that JB; € €_; and that they are almost diagonal (see Definition .
Then, for any w € gf)” (see (3.3)), the following holds true:
(i) The linear vector fields Xy, := JA;, with A; defined as in (C.49),(C30), belongs to the class €_1, in particular it
satisfies the following:

IB%;QXAi (s5) < C(s)e" i=1,2, IB%Z,LXA3 (s) < C(s)e3y71, Vs > sq . (C.54)
Note that Xy, does not depend on i(w).
(ii) The transformation C;: H*(T**1) — H*(TT1), i = 1,2, 3 defined in (CA3) is invertible and satisfies, for any
u = u(w) € H® Lipschitz inw € 0%,

0% < i 0% | i 0%
IO = Dul 7 SeClso)Juld™= +'Cl)|lullly , i=1,2, (C.55)
,Ogg — 7033 — 70@
I(C5" = Duls™= S ¥y Cso) lull3™ + >y~ C(s)llull5, (C.56)
Proof. First of all notice that, by Lemmata , and the fact that w € gé” (see (3.3)) we will have
-/ g/ C -1 gl C’y
L < = i=1,2 AN < L vy ese LU e (C.57)
|( )g,l | <]7]/>2 |( )],l ‘ <],]’>2

for some constant C' > 0 depending on the set .S.
Proof of item (i). First we note that that B := (D,)'/2JA;(D,)'/? maps H* to itself for all s > 0. Indeed it is sufficient

to exploit the fact that the matrix entries B; (I —1") are uniformly bounded by a constant and B is almost diagonal. The
matrix elements of 92 Xa,, [Xa,, 0], [05, Xa, , O] are respectively

(b = £, MG BL)] (€ =€) (= AD O] (€= ), (b = 0,0 = PAG) (B1)] (£ = 1)
Note that by the definition of A; in (C:49)
(b = 0)" 17 =71 <C
for some constant C' depending on the set S. Thus arguing as above one can easily prove that 65’,mX Ao [ Xays Ozl

02, Xa,, 0] are —1-Lip-tame operators. This concludes the proof of the (C.54)
Proof of item (ii). By (C.48) we have
Eikaiu ksikaiu

(T =Du=>Y_ Rt (Y7'=Du=> (-1) — (C.58)

k>1 ’ k>1

By using iteratively the property (4i7) of Lemma|C.8|and item () we have that
ko (1705 k— 0% k 032
[Xaulls™> < BY, (s)(BX, (s0)" Hulli™> + (B, (so))*ull ™.

By using this relation to estimate the Lip-Sobolev norm of (C.38) and by noting that £”C(s¢)™ is a summable sequence,
for £ small enough, we prove the thesis. |
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