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Abstract

In this note we study stability times for a family of parameter dependent
nonlinear Schrödinger equations on the circle, close to the origin. Imposing
a suitable Diophantine condition (first introduced by Bourgain), we state
a rather flexible Birkhoff Normal Form theorem, which implies, e.g., expo-
nential and sub-exponential time estimates in the Sobolev and Gevrey class
respectively. Complete proofs are given elsewhere (see [BMP18]).
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1 Introduction and main results

In this note we consider families of NLS equations on the circle with external
parameters of the form:

iut + uxx − V ∗ u+ f(x, |u|2)u = 0 , (1.1)

where i =
√
−1 and V ∗ is a Fourier multiplier

V ∗ u =
∑
j∈Z

Vjuje
ijx , (Vj)j∈Z ∈ w∞q ,
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living in the weighted `∞ space

w∞q := {V = (Vj)j∈Z ∈ `
∞ | |V |q := sup

j∈Z
|Vj |〈j〉q <∞} , q ≥ 0 ,

where 〈j〉 := max{|j|, 1}, while f(x, y) is 2π periodic and real analytic in x and is
real analytic in y in a neighborhood of y = 0. We shall assume that f(x, y) has a
zero in y = 0. By analyticity, for some a, R > 0 we have

f(x, y) =

∞∑
d=1

f (d)(x)yd , |f |a,R :=

∞∑
d=1

|f (d)|Ta
Rd <∞ , (1.2)

where, given a real analytic function g(x) =
∑
j∈Z

gje
ijx, we set1 |g|2Ta

:=
∑
j∈Z
|gj |2e2a|j| .

Note that if f is independent of x (1.2) reduces to

|f |R :=

∞∑
d=1

|f (d)|Rd <∞ . (1.3)

Equation (1.1) is at least locally well-posed (say in a neighborhood of u = 0 in
H1) and has an elliptic fixed point at u = 0, so that an extremely natural question
is to understand stability times for small initial data. One can informally state the
problem as follows: let E ⊂ H1 be some Banach space and consider (1.1) with
initial datum u0 such that |u0|E ≤ δ � 1. By local well posedness, the solution
u(t, x) of (1.1) with such initial datum exists and is in H1.

Definition 1.1. We call stability time T = T (δ) the supremum of the times t
such that for all |u0|E ≤ δ one has u(t, ·) ∈ E with |u(t, ·)|E ≤ 4δ.

Computing the stability time T (δ) is out of reach, so the goal is to give lower
(and possibly upper) bounds.
A good comparison is with the case of a finite dimensional Hamiltonian system with
a non-degenerate elliptic fixed point, which in the standard complex symplectic
coordinates uj = 1√

2
(qj + ipj) is described by the Hamiltonian

n∑
j=1

ωj |uj |2 +O(u3) , where ωj ∈ R are the linear frequencies. (1.4)

Here if the frequencies ω are sufficiently non degenerate, say Diophantine2, then
one can prove exponential lower bounds on T (δ) and, if the nonlinearity satisfies
some suitable hypothesis (e.g. convexity or steepness), even super-exponential

1Namely g is a holomorphic function on the domain Ta := {x ∈ C/2πZ : |Imx| < a} with
L2-trace on the boundary.

2A vector ω ∈ Rn is called Diophantine when it is badly approximated by rationals, i.e. it
satisfies, for some γ, τ > 0, |k · ω| ≥ γ|k|−τ , ∀k ∈ Zn \ {0} .
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ones, see for instance [MG95], [BFN15] and reference therein.
The strategy for obtaining exponential bounds is made of two main steps. The
first one consists in the so-called Birkhoff normal form procedure: after N ≥ 1
steps the Hamiltonian (1.4) is transformed into

n∑
j=1

ωj |uj |2 + Z +R , (1.5)

where Z depends only on the actions (|ui|2)ni=1 while R = O(|u|2N+3) contains
terms of order at least 2N + 3 in |u|.
It is well known that this procedure generically diverges in N, so the second step
consists in finding N = N(δ) which minimizes the size of the remainder R.
The problem of long-time stability for equations (1.1) has been studied by many
authors. In the context of infinite chains with a finite range coupling, we mention
[BFG88]. Regarding applications to PDEs (and particularly the NLS) the first
results were given in [Bou96] by Bourgain, who proved polynomial bounds for the
stability times in the following terms: for any M there exists s = s(M) such that
initial data which are δ-small in the Hr+s norm stay small in the Hr norm, for
times of order δ−M . Afterwards, Bambusi in [Bam99b] proved that superanalytic

initial data stay small in analytic norm, for times of order e(ln(δ
−1)1+b), where

b > 1.
Bambusi and Grebert in [BG06] proved polynomial bounds for a class of tame-
modulus PDEs, which includes (1.1). More precisely, they proved that for any
N � 1 there exists p(N) (tending to infinity as N → ∞) such that for all p ≥ p(N)
and initial datum in Hp one has T ≥ C(N, p)δ−N. For an application to the present
model we refer also to [ZG17].
Similar results were also proved for the Klein Gordon equation on Zoll manifolds in
[BDGS]. Successively Faou and Grebert in [FG13] considered the case of analytic

initial data and proved subexponential bounds of the form T ≥ ec ln(
1
δ )

1+β

for
classes of NLS equations in Td (which include (1.1) by taking d = 1). Finally,
Feola and Iandoli in [FI] prove polynomial lower bounds for the stability times of
reversible NLS equations with two derivatives in the nonlinearity.

A closely related topic is the study of orbital stability times close to periodic
or quasi-periodic solutions of (1.1). In the case E = H1, Bambusi in [Bam99a]

proved a lower bound of the form T ≥ ecδ
−β

for perturbations of the integrable
cubic NLS close to a quasi-periodic solution. Regarding higher Sobolev norms,
most results are in the periodic case. See [FGL13] (polynomial bounds for Sobolev
initial data) and the preprint [MSW18] (subexponential bounds for subanalytic
initial data).
A dual point of view is to construct special orbits for which the Sobolev norms
grow as fast as possible (thus giving an upper bound on the stability times). As
far as we are aware such results are mostly on T2 and in parameterless cases (for
instance [CKS+10], [GK15], [GHP16]) and the time scales involved are much longer
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than our stability times (see [Gua14] for the instability of (1.1) on T2 and [Han14]
for the istability of the plane wave in Hs with s < 1).

1.1 The stability results

In this paper we recover and improve the results in [BG06] (Sobolev initial data)
and [FG13] (analytic and subanalytic initial data) under a different Diophantine
non-resonance condition on the linear frequencies, by application of a different
Birkhoff normal form approach (see the comments after Theorem 1.4). More
precisely, following Bourgain [Bou05], we set

Ωq :=

{
ω = (ωj)j∈Z ∈ RZ, sup

j
|ωj − j2|〈j〉q < 1/2

}
(1.6)

and, for γ > 0 we define the set of ”good frequencies” as

Dγ,q :=

{
ω ∈ Ωq : |ω · `| > γ

∏
n∈Z

1

(1 + |`n|2〈n〉2+q)
. ∀` ∈ ZZ : |`| <∞

}
, (1.7)

Note that Dγ,q is large with respect to a natural probability product measure on
Ωq (see e.g. [Bou05]).

Remark 1.1. From now on we shall fix γ > 0, q ≥ 0 and assume that V in (1.1) is
such that |V |q < 1/2 and ω = (ωj)j∈Z ∈ Dγ,q where ωj = j2 + Vj .

We note that some non-resonance condition on the frequencies is inevitable if one
wants to prove long-time stability, indeed if one takes V = 0 and f(x, |u|2) = |u|4
then one can exhibit orbits in which the Sobolev norm is unstable in times of order
δ−4, see [GT12], [HP17].

Sobolev initial data. In the case of Sobolev initial data it is fundamental to have
a good control on the dependence of the stabiliy time T on the the regularity p.
This means that results are very sensitive to which (of various equivalent) Sobolev
norms one considers. Recalling that the L2-norm is invariant for the equation 1.1,
we will consider two cases:

− In the first case we deal with the usual norm |u0|L2 + |∂pxu0|L2 , for p > 1.
We denote this case as S (Sobolev case) and, by fixing p = p(δ), we prove sub-
exponential lower bound for the stability time T (δ) .

− In the second case, denoted by M (Modified-Sobolev case), we consider the
equivalent norm 2p|u0|L2 + |∂pxu0|L2 . In order to simplify the exposition and
obtain better bounds, in this case we consider (1.1) with f independent of x
(translation invariance). Again, fixing p = p(δ), we prove exponential lower
bound on the stability time T (δ).

4



Of course, the norms in S and M are equivalent with constants depending on p.
Note that when p depends on δ such constants become very important.
The main qualitative difference between S and M is that in the latter we are requir-
ing that the Fourier modes 0, 1,−1 of the initial datum have very little energy. In-
deed, passing to the Fourier side u0(x) =

∑
j∈Z u0,je

ijx, if both |u0|L2 + |∂pxu0|L2 ≤
δ/2 and the extra condition |u0,0|2 + |u0,1|2 + |u0,−1|2 ≤ δ22−2p−2 hold, then one
has 2p|u0|L2 ≤ δ.

Below we formally state our first result, which depends on some constants,
denoted by τS, δS, kS, TS, KS, τM, δM, TM, which depend only on γ, q, a, R, |f |a,R in the
case S and on γ, q, R, |f |R in the case M.

Theorem 1.1 (Sobolev stability). Consider equation (1.1) with f satisfying (1.2)
for a, R > 0.
(S) For any p > 1 such that (p − 1)/τS ∈ N and any initial datum u(0) = u0
satisfying

|u0|L2 + |∂pxu0|L2 ≤ δ ≤ min

{
δS(kSp)

−3p ,

√
R

20

}
, (1.8)

the solution u(t) of (1.1) with initial datum u(0) = u0 exists for all times

|t| ≤ TS

δ2
(KSp)

−5p
(
δS
δ

) 2(p−1)
τS

and satisfies |u(t)|L2 + |∂pxu(t)|L2 ≤ 4δ . (1.9)

(M) Assume that f in (1.1) is independent of x. For any p > 1 such that (p−1)/τM ∈
N and for any initial datum u(0) = u0 satisfying

2p|u0|L2 + |∂pxu0|L2 ≤ δ ≤ min

{
2
√
τMδM√
p

,

√
R

4
√

10

}
, (1.10)

the solution u(t) of (1.1) exists for all times

|t| ≤ TM

δ2

(
4τMδ

2
M

(p− 1)δ2

) p−1
τM

and satisfies 2p|u(t)|L2 + |∂pxu(t)|L2 ≤ 4δ . (1.11)

Remark 1.2. Some remarks on the optimality of Theorem 1.1 are in order.

1. We stress the fact that estimates (1.8) of case S is optimal in some sense.
The simplest way of showing this fact is to construct a Hamiltonian which does
not preserve momentum and exhibits fast drift. In fact, if we take δ > (e−1p)−p/2

then orbits performing “fast drift” in a time of order 1 may occur. Indeed consider
e.g. , for 2 ≤ j ∈ N the family of Hamiltonians:

H(j)(u1, uj) := |u1|2 + (j2 + Vj)|uj |2 + e−aj Re(|u1|2u1ūj) .

Passing to action-angle variables ui =
√
Iie

iϑi we get the new Hamiltonian

I1 +ωIj + e−ajI
3/2
1

√
Ij cos(ϑ1−ϑj) = J1 +ω(J2− J1) + e−ajJ

3/2
1

√
J2 − J1 cosϕ1
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in the new symplectic variables J1 = I1, J2 = I1 + Ij , ϕ1 = ϑ1 − ϑj , ϕ2 = ϑj .
Note that this Hamiltonian has J2 as constant of motion while

J̇1 = e−ajJ
3/2
1

√
J2 − J1 sinϕ1.

In this case the norm in (1.12) reads√
|u1|2 + |uj |2 +

√
|u1|2 + j2p|uj |2 =

√
J2 +

√
(1− j2p)J1 + j2pJ2 .

Taking the initial datum u(0) = (u1(0), uj(0)) with u1(0) = δ/4, uj(0) = j−pδ/4,
we have that its norm is smaller than δ, while J1 can have a drift of order δ4j−pe−aj

in a time T of order 1. This means that the Sobolev norm of u(T ) is of order
δ3e−ajjp hence greater than 4δ if δ2e−ajjp is large. Maximizing on j we get a
constraint of the form δ2e−p(a−1p)p < 1.
Of course this pathological ”fast diffusion” phenomenon comes from the non con-
servation of momentum3, and would appear (with similar constants) also in the
case M.

2. It is very important to stress that in the case S restricting to translation
invariant Hamiltonians would not result in signficantly weaker constraints on the
smallness of δ w.r.t. p. This can be seen in the following example. Consider the
familiy of Hamiltonians (in three degrees of freedom)

K(j) := |u1|2 + j2|uj |2 + Re(ūj−10 uj1ūj)

with the constants of motion

L = |u0|2 + |u1|2 + |uj |2 , M = |u1|2 + j|uj |2 .

Following the same approach as in the previous example one shows that |uj |2 can
have a drift of order j−pδ2j in a time T of order 1. This means that the Sobolev
norm of u(T ) is of order δ2jjp. Maximizing on j we get a constraint of the form

δep
1−

< 1. We point out that the Hamiltonian discussed above is stable in the M

norm for all times and for δ small independent of p. This is the main reason for
restricting in M to translation invariant Hamiltonians.

From Theorem 1.1 it is straightforward to maximize over p and find an optimal
regularity. We stress that in the case S our estimate on the stability time is an
increasing function of p, so the maximum is obtained by just fixing p so that
δ = (CSp)

−3p. On the other hand in the case M there is a proper maximum.
We thus have the following result. As before our statements depend on some
constants, denoted by δ̄S, δ̄M, which depend only on γ, q, a, R, |f |a,R in the case S

and on q,R, |f |R in the case M. By [·] we denote the integer part.

3indeed the term e−aj is added in order to ensure that monomials with very high momentum
give an exponenially small contribution to the Hamiltonian
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Theorem 1.2 (Sobolev stability: optimization).
(S) For any 0 < δ ≤ δ̄S and any u0 such that

|u0|L2 + |∂pxu0|L2 ≤ δ , p = p(δ) := 1 + τS

[
1

6τS

ln(δS/δ)

ln ln(δS/δ)

]
, (1.12)

the solution u(t) of (1.1) with initial datum u(0) = u0 exists for all times

|t| ≤ TS

δ2
e

ln2(δS/δ)
4τS ln ln(δS/δ) and satisfies |u(t)|L2 + |∂pxu(t)|L2 ≤ 4δ . (1.13)

(M) Assume that f in (1.1) is independent of x. For any 0 < δ ≤ δ̄M and

∀ p ≥ p(δ) := 1+τM

[
δ2M
δ2

]
, ∀u0 s.t. 2p|u0|L2 + |∂pxu0|L2 ≤ δ , (1.14)

the solution u(t) of (1.1) with initial datum u(0) = u0 exists for all times

|t| ≤ TM

δ2
e(δM/δ)

2

and satisfies 2p|u(t)|L2 + |∂pxu(t)|L2 ≤ 4δ . (1.15)

Remark 1.3. Some remarks on Theorem 1.2 are in order.
Note that (1.13) is the stability time computed in [BFG88] for short range

couplings.

1. In our study we have only considered Gauge preserving equations, that is
PDEs which preserve the L2 norm. We believe that this is just a technical question
and that we could deal with more general cases. Similarly in the case M we have
assumed that f in (1.1) is independent of x, namely momentum preserving. Not
only this simplifies the proof but as explained after Theorem 1.1 allows us much
better estimates. Of course we could prove the theorem (with different constants)
also for x-dependent f , as in the case S.

2. We will prove the case M only for p = p(δ), the general case being analogous4

(with the same constants!) also if p ≥ p(δ).
3. One can easily restate Theorem 1.2 in terms of the Sobolev exponent p,

instead of δ, since the map δ → p(δ) is injective.

In this paper we have considered the simplest possible example of dispersive
PDE on the circle. One can easily see that the same strategy can be followed word
by word in more general cases provided that the non-linearity does not contain
derivatives. A much more challenging question is to consider NLS models with
derivatives in the non-linearity. As we have mentioned a semilinear case was
discussed by [CMW]. A very promising approach to Birkhoff normal form for
quasilinear PDEs is the one of [Del12]- [BD18] which was applied to fully-nonlinear

4Indeed, thanks to the monotonicity property of our norms the canonical transformation
putting the system in Birkhoff Normal Form (see Theorem 1.4 below) in the p-case is simply the
restriction to Hp of the one of the p(δ)-case.
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reversible NLS equations in [FI]. It seems very plausible that one can adapt their
methods (based on paralinearizations and paradifferential calculus) to our setting,
however it seems that in this case one must give up the Hamiltonian structure.

Analytic and Gevrey initial data
In this case our result is similar to [FG13] in the sense that we also prove subex-
ponential bounds on the time. We mention however that in [FG13] the control of
the Sobloev norm in time is in a lower regularity space w.r.t. the initial datum.
Recently we have been made aware of a preprint by Cong, Mi and Wang [CMW]
in which the authors give subexponential bounds for subanalytic initial data of a
model like (1.1), very similar to ours. A difference is that in their case the non
linearity contains a derivative (see the comments after Theorem 1.3) but satisfies
momentum conservation.
Let us fix 0 < θ < 1, and define the function spaces

Hp,s,a :=

u(x) =
∑
j∈Z

uje
ijx ∈ L2 : |u|2p,s,a :=

∑
j∈Z
|uj |2〈j〉2pe2a|j|+2s〈j〉θ <∞

 .

(1.16)
with the assumption a ≥ 0, s > 0, p > 1/2. We remark that if a > 0 this is a
space of analytic functions, while if a = 0 the functions have Gevrey regularity.
Note that for technical reasons connected to the way in which we control the small
divisors, we cannot deal with the purely analytic case θ = 1. For this reason we
denote this result as G (Gevrey case). The main important difference with the
cases S, M is that now the regularity p, s, a is independent of δ.
As before our result, stated below, depends on some constants δ̄G, δG, TG, depending
only on γ, q, a, R, |f |a,R, p, s, a, θ.

Theorem 1.3 (Gevrey Stability). Fix any a ≥ 0, s > 0 such that a + s < a and
any p > 1/2. For any 0 < δ ≤ δ̄G and any u0 such that

|u0|p,s,a ≤ δ ,

the solution u(t) of (1.1) with initial datum u(0) = u0 exists for all times

|t| ≤ TG

δ2
e(ln

δG
δ )

1+θ/4

and satisfies |u(t)|p,s,a ≤ 2δ .

Remark 1.4. Some comments on Theorem 1.3 are in order.
1. We did not make an effort to maximize the exponent 1+θ/4 in the stability

time. In fact, by trivially modifying the proof, one could get 1+θ/(2+). We remark
that in [CMW], in which θ = 1/2, the exponent is better, i.e. it is 1 + 1/(2+).

2. As we mentioned before, the main difference w.r.t. the cases S, M is that now
the regularity p, s, a is independent of δ, with the only requirement that p > 1/2
and s > 0. If instead we took s appropriately large with δ we would get an
exponential bound just like in case M.
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3. One could consider initial data with an intermediate regularity between
Sobolev and Gevrey and compute stability times. A good example (suggested to
us by Z. Hani) could be the space

Hc :=

u =
∑
j

uje
ijx ∈ L2 :

∑
j

|uj |2ec(ln(bjc)
2) <∞


where c > 0 and bjc := max{|j|, 2}. Following the proof of Theorem 1.3 almost
verbatim one can get an estimate of the type T ≥ Cδ−3+ln(ln(1/δ)).

1.2 The Birkhoff Normal Form

Our results are based on a Birkhoff normal form procedure, which we now describe.
Let us pass to the Fourier side via the identification

u(x) =
∑
j∈Z

uje
ijx 7→ u = (uj)j∈Z , (1.17)

where u belongs to some complete subspace of `2. More precisely, given a real
sequence w = (wj)j∈Z, with wj ≥ 1 we consider the Hilbert space5

hw :=

u := (uj)j∈Z ∈ `
2(C) : |u|2w :=

∑
j∈Z

w2j |uj |
2
<∞

 , (1.18)

and fix the symplectic structure to be

i
∑
j

duj ∧ dūj . (1.19)

In this framework the Hamiltonian of (1.1) is

HNLS(u) := Dω + P , where (1.20)

Dω :=
∑
j∈Z

ωj |uj |2 , P :=

∫
T
F (x, |u(x)|2)dx , F (x, y) :=

∫ y

0

f(x, s)ds .

As examples of hw we consider:
S) (Sobolev case) wj = 〈j〉p, which is isometrically isomorphic, by Fourier

transform, to Hp,0,0 defined in (1.16) and is equivalent to Hp equipped with the
norm | · |L2 + |∂px · |L2 with equivalence constants independent of p

M) (Modified-Sobolev case) wj = bjcp, where bjc := max{|j|, 2}; this space
is equivalent to Hp equipped with the norm 2p| · |L2 + |∂px · |L2 with equivalence
constants independent of p

5 Endowed with the scalar product (u, v)hw :=
∑
j∈Z w

2
juj v̄j .
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G) (Gevrey case) wj = 〈j〉pea|j|+s〈j〉θ , which is isometrically isomorphic, by
Fourier transform, to Hp,s,a defined in (1.16).

Here and in the following, given r > 0, by Br(hw) we mean the closed ball of radius
r centered at the origin of hw.

Definition 1.2 (majorant analytic Hamiltonians). For r > 0, let Ar(hw) be the
space of Hamiltonians

H : Br(hw)→ R

such that there exists a pointwise absolutely convergent power series expansion6

H(u) =
∑

α,β∈NZ ,
|α|+|β|<∞

Hα,βu
αūβ , uα :=

∏
j∈Z

u
αj
j

with the following properties:

(i) Reality condition:
Hα,β = Hβ,α ; (1.21)

(ii) Mass conservation:
Hα,β = 0 if |α| 6= |β| , (1.22)

namely the Hamiltonian Poisson commutes with the mass
∑
j∈Z |uj |2;

Finally, given H as above, we define its majorant H : Br(hw)→ R as

H(u) =
∑

α,β∈NZ ,
|α|+|β|<∞

|Hα,β|uαūβ . (1.23)

We also define the subspace of normal form Hamiltonians

K :=

{
Z ∈ Ar(hw) : Z(u) =

∑
α∈NZ

Zα,α|u|2α
}
. (1.24)

Note that Zα,α ∈ R for every α ∈ NZ by condition (1.21).

In the following we will also deal with a smaller class of Hamiltonians, namely the
ones which have the momentum

∑
j∈ j|uj |

2
as additional first integral.

Definition 1.3. We say that a Hamiltonian H ∈ Ar(hw) preserves momentum
when

Hα,β = 0 if
∑
j∈Z

j(αj − βj) 6= 0 ,

namely the Hamiltonian H Poisson commutes with
∑
j∈ j|uj |

2
.

6As usual given a vector k ∈ ZZ, |k| :=
∑
j∈Z |kj |.
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Note that if the nonlinearity f in equation (1.1) does not depend on the variable
x, then the Hamiltonian P in (1.20) preserves momentum.

We now state a Birkhoff Normal Form Theorem for the Hamiltonian in (1.20).
Fix any N ≥ 1 and consider the space hw where w is one of the following three cases:

S) (Sobolev case) wj = 〈j〉1+τSN;
M) (Modified-Sobolev case) wj = bjc1+τMN, where bjc := max{|j|, 2};
G) (Gevrey case) wj = ea|j|+s〈j〉

θ 〈j〉p with p > 1/2, s > 0, 0 ≤ a < a.
The constants r, C1, C2, C3, below, corresponding to the cases S, M, G respectively,
depend on N ≥ 1.

Theorem 1.4 (Birkhoff Normal Form). Fix any N ≥ 1 and consider the space hw
where w is one of the three above cases: S, M, G. Consider the Hamiltonian (1.20),
assuming, only in the case M, that f does not depend on x (momentum conser-
vation). Then for any 0 < r ≤ r there exists two close to identity invertible
symplectic change of variables

Ψ,Ψ−1 : Br(hw) 7→ hw , sup|u|w≤r |Ψ
±1(u)− u|w ≤ C1r

3 ≤ 1
8r ,

Ψ ◦Ψ−1u = Ψ−1 ◦Ψu = u , ∀u ∈ B 7
8 r

(hw) (1.25)

such that in the new coordinates

H ◦Ψ = Dω + Z +R ,

for suitable majorant analytic Hamiltonians Z,R ∈ Ar(hw), Z ∈ K, satisfying the
estimate

sup
|u|w≤r

|XZ |w ≤ C2r
3 , sup

|u|w≤r
|XR|w ≤ C3r

2N+3 , (1.26)

XZ (resp. XR), being the hamiltonian vector field generated by the the majorant
of Z (resp. R). Moreover, in the case M, R preserves momentum.

The proof of our Birkhoff normal form result (contained in [BMP18]) is based
on a procedure which, while following the line of previous works such as [BG06]
and [FG13], it takes a slightly different point of view. Broadly speaking the core is
the following: as already noticed in [FG13] small divisor estimates and hence sta-
bility are simpler to prove for traslation invariant PDEs (i.e. Hamiltonian systems
which preserve the momentum). Considering this fact we introduce in [BMP18]
an appropriate norm, which weights non-momentum preserving monomial expo-
nentially. This norm is rather cumbersome and depends on many parameters but
we show that it is very well suited for performing Birkhoff normal form steps for
dispersive PDEs on the circle. This rather simple idea, allows us a very good
control of the small divisors by generalizing the estimates by Bourgain in [Bou05].
As a byproduct our normal forms are simpler, in the sense that they are functions
only of the linear actions, and it is relatively easy to compute all the constants.
Above we stated Theorem 1.4 only in the cases S, M, G, but our method is quite ver-
satile and one can formulate a Birkhoff Norma Form result in the general contest
of weighted Hilbert spaces.
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