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Abstract

Let Eλ be the Legendre elliptic curve of equation Y X X X12 l= ( - )( - ). We recently proved
that, given n linearly independent points P P, , n1 l l( ) ¼ ( ) on Eλ with coordinates in  l( ), there
are at most finitely many complex numbers 0l such that the points P P, , n1 0 0l l( ) ¼ ( ) satisfy two
independent relations on E 0l . In this article, we continue our investigations on Unlikely
Intersections in families of abelian varieties, and consider the case of a curve in a product of two
non-isogenous families of elliptic curves and in a family of split semi-abelian varieties.

1. Introduction

Let n m, be positive integers, and let Eλ denote the elliptic curve with Legendre equation

Y X X X1 . 1.12 l= ( - )( - ) ( )

We consider an irreducible curve n m2 2 2 Í + + , defined over , with coordinate functions

x y x y u v u v, , , , , , , , , , , ,n n m m1 1 1 1l m( ¼ ¼ )

such that, for every i n1, ,= ¼ , the points P x y,i i i= ( ) lie on the elliptic curve Eλ and, for every
j m1, ,= ¼ , the points Q u v,j j j= ( ) lie on Eμ. We will assume that , 0, 1l m ¹ on the curve.
Therefore,  is not Zariski closed in ,n m2 2 2 + + but it is locally closed.

We call R1 and R2 the endomorphism rings of Eλ and Eμ, respectively. These will be iso-
morphic to , unless we have a fixed elliptic curve with complex multiplication. For instance, if

0m m= is constant on  and E
0m has complex multiplication, then R2 will be strictly larger than .
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Suppose that, on  , the two elliptic curves Eλ and Eμ are not isogenous (for instance, we must
have 1l m¹  ), and that the Pi and Qj are independent, that is, there is no non-trivial relation
among them over R1 or R2.

Now, as c varies on  ( ), the specialized points cPi ( ) and cQj ( ) will be lying on the special-
ized elliptic curves E cl ( ) and E cm ( ), respectively. We implicitly exclude the finitely many c with

cl ( ) or cm ( ) equal to 0 or 1, since in that case we have a singular curve.
It might happen that, for a certain c, the specialized points become dependent over R1 or R2, or

an eventually larger endomorphism ring. We do not consider the latter case, and we will talk about
relations among the generic and specialized points always meaning relations over R1 and R2.

In [1], we proved that, in case λ is non-constant and the Pi are independent on  , there are at
most finitely many c  Î ( ) such that c cP P, , n1( ) ¼ ( ) satisfy two independent relations on E cl ( )
(see [22] for the case n= 2).

In this article, we continue our program of studying Unlikely Intersections in families of abelian
varieties and prove the following theorem.

THEOREM 1.1 Let n m2 2 2 Í + + be an irreducible curve defined over with coordinate functions
x y x y u v u v, , , , , , , , , , ,n n m m1 1 1 1l m( ¼ ¼ ), such that, for every i n1, ,= ¼ , the points P x y,i i i= ( ) lie
on Eλ and, for every j m1, ,= ¼ , the Q u v,j j j= ( ) lie on Eμ. Suppose, moreover, that Eλ and Eμ

are not isogenous and that there are no generic non-trivial relations among P P, , n1 ¼ on Eλ and
among Q Q, , m1 ¼ on Eμ. Then, there are at most finitely many c  Î ( ) such that there exist
a a R, , 0n

n
1 1( ¼ ) Î { }⧹ and b b R, , 0m

m
1 2( ¼ ) Î { }⧹ for which

c c c ca P a P and b Q b Q0 0.n n m m1 1 1 1( ) + + ( ) = ( ) + + ( ) = 

In case n m 1= = , the theorem says that there are at most finitely many points on the curve 
such that P1 and Q1 are simultaneously of finite order on the respective specialized elliptic curves.
This is nothing but the Proposition on p. 120 of [23]. Actually, Masser and Zannier deal also with
the case of a curve  not defined over the algebraic numbers. Note that if λ and μ are both con-
stant on  and n m 1= = , then the conclusion of the theorem is a special case of Raynaud’s
Theorem [32], also known as the Manin–Mumford Conjecture.

For general n and m, in the case of two constant elliptic curves defined over the algebraic
numbers, the theorem follows from the recent work [13] of Habegger and Pila. Therefore, we can
suppose that at least one of the two parameters, say λ, is non-constant and that R1 @ .

We also obtain a similar result for the fibered product of n copies of Eλ with m m
m = ( )́ . We

consider a curve n m2 1
m  Í ´+ with coordinate functions

x y x y u u, , , , , , , , ,n n m1 1 1l( ¼ ¼ )

with λ non-constant, such that, for every i n1, ,= ¼ , the points P x y,i i i= ( ) lie on Eλ as above. As
the point c varies on the curve  , the cuj ( ) will be non-zero complex numbers.

THEOREM 1.2 Let n m2 1
m  Í ´+ be an irreducible curve defined over  with coordinate func-

tions x y x y u u, , , , , , , ,n n m1 1 1l( ¼ ¼ ), λ non-constant, such that, for every i n1, ,= ¼ , the points
P x y,i i i= ( ) lie on Eλ. Suppose, moreover, that no generic non-trivial relation among P P, , n1 ¼
holds and that the u u, , m1 ¼ are generically multiplicatively independent. Then, there are at most
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finitely many c  Î ( ) such that there exist a a, , 0n
n

1 ( ¼ ) Î { }⧹ and b b, , 0m
m

1 ( ¼ ) Î { }⧹ for
which

c c c ca P a P and u u0 1.n n
b

m
b

1 1 1 m1( ) + + ( ) = ( ) ( ) = 

Here, the case n m 1= = (P1 torsion and u1 a root of 1) follows from work of Bertrand et al.
[4]. In some special cases, Habegger et al. [12] recently gave an effective (but not explicit) bound
for the degree of the set of ‘special’ points, while in some more specific cases, Stoll [34] proved
emptiness, for example, there is no root of unity 10l ¹ such that 2, 2 2 0l( ( - ) ) is torsion
on E 0l .

Let us see a few examples. Consider the points

P P2, 2 2 , 3, 6 3 ,1 2l l l l( ) = ( ( - ) ) ( ) = ( ( - ) )

on Eλ and

Q Q2, 2 2 , 3, 6 3 ,1 2l l l l( ) = ( ( + ) ) ( ) = ( ( + ) )

on E l- . The two elliptic curves Eλ and E l- are not identically isogenous. In fact, if they were,
each j-invariant would be integral over the ring generated by the other over  and it is easy to
prove that this is not the case (see Section 12 of [23]). Moreover, P1 and P2 are not identically
dependent on El. Indeed, since these two points are defined over disjoint quadratic extensions of
 l( ), by conjugating one can see that the existence of a relation would imply that the points
are identically of finite order on Eλ and this is not the case (see p. 68 of [39]). For the same reason,
Q1 and Q2 are not identically dependent on E l- . Theorem 1.1 then implies that there are at most
finitely many complex 0l such that there are a a b b, , , 01 2 1 2

2( ) ( ) Î { }⧹ with a P1 1 0l( ) +
a P 02 2 0l( ) = on E 0l and b Q b Q 01 1 0 2 2 0l l( ) + ( ) = on E 0l- .

Now, consider E 1- . This is an elliptic curve with complex multiplication by the gaussian
integers i[ ]. Let P1 l( ) and P2 l( ) be as in the example above, and let

Q Q, 1 1 , 2 , 2 2 1 2 1 ,1 2l l l l l l l l l l( ) = ( ( - )( + ) ) ( ) = ( ( - )( + ) )

on E 1- . The two points Q1 and Q2 are not identically dependent on E 1- . Indeed, they are defined
over disjoint quadratic extensions and they are not identically torsion. Therefore, Theorem 1.1
implies that there are at most finitely many complex 0l such that there are a a, 01 2

2( ) Î { }⧹ and
b b i, 01 2

2( ) Î [ ] { }⧹ with a P a P 01 1 0 2 2 0l l( ) + ( ) = on E 0l and b Q b Q 01 1 0 2 2 0l l( ) + ( ) =
on E 1- .

Finally, let P1 and P2 be as above. Then, Theorem 1.2 implies that there are at most finitely
many complex 0l such that there are a a b b, , , 01 2 1 2

2( ) ( ) Î { }⧹ with a P a P 01 1 0 2 2 0l l( ) + ( ) =
on E 0l and 1 1b b

0 0
1 2l l( - ) = .

In general, there are infinitely many c0 such that c cP P, , n1 0 0( ) ¼ ( ) are dependent on E c0l ( ). For
instance, any Pi specializes to a torsion point for infinitely many c0, see [39], p. 92. On the other
hand, a well-known theorem of Silverman [33] implies that the absolute Weil height of such points
is bounded. A direct effective proof of this can be found in Masser’s Appendix C of [39].
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In particular, there are at most finitely many c0 yielding one relation and defined over a given
number field or of bounded degree over .

The proof of our theorems follows the general strategy introduced by Pila and Zannier in [30],
and used by Masser and Zannier in various articles [20–23] and by the authors in [1]. In particular,
we consider the elliptic logarithms z z, , n1 ¼ of P P, , n1 ¼ and w w, , m1 ¼ of Q Q, , m1 ¼ (or the principal
determination of the standard logarithms of u u, , m1 ¼ in the m case) and the equations

z p f q g w r h s k, ,i i i j j j= + = +

for i n1, ,= ¼ and j m1, ,= ¼ , where f and g are suitably chosen basis elements of the period
lattice of Eλ and h and k basis elements for the period lattice of Eμ (or h= 1 and k i2p= for m ).
If we consider the real coordinates p q r s, , ,i i j j as functions of a local uniformizer on a compact
disc D, the image of these functions in n m2 2 + is a subanalytic surface S. The points of  that yield
two relations will correspond to points of S lying on linear varieties defined by equations of some
special form and with integer coefficients. Now, we use a recent result of Habegger and Pila [13]
building on an earlier work of Pila [28], which in turn is a refinement of the Pila–Wilkie Theorem
[29], to obtain an upper bound of order Te for the number of points of S lying on subspaces of the
special form mentioned above and rational coefficients of height at most T, provided the zi and the
wj are algebraically independent. This is ensured by a result of Bertrand [2], in case our curve  is
not contained in a translate of a proper algebraic subgroups by a constant point. This is always the
case in the setting of Theorem 1.1 if both λ and μ are non-constant. On the other hand, if 0m m=
is constant or we are in the setting of Theorem 1.2, our curve might be contained in a non-torsion
translate of a proper algebraic subgroup (for example, we might have Q E1 0

Î ( )m of infinite
order). In this case, we are able to prove the same estimate essentially by reducing to the
case m= 1.

Now, to conclude the proof, we use works of Masser [17, 18] and David [8], and exploit the
boundedness of the height to show that the number of points of S considered above is of order at
least T d for some 0d > . Comparing the two estimates leads to an upper bound for T, and thus for
the coefficients of the two relations, concluding the proof.

Our Theorem 1.2 does not deal with the case of λ constant on  since Silverman’s bounded
height Theorem requires λ not to be constant. On the other hand, a result of Bombieri et al. [7]
gives boundedness of the height in case the uj are independent modulo constants, while Viada [37]
proved the analogous result for a constant elliptic curve E defined over the algebraic numbers.
Therefore, our proof goes through in the constant case, unless P P, , n1( ¼ ) and u u, , m1( ¼ ) are both
contained in a non-torsion translate of an algebraic subgroup of En and m

m , respectively.
We now formulate a statement in scheme theoretic terms and in the flavor of the so-called

Zilber–Pink conjectures. Let S be an irreducible non-singular quasi-projective curve defined over a
number field k. Fix non-negative integers l p q, , , and positive integers n n m m, , , , ,l p1 1¼ ¼ . For
i l1, ,= ¼ , let Si  be non-isotrivial elliptic schemes such that the generic fibers are pairwise
non-isogenous. By non-isotrivial we mean that it cannot become a constant family after a finite
étale base change. Now, for i l1, ,= ¼ , we let i be the ni-fold fibered power of i over S. Let
E E, , p1 ¼ be elliptic curves defined over k which are pairwise non-isogenous. We consider these
and the multiplicative group q

m as constant families over S, that is, we call Ej and
q
m the fibered

products E Sj ḱ and Sq
km ´ , respectively. Finally, we let  be the fibered product
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E ES S l S
m

S S p
m

S
q

1 1 m
p1  ´ ´ ´ ´ ´ ´ 

over S. This is a semi-abelian scheme over S. We call π the structure morphism S  .
A subgroup scheme G of  is a closed subvariety, possibly reducible, which contains the image

of the zero section S  , is mapped to itself by the inversion morphism and such that the
image of G GŚ under the addition morphism is in G. A subgroup scheme G is called flat if

G S:Gp  is flat, that is, all irreducible components of G dominate the base curve S (see [14],
Proposition III 9.7).

We can now state the following theorem, which is a very special case of a conjecture of Pink
[31], Conjecture 6.1.

THEOREM 1.3 Let  be as above and suppose that either p or q equal 0. Let 2{ } be the union of
its flat subgroup schemes of codimension at least 2. Let  be an irreducible curve in  defined
over  and suppose p ( ) dominates S. Then 2 Ç { } is contained in a finite union of flat sub-
group schemes of positive codimension.

In Section 8, we will see how this theorem is a consequence of our two main theorems and the
previous works [1, 10, 13, 24, 38].

2. Preliminaries

We consider a smooth algebraic curve S  and its function field K S= ( ). Let A be an abelian
variety defined over K, and let T be a torus, T m

m@ . We assume that the largest abelian variety A0,
defined over  and isomorphic over K to an abelian subvariety of A, is embedded in A, and call it
the constant part, or -trace, of A. Consider now G T A= ´ and set G T A0 0= ´ . Here and in the
sequel, when necessary we will tacitly restrict S to a non-empty open subset which we will still
denote by S. Then G defines a family of semi-abelian varieties, which we indicate by G S .

We are going to consider our geometrical objects as analytic. When doing so, we use the upper
index an.

Now, our family G S defines an analytic sheaf Gan of Lie groups over the Riemann surface
San and its relative Lie algebra Lie G S( ) defines an analytic sheaf Lie Gan( ) over San. Fix a

S L Í ( ) homeomorphic to a closed disk. We have the following exact sequence of analytic
sheaves over Λ:

Lie G G0 0,G
an an

expGP ( )⟶ ⟶ ⟶ ⟶

see Appendix E of [5].
We fix a basis for the local system of periods GP and call F the field generated over K by such

basis. For a local section x Lie GanÎ ( ), we denote by y xexpG= ( ) its image in Gan.

LEMMA 2.1 Let x Lie GanÎ ( ) and y xexpG= ( ). Assume, moreover, that y is a K-rational point
of G. Then, if xF Gtr.deg dimF ( ) < , there exists H, a proper algebraic subgroup of G, such that
y H G0 Î + ( ).

Proof. This is a consequence of Théorème L of [2] (see also [3]). The theorem is stated for
G T A= ´ ˜ , where Ã is the universal vectorial extension of A. The claim follows by the
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functoriality of the exponential morphisms, by the fact that K-rational points of A and Lie A( ) can
be lifted to K-rational points of Ã and Lie A( )˜ and by a dimension count. Moreover, any algebraic
subgroup of Ã projecting onto A must fill up Ã. Finally, to see that K can be replaced by F in
Théorème L, one must look at the formula at the beginning of page 2786. □

We consider Eλ as a family over Y 2 0, 1,1( ) = { ¥}⧹ . By abuse of notation, we indicate by
En
l the fibered product over Y (2) of n copies of Eλ.
Our theorems deal with a curve  inside a family of semi-abelian varieties G of the following

three types:

(1) G E En m= ´l m with λ and μ both non-constant;
(2) G E En m= ´l m with λ non-constant and ;0 m m= Î
(3) G En m

m= ´l with λ non-constant.

For the rest of the paper, we will refer to these as cases (1), (2) and (3).
In the first two cases, our family has basis Y Y2 2( ) ´ ( ), but, since we must have a one-

dimensional basis in order to apply Lemma 2.1, we will restrict it to p ( ), where E E: n mp ´ l m
Y Y2 2( ) ´ ( ) is the structural morphism.

Now, we let  be the set of points c  Î ( ) that do not map to singular points of p ( ), that
are not ramified points of p and such that , 0, 1l m ¹ and x x, , 0, 1,n1 l¼ ¹ and, in cases (1)
and (2), u u, , 0, 1,m1 m¼ ¹ on c. In this way, we remove only finitely many algebraic points of  .
We set S p= ( ) and K S= ( ). We can then consider our family of semi-abelian varieties G as
a semi-abelian variety defined over the function field K.

We now recall a few facts about algebraic subgroups. The following is a well-known fact (see,
for instance, Lemma 7 of [19]).

LEMMA 2.2 Consider the algebraic group G E En m l
m= ´ ´l m and suppose Eλ and Eμ are

non-isogenous. Then, any algebraic subgroup of G is of the form H H H1 2 3´ ´ , where H1 is an
algebraic subgroup of En

l , H2 of Em
m and H3 of

l
m .

Now, let G E= l, E
0m (with 0 m Î ) or m and R End G= ( ). We use the additive notation.

Any a RmÎ , induces a homomorphism

a G G
g g a g a g
:
, , ,

m

m m m1 1 1


( ¼ ) + +↦

and we indicate by aker ( ) the kernel of this homomorphism. The following is again a well-known
fact (see Fact 5.2 of [15] for a proof sketch).

LEMMA 2.3 Let H be a proper algebraic subgroup of Gm. Then, there exists a R 0mÎ { }⧹ such
that aH kerÍ ( ). Moreover, aker ( ) is an algebraic subgroup of Gm of codimension 1.

Now, set G E
0

= m (with 0 m Î ) or m and again R End G= ( ). Let a R 0mÎ { }⧹ . Then, any
aker ( ) is a finite union of cosets v + H, where v v v, , m1= ( ¼ ) has finite order and H is a con-

nected proper subgroup of Gm of codimension 1. For g g g G, , m
m

1= ( ¼ ) Î and a RÎ , we use the
notation ag to indicate ag ag, , m1( ¼ ).

LEMMA 2.4 Let a RmÎ with a 0h ¹ for some h m1, ,Î { ¼ }. Then each component of aker ( ) is
a coset v+H for some v GmÎ with a v 0h = .
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Proof. We need to show that each component of aker ( ) contains a v with a v 0h = . Fix a com-
ponent g+H for g g g, , m1= ( ¼ ). The subgroup H is connected, and we can consider its Lie alge-
bra Lie (H) as a codimension 1 subspace of Lie Gm( ) defined by the equation a x a x 0m m1 1 + + = .
Fix z z Lie G, , m1 ¼ Î ( ) with z gexpG i i( ) = . Now, since a 0h ¹ , there exists z z Lie H, , m1( ¢ ¼ ¢ ) Î ( )
such that z zi i¢ = for all i h¹ . Then, if g z z g gexp , , , ,G m m1 1m¢ = ( ¢ ¼ ¢ ) = ( ¢ ¼ ¢ ), we have that g gi i= ¢
for all i h¹ . Therefore, if we set v g g= - ¢, we have vi = 0 for all i h¹ , but av kerÎ ( ). Thus,
we have found our element v g HÎ + with a v 0h = . □

Now, choose c * Î  and a neighborhood Nc* of c* on  , mapping injectively to S via π. Let
Dc* be a subset of Nc*p ( ), containing ct* *p ( )≔ and homeomorphic (via a local analytic
isomorphism) to a closed disc.

On Nc*, and, therefore, on Dc*, it is possible to define analytic f g z z, , , , n1 ¼ such that f g,{ } is
a basis for the local system of periods EP l and, for all t Dc*Î , we have cz t PexpE i ic

( ( )) = ( )
l ( )

,
where c is the unique point of N tc

1
* pÇ ( )- . For this, see Section 5 of [1] or Section 3 of [23].

Analogously, we can define analytic h k w w, , , , m1 ¼ such that h k,{ } is a basis for the local
system of periods EP m and we have cw t QexpE j jc

( ( )) = ( )
m ( )

.
In case (3),

mP has rank 1 and we choose i2p{ } as a basis. We define w w, , m1 ¼ to be principal
determinations of the complex logarithm, that is, w t ilog 2 ,j j jr p q( ) = + where u ej j

i2 jr= p q and
0, 1jq Î [ ).

COROLLARY 2.5 In case (1), under the hypotheses of Theorem 1.1, we have that z z, , ,n1 ¼
w w, , m1 ¼ are algebraically independent over f g h k, , ,( ).

Proof. In case (1), we have A 00 = and there is no toric part. Therefore, if z z w w, , , , ,n m1 1¼ ¼
were algebraically dependent, then P P Q Q, , , , ,n m1 1( ¼ ¼ ) would lie in an algebraic subgroup of
E En m´l m . Therefore, by Lemmas 2.2 and 2.3, there would be an identical relation among the Pi or
the Qj contradicting the hypotheses of Theorem 1.1. □

3. O-minimality and point counting

For the basic properties of o-minimal structures, we refer to [35] and [36].

DEFINITION 3.1 A structure is a sequence N = ( ), N 1³ , where each N is a collection of
subsets of N such that, for each N M, 1³ :

(1) N is a boolean algebra (under the usual set-theoretic operations);
(2) N contains every semialgebraic subset of ;N
(3) if A NÎ and B MÎ , then A B ;N M´ Î +
(4) if A N MÎ + , then A Np ( ) Î , where : N M N p + is the projection onto the first N

coordinates.

If  is a structure and, in addition,

(5) 1 consists of all finite union of open intervals and points,

then  is called an o-minimal structure.

Given a structure  , we say that S NÍ is a definable set if S NÎ .
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LetU .M NÍ + For t M
0 Î , we setU x t x U: ,t

N
00 = { Î ( ) Î } and call U a family of subsets

of N , while Ut0
is called the fiber of U above t0. If U is a definable set, then we call it a definable

family, and one can see that the fibers Ut0
are definable sets too. Let S NÍ and f S: M be a

function. We call f a definable function if its graph x y S y f x, :M{( ) Î ´ = ( )} is a definable
set. It is not hard to see that images and preimages of definable sets via definable functions are still
definable.

There are many examples of o-minimal structures, see [36]. In this article, we are interested
in the structure of globally subanalytic sets, usually denoted by an . We are not going to pause
on details about this structure because it is enough for us to know that, if D NÍ is a compact
definable set, I is an open neighborhood of D and f I: M is an analytic function, then f (D) is
definable in an .

We now fix an o-minimal structure  .

PROPOSITION 3.2 ([36], 4.4) Let U be a definable family. There exists a positive integer γ such
that each fiber of U has at most γ connected components.

We are going to use a result from [13]. For this, we need to define the height of a rational point.
The height used in [13] is not the usual projective Weil height, but a coordinatewise affine height.
If a/b is a rational number written in lowest terms, then H a b a bmax ,( ) = { } and, for an
N-tuple , , N

N
1 a a( ¼ ) Î , we set H H, , maxN i i1a a a( ¼ ) = ( ). For a family Z M M N1 2Í + + ,

a positive real number T and t M1Î , we define

Z T y z Z y H y T, , : , . 3.1t t
M2 ( ) = {( ) Î Î ( ) £ } ( )~

By 1p and 2p , we indicate the projections of Zt to the first M2 and the last N coordinates,
respectively.

PROPOSITION 3.3 ([13], Corollary 7.2) Let Z M M N1 2Í + + be a definable family. For every 0e > ,
there exists a constant c c Z, e= ( ) with the following property. Fix t M1Î and T 1³ . If

cT2p (S) > e for some Z T,t S Í ( )~ , then there exists a continuous definable function
Z: 0, 1 td [ ]  such that

(1) the composition : 0, 1 M
1 2p d [ ] ◦ is semi-algebraic and its restriction to 0, 1( ) is real

analytic;
(2) the composition : 0, 1 N

2 p d [ ] ◦ is non-constant;
(3) we have 02 2p d p( ( )) Î (S).

4. The main estimate

Fix a c Î  and a neighborhood Nc of c on  . Moreover, fix a closed disc Dc inside Ncp ( ), cen-
tered in cp ( ) and analytically isomorphic to a closed disc. In Section 2, we defined the analytic
functions f g h k z z w w, , , , , , , , ,n m1 1¼ ¼ on Dc as a basis for the local system of periods of Eλ and
Eμ (or m ), and elliptic logarithms of the Pi and Qj (or logarithms of the uj).

For the rest of this section, we suppress the dependence on c in the notation, since it is fixed.
We use Vinogradov’s notation. The implied constant is always going to depend on D.

In cases (1) and (2), we define, for a 0nÎ { }⧹ and b R 0m
2Î { }⧹ ,
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a bD t D a z t f t g t b w t h t k t, : and . 4.1i i j j   å å{ }( ) = Î ( ) Î ( ) + ( ) ( ) Î ( ) + ( ) ( )

In case (3), for a 0nÎ { }⧹ and b 0mÎ { }⧹ , we set

a bD t D a z t f t g t b w t i, : and 2 .i i j j  å å{ }p( ) = Î ( ) Î ( ) + ( ) ( ) Î

For a vector of integers a, we indicate by a its max norm a amax , , n1{ ¼ }. In case (2), if E
0m

has CM, we have R2  r= + , for some quadratic integer ρ. For b b b R, , m
m

1 2= ( ¼ ) Î , we set
b N b N bmax , , m1= { ( ) ¼ ( ) }∣ ∣ ∣ ∣ ∣ ∣ , where N bj( ) is the norm of bj.

PROPOSITION 4.1 Under the hypotheses of Theorems 1.1 and 1.2, for every 0e > we have
a b a bD , max ,( ) ( { })e

e∣ ∣ ∣ ∣ ∣ ∣ , for every non-zero a b, .

We are going to prove this proposition in cases (1), (2) and (3) separately. Let us first collect a
few definitions and facts needed for all three of them.

Define

fg f g,D = -

which does not vanish on D, since f (t) and g (t) are -linearly independent for every t DÎ .
Moreover, let

p
z g z g

q
z f z f

, .i
i i

i
i i=

-
D

= -
-
D

One can easily check that these are real-valued and, furthermore, we have

z p f q g.i i i= +

If we view D as a subset of 2 , then pi and qi are real analytic functions on a neighborhood of D.
Analogously, in cases (1) and (2), we can define the real-valued functions rj, sj with

w r h s k.j j j= +

In case (3), we set

w r is2 ,j j jp= +

where again rj and sj are real valued.
In all cases, we define

D
t p t q t p t q t r t s t r t s t

:
, , , , , , , , , ,

n m

n n m m

2 2

1 1 1 1

Q 
( ( ) ( ) ¼ ( ) ( ) ( ) ( ) ¼ ( ) ( ))

+

↦

and set S D= Q( ).
Since Θ is analytic and D is a closed disc, we have that S is definable in an .
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LEMMA 4.2 Under the hypotheses of Theorems 1.1 and 1.2, there exists a constant γ (depending
only on D) such that, for every choice of integers a a, , n1 2¼ + , not all zero, the number of t in D
with

a z t a z t a f t a g t , 4.2n n n n1 1 1 2( ) + + ( ) = ( ) + ( ) ( )+ +

is at most γ.

Proof. First, suppose that there is an infinite set E DÍ on which, for every t EÎ , (4.2) holds for
some fixed a a, , n1 2¼ + , not all zero. Since this is a set with an accumulation point, the same rela-
tion must hold on the whole D (see Ch. III, Theorem 1.2 (ii) of [16]), contradicting the hypotheses
of Theorems 1.1 and 1.2.

The existence of a uniform bound γ follows from Proposition 3.2 and the fact that Θ is a defin-
able function. □

In what follows, p q r s, , , ,m m1 1( ¼ ) will indicate coordinates in n m2 2 + .
We now consider the three cases separately.

4.1. Case (1)

We start considering case (1), that is, our curve lies in E En m´l m and λ and μ are both not
constant.

For T 0> , we call a bS T, ,1 ( )( ) the set of points of S of coordinates p q r s, , , ,m m1 1( ¼ ) such that
there exist a a b b T T, , , ,n n m m1 2 1 2 Î Ç [- ]+ + + + with

a p a p a
a q a q a

b r b r b
b s b s b

,
,

,
.

4.3

n n n

n n n

m m m

m m m

1 1 1

1 1 2

1 1 1

1 1 2

ì

í

ïïïïï

î

ïïïïï

+ + =
+ + =
+ + =
+ + =

( )

+

+

+

+






LEMMA 4.3 Under the hypotheses of Theorem 1.1, for every 0e > , we have

a b a bS T T, , max , , ,1 ( ) ( { })e
e( ) 

for all non-zero a and b and all T 1³ .

Proof. Set a bT Tmax , ,¢ = { } and fix 0e > .
Define W to be the set of p s S, , , , , , , ,n m m

n m
1 2 1 2 1

2 2a a b b( ¼ ¼ ¼ ) Î ´+ +
+ + + such that

p p
q q

r r
s s

,
,

,
.

4.4

n n n

n n n

m m m

m m m

1 1 1

1 1 2

1 1 1

1 1 2

a a a
a a a
b b b
b b b

ì

í

ïïïïï

î

ïïïïï

+ + =
+ + =
+ + =
+ + =

( )

+

+

+

+






This is a definable set in an . Recall the notation introduced in (3.1). The set W T,( ¢)~

consists of those tuples p s S, , , , , , , ,n m m
n m

1 2 1 2 1
2 2a a b b( ¼ ¼ ¼ ) Î ´+ +

+ + + with rational
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, , , , ,n m1 2 1 2a a b b¼ ¼+ + of height at most T ¢. We set W T,S = ( ¢)~ and note that
a bS T, ,2

1p (S) Ê ( )( ) , where W S:2p  is the projection to S. Then, a bS T, ,1
2p( ) £ (S)( )∣ ∣ ∣ ∣.

We claim that T2p (S) ( ¢)e
e∣ ∣ . Suppose not. Then, by Proposition 3.3, there exists a continuous

definable W: 0, 1d [ ]  such that : 0, 1 n m
1 1

2 2d p d [ ]  + + +≔ ◦ is semi-algebraic and
S: 0, 12 2d p d [ ] ≔ ◦ is non-constant. Therefore, there is a connected infinite subset E 0, 1Í [ ]

such that E1d ( ) is contained in a real algebraic curve and E2d ( ) has positive dimension. Then,
there exists a connected infinite D D¢ Í with D E2dQ( ¢) Í ( ).

The coordinate functions , , , , ,n m1 2 1 2a a b b¼ ¼+ + on D¢ satisfy n m 3+ + independent alge-
braic relations with coefficients in . Moreover, we have the relations given by (4.4), which trans-
late to

z z f g
w w h k

,
,

n n n n

m m m m

1 1 1 2

1 1 1 2

a a a a
b b b b

ì
í
ïï
îïï

+ + = +
+ + = +

+ +

+ +




adding 2 algebraic relations among the , , , , ,n m1 2 1 2a a b b¼ ¼+ + , the zi, the wj, f, g, h and k.
Thus, on D¢, and therefore by continuation on the whole D, the n m n m2 2+ + + + + func-

tions z z w w, , , , , , , , , , ,n m n m1 2 1 2 1 1a a b b¼ ¼ ¼ ¼+ + satisfy n m 3 2+ + + independent algebraic
relations over F f g h k, , ,= ( ). Thus,

F z z w w n mtr.deg , , , , , 1.F n m1 1( ¼ ¼ ) £ + -

This contradicts Corollary 2.5, and proves the claim and the lemma. □

If a bt D ,Î ( ), then tQ( ) satisfies (4.3) for some integers a a b b, , ,n n m m1 2 1 2+ + + + . Now, since
D is compact, we have that the sets z D w D f D, , ,i j( ) ( ) ( ) g D h D k D, ,( ) ( ) ( ) are bounded, and
therefore we can choose a a b b, , ,n n m m1 2 1 2+ + + + bounded solely in terms of a and b . Therefore,
we have a bt S T, ,1

0( )Q( ) Î ( ) , with a bT max ,0 { } . Now, by Lemma 4.2, we have
a b a bD S T, , ,1

0( ) ( )( ) and the claim of Proposition 4.1 follows from Lemma 4.3.

4.2. Case (2)

Case (2) deals with a curve  inside E En m
0

´l m with λ not constant and 0 m Î .
For all b R 0m

2Î { }⧹ , there is a codimension 1 abelian subvariety Z of E m
0m , depending only on

b, such that if a point Q Q E, , m
m

1 0
( ¼ ) Î m satisfies the relation b Q b Q 0m m1 1 + + = , then it is

contained in some coset R+ Z, where R is a torsion point of E m
0m . We let X E Zm

0
= m . This is a

one-dimensional abelian variety and we set E X: m
0

f m to be the quotient morphism. This induces
the linear map d Lie E Lie X: m

0
f ( )  ( )m . If we identify Lie E m

0
( )m with m and Lie X( ) with , then

df corresponds to a complex vector l mÎ acting on m as a scalar product. Note that l depends
only on Z and, therefore, on b.

We set Q t w texpj E j
0

( ) = ( ( ))
m

. For t DÎ , if Q t Q t R Z, , m1( ( ) ¼ ( )) Î + , with R of finite
order, then Q t Q t R, , ,m1f f( ( ) ¼ ( )) = ( ) and there are d e d, , , ,m1 1 ¼ em Î with d hexpE 1m

0
( +

m

e k d h e k R, , m m1 ¼ + ) = and

d w t w t d d h e k d h e k, , , , .m m m1 1 1f f( ( ) ¼ ( )) = ( + ¼ + )
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We define a bS T, ,2 ( )( ) to be the set of points of S of coordinates p q r s, , , ,m m1 1( ¼ ) such that
there exist a a T T, ,n n1 2 Î Ç [- ]+ + and d e d e, , , ,m m1 1 ¼ Î of height at most T with

l l

a p a p a
a q a q a

r h s k r h s k d h e k d h e k

,
,

, , , , .
4.5

n n n

n n n

m m m m

1 1 1

1 1 2

1 1 1 1

ì

í
ïïï

î
ïïï

+ + =
+ + =

( + ¼ + ) = ( + ¼ + )
( )

+

+




· ·

In the following lemma, we are going to see l as a vector in m2 . The equation above is an
equality of complex numbers, but it corresponds to two equalities of real numbers (recall that h
and k are fixed complex numbers in this case).

LEMMA 4.4 Under the hypotheses Theorem 1.1, for every 0e > , we have

a b aS T T, , max , ,2 ( ) ( { })e
e( ) 

for all non-zero a and b and all T 0> .

Proof. Set aT Tmax ,¢ = { } and fix 0e > .
Define W to be the set of p, , , , , , , , , , ,n m m1 2 1 1 1n a a c y c y( ¼ ¼ ¼+ s S,m

m n m2 2 2) Î ´+ + +

with

p p
q q

r h s k r h s k h k h k

,
,

, , , , .

n n n

n n n

m m m m

1 1 1

1 1 2

1 1 1 1n n

a a a
a a a

c y c y

ì

í
ïïï

î
ïïï

+ + =
+ + =

( + ¼ + ) = ( + ¼ + )

+

+




· ·

This is a definable set in an . We consider the fiber Wl, where l is associated to b as explained
earlier.

We set S W T,l
n m2 2  S = ( ´ ´ ) Ç ( ¢)+ ~ , and note that a bS T, , ,2

2p (S) Ê ( )( ) where 2p
is the projection on S. Then, a bS T, ,2

2p( ) £ (S)( )∣ ∣ ∣ ∣. We claim that T2p (S) ( ¢)e
e∣ ∣ , where the

implied constant is independent of l and, therefore, independent of b. Suppose not, then by
Proposition 3.3, there exists a continuous definable W: 0, 1 ld [ ]  such that : 0, 11 1d p d [ ] ≔ ◦

n m2 2 + + is semi-algebraic and the composition S: 0, 12 2d p d [ ] ≔ ◦ is non-constant. Moreover,
02 2d p( ) Î (S). Therefore, there is a connected infinite subset E 0, 1Í [ ], such that E1d ( ) is con-

tained in a real algebraic curve and E2d ( ) has positive dimension. Thus, there exists a connected
infinite D D¢ Í with D E2dQ( ¢) = ( ). Moreover, there is t D0 Î with t 00 2dQ( ) = ( ). Then, since

02 2d p( ) Î (S), the point Q t Q t R Z, , m1 0 0( ( ) ¼ ( )) Î + for some torsion point R E m
0

Î m .
Now, on D¢, we have that , , , , ,n m1 2 1a a c y¼ ¼+ are n m2 2+ + functions that generate an

extension of transcendence degree at most 1 over . Moreover, d w w d h, , m1 1f f c( ¼ ) = ( +
k h k, , m m1y c y¼ + ) and note that df is a linear map.
Therefore, , , n1 2a a¼ + and d w w w, , m1f ( ¼ ) = ¢ are n+ 3 functions on D¢ satisfying n 2+

algebraic relations over . Moreover, we have z z f gn n n n1 1 1 2a a a a+ + = ++ + . Then, the
n2 3+ functions z z w, , , , , ,n n1 1 2a a¼ ¼ ¢+ satisfy n+ 3 independent relations over F f g,= ( )
on D¢ and these extend on D. Therefore,

1128 F. BARROERO AND L. CAPUANO

Downloaded from https://academic.oup.com/qjmath/article-abstract/68/4/1117/3091738
by WWZ Bibliothek (Oeffentliche Bibliotherk der UniversitÃ¤t Basel) user
on 02 March 2018



F z z w ntr.deg , , , ,F n1( ¼ ¢) £

on D.
Now, we want to apply Lemma 2.1 to G E Xn= ´l which has dimension n 1+ and

G X0, ,00 = {( ¼ )} ´ . Then, on D, the lemma implies that

z z w P P Q Q H Gexp , , , , , , , , ,G n n m1 1 1 0 f( ¼ ¢) = ( ¼ ( ¼ )) Î + ( )

for some proper algebraic subgroup H of G. Since the Pi are independent and X has dimension 1,
we have that H E Xn= ´ ¢l , where X¢ is a torsion subgroup of X. Then

Q D Q D Q, , m1f ( ( ) ¼ ( )) = { ¢} for some Q X ¢ Î ( ). But recall that there is t D0 Î with
Q t Q t R, , m1 0 0f f( ( ) ¼ ( )) = ( ) for some torsion point R of E m

0l . Then, Q Rf¢ = ( ) and therefore we
have Q D Q D R Z, , m1( ( ) ¼ ( )) Í + . This contradicts the hypotheses of Theorem 1.1, proving the
claim and the lemma. □

LEMMA 4.5 There exists a bT max ,0 { } such that if a bt D ,Î ( ), then a bt S T, ,2
0Q( ) Î ( )( ) .

Proof. Fix a bt D , ;Î ( ) then, tQ( ) satisfies (4.5) for some integers a a,n n1 2+ + and rationals
d e, , ,1 1 ¼ d e,m m. Now, since D is compact, as before we have that the sets z D f D, ,i ( ) ( ) g (D) are
bounded and, therefore, we can choose a a,n n1 2+ + bounded solely in terms of a .

We need to prove that we can choose rationals d e d e, , , ,m m1 1 ¼ of height b with

w t w t d h e k d h e k Lie Z, , , , .m m m1 1 1( ( ) ¼ ( )) - ( + ¼ + ) Î ( )

We have that Q t Q t w t w t R Z, , exp , ,m E m1 1m

0
( ( ) ¼ ( )) = ( ( ) ¼ ( )) Î +

m
, where Z is the unique abelian

subvariety of E m
0m associated to the vector b as explained above and R is a torsion point of E m

0m . Since
bQ t Q t, , kerm1( ( ) ¼ ( )) Î ( ), by Lemma 2.4, we can suppose that R has order at most b .

Let w w t w t, , m1= ( ( ) ¼ ( )). We know that there are rationals d e d e, , , , 0, 1m m1 1¢ ¢ ¼ ¢ ¢ Î [ ) with
d h e k d h e k Rexp , ,E m m1 1m

0
( ¢ + ¢ ¼ ¢ + ¢ ) =

m
. Therefore, d e d e, , , ,m m1 1¢ ¢ ¼ ¢ ¢ have denominators b and

we have

w d h e k d h e k Lie Z, , .m m E1 1
m

0
- ( ¢ + ¢ ¼ ¢ + ¢ ) Î P + ( )

m

We call c d h e k d h e k, , m m1 1¢ = ( ¢ + ¢ ¼ ¢ + ¢ ). We indicate by  · the max norm on Lie E m m
0

( ) =m .
Note that w c 1- ¢   . Let E

m

0
h Î P

m
and x Lie ZÎ ( ) be such that w c xh- ¢ = + . The

subspace Lie Z( ) is defined by the equation b w b w 0m m1 1 + + = . We can suppose b 01 ¹ .
Consider the following m2 1( - ) vectors: b h b h, , 0, ,01 2 1h = ( - ¼ ), b k b k, , 0, ,02 2 1h = ( - ¼ ),

b h b h, 0, , 0, ,03 3 1h = ( - ¼ ),…, b k b k, 0, ,0,m m2 1 1h = ( ¼ - )( - ) . These are -linearly indepen-
dent elements of E

m

0
P

m
whose -span is Lie Z( ). Then, there are , , 0, 1m1 2 1a a¼ Î [ )( - ) with

x xh= ¢ + ¢, where x Lie Zi
m

i i1
2 1 ha¢ = å Î ( )=
( - ) and E

m

0
h¢ Î P

m
. Note that x b¢   ∣ ∣.

Finally, we have w c xh h- ¢ = + ¢ + ¢ and

w c x b .h h+ ¢ £ - ¢ + ¢      
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If we set c d h e k d h e k, , m m1 1h h+ ¢ + ¢ = ( + ¼ + ), we have just found our rationals of height
b such that

w d h e k d h e k Lie Z, , .m m1 1- ( + ¼ + ) Î ( )
□

By Lemma 4.2, we have a b a bD S T, , ,2
0( ) ( )( ) and the claim of Proposition 4.1 follows

from Lemma 4.4.

4.3. Case (3)

To deal with case (3) (curve in En m
m´l , λ not constant), one can follow the same line as case

(2). Here, one has that, for all b 0mÎ { }⧹ , there is a codimension 1 subtorus Z of m
m , depending

only on b, such that, if a point u u, , m
m

1 m( ¼ ) Î satisfies u u 1b
m
b

1
m1 = , then it is contained in

some coset RZ, where R a torsion point of m
m of order at most b . Let X Zm

m= . This is a one-
dimensional torus and we set again X: m

mf  to be the quotient morphism. This induces the
linear map d Lie Lie X: m

mf ( )  ( ) which, again, corresponds to a complex vector l mÎ acting
on m as a scalar product.

We define a bS T, ,3 ( )( ) to be the set of points of S of coordinates p q r s, , , ,m m1 1( ¼ ) such that
there exist a a T T, ,n n1 2 Î Ç [- ]+ + and d d, , m1 ¼ Î of height at most T with

l l

a p a p a
a q a q a

r is r is id id

,
,

2 , , 2 2 , ,2 .

n n n

n n n

m m m

1 1 1

1 1 2

1 1 1p p p p

ì

í
ïïï

î
ïïï

+ + =
+ + =

( + ¼ + ) = ( ¼ )

+

+




· ·

Following the same line, it is possible to prove the analogous of Lemmas 4.4 and 4.5 and to
obtain the claim of Proposition 4.1 in case (3) using again Lemma 4.2.

5. Small generators of the relations lattices

In this section, we prove general facts about linear relations on elliptic curves and multiplicative
relations on m .

For a point , , ,N
N

1 a a( ¼ ) Î the absolute logarithmic Weil height h , , N1a a( ¼ ) is defined by

h , ,
1

, , :
log max 1, , , ,N

N v v

N

v

1
1

1
 

åa a
a a

a a( ¼ ) =
[ ( ¼ ) ]

{ ¼ }

where v runs over a suitably normalized set of valuations of , , N1 a a( ¼ ).
Let θ be an algebraic number and consider the Legendre curve E E= q defined by the

equation Y X X X12 q= ( - )( - ). Moreover, let P P, , n1 ¼ be points on E, linearly dependent over
, defined over some finite extension K of  q( ) of degree K: k = [ ]. Suppose that P P, , n1 ¼ have
Néron–Tate height h at most q 1³ (for the definition of Néron–Tate height, see for example
p. 255 of [17]). We define

L P P a a a P a P, , , , : 0 .n n
n

n n1 1 1 1( ¼ ) = {( ¼ ) Î + + = }
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This is a sublattice of n of some positive rank r. We want to show that L P P, , n1( ¼ ) has a set of
generators with small max norm a a amax , , n1= { ¼ }.

LEMMA 5.1 ([1], Lemma 6.1). Under the above hypotheses, there are generators a a, , r1 ¼ of
L P P, , n1( ¼ ) with

a h q1 ,i
n n

1
2 12

1
2g k q£ ( ( ) + )g ( - )

for some positive constants ,1 2g g depending only on n.

Analogously, consider a vector K, , 0m
m

1 ( )a a( ¼ ) Î { }⧹ , for some number field K, with
K: k = [ ], as above. Suppose the ja are multiplicatively dependent. We define

L b b, , , , : 1 .m m
m b

m
b

1 1 1
m1a a a a( ¼ ) = {( ¼ ) Î ¼ = }

Fix h 1³ with h hja( ) £ for all j m1, ,= ¼ .

LEMMA 5.2 Under the above hypotheses, there are generators b b, , r1 ¼ of L , , m1a a( ¼ ) with

b h ,i
m

3
14g k£ g -

for some positive constants ,3 4g g depending only on m.

Proof. Suppose first that not all the ja are roots of unity. By Theorem m of [17], if , , m1a a¼ are
multiplicatively dependent algebraic numbers of height at most h h³ , then L , , m1a a( ¼ ) is gener-
ated by vectors with max norm at most

m ,m h m
1

1( )w
h

-
-

where ω is the number of roots of unity in K and hinfh a= ( ), for K 0a Î { }⧹ not a root of unity.
We need to bound ω and η. The constants , ,5 8g g¼ are absolute constants.

The first bound is elementary since the roots of unity in K form a cyclic group generated by,
say, Nz a primitive Nth root of unity. We must then have Nf k( ) £ (φ indicates the Euler func-
tion) and we know N N5f g( ) ³ . Therefore, we can take

. 5.16
2w g k£ ( )

For η, an estimate of the form 7
8h g k³ g- would be sufficient for us. We can use the celebrated

result by Dobrowolski [9], or a previous weaker result by Blanksby and Montgomery [6].
In case all the ja are all torsion, it is clear that one can take bi w£ and use (5.1). □

6. Bounded height

In this section, we see that the height of the points on the curve  for which there is a dependence
relation between the Pi is bounded and a few consequences of this fact.
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Let k be a number field over which  is defined. Suppose also that the finitely many points we
excluded from  to get  , which are algebraic, are defined over k.

Let ¢ be the set of points c0  Î ( ) for which we have that c cP P, , n1 0 0( ) ¼ ( ) satisfy a non-
trivial relation on E c0l ( ) and c cQ Q, , m1 0 0( ) ¼ ( ) satisfy a non-trivial relation on E c0m ( ) (or

c cu u, , m1 0 0( ) ¼ ( ) are multiplicatively dependent). Since  is defined over , the points in ¢ must
be algebraic. Moreover, by Silverman’s Specialization Theorem [33], there exists 01g > such that

ch , 6.10 1g( ) £ ( )

for all c0 Î ¢.
We see now a few consequences of this bound. If 0d > is a small real number, let us call

c c c c c:
1

, for all .   { }d
d= Î £ - ¢ ³ ¢ Îd     ⧹

Here · indicates the standard norm on n m2 2 2 + + or n m2 1 + + .

LEMMA 6.1 There is a positive δ such that there are at least ck k:1

2 0
é
ëê ( ) ù

ûú different k-embeddings σ
of ck 0( ) in  such that c0s ( ) lies in d for all c0 Î ¢.

Proof. See Lemma 8.2 of [23]. □

REMARK We would like to point out that it might be possible to avoid the restriction to a compact
domain and the use of the previous lemma by exploiting the work of Peterzil and Starchenko [27],
who proved that it is possible to define the Weierstrass ℘ function globally in the structure .an,exp

LEMMA 6.2 There exists a positive constant 2g such that, for every c0 Î ¢, every i n1, ,= ¼ ,
and every j m1, ,= ¼ we have

c ch P h Q, .i j0 0 2g( ( )) ( ( )) £ 

Proof. We have c ch P hi 0 0( ( )) £ ( ) and, using the work of Zimmer [40], we have
c c ch P h P h 1i j0 0 3 0g l( ( )) £ ( ( )) + ( ( ( )) + ) . The same inequalities hold for the Qj. The claim

now follows from (6.1). □

7. Proof of Theorems 1.1 and 1.2

Let us start with Theorem 1.1.
By Northcott’s Theorem [26] and the bound (6.1) for the height, we only need to bound the

degree of c0 over k, for all the c0 Î ¢.
Fix one c0 Î ¢ and cd k k:0 0= [ ( ) ] which we suppose large. First, by Lemma 6.1, we can

choose δ, independent of c0, such that c0 has at least d1

2 0 conjugates in d. Now, since d is com-
pact, there are c c, ,1 2

¼ Îg  with corresponding neighborhoods N N, ,c c1 2
¼ g and D D, ,c c1 2

¼ Ígp ( ) , where D Nc ci ipÍ ( ) contains cip ( ) and is homeomorphic to a closed disc, and we have that
the D Nc c

1
i ip ( ) Ç- cover d.
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We can suppose that Dc1
contains ct0 0p= ( )s s for at least d1

2 0
2g

conjugates c0
s. Since each

t pÎ ( ) has a uniformly bounded number of preimages c Î , we can suppose that we have at

least d1
0

3g
distinct such t0

s in Dc1
.

Now, the corresponding points c cP P, , n1 0 0( ) ¼ ( )s s , c cQ Q, , m1 0 0( ) ¼ ( )s s satisfy the same relations.
So there are a a a, , 0n

n
1 = ( ¼ ) Î { }⧹ and b b b R, , 0m

m
1 2( )= ¼ Î { }⧹ such that

c c

c c

a P a P E

b Q b Q E

0 on ,

0 on .
7.1

c

c

n n

m m

1 1 0 0

1 1 0 0

0

0

ì
í
ïï

îïï

( ) + + ( ) =

( ) + + ( ) =
( )

s s
l

s s
m

( )

( )

s

s




By Lemma 6.2, c ch P h Q,i j0 0 4
^ ^ g( ( )) ( ( )) £s s . Moreover, the cPi 0( )s and cQj 0( )s are defined over

a number field K of degree d0 over . Therefore, applying Lemma 5.1 and recalling (6.1), we
can suppose that

a b d, . 7.25 0
6g£ ( )g

Recall that, in case R2   r= + , we set b N b N bmax , , m1= { ( ) ¼ ( ) }∣ ∣ ∣ ∣ ∣ ∣ and we can just
apply Lemma 5.1 to Q Q Q Q, , , , , ,m m1 1r r¼ ¼ noting that h Q h Qj jr( ) ( )  .

Now, recall that, in Section 2, on Dc1
, we defined f g, to be generators of the period lattice of

Eλ and the elliptic logarithms z z, , n1 ¼ such that if c is the only point in Nc1
above t,

cz t Pexp ,i i( ( )) = ( )l

on Dc1
and h k w w, , , , m1 ¼ as generators for the period lattice and elliptic logarithms of the Qj

for Em.
By (7.1), we have that

a z t a z t f t g t

b w t b w t h t k t

,

.
n n

m m

1 1 0 0 0 0

1 1 0 0 0 0

 
 

ì
í
ïï
îïï

( ) + + ( ) Î ( ) + ( )
( ) + + ( ) Î ( ) + ( )

s s s s

s s s s



Recall the definition of a bD ,c1( ) in (4.1). By Proposition 4.1 and (7.2), we have that
a bD d,c 01

6( ) e
g e∣ ∣ . But by our choice of Dc1

, we had at least d1
0

3g
points in a bD ,c1( ). Therefore,

if we choose 1 2 6e g= /( ) we have a contradiction if d0 is large enough.
We have just deduced that d0 is bounded and, by (6.1) and Northcott’s Theorem, we have the

claim of Theorem 1.1.
Theorem 1.2 can be proved following the same line and combining Lemma 5.1 with

Lemma 5.2.

8. Proof of Theorem 1.3

We recall our setting. We have Si  non-isotrivial elliptic schemes and, for all i, we let i be
the ni-fold fibered power of i over S. Moreover, we have E E, , p1 ¼ elliptic curves pairwise non-
isogenous, which we consider as constant families over S. We defined  to be the fibered product
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E ES S l S
m

S S p
m

S
q

1 1 m
p1  ´ ´ ´ ´ ´ ´ 

over S. We suppose that everything is defined over a number field k.
Fix i0, with i l1 0£ £ . For every a a a, , n

n
1 i

i
0

0= ( ¼ ) Î , we have a morphism a: i i0 0 
defined by

a P P a P a P, , .n n n1 1 1i i i0 0 0
( ¼ ) = + +

We identify the elements of ni0 with the morphisms they define. The fibered product
a aS S r1 ´ ´ , for a a, , r

n
1 i0¼ Î defines a morphism i0  over S, where  is the r-fold

fibered power of i0 . Similarly, for j0, j p1 0£ £ , vectors b R j
m j

0

0Î , where R j0 is the endomorph-
ism ring of E j0, define morphisms from E j

m
0

0 to E j0 and vectors c qÎ define morphisms from q
m

to m . Therefore, square matrices with entries in  or in an eventually larger R j0 and appropriate
size will define endomorphisms of i0 , of E j

m j

0

0 or of q
m . Finally, we can take the fibered product

of such endomorphisms to obtain an endomorphism of , which will be represented by a block
diagonal matrix whose blocks correspond to the endomorphisms defined above. These matrices
form a ring which we call R.

For an Ra Î , the kernel of α, ker a indicates the fibered product of :  a  with the zero
section S  . We consider it as a closed subscheme of .

LEMMA 8.1 Let G be a flat subgroup scheme of  of codimension d;³ then there exists an
Ra Î of rank d such that G keraÍ and, for any α of rank d, kera is a flat subgroup scheme of

codimension d.

Proof. The lemma can be proved following the line of the proof of Lemma 2.5 of [11]. The
fact that there is an s S Î ( ) whose endomorphism ring is exactly R follows from Corollary 1.5
of [25]. □

From this lemma, we can deduce that each flat subgroup scheme of  is contained in a flat sub-
group scheme of the same dimension and of the form

G G H H T ,S S l S S S p S1 1´ ´ ´ ´ ´ ´ 

where Gi is a flat subgroup scheme of i , Hj an algebraic subgroup of Ej
mj and T an algebraic sub-

group of q
m . It is then clear that by projecting and recalling that we suppose p or q equal to 0, we

only need to prove our Theorem 1.3 for the following cases:

(1) ;S1 2  = ´
(2) E ;S

m
1 1

1 = ´
(3) ;S

q
1 m  = ´

(4) E Em
S

m
1 2

1 2 = ´ .

Moreover, in case (4) the theorem follows from Theorem 1.1 of Habegger and Pila [13], so we are
left with the first three cases.

We first consider case (1). We need to perform a base change to the Legendre family. Consider
now the Legendre family with equation (1.1). This gives an example of an elliptic scheme, which
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we call L , over the modular curve Y 2 0, 1,1( ) = { ¥}⧹ . We write L
g( ) for the g-fold fibered

power of L . We call ip (resp. L
gp( )) the structural morphism Si  (resp. YL

g ( ) (2)).

LEMMA 8.2 Let S1 2  = ´ . After possibly replacing S by a Zariski open, non-empty subset
there exist irreducible, non-singular quasi-projective curves S¢ and S Y Y2 2 Í ( ) ´ ( ) defined
over  such that the following is a commutative diagram

A f←−−−− A′ e−−−−→ A′′

π1×Sπ2

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�π

(n1)
L ×π

(n2)
L

S ←−−−−
l

S′ −−−−→
λ

S′′
ð8:1Þ

where l is finite, λ is quasi-finite, ¢ is the abelian scheme SS S1 2 ( ´ ) ´ ¢,
L
n

L
n1 2   = ´( ) ( ), f is finite and flat and e is quasi-finite and flat. Moreover, the restriction of f

and e to any fiber of S¢  ¢ is an isomorphism of abelian varieties.

Proof. We follow the line of Lemma 5.4 of [11] and skip several details which can be found there.
We fix an extension K of k (S) such that, for i= 1, 2, the generic fiber of Si  is isomorphic to
an elliptic curve of equation y x x x1 i

2 l= ( - )( - ), for Kil Î . The field K is the function field
of an irreducible, non-singular projective curve S ¢ and we have a finite morphism S S¢  . We let
S¢ be the preimage of S in S ¢ and call l S S: ¢  the restriction of the above morphism which
remains finite. Moreover, we have finite morphisms S Y: 2il ¢  ( ). We may shrink S and suppose
that the il and l are étale. For i= 1, 2, by Lemma 5.4 of [11], we have the commutative diagrams

Ai
fi←−−−− A′

i
ei−−−−→ E(ni)

L

πi

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�π

(ni)
L

S ←−−−−
l

S′ −−−−→
λi

Y (2)

where Si i S ¢ = ´ ¢, fi is finite and flat and ei is quasi-finite and flat.
The square on the left of (8.1) is the appropriate fibered product over S of the morphisms

i i  ¢  ¢  .
Now, we have the diagram

A′ e1×e2−−−−→ E(n1)
L × E(n2)

L
⏐
⏐
�

⏐
⏐
�π

(n1)
L ×π

(n2)
L

S′ −−−−→
λ1×λ2

Y (2) × Y (2)

We set S S S,1 2l l l = ( ¢) = ( )( ¢), restrict the base of the abelian scheme L
n

L
n1 2 ´ ( ) ( )

Y Y2 2( ) ´ ( ) to S and call e the resulting map L
n

L
n1 2  ¢  ´( ) ( ). We then have the square on

the right of (8.1). Finally, to prove the claimed properties of f and e and the fact that they are
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isomorphisms of abelian varieties when restricted to the fibers, one can proceed as in Lemma 5.4
of [11]. □

One can prove that analogous results hold for cases (2) and (3).
We will also need the following technical lemma which holds in all three cases.

LEMMA 8.3 If G is a flat subgroup scheme of , then e f G1( ( ))- is a flat subgroup scheme of 
of the same dimension. Moreover, let X be a subvariety of  dominating S and not contained is a
proper flat subgroup scheme of , X an irreducible component of f X1 ( )- and X¢ the Zariski
closure of e X( ) in . Then X¢ has the same dimension of X, dominates S and is not contained
in a proper flat subgroup scheme of .

Proof. This follows from the proof of Lemma 5.5 of [11]. □

We are now ready to see how Theorem 1.3 can be deduced from Theorems 1.1 and 1.2 and
earlier results.

Consider case (1). We can assume that  is not contained in a proper flat subgroup scheme of
. Therefore, it is enough to show that G Ç ⋃ is finite, where the union is taken over all flat
subgroup schemes of codimension at least 2.

Take ¢ as an irreducible component of f 1 ( )- and consider the Zariski closure  of e ( ¢).
By Lemma 8.3,  is a curve in  dominating S and not contained in a proper flat subgroup
scheme.

Now, since e is quasi-finite, if e f 1 2 ( ( Ç ))- { } is finite, then 2 Ç { } is finite and, by
Lemma 8.3, we have

e f e f .1 2 1 2   ( ( Ç )) Í ( ( )) Ç - { } - { }

Therefore, we can reduce to proving our claim for  and for . Note that the generic fiber of 
is isomorphic to the generic fiber of  and is, therefore, a product of powers of non-isogenous
elliptic curves.

By Lemma 8.1, each flat subgroup scheme of codimension at least 2 of  is contained in
ker a for some α of rank 2, where α is a block diagonal matrix with two blocks of respective sizes
n1 and n2, and has two non-zero rows. In case these two rows are in the same block, then we are
in the case of Theorem 2.1 of [1] while, if they are in two different blocks, then we are in the case
of Theorem 1.1. In any case,  intersects only finitely many such flat subgroup schemes and we
have the claim in case (1).

For the other two cases, one proceeds in the same way. If the two non-zero rows of α are con-
tained in two different blocks, then we apply Theorem 1.1 or 1.2. If they are in the same block,
then one can use results of Viada [38] and Galateau [10] for case (2) and Maurin [24] for case (3).
This concludes the proof of Theorem 1.3.
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