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Abstract

Wake inflow modeling is a crucial issue in the development of efficient and high-fidelity

simulation tools for rotorcraft flight dynamics and aeroelasticity. This paper proposes

a space-time accurate, finite-state, dynamic wake inflow modeling suitable for con-

ventional and innovative rotor configurations, based on simulations provided by high-

fidelity aerodynamic solvers. It relates the coefficients of a rotor-disc, radial-azimuthal

wake inflow distribution to the rotor kinematic variables, and is capable to take into

account the intrinsic periodicity of aerodynamic responses of rotors in steady forward

flight. The proposed inflow modeling consists of a three-step process: (i) numerical

evaluation of wake inflow due to perturbations of rotor kinematic variables, (ii) deter-

mination of transfer functions of multi-harmonic components of a suitable set of inflow

coordinates, followed by (iii) their rational approximation and transformation into time

domain to derive the differential operators governing multi-harmonic dynamics. The

numerical investigation concerns the derivation of finite-state inflow models for single

and coaxial rotors, through application of an aerodynamic boundary-element-method

solver for potential flows. These are successfully validated by comparison with inflows

directly calculated by the aerodynamic tool for arbitrary rotor perturbations.
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1. Introduction

A crucial role in the dynamic behavior of rotorcraft is played by rotor blade aero-

dynamic loads which, in turn, are strongly affected by the corresponding wake inflow

generated on the rotor disc. The introduction of dynamic inflow models has been a

milestone in the development of helicopter simulation tools, in that it allows the effi-5

cient estimation of blade effective angle of attack.

Although available aerodynamic solvers based on three-dimensional, unsteady for-

mulations can provide accurate predictions of blade loads, their computational cost is

still too high for typical design purposes, thus making the sectional-aerodynamics/wake-

inflow combination a still convenient solution process for aeroelastic, flight dynamics10

and flight control system analyses. On the other hand, finite-state, dynamic inflow mod-

eling is an effective approach to include the wake unsteady effects in rotorcraft simu-

lation tools, especially when stability analyses are requested. Most of the available

finite-state inflow models are based on closed-form, acceleration-potential aerodynamic

solutions over an actuator disk. Widely-used examples are the Pitt-Peters [1], [2] and15

the Peters-He [3] models, along with their extended versions which take into account

wake distortion effects (see, for instance, [4, 5, 6]). Based on simplifying assumptions

for the flow field solution, they are computationally very efficient. The Pitt-Peters model

is suitable for low-frequency flight dynamics simulations, whereas the Peters-He one,

with the introduction of more accurate approximation forms of azimuthal and radial20

inflow distributions, is applicable also to aeroelastic problems.

Recently, great attention has been paid to the development of tools for non-conventional

helicopter configurations. Indeed, the models mentioned above can be effectively used

for analyses of single-rotor helicopters, but are unsuitable for more complex configura-

tions like, for instance, coaxial contra-rotating rotors. Through application of enhanced25

momentum theory, state-space dynamic models of coaxial rotor wake inflow capable

to take into account the mutual aerodynamic interference between the rotors have been

developed as extensions of the Peters-He model [7, 8, 9]. However, the low accuracy

of the aerodynamic models they are based on, make them unable to capture important

features of the complex aerodynamic field related, for instance, to the strong interac-30
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tions among wake vorticity and rotor blades. Thus, corrections to these models relying

on CFD simulations have been recently proposed [10]. Note that, in this context, cor-

rections based on experimental measurements cannot be applied since the extraction

from the velocity field of the component directly induced by the wake vorticity is not

feasible. Indeed, validations of rotor aerodynamic simulation tools usually concern the35

total inflow and/or indirect outcomes like, for instance, blade loads (see, for instance,

[3, 11, 12]).

The objective of this paper is to present a methodology to extract radial/azimuth-

accurate, finite-state, linear time-periodic (LTP) rotor inflow dynamic models from sim-

ulations provided by high-fidelity aerodynamics solvers. Based on the combination40

of linear time-invariant (LTI) dynamics of multi-harmonic components, this modeling

approach relates wake inflow to rotor kinematic variables perturbations. Differently

from models based on analytical solutions, complex aerodynamic phenomena like ro-

tor/fuselage or rotor/rotor interactional effects, or those arising in non-conventional ro-

torcraft configurations or flight conditions are taken into account, if suitably predicted45

by the numerical simulation. The proposed technique can be considered as a devel-

opment of the LTI, finite-state inflow modeling suitable for helicopter flight dynamics

applications introduced by the authors in [13, 14], extended to coaxial rotor configura-

tions in [15, 16], and closely related to the work presented in [17, 18]. The model pa-

rameters introduced are such to describe with arbitrary accuracy radial and azimuthal50

inflow distributions. They are identified by an innovative multi-step technique, simi-

lar to that proposed in [13, 14], but capable of taking into account the time-periodic

characteristics of the aerodynamic operators typical of steady flight of advancing sin-

gle rotors and coaxial rotor systems. First, the relationships between perturbations of

kinematic variables and perturbations of wake inflow on rotor blades are expressed in55

terms of transfer functions determined by analysis of the harmonic content of suited

time-marching aerodynamic responses. Then a rational-form approximation algorithm

is applied for their finite-state representation [19, 20]. The final model consists of multi-

harmonic components combination, with components dynamics governed by ordinary

differential equations forced by rotor kinematics.60

In order to apply and validate the proposed space-time accurate multi-harmonic dy-
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namic inflow modeling technique, the wake inflow responses are evaluated by a Bound-

ary Element Method (BEM) free-wake solver for potential-flows [21]. It is capable

of simulating the aerodynamic interference effects in multi-body configurations (like

coaxial rotors or rotor-fuselage systems), as well as severe blade-vortex interactions.65

Specifically, the numerical applications are illustrated and discussed in Section 3, and

concern wake inflow modeling of both single-rotor and coaxial-rotor configurations in

forward flight.

2. Space-Time Accurate Multi-Harmonic Finite-State Inflow Modeling

The main steps of the proposed technique for the extraction of finite-state, wake in-70

flow models from arbitrary high-fidelity aerodynamic simulations are: i) definition of

suited approximation forms of inflow radial and azimuthal distributions; ii) decompo-

sition of the corresponding time-dependent coefficients (inflow coordinates) into multi-

harmonic dynamic components, and identification (extraction) of the transfer functions

(LTI representations) relating them to rotor kinematic perturbations, from a suitable set75

of time responses predicted by the aerodynamic solver; iii) rational approximation of

the transfer functions and determination of the multi-harmonic components LTI, finite-

state, dynamic models; iv) definition of the final LTP, finite-state, dynamic inflow model

as combination of the identified LTI operators for multi-harmonic dynamics.

In the following, these steps are described in detail for the case of a single rotor,80

with the extension to coaxial rotors outlined in Section 2.5.

2.1. Inflow Radial-Azimuthal Representation

In order to represent the complex wake inflow field with a level of accuracy suitable

for flight mechanics and aeroelastic applications, it is expressed in a non-rotating frame

in terms of spanwise-varying multiblade variables.85

Indeed, introducing the hub-fixed polar coordinate system (𝑟, 𝜓) over the rotor disc,

for a four-bladed rotor, the wake inflow perturbation, 𝜈, on the 𝑖-th blade at the az-

imuth position 𝜓𝑖 is expressed using the following Coleman transformation form as an
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extension of those considered in [1, 3, 14]

𝜈(𝑟, 𝜓𝑖, 𝑡) = 𝜈0(𝑟, 𝑡) + 𝜈𝑐(𝑟, 𝑡) cos𝜓𝑖 + 𝜈𝑠(𝑟, 𝑡) sin𝜓𝑖 + 𝜈𝑁/2(𝑟, 𝑡) (−1)𝑖 (1)

where 𝜈0, 𝜈𝑐, 𝜈𝑠 and 𝜈𝑁/2 are, respectively, instantaneous collective, cosine and sine

cyclic and differential inflow coefficients at a given radial position, 𝑟. For 𝜈𝑖 denoting

the wake inflow perturbation evaluated by the high-fidelity aerodynamic tool on the 𝑖-th

rotor blade, the application of the separation variables technique and the introduction of

suitable sets of linearly independent radial basis functions, 𝜑𝛼𝑗 (𝑟), yield the following

expressions for the wake inflow coefficients

𝜈0(𝑟, 𝑡) =
1

𝑁𝑏

𝑁𝑏∑︁
𝑖=1

𝜈𝑖(𝑟, 𝑡) =

𝑁𝑟
0∑︁

𝑗=1

𝜆0𝑗 (𝑡) 𝜑0𝑗 (𝑟)

𝜈𝑐(𝑟, 𝑡) =
2

𝑁𝑏

𝑁𝑏∑︁
𝑖=1

𝜈𝑖(𝑟, 𝑡) cos𝜓𝑖 =

𝑁𝑟
𝑐∑︁

𝑗=1

𝜆𝑐𝑗(𝑡) 𝜑
𝑐
𝑗(𝑟)

𝜈𝑠(𝑟, 𝑡) =
2

𝑁𝑏

𝑁𝑏∑︁
𝑖=1

𝜈𝑖(𝑟, 𝑡) sin𝜓𝑖 =

𝑁𝑟
𝑠∑︁

𝑗=1

𝜆𝑠𝑗(𝑡) 𝜑
𝑠
𝑗(𝑟)

𝜈𝑁/2(𝑟, 𝑡) =
1

𝑁𝑏

𝑁𝑏∑︁
𝑖=1

𝜈𝑖(𝑟, 𝑡) (−1)𝑖 =

𝑁𝑟
𝑁/2∑︁

𝑗=1

𝜆
𝑁/2
𝑗 (𝑡) 𝜑

𝑁/2
𝑗 (𝑟)

(2)

where 𝑁𝑏 denotes the number of rotor blades, 𝑁𝑟
𝛼 is the number of functions used to

define the 𝛼-coefficient radial distribution, 𝜆𝛼𝑗 represent the components of the inflow

𝛼-coefficient on the basis functions 𝜑𝛼𝑗 (here called inflow coordinates). The differential

component (𝛼 = 𝑁/2) appears only for rotors with an even number of blades, whereas

higher-harmonic cyclic components (𝜈2𝑐, 𝜈2𝑠, . . .) are included when 𝑁𝑏 > 4. As it90

will be shown later, the introduction, when required, of the differential inflow coefficient

assures the capability of the expression in Eq. 1 of capturing the entire inflow spectrum.

It is worth noting that, neglecting the differential and (if present) the higher-harmonic

cyclic components, for 𝑁𝑟
0 = 𝑁𝑟

𝑐 = 𝑁𝑟
𝑠 = 1, 𝜑01 = 1, and 𝜑𝑐1 = 𝜑𝑠1 = 𝑟, the proposed

inflow distribution coincides with the Pitt-Peters model [1, 2], while the combination95

of Eq. 1 with the expressions of the inflow coefficients in Eq. 2 is closely related to the

approximation form applied in the Peters-He model [3].

Once the inflow distribution history is known from aerodynamics simulation, at
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each time step, 𝑡, the inflow coordinates of the 𝛼 inflow coefficient are given by the

following least-square evaluation approach⎡⎢⎢⎢⎢⎢⎢⎣
𝜆𝛼1 (𝑡)

𝜆𝛼2 (𝑡)
...

𝜆𝛼𝑁𝑟
𝛼

(𝑡)

⎤⎥⎥⎥⎥⎥⎥⎦ = [Φ𝛼]−1 𝜈𝛼(𝑡) (3)

where Φ𝛼 is the matrix of the inner product of the radial shape functions, namely such

that Φ𝛼
𝑖𝑗 =<𝜑𝛼𝑖 (𝑟), 𝜑𝛼𝑗 (𝑟)>, whereas 𝜈𝛼 is the vector collecting the projections of the

inflow coefficient onto the radial shape functions, namely 𝜈𝛼𝑖 (𝑡) =<𝜈𝛼(𝑟, 𝑡), 𝜑𝛼𝑖 (𝑟)>.100

When rotors are in steady flight conditions, the inflow on each blade (rotating frame

observer) is periodic with non-zero mean value and fundamental frequency equal to the

rotational frequency, Ω. The corresponding collective and cyclic coefficients in Eq. 2

(non-rotating frame observer) are periodic with non-zero mean value and fundamental

frequency equal to 𝑁𝑏 Ω, whereas the differential coefficient (if present) has null mean105

value and harmonic components at the frequencies (1/2+𝑚)𝑁𝑏Ω, for𝑚 = 0, 1, ...,𝑀 ,

with 𝑀 related to the maximum order of periodicity of the aerodynamic operator. Ex-

ceptions are the axi-symmetric cases, for which the inflow is constant in both frames.

Because of this periodic nature of rotor aerodynamics, even a small single-harmonic

disturbance of the operating conditions (i.e., such to produce negligible nonlinear ef-110

fects) yields multi-harmonic inflow perturbations. For instance, for a small-perturbation

harmonic collective/cyclic input of frequency 𝜔, non-zero harmonic components of the

corresponding perturbations of collective/cyclic inflow coefficients appear at the fre-

quencies 𝜔 and 𝑚𝑁𝑏Ω ± 𝜔, for 𝑚 = 1, 2, ...,𝑀 , whereas non-zero harmonic compo-

nents of the differential inflow coefficient perturbation appear at the frequencies (1/2+115

𝑚)𝑁𝑏Ω ± 𝜔, for 𝑚 = 0, 1, ...,𝑀 . In the rotating frame, the inflow presents harmonic

components at 𝜔 and 𝑘Ω ± 𝜔, for 𝑘 = 1, 2, ...,𝑀𝑁𝑏.

This is confirmed by the results presented in Figures 1 and 2 obtained through the

BEM free-wake solver for potential flows presented in [21], that concern the inflow

evaluated on the four-bladed Bo-105 main rotor operating in momentum trim condition,120

with thrust 𝑇 = 22000 N, advance ratio 𝜇 = 0.2 and angular speed Ω = 44.4 rad/s.
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Figure 1: Blade inflow perturbation spectrum at 𝑟/𝑅 = 0.7, for small-amplitude, harmonic 𝜃𝑠. 𝜇 = 0.2.

Specifically, Figure 1 shows the spectrum of the perturbed inflow on a generic blade at

radial position 𝑟/𝑅 = 0.7 due to a small-amplitude harmonic longitudinal pitch, 𝜃𝑠,

oscillating with frequency 𝜔 = 0.225 Ω = 10 rad/s. whereas Figure 2 presents the

spectra of the corresponding perturbed inflow coefficients.125

(a) 𝑣0 (b) 𝑣𝑠

(c) 𝑣𝑐 (d) 𝑣𝑁/2

Figure 2: Spectra of inflow coefficients at 𝑟/𝑅 = 0.7, for small-amplitude, harmonic 𝜃𝑠. 𝜇 = 0.2.
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Indeed, from Figure 1 it is possible to notice that, in the rotating frame, the perturbed

inflow spectrum is characterized by a peak at 0.225/rev and couples of peaks around

multiples of the rotor revolution frequency, whereas peaks due to nonlinearities (that

would appear at multiples of the perturbation frequency) are not visible because of the

small amplitude of perturbations. Since the input is a cyclic command, the highest130

peaks are those around Ω (namely, those at 0.775/rev and 1.225/rev in Figure 1), and

this proves the unsuitability of representing rotor inflow in the rotating frame through a

simple (not multi-harmonic, see later) LTI model, in that it would be capable of taking

into account only the 𝜔 component of the output.

Instead, Figure 2 shows that the spectra of collective and cyclic inflow coefficients135

are characterized by a significant tonal peak at the input frequency (particularly for 𝜈𝑠),

with progressively smaller peaks around the multiples of 𝑁𝑏 Ω. This explains the sat-

isfactory accuracy of the dynamic inflow models based on simple LTI description of

the non-rotating-frame inflow coefficients like, for instance, the Pitt-Peters one. How-

ever, at the same time, the higher frequency components of the cross-coupling terms140

(namely, those different from 𝜈𝑠, with inclusion of 𝜈𝑁/2) are not negligible with respect

to the input frequency ones. These are not captured by simple LTI inflow coefficient

models, and this limits their accuracy for applications where high-frequency dynam-

ics is present (like, for instance, in rotor blade aeroelasticity and aggressive maneuver

dynamic responses).145

Figure 3: Correlation among spectra of rotating-frame inflow perturbation at 𝑟/𝑅 = 0.7: computed inflow

(∙), inflow representation in Eq. 1 with ( ) and without ( ) differential contribution.
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The importance of the introduction of the differential inflow coefficient in the inflow

representation is demonstrated in Figure 3, where the spectrum of the computed rotor

blade inflow (blue circles) is compared with those of the inflows given by the expression

in Eq. 1 with (red line) and without (blue line) inclusion of the 𝜈𝑁/2 term. Indeed, it

shows that not-negligible output harmonic content around frequency (𝑁𝑏/2)Ω is miss-150

ing if the differential contribution is not taken into account.

Finally, note that in case of harmonic perturbation inputs of differential type, the

collective/cyclic coefficients of the corresponding inflow perturbation have harmonic

peaks at the same frequencies of the peaks in Figure 2(d), whereas the differential co-

efficient presents a spectrum distribution similar to those in Figures 2(a) to 2(c).155

2.2. Multi-Harmonic Representation of Inflow Coordinates

Based on the above observations, for the purpose of deriving LTP inflow models by

combination of LTI dynamics, it is convenient to express each inflow coordinate, 𝜆𝛼𝑗 ,

through one of the following time-dependent multi-harmonic combinations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜆𝛼𝑗 (𝑡) = 𝜆𝛼,0𝑗 (𝑡) +

𝑀∑︁
𝑚=1

{︀
𝜆𝛼,𝑚𝑐
𝑗 (𝑡) cos(𝑚Ω𝑏 𝑡) + 𝜆𝛼,𝑚𝑠

𝑗 (𝑡) sin(𝑚Ω𝑏 𝑡)
}︀

(4)

𝜆𝛼𝑗 (𝑡)=

𝑀∑︁
𝑚=0

{︀
𝜆𝛼,𝑚𝑐
𝑗 (𝑡) cos ((1/2 +𝑚) Ω𝑏 𝑡)) + 𝜆𝛼,𝑚𝑠

𝑗 (𝑡) sin ((1/2 +𝑚)Ω𝑏 𝑡)
}︀

(5)

where Ω𝑏 = 𝑁𝑏 Ω. The expression in Eq. 4 is suitable to represent both collective/cyclic

responses to fixed-frame/collective/cyclic inputs and differential responses to differen-

tial inputs, whereas the expression in Eq. 5 is valid both for collective/cyclic responses

to differential inputs and for differential responses to fixed-frame/collective/cyclic in-160

puts.

Note that, considering a small-perturbation harmonic collective/cyclic input at a

given frequency, 𝜔, the generic inflow coordinate, 𝜆𝛼𝑗 , of a collective/cyclic output

perturbation is such that its 𝜔-harmonic components coincide with those of 𝜆𝛼,0𝑗 (see

Eq. 4 and Figures 2(a) to 2(c)), whereas from the combination of its (𝑚Ω𝑏 − 𝜔)- and165

(𝑚Ω𝑏 + 𝜔)-harmonic components it is possible to determine the 𝜔-harmonic compo-

nents of 𝜆𝛼,𝑚𝑐
𝑗 and 𝜆𝛼,𝑚𝑠

𝑗 (similar considerations are valid for the input/output relations

represented by Eq. 5).
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This implies that, from numerical simulations of a high-fidelity aerodynamic solver,

it is possible to extract the LTI operators relating small input perturbations to the multi-170

harmonic coefficients of the inflow coordinates in Eq. 4 or 5. Indeed, the combination

of the 𝜔-harmonic components of 𝜆𝛼,0𝑗 , 𝜆𝛼,𝑚𝑐
𝑗 , 𝜆𝛼,𝑚𝑠

𝑗 with the harmonic components

of the input readily provides the values of the input/multi-harmonic-coefficients trans-

fer functions 𝐻𝛼,0
𝑗𝑘 (𝜔), 𝐻𝛼,𝑚𝑐

𝑗𝑘 (𝜔), 𝐻𝛼,𝑚𝑠
𝑗𝑘 (𝜔) and this process can be repeated for a

suitable set of points within the frequency range of interest.175

2.3. Efficient Extraction of Multi-Harmonic Coefficients LTI Dynamics

However, the application of a set of mono-harmonic perturbations for each input

variable is not the most suitable way to identify all transfer functions involved in the

proposed multi-harmonic description of the dynamic inflow (for instance, the coales-

cence of contributions occurring for 𝜔 = Ω/2 would bring to undetermined values of180

the transfer functions).

Here, an efficient methodology for the extraction of the transfer functions is pro-

posed. It is based on the fundamental property of LTP operators according to which

their output spectrum depends not only on the frequency of the input signal, but also

on its time shift (delay) with respect to the system intrinsic period [22]. Specifically,185

given, for instance, a rotor kinematic collective/cyclic input, the corresponding inflow

collective/cyclic output representation in Eq. 4 is suitably extended as follows

𝜆𝛼𝑗 (𝑡, 𝜏) = 𝜆𝛼,0𝑗 (𝑡)

+

𝑀∑︁
𝑚=1

{︀
𝜆𝛼,𝑚𝑐
𝑗 (𝑡) cos(𝑚Ω𝑏 (𝑡+ 𝜏)) + 𝜆𝛼,𝑚𝑠

𝑗 (𝑡) sin(𝑚Ω𝑏 (𝑡+ 𝜏))
}︀

(6)

where 𝜏 denotes the input/system-period time shift, which characterizes the correspond-

ing output (this extension is similarly applicable also to the representation in Eq. 5).

Then, note that, the evaluation of 𝜆𝛼𝑗 (𝑡, 𝜏) for a discrete set of 𝑁𝜏 values 𝜏 = 𝜏𝑖,190

for any time 𝑡 = 𝑡 yields a set of 𝑁𝜏 linearly independent equations with unknowns

𝜆𝛼,0𝑗 (𝑡), 𝜆𝛼,𝑚𝑐
𝑗 (𝑡), 𝜆𝛼,𝑚𝑠

𝑗 (𝑡). Hence, the transfer functions 𝐻𝛼,0
𝑗𝑘 , 𝐻𝛼,𝑚𝑐

𝑗𝑘 , 𝐻𝛼,𝑚𝑠
𝑗𝑘 intro-

duced in Section 2.2 are efficiently identified through the following process:

∙ for each input variable, the rotor is perturbed by a sequence of 𝑁𝜏 ≥ (2𝑀 + 1)
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chirp signals differing for the time delays, 𝜏𝑖 = 𝑖𝑇/𝑁𝜏 , with 𝑖 = 1, ..., 𝑁𝜏 and 𝑇195

denoting the fundamental intrinsic period of the system, 𝑇 = 2𝜋/Ω𝑏;

∙ considering a suitable time interval of analysis (depending on the spectrum to be

identified), for a given discrete set of time instants, 𝑡, within it, it is possible to de-

termine the corresponding values of each multi-harmonic coefficient as solutions

of the following algebraic problem

P(𝑡)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜆𝛼,0𝑗 (𝑡)

𝜆𝛼,1𝑐𝑗 (𝑡)

𝜆𝛼,1𝑠𝑗 (𝑡)
...

𝜆𝛼,𝑀𝑐
𝑗 (𝑡)

𝜆𝛼,𝑀𝑠
𝑗 (𝑡)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜆𝛼𝑗 (𝑡, 𝜏1)

𝜆𝛼𝑗 (𝑡, 𝜏2)

𝜆𝛼𝑗 (𝑡, 𝜏3)
...

𝜆𝛼𝑗 (𝑡, 𝜏𝑁𝜏
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

where P is a matrix of size [𝑁𝜏 × (2𝑀 + 1)], with entries defined as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑃𝑖1 = 1

𝑃𝑖𝑛(𝑡) = cos
(︁𝑛

2
Ω𝑏(𝑡+ 𝜏𝑖)

)︁
, for 𝑛 even

𝑃𝑖𝑛(𝑡) = sin

(︂
𝑛− 1

2
Ω𝑏(𝑡+ 𝜏𝑖)

)︂
, for 𝑛 odd

(for 𝑁𝜏 > (2𝑀 + 1) the problem in Eq. 7 is solved through pseudo-inversion of

matrix P);

∙ once the necessary evaluations in the considered time interval are accomplished,

the transfer function between each multi-harmonic coefficient and the specific200

input considered is determined (frequency by frequency) as the ratio between the

respective discrete Fourier transforms.

Note that, a similar procedure is applicable for the identification of the i/o transfer

functions related to the multi-harmonic representation in Eq. 5.

For the purpose of experimental identification of a helicopter rotor system, an ap-205

proach related to the present one is applied in [23, 24], with the multi-harmonic coef-

ficients problem formulated in the frequency domain instead of time-domain, as in Eq.

7.
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2.4. Finite-State Approximation

In order to derive a finite-state modeling of the wake inflow, the LTI dynamics of the210

multi-harmonic coefficients in Eqs. 4 and 5 (collected in the vector 𝜆𝛼
𝑗 ) is conveniently

represented through the following assembled transfer-matrix form

𝜆̃𝛼
𝑗 = H𝛼

𝑗 (𝑠) q̃ (8)

where 𝑠 is the Laplace-domain variable, q denotes the vector of the inputs of interest,

whereas the matrix H𝛼
𝑗 collects the corresponding transfer functions extracted from the

aerodynamic responses through the procedure outlined above.215

Then, observing that the input vector may be composed of velocity and/or displace-

ment variables, and that the output vector is composed of induced velocity coefficients,

this matrix is approximated through the following rational-matrix form

H𝛼
𝑗 (𝑠) ≈ 𝑠 A1 + A0 + C [𝑠 I−A]

−1
B (9)

determined by a least-square technique as that providing the best fitting of the values of

the matrix H𝛼
𝑗 (samples) derived from solutions of Eq. 7 [19, 25]. Matrices A1,A0,B220

and C are real and fully populated, whereas A is a square block-diagonal matrix con-

taining the poles of the approximated transfer functions.

Finally, transforming into time domain the combination of Eqs. 8 and 9 provides

the following LTI, finite-state model of the wake inflow multi-harmonic coefficients

𝜆𝛼
𝑗 = A1 q̇ + A0 q + Cr (10)

ṙ = Ar + Bq (11)

where r is the vector of the additional wake inflow dynamics states.225

The above LTI differential model combined with Eqs. (4) and (5) provides the LTP

operator for the wake inflow coordinates. These, in turn, applied for all 𝑗 and 𝛼 in

Eq. 2 coupled with Eq. 1 yield a space-time accurate, LTP prediction model of the

wake inflow on the rotor disc, suitable for rotorcraft aeroelastic and flight dynamics

applications.230

If the multi-harmonic terms in Eqs. 4 and (5) are neglected, the operator relating

wake inflow coordinates to rotor kinematics perturbations is transformed into an oper-
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ator of LTI type, like that of the wake inflow model extraction approach introduced in

[13, 15] for low-frequency flight dynamics applications.

2.5. Application to coaxial rotors235

The wake inflow modeling outlined above may be straightforwardly extended to

coaxial rotors. In this case, the input kinematic variables might include blade pitch

controls for both rotors, whereas the inflow coefficients are doubled in order to represent

the inflow distributions over upper and lower rotor discs.

For an isolated system of contra-rotating coaxial rotors, in the non-rotating frame240

the fundamental frequency of both upper and lower wake inflows is 2Ω𝑏 in hovering

conditions, and Ω𝑏 when it is in forward flight. The methodology presented above can

be correspondingly adapted for their finite-state, space-time accurate modeling.

Note that, the introduction of fuselage interaction effects would cause the loss of

axial-symmetry existing in isolated hovering condition, thus moving the fundamental245

frequency from 2Ω𝑏 to Ω𝑏.

3. Numerical results

The proposed methodology for space-time accurate, finite-state, dynamic wake in-

flow modeling is verified and validated for a single rotor in hovering condition (time-

constant aerodynamic operator, multi-harmonic coefficients not included) and a coaxial250

rotor configuration in hovering and forward flight (multi-harmonic coefficients duly in-

cluded in both cases).

The aerodynamic simulations used for inflow models extraction are obtained by an

unsteady, free-wake, potential-flow, BEM tool for rotorcraft extensively validated in the

past by some of the authors [21, 26], that is capable of taking into account multi-body255

interference and severe blade-vortex interaction effects.

Dividing the blade span into a finite number of segments, the basis functions used in

Eq. 2 are assumed to be equal for the different inflow coefficients (namely, 𝜑0𝑗 = 𝜑𝑐𝑗 =

𝜑𝑠𝑗 = 𝜑
𝑁/2
𝑗 ,∀𝑗) and such to provide a linear distribution of inflow coefficients within

each segment, assuring continuity at the edges of them. For the results presented in the260

following, four discretization segments are used (𝑁𝑟
0 = 𝑁𝑟

𝑐 = 𝑁𝑟
𝑠 = 𝑁𝑟

𝑁/2 = 4).
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3.1. Single rotor in hovering condition

The rotor examined has four blades, radius 𝑅 = 4.91 m, constant chord 𝑐 = 0.27

m, twist angle 𝜃𝑡𝑤 = −8∘ from root to tip, and angular speed Ω = 44.4 rad/s.

For the sake of simplicity (and with no loss of generality in terms of inflow modeling265

technique validation), the rotor wake in the aerodynamic BEM solver is assumed to have

a prescribed helicoidal shape, with spiral length given by the mean inflow associated to

the thrust coefficient, 𝐶𝑇 , such that 𝐶𝑇 /𝜎 = 0.07, with 𝜎 denoting the rotor solidity.

First, the excellent quality of the rational-matrix approximation (RMA) of the trans-

fer function matrix extracted from the BEM solutions is shown in Figures 4(a) and 4(b),270

which present the spectra of 𝜆01 vs 𝜃0 and 𝜆𝑠1 vs 𝜃𝑐, respectively (note that, in this case,

𝜆01 ≡ 𝜆0,01 and 𝜆𝑠1 ≡ 𝜆𝑠,01 , see Eq. 4).

(a) 𝜆0
1 vs 𝜃0 (b) 𝜆𝑠

1 vs 𝜃𝑐

Figure 4: Single rotor in hover, transfer function of inflow coordinates. RMA;∙ BEM.

A similar high level of accuracy is observed for the whole set of transfer functions

involved in matrices H𝛼
𝑗 .

Next, considering a collective pitch chirp-type perturbation with 1-deg amplitude275

and frequency linearly increasing in the range [0 ÷ 0.3]/rev, the corresponding wake

inflow perturbation predicted by the proposed state-space model is correlated both with

those directly computed by the BEM solver and with those given by the inflow model of

[13, 14], based on the linear radial approximation form (like in the Pitt-Peters model).
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This comparison is shown in Figure 5 for the wake inflow evaluated at three blade sec-280

tions, 𝑟/𝑅 = {0.7, 0.85, 0.95}.

Figure 5: Single rotor in hover, wake inflow at 𝑟/𝑅 = 0.7 (top), 𝑟/𝑅 = 0.85, 𝑟/𝑅 = 0.95 (bottom), due

to collective pitch perturbation. BEM; present model; linear radial approximation.

These results demonstrate the improvement of the quality of the dynamic model

predictions obtained by introduction in Eq. 2 of a more accurate representation of the

inflow radial distribution that, especially at the tip of the blade, shows significant gra-

dients.285

This is confirmed by the results shown in Figure 6 that presents the spanwise distri-

bution of the percentage root-mean-square (RMS) prediction error (related to the sec-

tional inflow peak) obtained by the present formulation and by the model with linear

radial approximation of [14]. The inflow prediction improvement provided by the more

accurate radial description is considerable throughout the blade span.290

3.2. Coaxial rotors inflow approximation

The coaxial rotor system examined is composed of two identical three-bladed rotors

having radius 𝑅 = 5.48 m, blade root chord 𝑐 = 0.54 m, taper ratio equal to 0.5, twist

𝜃 = −7∘, counter-rotating at angular velocity Ω = 32.8 rad/s.

Akin to the single rotor analysis, the rotor wake in the aerodynamic BEM solver is295

assumed to have a prescribed helicoidal shape that, for the hovering case has a spiral
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Figure 6: Single rotor in hover, RMS inflow approximation error. present model; linear radial

approximation.

length related to the mean thrust coefficient, whereas in forward flight (without loss

of generality, 𝜇 = 0.2 is the case examined here) coincides with the surface swept by

the trailing edges. In both cases, the reference operating condition is characterized by

𝐶𝑇 = 0.0134 and null rolling and pitching moments (momentum trim condition).300

First of all, the capability of the applied inflow representation to approximate with

suitable accuracy the inflow predicted by the BEM solver is verified. Figure 7 depicts the

inflow on upper and lower rotor blades in forward flight evaluated by the aerodynamic

solver, as responses to a steady differential collective perturbation (namely a collective

pitch perturbation of opposite sign on upper and lower rotors). It shows irregular distri-305

butions characterized by the strong influence of tip vortices (proven by the curvilinear

traces of higher velocity gradient) that could not be accurately approximated by linear

models like that in [14] or the Pitt-Peters one.
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Figure 7: BEM prediction of wake inflow distribution due to differential collective perturbation.
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Figure 8: Analytical representation of wake inflow distribution due to differential collective perturbation.

Instead, the model proposed here, for 𝑀 = 2 and the number of radial functions

mentioned above, provides the inflow approximation presented in Figure 8. Of course,310

it could be further enhanced by increasing the number of radial functions and multi-

harmonic coefficients, but it is considered of satisfactory quality and represents a good

trade-off between accuracy and complexity of the analytical model. Indeed, a more

complex inflow representation would imply higher computational cost for the identifica-

tion of the finite-state models and a higher number of additional inflow states to be intro-315

duced. For these reasons, the results presented in the following are based on these model

discretization parameters when concerning advancing rotor system, whereas 𝑀 = 1 is

used for hovering condition.
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3.3. Coaxial rotors in hovering condition

First, the good quality of the RMA of the transfer functions extracted from the BEM320

solver is demonstrated in Figure 9, which presents the spectrum of 𝜆0,02 vs 𝜃+0 (with 𝜃+0
denoting the average of upper and lower rotor collective pitches). A similar level of

accuracy is observed for all of the multi-harmonic coefficient transfer functions.

Figure 9: Coaxial rotor system in hover, transfer function 𝜆0,0
2 vs 𝜃+0 . Upper rotor: RMA; ∙ BEM.

Lower rotor: RMA;∙ BEM.

Next, considering the following time history of 𝜃+0 perturbations

𝜃+0 (𝑡) = 𝐴 cos(𝜔𝑡) sin(3𝜔𝑡)𝑒−0.25𝑡 (12)

with 𝐴 = 0.5 deg and 𝜔 = 0.1Ω, the corresponding wake inflow perturbations pre-

dicted by the proposed state-space methodology are correlated both with those directly325

computed by the BEM solver and with those predicted by a linear-radial-approximation

dynamic inflow model obtained following the formulation in [13, 14]. This comparison

is presented in Figure 10 in terms of the wake inflow evaluated at the blade sections

𝑟/𝑅 = {0.41, 0.62, 0.95}, on upper and lower rotor blades.

18



(a) upper rotor (b) lower rotor

Figure 10: Coaxial rotor system in hover, wake inflow predictions at 𝑟/𝑅 = 0.41 (top), 𝑟/𝑅 = 0.62,

𝑟/𝑅 = 0.95 (bottom). ×× BEM; present model; linear radial approximation.

This figure shows that the present model provides inflow predictions that almost330

perfectly match those directly given by the aerodynamic solver, thus significantly im-

proving those from the linear radial approximation model.

Figure 11: Coaxial rotor system in hover, wake inflow spectrum at 𝑟/𝑅 = 0.41, upper rotor. ×× BEM;

present model.

The very good quality of present model predictions is confirmed in Figure 11, which

shows the correlation with BEM simulations in terms of the spectrum of the upper
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rotor inflow at 𝑟/𝑅 = 0.41. In particular, it is interesting to note that, although of335

smaller amplitudes, also the contributions deriving from the 6/rev periodicity of the

aerodynamic operator are very well captured by the proposed methodology.

Figure 12: Coaxial rotor system in hover, RMS inflow approximation error. Upper rotor: present

model; linear radial approximation. Lower rotor: present model; linear radial ap-

proximation.

An overview of the quality of the model proposed is given in Figure 12. It presents

the spanwise distributions of the percentage RMS error with respect to BEM predic-

tions (related to the sectional inflow peak), obtained by the present formulation and by340

that based on the linear radial approximation. Indeed, the error of the present model

predictions is below 10% throughout the blade span for both upper and lower rotors

(except at the outermost region), and is less than half of that given by the linear radial

model. Note that the vertical solid lines identify the blade sections examined in Fig-

ure 10, and that the higher error at the blade tip region is caused by the local very high345

inflow gradients that, however, could be better captured by suited local refinement of

the radial approximation functions.

3.4. Coaxial rotors in forward flight

As already observed, in forward flight condition the fundamental frequency of the

intrinsic periodicity of the aerodynamic operator is 3Ω, the harmonic content is en-350
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riched by higher-frequency contributions, and thus, the inflow model includes the multi-

harmonic coefficients corresponding to 𝑀 = 2 in Eqs. 4 and 5.

(a) upper rotor (b) lower rotor

Figure 13: Coaxial rotor system in forward flight, wake inflow predictions at 𝑟/𝑅 = 0.41 (top), 𝑟/𝑅 = 0.62,

𝑟/𝑅 = 0.95 (bottom). ×× BEM; present model.

Considering again the perturbation input of Eq. 12, for upper and lower rotors,

Figure 13 shows the comparisons between the wake inflow predicted by the present

dynamic model and that directly provided by the BEM solver on the same three blade355

sections examined for the hovering case. The two simulations are in good agreement

(particularly those concerning the upper rotor, which are practically coinciding), thus

proving the capability of the space-time-accurate, finite-state model to describe with

good level of accuracy the wake inflow field over rotor systems.

It is interesting to note that, contrarily to the outcomes observed for the hovering360

system, in forward flight condition the time periodicity of the aerodynamic operator

heavily affects the output. This is particularly evident in Figure 14 which presents the

frequency spectrum of the upper rotor inflow coordinate 𝜆𝑠3 proving, also in this case,

the good correlation between BEM output and model predictions. Indeed, in this case,

the amplitude of the multi-harmonic components associated to the 3/rev periodicity of365

the aerodynamic operator are of the same order of magnitude of the LTI components

(namely, those at the same frequencies of the input). Even the multi-harmonic compo-

nents derived from the 6/rev intrinsic periodicity provide a not negligible contribution
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(also lower contributions from the 9/rev periodicity can be observed in the BEM output,

not captured by the analytical model in that developed for 𝑀 = 2).370

Figure 14: Coaxial rotor system in forward flight, spectrum of upper rotor inflow coordinate 𝜆𝑠
3. ×× BEM;

present model.

Finally, for upper and lower rotors Figure 15 shows the spanwise distribution of the

percentage RMS error with respect to BEM predictions (related to the sectional inflow

peak) corresponding to inflow given by (i) complete present model, (ii) present model

without multi-harmonic terms (LTI representation of inflow coordinates), (iii) linear

radial approximation model of [13, 14]. In addition, it depicts also the modeling error375

arising when the inflow coordinates are evaluated directly from BEM simulations, and

hence related only to the proposed approximation of the radial inflow distribution.
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(a) upper rotor (b) lower rotor

Figure 15: Coaxial rotor system in forward flight, RMS inflow approximation error. present model

(complete); present model (w/o multi-harmonic terms); linear radial approximation; ∙ inflow

coordinates from BEM.

This figure proves that, introducing only a more detailed radial description with-

out including multi-harmonics contributions yields limited improvements of the overall

quality of the inflow predictions, as compared to those of the linear radial approximation380

model of [13, 14]. This confirms that for forward flight conditions, combined space-

time accurate descriptions are required for high-quality inflow modeling. Moreover,

the comparison of the complete model predictions with those obtained through inflow

coordinates directly evaluated from BEM outputs demonstrates that the proposed finite-

state modeling process (harmonics truncation, transfer functions identification, rational385

matrix approximation) does not introduce significant errors which, instead, are closely

related to the quality of the inflow radial distribution description.

4. Conclusions

A methodology for the extraction of space-time accurate, finite-state, LTP rotor in-

flow dynamic models from high-fidelity aerodynamic solvers has been introduced. Its390

numerical assessment has been performed through applications to single and coaxial

rotors, both in hovering and forward flight. The following conclusion are drawn:
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∙ the proposed methodology is capable of simulating high-frequency, multi-harmonic

rotor inflow through a LTP operator forced by rotor kinematics;

∙ it suitably captures the effects of the intrinsic periodicity of rotor aerodynamics395

(always present, unless a single isolated rotor in hovering/axial flow is consid-

ered);

∙ it is applicable to inflow observed both in the rotating frame and in the non-

rotating one; however, the inflow description in the non-rotating frame turns out

more convenient in that, given the highest frequency to be taken into account, it400

requires the introduction of a lower number of multi harmonics;

∙ the proposed inflow modeling technique can be successfully applied both to sin-

gle rotors and coaxial-rotor configurations, both in hovering and forward flight

conditions;

∙ the accuracy of the model can be adjusted by suitable radial discretization (num-405

ber of inflow coordinates) and multi-harmonic expansion (number of multi-harmonic

coefficients);

∙ significant improvements with respect to LTI, linear radial approximation models

(like the widely-applied Pitt-Peters model) are achieved both because of the de-

scription of the radial distribution as a linear combination of suitable basis func-410

tions, and because of the multi-harmonic expansion of the corresponding inflow

coordinates;

∙ transfer function identification and rational approximation can be accomplished

with a very good level of accuracy.

The capability of capturing with good accuracy both radial inflow distribution and415

inflow higher-order harmonic content makes the proposed dynamic inflow modeling

methodology suitable for effectively introducing the unsteady aerodynamics effects in

rotorcraft aeromechanics simulations.
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