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Abstract
A wide family of many-valued logics—for instance, those based on the weak Kleene algebra—includes a non-classical
truth-value that is ‘contaminating’ in the sense that whenever the value is assigned to a formula ϕ, any complex formula in
which ϕ appears is assigned that value as well. In such systems, the contaminating value enjoys a wide range of interpretations,
suggesting scenarios in which more than one of these interpretations are called for. This calls for an evaluation of systems with
multiple contaminating values. In this paper, we consider the countably infinite family of multiple-conclusion consequence
relations in which classical logic is enriched with one or more contaminating values whose behaviour is determined by
a linear ordering between them. We consider some motivations and applications for such systems and provide general
characterizations for all consequence relations in this family. Finally, we provide sequent calculi for a pair of four-valued
logics including two linearly ordered contaminating values before defining two-sided sequent calculi corresponding to each
of the infinite family of many-valued logics studied in this paper.

1 Introduction
A broad family of many-valued logics [3, 10, 11, 21, 26] impose a syntactic filter on logical
consequence, to the effect that

Γ ! ϕ only if Var(ϕ) ⊆ Var(Γ )

where Var(Γ ) represents the collection of propositional variables in a formula or set of formulae.
This filter condition1 and similar requirements are achieved by including a semantic value that is
‘contaminating’ or ‘infectious’ in the sense that whenever the value is assigned to a formula ϕ, any
complex formula in which ϕ appears is assigned that value as well.2 The most famous among the

1The condition is called Proscriptive Principle by [21], and the logics obeying it are among the systems usually called
containment logics—we believe the reason for this is clear enough. In [24] the logics obeying the condition above or related
ones are called filter logics, whence our name for the condition.

2This property has been very well studied, under different names, in relation to particular systems or fragments of some
systems. In [1] it is called predominance of the atheoretical element, in [7] it is referred to as principle of contamination,
whereas [17] calls it principle of component homogeneity, and [13, 28] calls it infectiousness.
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2 Linear orders of contaminating values

systems that include such a value is the three-valued weak Kleene logic Kw
3 by [3, 19], which obeys

a weaker version of the filter condition above, namely

Γ ! ϕ only if

{
either Var(ϕ) ⊆ Var(Γ )

or Γ ! ψ for all ψ

The contaminating value of Kw
3 and its sublogics [10, 11, 26] has been proposed as an adequate

model for a remarkably diverse range of phenomena, including linguistic, epistemic and computer-
theoretical ones. In particular, Bochvar [3] uses the contaminating value of Kw

3 to reason about
class-theoretic antinomies, while Fitting [14] uses it, in his bilattice-based semantics, to capture lack
of shared expertise among groups of experts. Finally, Avron and others [2] use the contaminating
value as a model for catastrophic errors encountered by a computer program, in the spirit of [20].

Now, each of the above phenomena may have different sources, or come in different varieties. For
instance, the meaninglessness of a sentence can be due to category mistakes [27], Chomsky-style
nonsense [6] or ill-formedness [1], and all or some of these traits can be found concurrently in a
given set of complex expressions. Also, in computer-program applications, we often have multiple
virtual machines running within one another (e.g. a Java VM running inside Wine running inside
Linux), with each of these possibly facing errors (be they catastrophic or not) or faults of some kind.
Also, we can receive non-uniform expert advice because, along with some experts having no take on
a given issue, two or more of them propose conflicting replies. The logic Kw

3 [3, 14] and related ones
[2, 20] can model only one of these sources in isolation, and they cannot give an adequate insight on
their possible interactions. These can be modelled just if many contaminating values are available.

In this paper, we serve this purpose by providing a general many-valued semantics in which
classical logic is augmented by a linear order of contaminating values in which some values
may be designated and others not. Depending on the range of the contaminating values admitted,
many different consequence relations arise.3 We present general characterization results of all such
consequence relations in terms of the satisfaction of variable-inclusion properties between sets of
premises and (sets of) conclusions—Theorem 3.1 and Theorem 3.2. Throughout the paper, we focus
on standardly defined multiple-conclusion consequence.4

In this vein, throughout this paper we will be focusing on logics satisfying the following filter
condition:

Γ ! ∆ only if Var(Γ ′) ⊆ Var(∆′) for some non-empty Γ ′ ⊆ Γ and ∆′ ⊆ ∆

or some weaker versions of it, later establishing that sometimes particular chains of variable-
inclusion conditions are needed for logical consequence in matrices that extend classical logic
with more than two contaminating values—Theorem 4.1 and Theorem 4.2. We also include proof-
theoretical results, by providing decorated complete sequent calculi for a pair of four-valued logics
whose non-classical values are contaminating and linearly ordered before defining two-sided sequent
calculi for a countably infinite family of such systems.

The paper proceeds as follows. Section 2 introduces the basic notation and definitions that we use
throughout the paper. Section 3 introduces the basic semantic machinery of contaminating values,

3There is a close connection between some of the many-valued matrices presented in this paper and an algebraic
construction known as Płonka sums of (direct systems of) logical matrices, initially explored in [22, 23] and recently discussed
in [4, 5]. In this paper we do not discuss the relation of our matrices with these constructions, but we hope to make a thorough
examination of this topic in future works.

4The investigation of single-conclusion consequence relations induced by many-valued semantics counting with a linear
order of contaminating values is another, deeply interesting project that we hope to explore in the near future.
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Linear orders of contaminating values 3

which can be exemplified with the three-valued logics Kw
3 [3, 19] and PWK [18], and the simplest

combination of contaminating values, which gives rise to the four-valued logics HYB1 and HYB2
[28]. Theorem 3.1, Theorem 3.2 and their corollaries are presented in this section. Section 4 deploys
a straightforward, general method for the construction of matrices endowed with a linear order of
(finitely many) contaminating values. Theorems 4.1–4.4 are presented in this section. In Section 5,
we prove that the infinitely many LOC-matrices built on the matrix for CL induce infinitely many
multiple-conclusion consequence relations. Section 6 presents sound and complete sequent calculi
for the logics HYB1 and HYB2 (Theorem 6.2 and Theorem 6.4, respectively) and two-sided sequent
calculi for an infinite family of their subsystems (Theorem 6.5). Finally, Section 7 presents some
concluding remarks.

2 Preliminaries
Throughout the paper, we adopt the standard notation and basic definitions from Abstract Algebraic
Logic, as presented e.g. in [15]. One important exception with regard to [15], however, concerns our
definition of multiple-conclusion matrix consequence (see below).

Given a similarity type ν and a countably infinitely set X of generators, the absolutely free
algebra Fml over X is called the formula algebra of type ν. Fml denotes the universe of Fml.
We call propositional variables—or variables, simply—the members of X , and we denote them
by p, q, r, . . . . We call ν-formulae the members of Fml, and we denote them by φ, ψ , θ , . . . . We use
Γ , ∆, Ψ . . . to denote sets of formulae.5 We omit reference to the type ν when this does not create
confusion. In this paper, if no particular remark is made, Fml is assumed to be a formula algebra of
type (1, 2, 2), namely, of the type containing the connectives ¬, ∨, ∧.

A logic of type ν is a pair S = ⟨Fml, ⊢S⟩, where Fml is a formula algebra of type ν and
⊢S ⊆ P(Fml) × P(Fml) is a substitution invariant multiple-conclusion consequence relation.
A ν-matrix—or, simply, a matrix—is a pair M = ⟨A, D⟩ with A an algebra of type ν with universe
A and D ⊂ A. D is called the filter of M. Informally, we think of the members of A as truth-values.
Under this informal reading, the members of D are naturally thought of as designated values.6

Just to make an example, classical logic CL is defined as ⟨Fml, |*MCL⟩, and MCL is defined
as ⟨B2, {1}⟩, where B2 = ⟨{0, 1}, ¬, ∨, ∧⟩ is the well-known two-element Boolean algebra of type
(1, 2, 2). The elements 0 and 1 of its universe are informally interpreted as ‘false’ and ‘true’,
respectively, with 1 being the only designated value. In this paper, we will focus especially in matrices
that have MCL as a submatrix, in the following sense:

DEFINITION 2.1
A matrix M = ⟨A, D⟩ is a submatrix of a matrix M′ = ⟨A′, D′⟩ (M ⊑ M′) if and only if A is a
subalgebra of A′ and D = D′ ∩ A.

Logical matrices, in turn, can be seen to give raise to substitution invariant multiple-conclusion
consequence relations, as Definition 2.3 illustrates.

5Unless specified otherwise, in this paper we consider just finite sets of formulae, with the exception, of course, of Fml
itself.

6Notice that, in using these notions, we do not assume or even try to stress that we do not allow the presence of matrices
whose algebraic reduct is the trivial algebra. However, as will become clear shortly, in this paper our interest is in investigating
logics induced by matrices having contaminating values that, in turn, extend the two-valued matrix inducing classical logic—
i.e. the matrix whose algebraic reduct is the two-element Boolean algebra. We would like to thank an anonymous reviewer for
urging us to clarify this issue.
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4 Linear orders of contaminating values

DEFINITION 2.2
A valuation is a homomorphism v : Fml −→ A from a formula algebra Fml into an algebra A of
the same type.

We denote by HomFml,A the set of valuations for Fml defined on A. When Fml is clear by the
context and we wish to focus on the matrix rather than on the algebra, we write HomM. For every
M = ⟨A, D⟩, we let HomM(Γ ) be the set {v ∈ HomM | v[Γ ] ⊆ D} of the models of Γ based on
M. In this paper, we focus on matrix consequence relations:

DEFINITION 2.3
Given a matrix M = ⟨A, D⟩, the relation |*M ⊆ P(Fml) × P(Fml) defined as follows:

Γ |*M ∆ ⇔ for every v ∈ HomM, ν[Γ ] ⊆ D implies ν(ψ) ∈ D for some ψ ∈ ∆

is a multiple-conclusion matrix consequence relation.

We say that ∆ is a tautology if and only if ∅ |*M ∆, and we say that Γ is unsatisfiable if
and only if Γ |*M ∅. We write φ |*M ψ instead of {φ} |*M {ψ}, and φ, ψ |*M γ , δ instead
of {φ, ψ} |*M {γ , δ}. We also use other notation, writing e.g. Γ , ∆ for Γ ∪ ∆, or Γ , φ for Γ ∪
{φ}. Finally, when |*MS is the matrix consequence relation of a logic S, we refer to |*MS as to
MS-consequence.7

Before closing this section, it is of high importance to notice that the notion of multiple-conclusion
consequence that we define here is different from the one defined in [15], which provides all
the other basic notation and definitions in the present paper. In particular, Definition 2.3 above
comes with the standard disjunctive reading of the right side of |*M, while [15, Definition 1.7]
comes with a conjunctive reading of it—implying that all the formulae in the conclusion-set have
to be satisfied. In fact, in [15], the author himself notices that his definition is not standard. In
this paper, a particular reason to stick to the standard definition, as we did, is that the disjunctive
reading of the right side of |*M fits the interpretation of two-sided sequents in sequent calculi,
and a uniform reading seems more appropriate in view of the results on sequent calculi from
Section 6.

3 Basic contaminating logics
As we previously advertised, in this paper we are interested in logics with contaminating truth-
values, i.e. in logics induced by single logical matrices containing contaminating truth-values. Thus,
in order to proceed to their study and analysis, we will distinguish two classes of such logics and,
consequently, of such matrices.

The first class will comprise the basic contaminating logics, i.e. those logics induced by matrices
complying with the most basic understanding of what a matrix with a contaminating logic is. The
second class will comprise the logics equipped with a linear order of contaminating values, i.e.
those logics induced by matrices having a plurality of linearly ordered contaminating values. In what
follows, we begin our journey towards understanding basic contaminating logics by defining what
an algebra with a contaminating element looks like.

7For the basic setting defined in this section, see also [15, Chapter 1].
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Linear orders of contaminating values 5

TABLE 1. Operations of the WK algebra

¬ ∨ 1 n 0 ∧ 1 n 0

1 0 1 1 n 1 1 1 n 0
n n n n n n n n n n
0 1 0 1 n 0 0 0 n 0

DEFINITION 3.1
An algebra A of type ν has a contaminating element k if and only if there is a non-empty A′ ⊆ A,
with A′ ̸= {k}, such that for every m-ary g ∈ ν and every {a1, . . . , am} ⊆ A′:

if k ∈ {a1, . . . , am} then gA(a1, . . . , am) = k.

If A′ = A, we say that k is absolutely contaminating; if A does not satisfy Definition 3.1 relative
to k, but some A′ ⊂ A does, we say that k is partially contaminating. With the exception of Kw

3 and
PWK, defined below, all the logics in this paper include one or more partially contaminating values
alongside an absolutely contaminating one. In this regard, if y ∈ A′ and k contaminates the elements
of A′, we write C(y, k) for ‘y is contaminated by k’.

DEFINITION 3.2
A matrix M = ⟨A, D⟩ has a contaminating value k if A has a contaminating element k. Otherwise,
we say M has no contaminating value.

Our first examples of a matrix extending the two-valued matrix MCL with a contaminating value
are the matrices inducing the three-valued logics Kw

3 and PWK by [3] and [18], respectively. These
are built using the so-called weak Kleene algebra WK, an algebra with an absolutely contaminating
element introduced in [19]. More precisely, WK is the algebra of type (1, 2, 2) whose universe is
{0, n, 1} and whose operations are given by Table 1.
It is clear from Table 1 that value n satisfies Definition 3.1 relative to {0, n, 1}. This is, in a way, the

simplest case of contamination, where a value n contaminates all the values in the universe of the
algebra in question.

Moving to the logics themselves, it is interesting to observe some features of the three-valued
systems Kw

3 and PWK—for which sound and complete sequent calculi were provided in [9].

DEFINITION 3.3
Kw

3 = ⟨Fml, |*MKw
3

⟩ and PWK = ⟨Fml, |*MPWK⟩, where:

MKw
3

= ⟨WK, {1}⟩ MPWK = ⟨WK, {n, 1}⟩

Kw
3 lacks any tautology, exactly as its more famous kin K3 by [19]. By contrast, PWK shares

tautologies with classical logic CL, but it fails to validate some classical inference rules (most
notably, Ex Falso Quodlibet and Reductio ad Absurdum), exactly as its more famous kin LP by
[25]. The presence of a contaminating value determines further failures. In particular, we have
v(ϕ ∨ ψ) = n in any valuation v such that v(ϕ) = 1 and v(ψ) = n, and v(ϕ ∧ ψ) = n in any
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6 Linear orders of contaminating values

TABLE 2. Operations of the HYB algebra

¬ ∨ 1 n1 n2 0 ∧ 1 n1 n2 0

1 0 1 1 n1 n2 1 1 1 n1 n2 0
n1 n1 n1 n1 n1 n2 n1 n1 n1 n1 n2 n1
n2 n2 n2 n2 n2 n2 n2 n2 n2 n2 n2 n2
0 1 0 1 n1 n2 0 0 0 n1 n2 0

valuation v such that v(ϕ) = 0 and v(ψ) = n. Since DMK3
= {1} and DMPWK = {n, 1}, this implies

ϕ ̸!MKw
3

ϕ ∨ ψ Failure of Disjunctive Addition

ϕ ∧ ψ ̸!MPWK ϕ Failure of Conjunctive Simplification

However, notice that the following local versions of these properties hold

ϕ ∨ ψ !MKw
3

ϕ ∨ ¬ϕ Local Excluded Middle

ϕ ∧ ¬ϕ !MPWK ϕ ∧ ψ Local Explosion

Our second examples of a matrix extending the two-valued matrix MCL with a contaminating
value are the matrices inducing the four-valued logics HYB1 and HYB2, introduced in [28],
themselves sublogics of Kw

3 and PWK. These matrices are built on the algebra HYB, which includes
two contaminating elements. More precisely, HYB is the algebra of type (1, 2, 2) whose universe is
{0, n1, n2, 1} and whose operations are given by Table 2.
It is clear, again, by looking at Table 2, that n2 satisfies Definition 3.1 relative to the entire universe

{0, n1, n2, 1}. By contrast, n1 satisfies Definition 3.1 relative to {0, n1, 1} only. As a consequence, n2
is absolutely contaminating, while n1 is just partially contaminating.

Yet again, let us now turn to two logics induced by logical matrices built using the HYB algebra,
the systems HYB1 and HYB2—for which we will provide sound and complete sequent calculi in
Section 6.

DEFINITION 3.4
HYB1 = ⟨Fml, |*MHYB1

⟩ and HYB2 = ⟨Fml, |*MHYB2
⟩, where:

MHYB1 = ⟨HYB, {n1, 1}⟩ MHYB2 = ⟨HYB, {n2, 1}⟩.
Each of HYB1 and HYB2 shares all the failures of Kw

3 and PWK. Additionally, the following
distinguish the two logics HYB1 and HYB2 from Kw

3 and PWK:

ϕ ∨ ψ !MHYB1
ϕ ∨ ¬ϕ ϕ ∧ ¬ϕ ̸!MHYB1

ϕ ∧ ψ

ϕ ∨ ψ ̸!MHYB2
ϕ ∨ ¬ϕ ϕ ∧ ¬ϕ !MHYB2

ϕ ∧ ψ .

As for local excluded middle, any valuation v such that v(ψ) = v(ϕ ∨ ψ) = n2 and v(ϕ) = n1
is such that v(ϕ ∨ ψ) ∈ DMHYB2

and v(ϕ ∨ ¬ϕ) /∈ DMHYB2
. Also, for every valuation v such

that v(ϕ ∨ ψ) ∈ {n1, 1}, we have v(ϕ ∨ ¬ϕ) ∈ {n1, 1}. Since DMHYB1
= {n1, 1}, the rule has no

countermodel in MHYB1 . As for local explosion, any valuation v where v(ϕ ∧¬ϕ) = n1 and v(ψ) =
n2 provides a countermodel to the rule in HYB1; for every valuation v where v(ϕ) = v(ϕ∧¬ϕ) = n2,
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Linear orders of contaminating values 7

we have v(ϕ ∧ ψ) = n2 by contamination. Since DMHYB2
= {n2, 1}, the rule has no countermodel

in MHYB2 .
After analysing these examples of basic contaminating logics, it is interesting to consider the

rather general idea of obtaining an extension of a given matrix M by adjoining it an absolutely
contaminating value n—to later study the logic induced by this single matrix. In order to do this,
we make precise what extending a given matrix M with an absolutely contaminating value would
amount to.

DEFINITION 3.5
Given an algebra A of type ν, let A[n] be the algebra of the same type that results from adjoining
to A an absolutely contaminating element n such that n /∈ A, i.e. A[n] is such that for every m-ary
g ∈ ν and every {a1, . . . , am} ⊆ A ∪ {n}:

gA[n](a1, . . . , am) =
{

n if n ∈ {a1, . . . , am}
gA(a1, . . . , am) otherwise

.

DEFINITION 3.6
Given a matrix M = ⟨A, D⟩, let M[n] = ⟨A[n], D ∪ D′⟩, where D′ ⊆ {n} be the matrix with a
contaminating value that results from adjoining an absolutely contaminating value n to M.

With the help of these definitions, we are now in a position to study the case of some basic logics
induced by single logical matrices which have a contaminating value. To this extent, the following
two theorems establish that, for every matrix M[n] extending a matrix M with a contaminating
value, the corresponding M[n]-consequence can be characterized on the ground of M-consequence
alone, together with certain filter conditions.

THEOREM 3.1
Given a matrix M = ⟨A, D⟩, let M[b] = ⟨A[b], D⟩ be the matrix with a contaminating value
that results from adjoining a non-designated absolutely contaminating value b to M. Then,
M[b]-consequence can be characterized as follows:

Γ !M[b] ∆ ⇔ Var(∆′) ⊆ Var(Γ ) for some ∆′ ⊆ ∆ s.t. Γ !M ∆′.

PROOF. For left-to-right, we prove this by contraposition. Assume it is not the case that Var(∆′) ⊆
Var(Γ ) for some ∆′ ⊆ ∆ such that Γ !M ∆′.

If Γ !M ∅, then for every M valuation v we have that v(Γ ) " D—i.e. there are no M valuations
under which each formula in Γ is designated. If this is the case, the filter condition is trivially
satisfied by letting ∆′ be ∅. Furthermore, given the set of designated values of M[b] is the same
than those of M, in this case we would also have that Γ !M[b] ∅.

If Γ #M ∅, i.e. if Γ is satisfiable in M, we reason as follows. Suppose that for every ∆′ ⊆ ∆,
either Var(∆′) " Var(Γ ) or Γ #M ∆′. We construct an M[b] valuation witnessing that Γ #M[b] ∆.

Now, by the condition assumed on ∆ we can split ∆ into two sets, the set ∆⋄ = {ψ ∈ ∆ |
Var(ψ) " Var(Γ )} and its complement ∆• = ∆$ ∆⋄. Importantly, because Var(∆•) ⊆ Var(Γ ), our
supposition entails that Γ #M ∆•. Also, because Γ is by hypothesis satisfiable in M and because
Γ #M ∆•, there exists an M valuation v such that v[Γ ] ⊆ D and v[∆•] ∩ D = ∅.

Now, from this valuation v, we define an M[b] valuation v⋆ by the following scheme:

v⋆(p) =
{

v(p) if p ∈ Var(Γ )

b otherwise
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8 Linear orders of contaminating values

Recall that DM[b] = DM, by definition. Then, because v⋆ agrees with v with respect to the
propositional variables appearing in Γ , v⋆(Γ ) ⊆ DM[b]. Moreover, because Var(∆•) ⊆ Var(Γ ), for
each ψ ∈ ∆•, v⋆(ψ) /∈ DM[b]. If ∆⋄ = ∅, this suffices to have a countermodel witnessing that
Γ #M[b] ∆, since Var(∆) = Var(∆•) and Var(∆•) ⊆ Var(∆). If ∆⋄ ̸= ∅, then by construction
every ψ ∈ ∆⋄ contains a propositional variable p such that v⋆(p) = b. Whence, for each ψ ∈ ∆⋄,
v⋆(ψ) = b /∈ DM[b]. Because ∆ = ∆• ∪ ∆⋄, v⋆ provides a countermodel witnessing that
Γ #M[b] ∆.
As for right-to-left, assume there exists a ∆′ ⊆ ∆ such that Var(∆′) ⊆ Var(Γ ) and Γ !M ∆′.
Hence, any M[b] valuation v for which v(Γ ) ⊆ D is—when restricted to Var(Γ )—essentially an
M valuation. This implies HomM[b](Γ ) ⊆ HomM[b](∆

′) if and only if HomM(Γ ) ⊆ HomM(∆′)
if ∆′ = ∅. Otherwise, the valuation maps each ψ ∈ ∆′ to a designated value. As v was selected
arbitrarily, this reasoning extends to any M[b] valuation, whence Γ !M[b] ∆′ and a fortiori
Γ !M[b] ∆. "

THEOREM 3.2
Given a matrix M = ⟨A, D⟩, let M[h] = ⟨A[h], D ∪ {h}⟩ be the matrix with a contaminating
value that results from adjoining a designated absolutely contaminating value h to M. Then,
M[h]-consequence can be characterized as follows:

Γ !M[h] ∆ ⇔ Var(Γ ′) ⊆ Var(∆) for some Γ ′ ⊆ Γ s.t. Γ ′ !M ∆

PROOF. For left to right, we again prove this by contraposition. Assume that for every Γ ′ ⊆ Γ ,
either Var(Γ ′) " Var(∆) or Γ ′ #M ∆. As before, we may split Γ into two sets: Γ • = {ψ ∈ Γ |
Var(ψ) " Var(∆)} and Γ ⋄ = Γ $ Γ •.

By construction, Var(Γ ⋄) ⊆ Var(∆), whence Γ ⋄ #M ∆, in which case we fix an M valuation v
witnessing the failure of this inference. From v, we again define an M[h] valuation v∗:

v∗(p) =
{

v(p) if p ∈ Var(∆)

h otherwise

.
Recall that DM[h] = DM ∪ {h}, by definition. Because v∗ restricted to the propositional variables
of ∆—and a fortiori to the propositional variables of Γ ⋄—is coextensional with v, we know that
v∗(∆) ∩ DM[h] = ∅ while v∗(Γ ⋄) ⊆ DM[h]. If Γ • = ∅, this suffices to have a countermodel
witnessing that Γ #M[h] ∆, since Var(Γ ) = Var(Γ ⋄) and Var(Γ ⋄) ⊆ Var(∆). If Γ • ̸= ∅, since h
contaminates all other values, by construction we have that v∗(Γ •) = {h} ⊆ DM[h]. Hence, v∗ maps
every formula of Γ = Γ ⋄ ∪ Γ • to a designated value yet fails to map any ψ ∈ ∆ to a designated
value, i.e. v∗ witnesses that Γ #M[h] ∆.
For right to left, we assume that there is a Γ ′ ⊆ Γ such that Var(Γ ′) ⊆ Var(∆) for which Γ ′ !M ∆.
If Γ ′ = ∅, since A\D = (A∪{h})\DM[h], and h contaminates every other value, then every M[h]
valuation that is a countermodel for every ψ ∈ ∆ is—when restricted to the variables in ∆—an M
valuation that is a countermodel to every ψ ∈ ∆.

If Γ ′ ̸= ∅, then for any M[h] valuation v such that v(Γ ′) ⊆ DM[h], if h ∈ v(∆) then
there is a ψ ∈ ∆ such that v(ψ) = h. Otherwise—if h /∈ v(∆)—then because all propositional
variables appearing in Γ ′ appear in ∆, also h /∈ v(Γ ′). Hence, v restricted to the propositional
variables appearing in ∆ is essentially an M valuation, and the fact that Γ ′ !M ∆ ensures that
v(ψ) ∈ D for some ψ ∈ ∆. Hence, in either case we conclude that Γ ′ !M[h] ∆ and a fortiori that
Γ !M[h] ∆. "
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Linear orders of contaminating values 9

Interestingly, these two theorems have immediate corollaries concerning our previous examples
of logics induced by single matrices that extend the two-valued matrix for classical logic MCL with
contaminating values. As is easy to observe, MKw

3
is the matrix MCL[b] obtained by extending

MCL with a non-designated contaminating value b, while MPWK is the matrix MCL[h] obtained by
extending MCL with a designated contaminating value h. Thus, from Theorem 3.1 and Theorem 3.2
we obtain the next result.

COROLLARY 3.1
MKw

3
- and MPWK-consequence can be characterized as follows:

Γ !MKw
3

∆ ⇔ Var(∆′) ⊆ Var(Γ ) for some ∆′ ⊆ ∆ s.t. Γ !MCL ∆′

Γ !MPWK ∆ ⇔ Var(Γ ′) ⊆ Var(∆) for some Γ ′ ⊆ Γ s.t. Γ ′ !MCL ∆

.

Corollary 3.1 improves the characterization results by [7, 12]. Additionally, it offers a different
look at the above failures and validities in Kw

3 and PWK—especially concerning the lack of
tautologies and the failure of disjunctive addition in Kw

3 , as well as the identity between classical
tautologies and PWK-tautologies and the failure of conjunctive simplification in PWK.

Moreover, the generality of Theorem 3.1 and Theorem 3.2 allows us to observe that MHYB1

is the matrix MPWK[b], whereas MHYB2 is the matrix MKw
3

[h]. Furthermore, this allows us to
establish that MHYB1 is the matrix MCL[hb] obtained by extending MCL first with a designated
contaminating value h, and then with a non-designated contaminating value b. On the other hand,
MHYB2 is the matrix MCL[bh] obtained by inverting h and b in the extension procedure. Thus, from
Corollary 3.1, Theorem 3.1 and Theorem 3.2 we obtain the next result.

COROLLARY 3.2
MHYB1 -consequence and MHYB2 -consequence can be characterized as follows:

Γ !MHYB1
∆ ⇔ Var(Γ ′) ⊆ Var(∆′) ⊆ Var(Γ )

for some Γ ′ ⊆ Γ , ∆′ ⊆ ∆ s.t. Γ ′ !MCL ∆′

Γ !MHYB2
∆ ⇔ Var(∆′) ⊆ Var(Γ ′) ⊆ Var(∆)

for some Γ ′ ⊆ Γ , ∆′ ⊆ ∆ s.t. Γ ′ !MCL ∆′

.

Corollary 3.2 improves the characterization results suggested by [28], and gives a different
perspective on the above failures and validities in HYB1 and HYB2—especially concerning the
failure or validity of local excluded middle and local explosion, respectively.

4 Contaminating logics with a linear ordered of contaminating values
In computer programs, two prominent kinds of errors may cause a system to permanently halt. On the
level of software, we can have errors in code (such as an attempt to assign a value to an undeclared
variable), which in turn may cause a process to halt. On the level of hardware, we can have physical
errors that are caused, for instance, when an environment attempts to retrieve a value from a physical
address that is corrupt. As noticed by [2], we may want to distinguish between the two kinds of errors
when modelling the behaviour of a program that is encountering a fault in some of its procedures.

An application of Kw
3 to errors at the level of code has been provided by [12]. More precisely,

[12] represents code errors in the language C++ by means of the value n from MKw
3

. In C++,
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10 Linear orders of contaminating values

undeclared variables are not treated as variables, and an expression in which they appear will not be
computed, exactly as an ill-formed string of symbols.8

Note that these two types of errors—errors in code and errors in the physical constitution of
hardware—enjoy the type of linear ordering that has been central to this paper. The triggering of the
syntactic error at the local level—i.e. within the virtual machine—may cause the environment within
which the executable was run to halt prematurely. But that this occurs within the scope of a virtual
machine insulates the operating system from such local errors. On the other hand, if the operating
system attempts to retrieve a value on behalf of the virtual machine from a bad address, the error
that causes the operating system to fail will bring down the virtual machine alongside it.

Now, there is a distinction between the semantic features of an ‘error’ value’s being contaminating
and with its being designated. In the former case, the semantic features are forced upon us by the
scenario itself. In the latter case, however, whether or not a value should be taken to be designated is a
pragmatic decision, determined by an end user’s interest. For example, Halldén, in [18], allowed that
some formulae should be valid even if there are occasions in which they are meaningless. Halldén
defended this by arguing that the validity of a formula should be judged solely on the basis of its
meaningful instances. In a similar vein, an end user may similarly be concerned with the stability of
the code itself and not in the stability of the physical memory. The parallel with Halldén’s treatment
of the contaminating value in PWK, then, suggests that one might justifiably consider this global
error to be designated.

In the case of a large ontology with an integrated theorem prover, e.g. one might wish for certain
theorems to be derivable, in spite of the potential for hardware errors. In this case, practical concerns
make lead the ontology’s developers to discount this type of situation from consideration when
judging validity, just as Halldén elects to discount meaninglessness. Furthermore, when one is testing
code, some tiers of errors are important to acknowledge while others are not. Simply put, whether
one’s code leads to a software error is part of a developer’s concern; the fact that a particular piece
of hardware upon which the software runs crashes due to faulty RAM is not. If we follow Halldén
in taking practical concerns to determine whether a particular semantic category is designated or
not, then we clearly encounter scenarios in which some contaminating values ought to be designated
while others should not.

In the present era—in which development is increasingly virtualized—the line between software
errors and hardware errors rapidly blurs. One might develop in a language run in a virtual machine
hosted in a Docker container running on a server. Given the prevalence of these types of linearly
nested development environments, one might as well be interested in situations where we have an
arbitrarily deep cascade of situations featuring aspects that deserve to be modelled by contaminating
values, some of which we may choose to be designated and some of which we may choose not to be.

Thus, in the next sections we extend our previous considerations to build appropriate semantic
tools to model such settings. We do this by appealing to the idea of a linear order of contaminating
values, such that the greater contaminating values contaminate the smaller ones and, of course, the
non-contaminating values.

4.1 Formal definitions

The extension procedure mentioned in the previous section allows us to generate an infinity of
matrices with contaminating values extending the two-valued matrix MCL that induces classical

8A syntactic object p is treated as a variable—or, is a declared variable—if the interpreter is informed that p is to be used
in this manner.
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Linear orders of contaminating values 11

logic—and, in general, extending any given matrix M. In particular, we focus particularly on the
case of those matrices that have a linear order of contaminating values. To this extent, we begin this
section by defining what an algebra with a linear order of contaminating values amounts to.

DEFINITION 4.1
An algebra A of type ν has a linear order of contaminating elements n1 . . . nk (with 1, . . . , k ∈ ω)
if and only if each nj ∈ {n1, . . . , nk} is an absolutely contaminating element in the subalgebra
A[n1 . . . nj] of the same type, whose universe is A \ {ni | i > j ≥ 1}.

DEFINITION 4.2
A matrix M = ⟨A, D⟩ has a linear order of contaminating values n1 . . . nk if A has a linear order of
contaminating elements n1 . . . nk . If this is the case, we say that M is a LOC-matrix.

It is indeed easy to check that, given an algebra with a set of contaminating elements {n1, . . . , nk}
complying with the definition above, then the following holds for every ni, nj, nm ∈ {n1, . . . , nk}:

1. If C(ni, nj) and C(nj, ni), then ni = nj
2. If C(ni, nj) and C(nj, nm), then C(ni, nm)

3. C(ni, nj) or C(nj, ni).

The properties above correspond, respectively, to the antisymmetry, transitivity and totality of the
relation C, whence by definition C turns to be a linear order on {n1, . . . , nk}. Given this, we believe
that talk of a linear order of contaminating elements of an algebra or—alternatively—of a linear
order of contaminating values of a matrix is justified.

Notice that for some LOC-matrices, the linear order of the contaminating values can be
described in terms of some independent orderings induced by the underlying algebra.9 In particular,
given the matrix MCL, consider the LOC-matrix MCL[n1, . . . , nk] whose underlying algebra is
B2[n1, . . . , nk] = ⟨{0, 1, n1, . . . , nk}, ¬, ∨, ∧⟩, where B2 is the previously referred two-element
Boolean algebra. Then, we can define

a ≤∨ c ⇔ a ∨ c = c a ≤∧ c ⇔ a ∧ c = a.

In this regard, it is easy to see that both ≤∨ and ≤∧ linearly order {0, 1, n1, . . . , nk}. Indeed, we
have 0 < ∨ 1 < ∨ n1 < ∨ · · · < ∨ nk−1 < ∨ nk and nk < ∧ nk−1 < ∨ . . . n1 < ∧ 0 < ∧ 1. Furthermore,
we can observe that with the help of ≤∨ and ≤∧ it is possible to provide an alternative definition of
the contaminating relation, in the following terms:

C(a, c) ⇔ a ≤∨ c and c ≤∧ a.

This alternative definition allows us to interpret ‘a is contaminated by c’ as ‘a is lesser than c
according to order ≤∨ and greater than c according to order ≤∧’.

This highlights an interesting connection between LOC-matrices and a family of algebraic
structures known as involutive bisemilattices. These are algebras A = ⟨A, ∨, ∧, ¬⟩ such that
(i) ⟨A, ∨⟩ and ⟨A, ∧⟩ are semilattices, and (ii) ¬¬a = a, a ∧ c = ¬(¬a ∨ ¬c), a ∧ (¬a ∨
c) = a ∧ c.10 More concretely, given a LOC-matrix M[n1, . . . , nk] whose underlying algebra

9We thank an anonymous reviewer for noticing this fact.
10We refer the reader to [4, 23] for a detailed treatment of involutive bisemilattices.
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12 Linear orders of contaminating values

A[n1, . . . , nk] is an involutive bisemilattice ⟨A ∪ {n1, . . . , nk}, ∨, ∧, ¬⟩, as is the case with any
LOC-matrix extending MCL, then the contamination order of M[n1, . . . , nk] can be described
as in the previous paragraph—using ≤∨ and ≤∧. Furthermore, involutive bisemilattices can be
represented in terms of Płonka sums of (direct systems of) algebras (cf. [22, 23]). This is, in
fact, of special interest for us given that some—but perhaps not all—LOC-matrices whose algebra
reduct is an involutive bisemilattice can be represented in terms of Płonka sums of (direct systems
of) logical matrices, which are themselves based on Płonka sums of their underlying algebras
(cf. [4, 5, 22, 23]).

Having made these remarks, we now focus on the analysis of the extensions of MCL—and, in
general, of any given matrix M—obtained by adjoining to it a linear order of contaminating values
n1 . . . nk , to later study the logic induced by this single matrix. In order to do this, in what follows
we make precise what extending a given matrix M with such a linear order of contaminating values
amounts to.

DEFINITION 4.3
Given an algebra A of type ν, let A[n1 . . . nk] be the algebra of the same type that results from
adjoining to A a linear order of contaminating elements n1 . . . nk such that A ∩ {n1 . . . nk} = ∅, i.e.
A[n1 . . . nk] is such that each nj ∈ {n1, . . . , nk} is an absolutely contaminating element in the algebra
A[n1 . . . nj], whose universe is A ∪ {ni | 1 ≤ i ≤ j}.
Alternatively, A[n1 . . . nk] can be seen as the result of adjoining an absolutely contaminating value
to the algebra A[n1 . . . nk−1]. Whence

A[n1 . . . nk] = A[n1 . . . nk−1][nk] = A[n1 . . . nk−2][nk−1][nk] = · · · = A[n1] . . . [nk].

DEFINITION 4.4
Given a matrix M = ⟨A, D⟩, let M[n1 . . . nk] = ⟨A[n1 . . . nk], D ∪ D′⟩, where D′ ⊆ {n1, . . . , nk}
be the LOC-matrix that results from adjoining a linear order of contaminating values n1 . . . nk
to M.

We reprise the convention from the previous section and use b to denote a non-designated
contaminating value and h to denote a designated contaminating value. In this vein, we can think
of any LOC-matrix M[n1 . . . nk] as a matrix having alternations of the value b and the value h,
i.e. by replacing each undesignated contaminating value in n1 . . . nk for b, and each designated
contaminating value in n1 . . . nk for h. Thus, for instance the LOC-matrix M[n1, n2, n3] where
n1 and n2 are undesignated would become the matrix M[bbh], whereas the the LOC-matrix
M[n1, n2, n3, n4] where n2 and n4 are designated would become the matrix M[bhbh].

In fact, to be precise enough, in these cases we should differentiate each instance of a non-
designated and a designated contaminating value by enumerating each of these in parallel and
consecutively. That is, for instance, by referring to the LOC-matrix M[bbh] in more precise terms
as the matrix M[b1b2h1], and similarly by referring to the LOC-matrix M[bhbh] as the matrix
M[b1h1b2h2]. For the sake of simplicity, however, we will try to keep the simpler notation referring
e.g. to M[h1b1b2b3h2b4] as M[hbbbhb], and so on and so forth, hoping that the reader bears in
mind the ultimate meaning of this nomenclature.

Finally, with regard to LOC-matrices we will say that M[. . . b] has a contaminating undesignated
value ‘on top’ of its linear order of contaminating values, while the M[. . . h] has a contaminating
designated value ‘on top’ of its linear order of contaminating values.
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Linear orders of contaminating values 13

4.2 Characterization results

In this section, for any given LOC-matrix MCL[n1 . . . nk] extending MCL we provide a characteri-
zation result for the notion of MCL[n1 . . . nk]-consequence. It should be remarked, nevertheless, that
our characterization results have full generality and do not depend on the fact that MCL is the matrix
that gets extended with a linear order of contaminating values—the results will hold without loss of
generality for any given matrix M. Moreover, these results will be of particular interest when we
discuss the completeness results for the sequent calculi associated to these systems.

For the purpose of proving our characterization results, let us begin by noticing that for each
LOC-matrix with a linear order of contaminating values we can consider a simplified linear order
of such contaminating values. To do this, we replace every b-block (i.e. every consecutive block of
contaminating undesignated values of any length) and every h-block (i.e. every consecutive block
of contaminating designated values of any length) with a single appearance of a non-designated,
or a designated contaminating value—respectively. In this regard, the following result about LOC-
matrices and simplified LOC-matrices is a corollary of Theorem 3.1 and Theorem 3.2:

COROLLARY 4.1
Given a matrix M = ⟨A, D⟩, let M[n] be the extension of M with a contaminating value n, and let
M[nn′] be the extension of M[n] with a contaminating value n′, such that either {n, n′} ⊆ DM[nn′]
or {n, n′} ∩ DM[nn′] = ∅. Then, M[nn′]-consequence can be characterized as follows:

Γ !M[nn′] ∆ ⇔ Γ !M[n] ∆.

Thus, Corollary 4.1 tells us that instead of working with a given LOC-matrix we can work with
the corresponding simplified LOC-matrix, without loss of generality.

Let us notice that this does not mean that one can mix designated values and non-designated
ones, inducing the same logic, but rather than one will induce the same logic by collapsing blocks
of designated contaminating values and blocks of non-designated contaminating values, into single
appearances thereof. To illustrate this, the reader is encouraged to straightforwardly check that what
holds of, e.g. a matrix M[bhb] will hold without loss of generality e.g. of the matrices M[bbbhhhhb]
and M[bhbbb].

Furthermore, given our previous equivalence result concerning LOC-matrices and simplified
LOC-matrices, let us refer to the cardinality m of the simplified linear order of contaminating values
of a given LOC-matrix M, as its number of alternations. We will, correspondingly, state m as 2n+1
if it is odd, and as 2n if it is even.

In Section 5, we will se that the infinitely many LOC-matrices based on MCL induce infinitely
many distinct multiple-conclusion relations.

Before moving on, we prove one further logical property that will be useful in the sequel.

LEMMA 4.1
Let M[hb . . . hb] be a classical matrix M endowed with a linear order hb . . . hb of contaminating
values, and let M[bh . . . bh] be the matrix resulting from M[hb . . . hb] by replacing each h with a b
and vice versa. The consequence relations !M[hb...hb] and !M[bh...bh] are dual, that is

Γ !M[hb...hb] ∆ ⇔ ∆¬ !M[bh...bh] Γ ¬

where, for every Γ ⊆ Fml, Γ ¬ = {¬ϕ ∈ Fml | ϕ ∈ Γ }.
PROOF. Take a matrix M[n1,n2,...,nk ] where M is the matrix of classical logic, [n1, n2, . . . , nk] is
a sequence of contaminating values and (i) for every ni, ni is designated if and only if ni+1 is
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14 Linear orders of contaminating values

non-designated, (ii) n1 is designated and nk is non-designated. Take now matrix M′
[n1,n2,...,nk ], which

is like M[n1,n2,...,nk ] except that (ii) is replaced by (ii′): n1 is non-designated, and nk is designated.
We prove that

Γ !M[n1,n2,...,nk ] ∆ ⇔ ∆¬ !M′ [n1,n2,...,nk ] Γ ¬

Suppose that Γ !M[n1,n2,...,nk ] ∆. This means that, for all valuations v ∈ HomM[n1,n2,...,nk ], if
v(ψ) = {0, ni} for every ψ ∈ ∆ and some non-designated ni, then v(ϕ) = {0, ni} for some ϕ ∈ Γ .
We have HomM[n1,n2,...,nk ] = HomM′ [n1,n2,...,nk ] by construction of the two matrices, whence the
above transfers to M′ [n1, n2, . . . , nk]. From this and the fact that a contaminating value will be
designated in the matrix M′ [n1, n2, . . . , nk] if and only if it is non-designated in M[n1, n2, . . . , nk],
we have that, for every v ∈ HomM′ [n1,n2,...,nk ], if v(¬ψ) = {1, ni} for every ψ ∈ ∆ and
M′ [n1, n2, . . . , nk]-designated ni, then v(¬ϕ) = {1, ni} for some ϕ ∈ Γ . As a consequence we
have that ∆¬ !M′ [n1,n2,...,nk ] Γ ¬. The other direction of the equivalence is proved with the same
procedure. Given the definitions of M[n1, n2, . . . , nk] and M′ [n1, n2, . . . , nk] and our convention on
hs and bs, it is clear that the former is a matrix M[hb . . . hb] where [bh . . . hb] has cardinality k, and
the latter is a matrix M[bh . . . bh] where [bh . . . bh] has cardinality k. This proves Lemma 4.1. "

Having proven Lemma 4.1, let us move to the main results of this section.

DEFINITION 4.5
Given a non-empty Γ ⊆ Fml, we say that Γ0, . . . , Γn ∈ P(Γ ) is a decreasing chain of subsets of Γ

if and only if Γ0 ⊇ Γ1 ⊇ · · · ⊇ Γn.

THEOREM 4.1
Given a matrix M, let M[. . . b] be a LOC-matrix extending M with a linear order of contaminating
values that has an odd number of alternations 2n + 1 (where n ≥ 1), and a non-designated
contaminating value b ‘on top’. Then, M[. . . b]-consequence can be characterized as follows:

Γ !M[...b] ∆ ⇐⇒ Var(∆n) ⊆ Var(Γn−1) ⊆ Var(∆n−1) ⊆ · · · ⊆ Var(Γ0) ⊆ Var(∆0) ⊆ Var(Γ )

for some Γ0, . . . , Γn−1 ∈ P(Γ ) and ∆0, . . . , ∆n ∈ P(∆) s.t. Γn−1 !M ∆n

where Γ0, . . . , Γn−1 and ∆0, . . . , ∆n are decreasing chains.

PROOF. We prove this claim by induction on the number of alternations.
Base case: n = 1. In such a case, we have 2(1) + 1 = 3 alternations, i.e. we can assume without

loss of generality that we are dealing with the simplified LOC-matrix M[bhb].
By Theorem 3.1 we are guaranteed to infer that Γ !M[bhb] ∆ is equivalent to there being a

∆0 ∈ P(∆) such that Γ !M[bh] ∆0 and, of course, ∆0 ⊆ ∆, and more importantly Var(∆0) ⊆
Var(Γ ). In addition, by Theorem 3.2 the fact that Γ !M[bh] ∆0 is guaranteed to be equivalent to
there being a Γ0 ∈ P(Γ ) such that Γ0 !M[b] ∆0 and, of course, Γ0 ⊆ Γ , and more importantly
Var(Γ0) ⊆ Var(∆0). Finally, again by Theorem 3.1 the fact that Γ0 !M[b] ∆0 is guaranteed to be
equivalent to there being a ∆1 ∈ P(∆0) such that Γ0 !M ∆1 and, of course, ∆1 ⊆ ∆0, and more
importantly Var(∆1) ⊆ Var(Γ0).

All these facts together guarantee the equivalence of Γ !M[bhb] ∆ with there being sets Γ0 ∈
P(Γ ) and ∆0, ∆1 ∈ P(∆) such that Γ0 !M ∆1, where ∆1 ⊆ ∆0, and Var(∆1) ⊆ Var(Γ0) ⊆
Var(∆0) ⊆ Var(Γ ).

Inductive step: n > 1. We assume that M[. . . b] is a simplified LOC-matrix with 2(n − 1) + 1
alternations, and a non-designated value on top. Given this, we consider the LOC-matrix M[. . . bhb],
i.e. a simplified LOC-matrix with 2n + 1 alternations, and a non-designated value on top.
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Linear orders of contaminating values 15

By Theorem 3.1 we are guaranteed to infer that Γ !M[...bhb] ∆ is equivalent to there being a
∆0 ∈ P(∆) such that Γ !M[...bh] ∆0, and more importantly Var(∆0) ⊆ Var(Γ ). Moreover, by
Theorem 3.2 that Γ !M[...bh] ∆0 implies that there is a Γ0 ∈ P(Γ ) such that Γ0 !M[...b] ∆0,
for which Var(Γ0) ⊆ Var(∆0). Furthermore, by the inductive hypothesis, that Γ0 !M[...b] ∆0 is
equivalent to there being Γ1, . . . , Γn−1 ∈ P(Γ0) and ∆1, . . . , ∆n ∈ P(∆0) such that Γn−1 !M ∆n,
where Γ1, Γ2, . . . , Γn−1 and ∆1, ∆2, . . . , ∆n are decreasing chains, and more importantly Var(∆n) ⊆
Var(Γn−1) ⊆ Var(∆n−1) ⊆ · · · ⊆ Var(Γ1) ⊆ Var(∆1) ⊆ Var(Γ0).

Finally, all these facts together imply our desired result, i.e. that Γ !M[...bhb] ∆ is equivalent
to there being Γ0, . . . , Γn−1 ∈ P(Γ ) and ∆0, . . . , ∆n ∈ P(∆) such that Γn−1 !M ∆n, where
Γ0, Γ1, . . . , Γn−1 and ∆0, ∆1, . . . , ∆n are decreasing chains, and more importantly Var(∆n) ⊆
Var(Γn−1) ⊆ Var(∆n−1) ⊆ · · · ⊆ Var(Γ0) ⊆ Var(∆0) ⊆ Var(Γ ). "
THEOREM 4.2
Given a matrix M, let M[. . . h] be a LOC-matrix extending M with a linear order of contaminating
values that has an odd number of alternations 2n + 1 (where n ≥ 1), and a designated contaminating
value h ‘on top’. Then, M[. . . h]-consequence can be characterized as follows:

Γ !M[...h] ∆ ⇐⇒ Var(Γn) ⊆ Var(∆n−1) ⊆ Var(Γn−1) ⊆ · · · ⊆ Var(∆0) ⊆ Var(Γ0) ⊆ Var(∆)

for some Γ0, . . . , Γn ∈ P(Γ ) and ∆0, . . . , ∆n−1 ∈ P(∆) s.t. Γn !M ∆n−1

where Γ0, . . . , Γn and ∆0, . . . , ∆n−1 are decreasing chains.

PROOF. Similar to the proof of Theorem 4.1. "
THEOREM 4.3
Given a matrix M, let M[. . . b] be a LOC-matrix extending M with a linear order of contaminating
values that has an even number of alternations 2n (n ≥ 1), and a non-designated contaminating value
b ‘on top’. Then, M[. . . b]-consequence can be characterized as follows:

Γ !M[...b] ∆ ⇐⇒ Var(Γn−1) ⊆ Var(∆n−1) ⊆ Var(Γn−2) ⊆ . . .⊆ Var(Γ0) ⊆ Var(∆0) ⊆ Var(Γ )

for some Γ0, . . . , Γn ∈ P(Γ ) and ∆0, . . . , ∆n ∈ P(∆) s.t. Γn−1 !M ∆n−1

where Γ0, . . . , Γn−1 and ∆0, . . . , ∆n−1 are decreasing chains.

PROOF. Similar to the proof of Theorem 4.4. "
THEOREM 4.4
Given a matrix M, let M[. . . h] be a LOC-matrix extending M with a linear order of contaminating
values that has an even number of alternations 2n (where n ≥ 1), and a designated contaminating
value h ‘on top’. Then, M[. . . h]-consequence can be characterized as follows:

Γ !M[...h] ∆ ⇐⇒ Var(∆n−1) ⊆ Var(Γn−1)⊆Var(∆n−2)⊆ . . .⊆Var(∆0)⊆Var(Γ0)⊆Var(∆)

for some Γ0, . . . , Γn ∈ P(Γ ) and ∆0, . . . , ∆n ∈ P(∆) s.t. Γn−1 !M ∆n−1

where Γ0, . . . , Γn−1 and ∆0, . . . , ∆n−1 are decreasing chains.

PROOF. We prove this claim by induction on the number of alternations.
Base case: n = 1. In such a case, we have 2(1) = 2 alternations, i.e. we can assume without loss

of generality that we are dealing with the simplified LOC-matrix M[bh].
By Theorem 3.2 we are guaranteed to infer that Γ !M[bh] ∆ is equivalent to there being a Γ0 ∈

P(Γ ) such that Γ0 !M[b] ∆, and more importantly Var(Γ0) ⊆ Var(∆). In addition, by Theorem
3.1 the fact that Γ0 !M[b] ∆ is guaranteed to be equivalent to there being a ∆0 ∈ P(∆) such that
Γ0 !M[b] ∆0, and more importantly Var(∆0) ⊆ Var(Γ0).
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16 Linear orders of contaminating values

All these facts together guarantee the equivalence of Γ !M[bh] ∆ with there being sets Γ0 ∈ P(Γ )

and ∆0 ∈ P(∆) such that Γ0 !M ∆0, where Var(∆0) ⊆ Var(Γ0) ⊆ Var(∆).
Inductive step: n > 1. We assume that M[. . . h] is a simplified LOC-matrix with 2(n − 1)

alternations, and a designated value on top. Given this, we consider the LOC-matrix M[. . . hbh],
i.e. a simplified LOC-matrix with 2n alternations, and a designated value on top.

By Theorem 3.2 we are guaranteed to infer that Γ !M[...hbh] ∆ is equivalent to there being a
Γ0 ∈ P(Γ ) such that Γ0 !M[...hb] ∆, and more importantly Var(Γ0) ⊆ Var(∆). Moreover, by
Theorem 3.1 that Γ0 !M[...hb] ∆ implies that there is a ∆0 ∈ P(∆) such that Γ0 !M[...h] ∆0, and
Var(∆0) ⊆ Var(Γ0). Furthermore, by the inductive hypothesis, that Γ0 !M[...h] ∆0 is equivalent to
there being Γ1, . . . , Γn−1 ∈ P(Γ0) and ∆1, . . . , ∆n−2 ∈ P(∆0) such that Γn−1 !M ∆n−1, where
Γ1, Γ2, . . . , Γn−1 and ∆1, ∆2, . . . , ∆n−1 are decreasing chains, and more importantly Var(∆n−1) ⊆
Var(Γn−1) ⊆ Var(∆n−2) ⊆ · · · ⊆ Var(∆1) ⊆ Var(Γ1) ⊆ Var(∆0).

Finally, all these facts together imply our desired result, i.e. that Γ !M[...hbh] ∆ is equivalent to
there being Γ0, . . . , Γn−1 ∈ P(Γ ) and ∆0, . . . , ∆n−1 ∈ P(∆) such that Γn−1 !M ∆n−1, where
Γ0, Γ1, . . . , Γn−1 and ∆0, ∆1, . . . , ∆n−1 are decreasing chains, and more importantly Var(∆n−1) ⊆
Var(Γn−1) ⊆ Var(∆n−2) ⊆ · · · ⊆ Var(∆0) ⊆ Var(Γ0) ⊆ Var(∆). "

5 Infinitely many multiple-conclusion consequence relations
Section 3 makes it clear that Kw

3 , PWK, HYB1 and HYB2 are distinct logics. Thus, we know that
the infinitely many LOC-matrices that are definable from MCL induce at least four multiple-
conclusion consequence relations. In this section, we prove that such matrices actually induce
infinitely many multiple-conclusion consequence relations. This just follows from Proposition 5.3
below. Additionally, we provide further results, which contribute to have a clear insight on the
relations among the multiple-conclusion consequence relations that are induced by the infinitely
many LOC-matrices MCL[n1, . . . , nk] that have k alternations for k ≥ 2.

First, we consider the case where the number of alternations k in a matrix is k = 2n for n ≥ 1.
This case will suffice to show that there are infinitely many multiple-conclusion relations based
of LOC-matrices. Then we go to the case where k = 2n + 1 for n ≥ 1. This case will help us
understand the relations between the infinitely many multiple-conclusion consequence relations in
terms of inclusion and distinctness. In what follows, we will often mention the following:

OBSERVATION 5.1
Let M[n1, . . . , nk] and M[n1, . . . , nm] be LOC-matrices, with m ≥ k and k, m alternations,
respectively. Then, ⟨Fml,!MCL[n1,...,nm]⟩ is a sublogic of ⟨Fml,!M[n1,...,nk ]⟩. That is:

If Γ !M[n1,...,nm] ψ , then Γ !M[n1,...,nk ] ψ

PROOF. Suppose that ni ∈ DM[n1,...,nm] iff ni ∈ DM[n1,...,nk ]. Then, every v ∈ M[n1, . . . , nk] is
such that v ∈ M[n1, . . . , nk]. Hence, if Γ !M[n1,...,nm] ψ , then Γ !M[n1,...,nk ] ψ . Suppose that
ni ∈ DM[n1,...,nm] iff ni /∈ DM[n1,...,nk ]. Take the set Gk,m of the k most contaminating values in
M[n1, . . . , nm]. It is easy to see that, (∗) for every nj ∈ Gk,m, nj ∈ DM[n1,...,nm] iff nj−(m−k) ∈
DM[n1,...,nk ], and nj /∈ DM[n1,...,nm] otherwise. Define now a function f : AM[n1,...,nk ] → {0, 1} ∪
Gk,m such that f (0) = 0, f (1) = 1, and f (ni) = f (ni+(k−m)), and that. For every valuation v ∈
M[n1, . . . , nk], we can build a valuation v′ ∈ M[n1, . . . , nm] such that (i) v′(p) ∈ {0, 1} ∪ Gk , and
(ii) v′(p) = v(p) if v(p) ∈ {0, 1}, and (iii) v′(p) = f (v(p)). Given the definition of f and (∗), we have
that v′(φ) ∈ DM[n1,...,nm] ∩ Gk,m iff v(φ) ∈ DM[n1,...,nk ], and v′(φ) ∈ (A \ DM[n1,...,nm]) ∩ Gk,m
iff v(φ) /∈ DM[n1,...,nk ]. Hence, every v ∈ HomM[n1,...,nk ] can be redefined as a special valuation
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Linear orders of contaminating values 17

v ∈ HomM[n1,...,nm]. As a consequence, Hence, if Γ !M[n1,...,nm] ψ , then Γ !M[n1,...,nk ] ψ . Since
the two cases discussed exhaust all the possible cases, we have the statement proven. "

5.1 The case where k = 2n for n ≥ 1

We need some preliminary constructions first. Given a natural number k ≥ 2 such that k = 2n or
k = 2n + 1 for some natural number n, we consider formulas of the form p1 ∧ (p1 ∨ · · · ∨ pi) for
1 ≤ i ≤ k, and we set the following abbreviations:

ζ1 = p1 ∧ (p1 ∧ p2) θ1 =

⎧
⎪⎨

⎪⎩

p1 ∧ (p1 ∨ p2 ∨ p3) if 3 < k for k = 2n
or 3 ≤ k for k = 2n + 1

undefined otherwise.

ζ2 =

⎧
⎪⎨

⎪⎩

p1 ∧ (p1 ∨ · · · ∨ p4) if 4 ≤ k for k = 2n
or 4 < k for k = 2n + 1

undefined otherwise.
θ2 =

⎧
⎪⎨

⎪⎩

p1 ∧ (p1 ∨ · · · ∨ p5) if 5 < k for k = 2n
or 5 ≤ k for k = 2n + 1

undefined otherwise.

...
...

ζn−1 =

⎧
⎪⎨

⎪⎩

p1 ∧ (p1 ∨ · · · ∨ pk−2) if k = 2n
p1 ∧ (p1 ∨ · · · ∨ pk−3) if k = 2n + 1
undefined if n = 1

θn−1 =

⎧
⎪⎨

⎪⎩

p1 ∧ (p1 ∨ · · · ∨ pk−1) if k = 2n
p1 ∧ (p1 ∨ · · · ∨ pk−2) if k = 2n + 1
undefined if n = 1

ζn =
{

p1 ∧ (p1 ∨ · · · ∨ pk) if k = 2n
p1 ∧ (p1 ∨ · · · ∨ pk−1) if k = 2n + 1

θn =
{

undefined if k = 2n
p1 ∧ (p1 ∨ · · · ∨ pk) if k = 2n + 1

For the time being, we focus on cases where k = 2n for some natural n ≥ 1, since this is relevant
for Proposition 5.2 and Proposition 5.3 below. The following are two particular examples of the
construction, with k = 4, and k = 6:

k = 4, n = 2 k = 6, n = 3

ζ1 = p1 ∧ (p1 ∧ p2) ζ1 = p1 ∧ (p1 ∧ p2)

θ1 = p1 ∧ (p1 ∨ p2 ∨ p3) θ1 = p1 ∧ (p1 ∨ p2 ∨ p3)

ζ2 = ζn = p1 ∧ (p1 ∨ · · · ∨ p4) ζ2 = ζn−1 = p1 ∧ (p1 ∨ · · · ∨ p4)

θj undefined for every j ≥ 2 θ2 = θn−1 = p1 ∧ (p1 ∨ · · · ∨ p5)

ζm undefined for every m > 2 ζ3 = ζn = p1 ∧ (p1 ∨ · · · ∨ p6)

θj undefined for every j ≥ 3
ζm undefined for every j > 3

Notice that, for every k = 2n with n ≥ 1, the sequence ζ1, . . . θn−1, ζn has length k − 1.

PROPOSITION 5.1
Let MCL[n1, . . . , nk] be a LOC-matrix with k = 2n alternations for some natural n ≥ 1. Then:

If nk /∈ DMCL[n1, . . . , nk], (⋆) ζ1, . . . , ζn !MCL[n1,...,nk ] p1 ∨ ¬p1, θ1, . . . , θn−1
If nk ∈ DMCL[n1, . . . , nk], (⋆⋆) p1 ∧ ¬p1, θ1, . . . , θn−1 !MCL[n1,...,nk ] ζ1, . . . , ζn
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18 Linear orders of contaminating values

PROOF. We first prove that, if nk /∈ MCL[n1, . . . , nk], then (⋆) is the case. Consider the following
construction:

Γn−1 = ∅
∆n−1 = {p1 ∨ ¬p1}
Γn−2 = {ζ1} = {p1 ∧ (p1 ∨ p2)} defined and relevant only if n ≥ 2.
∆n−2 = ∆n−2 = {θ1} = {p1 ∧ (p1 ∨ p2 ∨ p3)} defined and relevant only if n ≥ 2.

...

∆0 = {θn−1} = {p1 ∧ (p1 ∨ · · · ∨ pk−1)}
Γ = ⋃

0≤i≤n−1 Γi ∪ {ζn}

Clearly, Γ0, . . . , Γn−1 and ∆0, . . . , ∆n−1 are decreasing chains such that:

1. Γn−1 !MCL ∆n−1;
2. Var(Γn−1) ⊆ Var(∆n−1) ⊆ Var(Γn−2) ⊆ · · · ⊆ Var(Γ0) ⊆ Var(∆0) ⊆ Var(Γ ).

From 1–2 and Theorem 4.3, (⋆) follows.
The proof that (⋆⋆) is the case if nk ∈ DMCL[n1,...,nk ] goes along the very same lines, with the

relevant construction being: ∆n−1 = ∅, Γn−1 = {p1 ∧ ¬p1}, ∆n−2 = {ζ1} = {p1 ∧ (p1 ∨ p2)},
Γn−2 = {θ1} = {p1∧(p1∨p2∨p3)}, . . ., Γ0 = {θn−1} = {p1∧(p1∨· · ·∨pk−1}, ∆ = ⋃

0≤i≤n−1 ∆i ∪
{ζn}—with each ∆n−i and Γn−i being defined and relevant only if n ≥ i. It is easy to check that
the construction satisfies conditions (1) Γn−1 !MCL ∆n−1; and (2) Var(∆n−1) ⊆ Var(Γn−1) ⊆
Var(∆n−2) ⊆ · · · ⊆ Var(∆0) ⊆ Var(Γ0) ⊆ Var(∆) that Theorem 4.4 sets for every MCL[n1, . . . , nk]
that is relevant for the proposition. "

We distinguish infinitely many instances of (⋆) and (⋆⋆), depending on the value of k = 2n. For
every k = 2n, we call (⋆k) and (⋆ ⋆ k) its particular instances of (⋆) and (⋆⋆), respectively. We list
some examples here:

(⋆2) p1 ∧ (p1 ∨ p2) !MCL[hb] p1 ∨ ¬p1 (k = 2)

(⋆4) p1 ∧ (p1 ∨ p2), p1 ∧ (p1 ∨ · · · ∨ p4) !MCL[hbhb] p1 ∨ ¬p1, p1 ∧ (p1 ∨ p2 ∨ p3) (k = 4)

(⋆6) p1 ∧ (p1 ∨ p2), p1 ∧ (p1 ∨ · · · ∨ p4), p1 ∧ (p1 ∨ · · · ∨ p6) !MCL[hbhbhb]
p1 ∨ ¬p1, p1 ∧ (p1 ∨ p2 ∨ p3), p1 ∧ (p1 ∨ · · · ∨ p5) (k = 6)

(⋆ ⋆ 2) p1 ∧ ¬p1 !MCL[bh] p1 ∧ (p1 ∨ p2) (k = 2)

(⋆ ⋆ 4) p1 ∧ ¬p1, p1 ∧ (p1 ∨ p2 ∨ p3) !MCL[bhbh] p1 ∧ (p1 ∨ p2), p1 ∧ (p1 ∨ · · · ∨ p4) (k = 4)

(⋆ ⋆ 6) p1 ∧ ¬p1, p1 ∧ (p1 ∨ p2 ∨ p3), p1 ∧ (p1 ∨ · · · ∨ p5) !MCL[bhbhbh]
p1 ∧ (p1 ∨ p2), p1 ∧ (p1 ∨ · · · ∨ p4), p1 ∧ (p1 ∨ · · · ∨ p6) (k = 6)

PROPOSITION 5.2
Let MCL[n1, . . . , nk] be a LOC-matrix with k alternations, k = 2n for some n ≥ 1, and let
M∗

CL[n1, . . . , nk] be the LOC-matrix such that ni ∈ DM∗
CL[n1,...,nk ] iff ni /∈ DMCL[n1,...,nk ] for

1 ≤ i ≤ k. Then

If nk /∈ DMCL[n1, . . . , nk], ζ1, . . . , ζn ̸!M∗
CL[n1,...,nk ] p1 ∨ ¬p1, θ1, . . . , θn−1

If nk ∈ DMCL[n1, . . . , nk], p1 ∧ ¬p1, θ1, . . . , θn−1 ̸!M∗
CL[n1,...,nk ] ζ1, . . . , ζn
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Linear orders of contaminating values 19

PROOF. We first prove that, if nk /∈ DMCL[n1,...,nk ], then (⋆k) is not valid w.r.t. M∗
CL[n1, . . . , nk]. For

every MCL[n1, . . . , nk], if k = 2n for some n ≥ 1 and nk /∈ DMCL[n1,...,nk ], then ni ∈ DMCL[n1,...,nk ] if
i is odd, and ni /∈ DMCL[n1,...,nk ] if i is even. Given the constraint imposed on DM∗

CL[n1,...,nk ], we have
that ni ∈ DM∗

CL[n1,...,nk ] if i is even, and ni /∈ DM∗
CL[n1,...,nk ] if i is odd. Take now variables p1, . . . , pk

and a valuation v ∈ HomM∗
CL[n1,...,nk ] such that v(pi) = ni. This implies that (i) v(pi) ∈ DM∗

CL[n1,...,nk ]
if i is even, and v(pi) /∈ DM∗

CL[n1,...,nk ] if i is odd. Notice that, from the constraints imposed on v, we
have (ii) for every j, i ∈ {1, k}, if j > i, then v(pj) is more contaminating than v(pi). By construction
of ζis and θis, we have that (iii) Var(ζi) = Var(θi−1) ∪ {p2i}, and (iv) 2i > j for every pj ∈ Var(θi−1).
(iii), (i) and v(pi) = ni together imply v(p2i) = n2i, and hence v(p2i) ∈ DM∗

CL[n1,...,nk ]. (iv) and
(ii) together imply that v(ζi) = v(p2i). Hence, we have v(ζi) ∈ DM∗

CL[n1,...,nk ]. Since choice of i
is arbitrary, we have v(ζj) ∈ DM∗

CL[n1,...,nk ] for every j ∈ {1, . . . , n}. By construction of ζis and
θis, we have that (v) Var(θi) = Var(ζi) ∪ {p2i+1}, and (vi) 2i + 1 > j for every pj ∈ Var(ζi).
(v), (i) and v(pi) = ni together imply v(p2i+1) = n2i+1, and hence v(p2i+1) /∈ DM∗

CL[n1,...,nk ].
(vi) and (ii) together imply that v(θi) = v(p2i+1). Hence, we have v(θi) /∈ DM∗

CL[n1,...,nk ]. Since
choice of i is arbitrary, we have v(θj) /∈ DM∗

CL[n1,...,nk ] for every j ∈ {1, . . . , n}. Additionally, since
v(p1) /∈ DM∗

CL[n1,...,nk ], we have v(p1 ∨ ¬p1). Together with the fact that v(ζj) ∈ DM∗
CL[n1,...,nk ] for

every j ∈ {1, . . . , n}, this implies that v satisfies all the premises from (⋆k), while dissatisfying all
the conclusions.

We now prove that, if nk ∈ DMCL[n1,...,nk ], then (⋆⋆k) is not valid w.r.t. M∗
CL[n1, . . . , nk]. for every

MCL[n1, . . . , nk], if k = 2n for some n ≥ 1 and nk ∈ DMCL[n1,...,nk ], then ni ∈ DMCL[n1,...,nk ] if i is
even, and ni /∈ DMCL[n1,...,nk ] if i is odd. Given the constraint above on DM∗

CL[n1,...,nk ], we have that
ni ∈ DM∗

CL[n1,...,nk ] if i is odd, and ni /∈ DM∗
CL[n1,...,nk ] if i is even. Take now variables p1, . . . , pk and

a valuation v ∈ HomM∗
CL[n1,...,nk ] such that v(pi) = ni. This implies that (i) v(pi) ∈ DM∗

CL[n1,...,nk ]
if i is odd, and v(pi) /∈ DM∗

CL[n1,...,nk ] if i is even, to the effect that v provides a counterexample
to (⋆ ⋆ k). "

Just to get a concrete example of this: take MCL[hb], with M∗
CL[hb] = MCL[bh]. We have

p1 ∧ (p1 ∨ p2) ̸!MCL[bh] p1 ∨ ¬p1, and any valuation v ∈ HomMCL[bh] provides a counterexample
if v(p1) = n1 = b, and v(p2) = n2 = h. In a similar way, p1 ∧ ¬p1 ̸!MCL[hb] p1 ∧ (p1 ∨ p2). Any
valuation v ∈ HomMCL[bh] provides a counterexample if v(p1) = n1 = h, and v(p2) = n2 = b.

PROPOSITION 5.3
Let MCL[n1, . . . , nk] be a LOC-matrix with k alternations, k = 2n for some n ≥ 1, and nk /∈
DMCL[n1,...,nk ]. Then, for every number of alternations m > k, we have

1. ζ1, . . . , ζn ̸!MCL[n1,...,nm] p1 ∨ ¬p1, θ1, . . . , θn−1 if nk /∈ DMCL[n1,...,nk ]
2. p1 ∧ ¬p1, θ1, . . . , θn−1 ̸!MCL[n1,...,nm] ζ1, . . . , ζn if nk ∈ DMCL[n1,...,nk ] .

PROOF. We prove that 1–2 hold if m = k+1 in the relevant cases, by building suitable countermodels
to (⋆k) and (⋆ ⋆ k). We then generalize the result to every natural m > k. We have two cases:
Case 1: nk /∈ DMCL[n1,...,nk ]. We distinguish two subcases:

Case 1a: ni ∈ DMCL[n1,...,nm] iff ni ∈ DMCL[n1,...,nk ] for 1 ≤ i ≤ k. This implies
that, if MCL[n1, . . . , nk] is, say, MCL[hbhb], then MCL[n1, . . . , nm] is MCL[hbhbh]. For every
MCL[n1, . . . , nk], if k = 2n for some n ≥ 1 and nk /∈ DMCL[n1,...,nk ], then ni ∈ DMCL[n1,...,nk ]
if i is odd, and ni /∈ DMCL[n1,...,nk ] if i is even. Given the constraint imposed on DMCL[n1,...,nm]
by this case, the same applies to MCL[n1, . . . , nm]. Take now variables p1, . . . , pk and a valuation
v ∈ HomMCL[n1,...,nm] such that v(pi) = ni+1. This implies that (i) v(pi) ∈ DMCL[n1,...,nm] if i is
even, and v(pi) /∈ DMCL[n1,...,nm] if i is odd. Notice that (ii)–(vi) from the proof of Proposition 5.2
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20 Linear orders of contaminating values

also apply here. From this and v(pi) = ni+1, we have v(p2i) = n2i+1, v(p2i+1) = n2i+2, and
hence v(ζi) ∈ DM∗

CL[n1,...,nm] and v(θi) /∈ DMCL[n1,...,nm]. Since choice of i is arbitrary, we have
v(ζj) ∈ DMCL[n1,...,nm] and v(θj) /∈ DMCL[n1,...,nm] for every j ∈ {1, . . . , n}. Since, additionally,
we have v(p1 ∨ ¬p1) by construction, we have that v satisfies all the premises from (⋆k), while
dissatisfying all the conclusions. This proves the statement for this case.

Case 1b: ni ∈ DMCL[n1,...,nm] iff ni /∈ DMCL[n1,...,nk ] for 1 ≤ i ≤ k—which implies that, if
MCL[n1, . . . , nk] is, say, MCL[hbhb], then MCL[n1, . . . , nm] is MCL[bhbhb]. This case follows
from Proposition 5.2 and Observation 5.1.
Case 2: nk ∈ DMCL[n1,...,nk ]. We distinguish two subcases:

Case 2a: ni ∈ DMCL[n1,...,nm] iff ni ∈ DMCL[n1,...,nk ] for 1 ≤ i ≤ k. This implies
that, if MCL[n1, . . . , nk] is, say, MCL[bhbh], then MCL[n1, . . . , nm] is MCL[bhbhb]. For every
MCL[n1, . . . , nk], if k = 2n for some n ≥ 1 and nk ∈ DMCL[n1,...,nk ], then ni ∈ DMCL[n1,...,nk ] if
i is even, and ni /∈ DMCL[n1,...,nk ] if i is odd. Given the constraint above on DMCL[n1,...,nm], the same
applies to MCL[n1, . . . , nm]. Take now variables p1, . . . , pk and a valuation v ∈ HomMCL[n1,...,nm]
such that v(pi) = ni+1. The same construction from Case 1a provides a counterexample. This proves
the statement for this subcase.

Case 2b: ni ∈ DMCL[n1,...,nm] iff ni /∈ DMCL[n1,...,nk ] for 1 ≤ i ≤ k—which implies that, if
MCL[n1, . . . , nk] is, say, MCL[hbhb], then MCL[n1, . . . , nm] is MCL[bhbhb]. This case follows
from Proposition 5.2 and Observation 5.1.

The cases above prove the statement for m = k + 1. From this and Observation 5.1, the statement
holds for every m > k. "

Propositions 5.1–5.3 together prove that each multiple-conclusion consequence relation induced
by a LOC-matrix with k alternations for k = 2n (for some n ≥ 1) is distinct from every multiple-
conclusion consequence relation induced by a LOC-matrix with m > k alternations. This in turn
implies that there are infinitely many multiple-conclusion consequence relations based on LOC-
matrices.

5.2 The case where k = 2n + 1 for n ≥ 1

We go now to the case where k = 2n + 1 for some natural n ≥ 1. Remember that, in this case,
ζ2 = p1 ∧ (p1 ∨ · · · ∨ p4) if 4 < k, and undefined otherwise, θ2 = p1 ∧ (p1 ∨ · · · ∨ p5) if 5 ≤ k, and
undefined otherwise, and so on. Also, ζn = p1 ∧ (p1 ∨ · · · ∨ pk−1) and θn = p1 ∧ (p1 ∨ · · · ∨ pk).
The following are two particular examples of the construction, with k = 3, and k = 5:

k = 3, n = 1 k = 5, n = 2

ζ1 = p1 ∧ (p1 ∧ p2) ζ1 = p1 ∧ (p1 ∧ p2)

θ1 = p1 ∧ (p1 ∨ p2 ∨ p3) θ1 = p1 ∧ (p1 ∨ p2 ∨ p3)

ζj undefined for every j ≥ 2 ζ2 = ζn = p1 ∧ (p1 ∨ · · · ∨ p4)

θm undefined for every j ≥ 2 θ2 = θn = p1 ∧ (p1 ∨ · · · ∨ p5)

ζj undefined for every j ≥ 3
θm undefined for every j ≥ 3

PROPOSITION 5.4
Let MCL[n1, . . . , nk] be a LOC-matrix with k = 2n + 1 alternations for some natural n ≥ 1. Then

If nk /∈ DMCL[n1, . . . , nk], (◦) p1 ∧ ¬p1, θ1, . . . , θn !MCL[n1,...,nk ] ζ1, . . . , ζn
If nk ∈ DMCL[n1, . . . , nk], (◦◦) ζ1, . . . , ζn !MCL[n1,...,nk ] p1 ∨ ¬p1, θ1, . . . , θn
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Linear orders of contaminating values 21

PROOF. We first prove that, if nk /∈ DMCL[n1,...,nk ], (◦) is the case. Consider the following
construction: ∆n = ∅, Γn−1 = {p1 ∧ ¬p1}, ∆n−1 = {ζ1} = {p1 ∧ (p1 ∨ p2)}, Γn−2 = {θ1} =
{p1 ∧ (p1 ∨ p2 ∨ p3)}, . . ., ∆0 = {ζn} = {p1 ∧ (p1 ∨ · · · ∨ pk−1)}, Γ = ⋃

0≤i≤(k/2)−1 Γi ∪ {θn}—
with each ∆n−i and Γn−i being defined and relevant only if n ≥ i. The construction satisfies the
conditions that Theorem 4.1 sets for every MCL[n1, . . . , nk] that is relevant for the proposition.

The proof that (◦◦) is the case for nk ∈ DMCL[n1,...,nk ] goes along the very same lines, with the
relevant construction being: Γn = ∅, ∆n−1 = {p1 ∨ ¬p1}, Γn−1 = {ζ1} = {p1 ∧ (p1 ∨ p2)}, ∆n−2 =
{θ1} = {p1∧(p1∨p2∨p3)}, . . ., Γ0 = {ζn} = {p1∧(p1∨· · ·∨pk−1)}, ∆ = ⋃

0≤i≤(k/2)−1 ∆i ∪{θn}—
with each ∆n−i and Γn−i being defined and relevant only if n ≥ i. It is easy to check that the
construction satisfies the conditions set by Theorem 4.2, which is the relevant theorem here. "

We distinguish infinitely many instances of (◦) and (◦◦), depending on the value of k = 2n + 1,
and we follow the notational convention that we set when dealing with instances of (⋆) and (⋆⋆). We
list a pair of examples here:

(◦3) p1 ∧ ¬p1, p1 ∧ (p1 ∨ p2 ∨ p3),!MCL[bhb] p1 ∧ (p1 ∨ p2) (k = 3)

(◦5) p1 ∧ ¬p1, p1 ∧ (p1 ∨ p2 ∨ p3), p1 ∧ (p1 ∨ · · · ∨ p5) !MCL[bhbhb] (k = 5)

!MCL[bhbhb] p1 ∧ (p1 ∨ p2), p1 ∧ (p1 ∨ · · · ∨ p4)

(◦ ◦ 3) p1 ∧ (p1 ∨ p2) !MCL[hbh] p1 ∨ ¬p1, p1 ∧ (p1 ∨ p2 ∨ p3) (k = 3)

(◦ ◦ 5) p1 ∧ (p1 ∨ p2), p1 ∧ (p1 ∨ · · · ∨ p4) !MCL[hbhbh] (k = 5)

!MCL[hbhbh] p1 ∨ ¬p1, p1 ∧ (p1 ∨ p2 ∨ p3), p1 ∧ (p1 ∨ · · · ∨ p5)

PROPOSITION 5.5
Let MCL[n1, . . . , nk] be a LOC-matrix with k alternations, k = 2n + 1 for some n ≥ 1, and let
M∗

CL[n1, . . . , nk] be the LOC-matrix such that ni ∈ DM∗
CL[n1,...,nk ] iff ni /∈ DMCL[n1,...,nk ] for 1 ≤

i ≤ k. Then:

If nk /∈ DMCL[n1, . . . , nk], p1 ∧ ¬p1, θ1, . . . , θn ̸!M∗
CL[n1,...,nk ] ζ1, . . . , ζn

If nk ∈ DMCL[n1, . . . , nk], ζ1, . . . , ζn ̸!M∗
CL[n1,...,nk ] p1 ∨ ¬p1, θ1, . . . , θn

PROOF. Suppose that nk /∈ DMCL[n1,...,nk ]. For every MCL[n1, . . . , nk], if k = 2n + 1 for some n ≥ 1
and nk /∈ DMCL[n1,...,nk ], then ni ∈ DMCL[n1,...,nk ] if i is even, and ni /∈ DMCL[n1,...,nk ] if i is odd.
Given the constraint imposed on DM∗

CL[n1,...,nk ], we have that ni ∈ DM∗
CL[n1,...,nk ] if i is odd, and

ni /∈ DM∗
CL[n1,...,nk ] if i is even. Take now variables p1, . . . , pk . Any valuation v ∈ HomM∗

CL[n1,...,nk ]
such that v(pi) = ni provides a counterexample to (◦k).

Suppose that nk ∈ DMCL[n1,...,nk ]. Again, for every MCL[n1, . . . , nk], if k = 2n+1 for some n ≥ 1
and nk ∈ DMCL[n1,...,nk ], then ni ∈ DMCL[n1,...,nk ] if i is odd, and ni /∈ DMCL[n1,...,nk ] if i is even.
Given the constraint above on DM∗

CL[n1,...,nk ], we have that ni ∈ DM∗
CL[n1,...,nk ] if i is odd, and ni /∈

DM∗
CL[n1,...,nk ] if i is even. Take now variables p1, . . . , pk . Again, any valuation v ∈ HomM∗

CL[n1,...,nk ]
such that v(pi) = ni provides a counterexample to (⋆ ⋆ k). "

Just to get a concrete example of this: take MCL[bhb], with M∗
CL[bhb] = MCL[hbh]. We have

p1 ∧¬p1, p1 ∧ (p1 ∨ p2 ∨ p3) ̸!MCL[hbh] p1 ∧ (p1 ∨ p2), and any valuation v ∈ HomMCL[bh] provides
a counterexample if v(p1) = n1 = h1, v(p2) = n2 = b1, v(p3) = n3 = h2. In a similar way,
p1 ∧ (p1 ∨ p2) ̸!MCL[bhb] p1 ∨ ¬p1, p1 ∧ (p1 ∨ p2 ∨ p3). Any valuation v ∈ HomMCL[bhb] provides
a counterexample if v(p1) = n1 = b1, v(p2) = n2 = h1 and v(p3) = n3 = h2.
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22 Linear orders of contaminating values

FIGURE 1 Diagram of the infinitely many multiple-conclusion consequence relations induced by
LOC-matrices based on MCL

PROPOSITION 5.6
Let MCL[n1, . . . , nk] be a LOC-matrix with k alternations, k = 2n + 1 for some n ≥ 1. Then, for
every number of alternations m > k:

1. p1 ∧ ¬p1, θ1, . . . , θn ̸!MCL[n1,...,nm] ζ1, . . . , ζn if nk /∈ DMCL[n1,...,nk ]
2. ζ1, . . . , ζn ̸!MCL[n1,...,nm] p1 ∨ ¬p1, θ1, . . . , θn if nk ∈ DMCL[n1,...,nk ].

PROOF. Again, we first prove the statement for m = k + 1. As for Proposition 5.3, we have two
cases:
Case 1: nk /∈ DMCL[n1,...,nk ]. We distinguish two subcases:

Case 1a: ni ∈ DMCL[n1, . . . , nm] iff ni ∈ DMCL[n1, . . . , nk] for 1 ≤ i ≤ k. This goes exactly
as Case 1a from Proposition 5.3, to the effect that (◦k) does not hold w.r.t MCL[n1, . . . , nm]-
consequence for m = k + 1, if the latter meets the conditions of the present Case 1a.

Case 1b: ni ∈ DMCL[n1, . . . , nm] iff ni ∈ DMCL[n1, . . . , nk] for 1 ≤ i ≤ k. This goes exactly
as Case 1b from Proposition 5.3, to the effect that (◦k) does not hold w.r.t MCL[n1, . . . , nm]-
consequence for m = k + 1, if the latter meets the conditions of the present Case 1b.
Case 2: nk ∈ DMCL[n1,...,nk ]. We distinguish two subcases:

Case 2a: ni ∈ DMCL[n1, . . . , nm] iff ni ∈ DMCL[n1, . . . , nk] for 1 ≤ i ≤ k. This goes exactly
as Case 2a from Proposition 5.3, to the effect that (◦ ◦ k) does not hold w.r.t MCL[n1, . . . , nm]-
consequence for m = k + 1, if the latter meets the conditions of the present Case 2a.

Case 2b: ni ∈ DMCL[n1, . . . , nm] iff ni ∈ DMCL[n1, . . . , nk] for 1 ≤ i ≤ k. This goes exactly
as Case 2a from Proposition 5.3, to the effect that (◦ ◦ k) does not hold w.r.t MCL[n1, . . . , nm]-
consequence for m = k + 1, if the latter meets the conditions of the present Case 2b.

The case above prove the statement for m = k + 1. From this and Observation 5.1, we have that
that statement holds for every m > k. "

Propositions 5.4–5.6 together prove that each multiple-conclusion consequence relation induced
by a LOC-matrix with k alternations for k = 2n+1 (for some n ≥ 1) is distinct from every multiple-
conclusion consequence relation induced by a LOC-matrix with m > k alternations. Together with
Section 3 and Propositions 5.1–5.3, this determines the relations illustrated by Figure 1:

6 Proof theory for contaminating logics
In this section, we present sequent calculi for the logics HYB1 and HYB2, thus extending similar
results from [9] for Kw

3 and PWK. More precisely, we provide sound and complete calculi of
annotated sequents for the two four-valued logics from Section 3. An annotated sequent is an object
of the form Γ , !Γ ′" ⇒ ∆, !∆′" where Γ , Γ ′, ∆, ∆′ are sets of formulae of the language. In annotated
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Linear orders of contaminating values 23

sequent calculi, additional rules are provided in order to capture the interaction among formulae
within squared brackets and outside square brackets, and the interaction of formulae within square
brackets and formulae outside the brackets.

As in [9], each of our calculi places restrictions on several rules—more precisely, the rules
need some variable inclusion condition to be satisfied in order to be applicable. We will detail the
corresponding provisos when needed.

One further peculiarity of the calculi that follow should be acknowledged and discussed. Our
calculi for HYB1 and HYB2 are decorated insofar as we employ a bracketing device in each of the
antecedent and succedent to track variable-inclusion properties. On the surface, one might interpret
this as an instance of a four-sided sequent calculus. If this were the case, it would be disappointing
for several reasons. On the one hand, many-sided sequents are far less intuitive and natural than
two-sided sequents (or one-sided sequents, for that matter). On the other, there exist tools such as
MUltseq (described, e.g. in [16]) that can construct sound and complete many-sided sequent calculi
for any finitely-valued logic.

We do not believe that this is a reasonable concern, however. Whereas the standard reading of a
many-sided sequent is one in which each ‘side’ plays the role of a distinct truth-value, which might
be considered an inauthentic smuggling of semantics into the proof theory, it is not clear that a similar
alignment exists in our calculi for HYB1 and HYB2. The motivation for our bracketing device is not
semantic, but rather, syntactic in nature, which seems to offend our own proof theoretic sensibilities
far less. In any case, should the reader remain unconvinced, the general method for authentically two-
sided sequent calculi that will be presented later—in Section 6.2—counts the consequence relations
for HYB1 and HYB2 as special cases.

6.1 Sequent calculi for HYB1 and HYB2

Both systems include the following three rules, where for every Γ ⊆ Fml, Γ ∗ is any modification
of Γ by permuting elements, absorbing redundancies or duplicating formulae:

[Axiom]
∅, !p" ⇒ ∅, !p"

Γ , !Ξ" ⇒ ∆, !Θ"
[Structural]

Γ ∗, !Ξ∗" ⇒ ∆∗, !Θ∗"

Γ , !Γ ′" ⇒ ∆, !∆′"
[Weak]

Γ , Ξ , !Γ ′" ⇒ ∆, Θ , !∆′"

[Axiom] secures the validity of those classical axioms in which a propositional variable is within
the scope of a square bracket in each sequent. [Structural] grants standard structural rules, but
Weakening, within any of the four slots. [Weak] differs from the Weakening for non-annotated calculi
in that we can only allow Weakening outside the scope of the bracket. The following ‘push’ rules
below meet the need to shift formulae from outside the scope of a square bracket to within its scope.
It is with these rules that variable-inclusion restrictions come into play:

Γ , ϕ, !Γ ′" ⇒ ∆, !∆′"
[PushL]

Γ , !Γ ′, ϕ" ⇒ ∆, !∆′"
Γ , !Γ ′" ⇒ ∆, ψ , !∆′"

[PushR]
Γ , !Γ ′" ⇒ ∆, !∆′, ψ"
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24 Linear orders of contaminating values

In the HYB1 calculus, [PushL] requires the restriction Var(ϕ) ⊆ Var(∆′) and [PushR] requires
Var(ψ) ⊆ Var(Γ ∪ Γ ′). In the HYB2 calculus, the two rules require Var(ϕ) ⊆ Var(∆ ∪ ∆′) and
Var(ψ) ⊆ Var(Γ ′), respectively.

Negation rules come with a pair of right rules and a pair of left rules, since we need to distinguish
the case where we are introducing the sign within the scope of a square bracket from that where we
are introducing the sign without such a scope:

Γ , !Γ ′, ϕ" ⇒ ∆, !∆′"
[¬R1]

Γ , !Γ ′" ⇒ ∆, !∆′, ¬ϕ"
Γ , ϕ, !Γ ′" ⇒ ∆, !∆′"

[¬R2]
Γ , !Γ ′" ⇒ ∆, ¬ϕ, !∆′"

In the HYB1 calculus, [¬R1] and [¬R2] require Var(ϕ) ⊆ Var(Γ ∪Γ ′); in the HYB2 calculus, [¬R1]
requires that Var(ϕ) ⊆ Var(Γ ′), and [¬R1] has no proviso. As for the left rules:

Γ , !Γ ′" ⇒ ∆, !∆′, ψ"
[¬L1]

Γ , !Γ ′, ¬ψ" ⇒ ∆, !∆′"
Γ , !Γ ′" ⇒ ∆, ψ , !∆′"

[¬L2]
Γ , ¬ψ , !Γ ′" ⇒ ∆, !∆′"

where [¬L1] requires that Var(ψ) ⊆ Var(∆′) and [¬L2] has no proviso. Additionally, we consider a
couple of rules for conjunction:

Γ , !Γ ′, ϕ, ψ" ⇒ ∆, !∆′"
[∧L1]

Γ , !Γ ′, ϕ ∧ ψ" ⇒ ∆, !∆′"
Γ , ϕ, ψ , !Γ ′" ⇒ ∆, !∆′"

[∧L2]
Γ , ϕ ∧ ψ , !Γ ′" ⇒ ∆, !∆′"

Rules [∧L1] and [∧L2] require no provisos in either HYB1 or HYB2. However, the following mixed
rule requires a variable-inclusion restriction:

Γ , ϕ, !Γ ′, ψ" ⇒ ∆, !∆′"
[∧L∗]

Γ , !Γ ′, ϕ ∧ ψ" ⇒ ∆, !∆′"

In HYB1, the rule is admissible provided that Var(ϕ) ⊆ Var(∆′), while in HYB2, Var(ϕ) ⊆ Var(∆ ∪
∆′) is required. For the right rules, we consider the case in which both conjuncts are outside of the
scope of !−" and the case in which both are within its scope. Note, again, that we can appeal to
[PushR] in order to cover mixed cases.

Γ , !Γ ′" ⇒ ∆, !∆′, ϕ" Γ , !Γ ′" ⇒ ∆, !∆′, ψ"
[∧R1]

Γ , !Γ ′" ⇒ ∆, !∆′, ϕ ∧ ψ"

Γ , !Γ ′" ⇒ ∆, ϕ, !∆′" Γ , !Γ ′" ⇒ ∆, ψ , !∆′"
[∧R2]

Γ , !Γ ′" ⇒ ∆, ϕ ∧ ψ , !∆′"

Again, neither [∧R1] nor [∧R2] requires a proviso in the two logics, but one could define an
admissible rule that requires that Var(ϕ) ⊆ Var(Γ ∪ Γ ′) in HYB1 and Var(ϕ) ⊆ Var(Γ ′) in HYB2:

Γ , !Γ ′" ⇒ ∆, ϕ, !∆′" Γ , !Γ ′" ⇒ ∆, !∆′, ψ"
[∧R∗]

Γ , !Γ ′" ⇒ ∆, !∆′, ϕ ∧ ψ"
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Finally, we consider also the rules for disjunction:

Γ , !Γ ′, ϕ" ⇒ ∆, !∆′" Γ , !Γ ′, ψ" ⇒ ∆, !∆′"
[∨L1]

Γ , !Γ ′, ϕ ∨ ψ" ⇒ ∆, !∆′"

Γ , ϕ, !Γ ′" ⇒ ∆, !∆′" Γ , ψ , !Γ ′" ⇒ ∆, !∆′"
[∨L2]

Γ , ϕ ∨ ψ , !Γ ′" ⇒ ∆, !∆′"
Neither [∨L1] nor [∨L2] requires provisos. Again, for the right rules, we consider the case in which
both disjuncts are outside of the scope of !−" and the case in which both are within its scope. Note,
again, that we can appeal to [PushR] in order to cover mixed cases.

Γ , !Γ ′" ⇒ ∆, !∆′, ϕ, ψ"
[∨R1]

Γ , !Γ ′" ⇒ ∆, !∆′, ϕ ∨ ψ"
Γ , !Γ ′" ⇒ ∆, ϕ, ψ , !∆′"

[∨R2]
Γ , !Γ ′" ⇒ ∆, ϕ ∨ ψ , !∆′"

Now we state soundness and completeness of HYB1 and HYB2 with respect to MCL[hb] and
MCL[bh], respectively.

THEOREM 6.1
(Soundness of HYB1).
If Γ , !Γ ′" ⇒ ∆, !∆′" is provable in HYB1, then Γ ∪ Γ ′ !MCL[hb] ∆ ∪ ∆′.

PROOF. Any initial sequent ∅, !p" ⇒ ∅, !p" has the form Γ , !Γ ′" ⇒ ∆, !∆′" in which Γ and ∆ are
empty and Γ ′ = ∆′ = {p}. In this case, the sequent enjoys the property that:11

1. Var(Γ ′) ⊆ Var(∆′) ⊆ Var(Γ ∪ Γ ′)
2. Γ ′ ⊆ Γ ∪ Γ ′ and ∆′ ⊆ ∆ ∪ ∆′

3. The sequent Γ ′ ⇒ ∆′ is derivable in LK.

It can be easily checked that that this property is preserved under each of the foregoing rules. The
case of the exchange and contraction rules, and weakening (outside the scope of the square brackets),
can be noted to preserve this property, since they correspond to properties that are valid in every
Tarskian logic and HYB1 is a Tarskian logic, as every matrix logic is—see [29]. We notice that this
property is preserved by the other rules as follows. Moreover, this can also be checked to apply
straightforwardly to the ‘push’ rules and the operational rules (in- and outside the square brackets).
Hence, any derivable sequent enjoys the above tripartite property.

Now, we know that Ξ !MCL[hb] Θ if and only if there exists a Ξ ′ ⊆ Ξ and a Θ ′ ⊆ Θ such that
Var(Ξ ′) ⊆ Var(Θ ′) ⊆ Var(Ξ) and Ξ ′ !MCL Θ ′. Because of soundness of LK (a presentation of
which is described in [9]), the above tripartite property entails validity in MCL[hb]. Soundness of
HYB2 with respect to MCL[bh] is proved by similar reasoning. "

In the sequel, when we refer to the two-sided sequent calculus for PWK (and similarly for Kw
3 ), we

will be talking about the calculi designed by Coniglio and Corbalán, presented in [9] as a fragment of
Gentzen’s sequent calculus for classical logic—indeed, as a fragment where some of the operational
rules were restricted with variable inclusion requirements.

Given these, the following will help prove the completeness of HYB1 with respect to MCL[hb].

LEMMA 6.1
If Γ !MCL[hb] ∆ such that Γ ′ ⊆ Γ , ∆′ ⊆ ∆, Var(Γ ′) ⊆ Var(∆′) ⊆ Var(Γ ) and Γ ′ !MCL ∆′, then
Γ ′ ⇒ ∆′ is provable in the calculus for PWK.

11As usual, this label denotes the standard sequent calculus for classical logic CL.
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26 Linear orders of contaminating values

PROOF. Assume Γ !MCL[hb] ∆. Then by Corollary 3.2 for MCL[hb], we know that there are Γ ′ ⊆
Γ , ∆′ ⊆ ∆, with Var(Γ ′) ⊆ Var(∆′) ⊆ Var(Γ ) and Γ ′ !MCL ∆′. By completeness of LK, this
implies that Γ ′ ⇒ ∆′ is provable in LK. We also know that Var(Γ ′) ⊆ Var(∆′). Hence, by [9,
Lemma 21], these two observations jointly imply that Γ ′ ⇒ ∆′ is provable in the sequent calculus
for PWK. "

DEFINITION 6.1
In the HYB1 calculus, a PWK rule that applies only to formulae within brackets is a ‘bracketed
rule’.

THEOREM 6.2
(Completeness of HYB1).
If Γ !MCL[hb] ∆ such that Γ ′ ⊆ Γ , ∆′ ⊆ ∆, Var(Γ ′) ⊆ Var(∆′) ⊆ Var(Γ ) and Γ ′ !MCL ∆′, then
Γ ′, !Γ ′′" ⇒ ∆′, !∆′′" is provable in HYB1, where Γ = Γ ′ ∪ Γ ′′ and ∆ = ∆′ ∪ ∆′′.

PROOF. Assume that Γ !MCL[hb] ∆. Then, by Lemma 6.1, there is a PWK proof of Γ ′ ⇒ ∆′. Call
this proof, i.e. a rooted binary tree, Π . We can design an algorithm to transform a PWK proof of this
sequent into an HYB1 proof of Γ , !Γ ′" ⇒ ∆, !∆′".

First, replace every node Ξ ⇒ Θ of Π by a node ∅, !Ξ" ⇒ ∅, !Θ". Then, place below each
leaf, or axiom node, one instance of [Weak], such that from an axiom ∅, !p" ⇒ ∅, !p" we infer in
one step the sequent Γ , !p" ⇒ ∆, !p". After that, for each non-axiom node place Γ to the left of
the square brackets in the antecedent and ∆ to the left of the square brackets in the succedent. In the
resulting proof, each PWK rule is applied within the scope of the square brackets. Moreover, we can
check that every application of a PWK rule corresponds to a ‘bracketed rule’ in HYB1 that respects
the corresponding provisos.

Actually, since weakening is not fully admissible within the scope of square brackets, something
must be said about this case. Suppose in an H proof of Γ ′ ⇒ Γ ′ there is an ineliminable application
of Weakening that allows to go from a node Ξ ⇒ Θ to a node Ξ , Ξ ′ ⇒ Θ , Θ ′—whence we can
legitimately call Ξ ′ and Θ ′ the active (sets of) formulae in this step. Then the current algorithm can
be further specified by saying that if Π is a proof that has no ineliminable application of weakening,
then we proceed as previously stated. However, if Π has an ineliminable application of weakening,
then we enlarge every node (outside the square brackets) with Γ and Ξ ′, and ∆ and Θ ′, in their
respective sides. Finally, when the Π requires the corresponding application of weakening, we mimic
this in HYB1 applying the [PushL] and [PushR] rules to Ξ ′ and Θ ′, as needed.

This renders a rooted binary tree Π∗ with Γ , !Γ ′" ⇒ ∆, !∆′" as its terminal sequent. We then
proceed to apply the rules [PushL], [PushR] followed by elimination of duplicate formulae in Γ ′ and
∆′. We end up with a HYB1 proof ending with Γ ′′, !Γ ′" ⇒ ∆′′, !∆′", for which Γ ′′ ∪ Γ ′ = Γ and
∆′′ ∪ ∆′ = ∆ and Var(Γ ′) ⊆ Var(∆′) ⊆ Var(Γ ′′ ∪ Γ ′) = Γ . "

By similar means, we arrive at the corresponding results for HYB2.

THEOREM 6.3
(Soundness of HYB2).
If Γ , !Γ ′" ⇒ ∆, !∆′" is provable in HYB2, then Γ ∪ Γ ′ !MCL[bh] ∆ ∪ ∆′.

THEOREM 6.4
(Completeness of HYB2).
If Γ !MCL[bh] ∆ such that Γ ′ ⊆ Γ , ∆′ ⊆ ∆, Var(∆′) ⊆ Var(Γ ′) ⊆ Var(∆) and Γ ′ !MCL ∆′, then
Γ ′, !Γ ′′" ⇒ ∆′, !∆′′" is provable in HYB2, where Γ = Γ ′ ∪ Γ ′′ and ∆ = ∆′ ∪ ∆′′.
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PROOF. By Theorem 6.2 and Lemma 4.1. "
Finally, the above calculi suggest that they may be adapted to the cases of matrices with three or

more alternations by allowing some sort of nesting of brackets !−".

6.2 Sequent calculi for the general case

Now, the foregoing calculi seem to follow from non-trivial modifications to the Coniglio–Corbalán
methods in which we have added a device that essentially tracks variable inclusions. It is clearly
attractive to be able to provide a schematic method to give a sound and complete sequent calculus
for each of the infinitely many consequence relations discussed in this paper. However, in the process
of generalizing these sequent calculi to provide proof theories for each of our M[σ ] systems, we are
presented with a challenge.

For one, we have the option of trying to give a straightforward generalization of the calculi for
HYB1 and HYB2 by nesting instances of the !−" device within one another and adding provisos
and modifications to operational rules to preserve the structure of appropriate variable inclusion
properties. Such an approach, however, is on its face perilous, as it would lead to an exponential
blow-up in the number of rules. For example, if we have a calculus with the !−" device nested to a
depth of (say) eighteen, it looks as though an appropriate suite of [∨L] rules on formulae ϕ and ψ

would need independent special cases for occasions in which ϕ appears at depth m and ψ appears
at depth n for all m, n < 18. While in principle such provisos could be described schematically, the
resulting blowup in number of operational rules would drastically inhibit the utility of the resulting
calculi.

A second approach would be to treat each system with an appropriate many-sided sequent
calculus. There are two apparent problems with this approach. On the one hand, it seems as though
the foregoing concern about explosion in the number of rules might apply to this case, so that in an
m sided sequent calculus, we would need 2m many distinct cases of a disjunction rule. On the other
hand, tools such as MUltseq are capable of producing such calculi already and the importance of
such a general scheme would be thereby severely diminished.

The third approach would be to make a straightforward (and shameless) appeal to our semantic
characterizations by describing a way to take a classically provable sequent Γ ⇒ ∆ and iterate a
carefully controlled succession of succession of applications of weakening on alternative sides to
construct a sequent enjoying the appropriate variable inclusion properties. This approach risks the
loss of some of the novelty found in the foregoing calculi HYB1 and HYB2 but retains a novelty of a
different sort. Furthermore, for any of the matrix logics endowed with a linear order of contaminating
values described in this work, this approach would permit us to describe a succinct and natural way
to determine an appropriate sequent calculus. Such an approach would also have the benefit of being
immediately recognizable as generating authentically two-sided sequent calculi.

Among the options, the third seems to fare the best, so we present a general description of
appropriate sequent calculi that readily applies to any of the matrices discussed in this paper. If we
look closely at the form of Theorems 3.1 and 3.2, a rough roadmap to appropriate sequent calculi can
be inferred. In the case of (e.g.) MCL[hbh], we might follow something like the following algorithm,
where [WeakL] and [WeakR] are left and right weakening, respectively:

1. Give a classical proof in LK for a sequent Γ ⇒ ∆

2. Apply arbitrary applications of [WeakR] to yield a sequent Γ ⇒ ∆′

3. Apply [WeakL] to yield a Γ ′ ⇒ ∆′ where Var(∆′) ⊆ Var(Γ ′)
4. Apply [WeakR] to yield a Γ ′ ⇒ ∆′′ where Var(Γ ′) ⊆ Var(∆′′).
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A cursory reappraisal of our semantic characterization of MCL[hbh] suffices to reveal that Γ ′ ⇒ ∆′′

is provable by this algorithm if and only if Γ ′ !MCL[hbh] ∆′′ is valid. In the general case, all that is
necessary is that we track the steps at which we may apply [WeakL] and [WeakR] and at what stage
a proof can be said to have terminated. To gain the ability to track these steps, we choose to make the
novel decision to label the sequent separator itself by an index ranging over the natural numbers.

Let us first describe the raw materials from which we will define the appropriate calculi. The core
of each system will be an indexed variant of a classical sequent calculus. Take a standard two-sided
sequent calculus for classical propositional logic—for convenience, let us fix the sequent calculus
LK described in [9]—and annotate the sequent separators in each rule with a subscript ‘0’. Call this
system LK0. By the definitions to follow, it will turn out that derivability in LK0 (i.e., derivability of
a classically provable sequent Γ ⇒0 ∆) will correspond to the system MCL[Λ], i.e. classical logic
enriched with an empty linear order of contaminating values.

To LK0 we add the structural rules of contraction and permutation at every stage in a proof (i.e.
for every sequent separator ⇒i), a fact that is codified by the schematic rule where i ∈ ω:

Γ ⇒i ∆
[Structurali]

Γ ′ ⇒i ∆′

where Γ ′ and ∆′ are the result of applying instances of contraction, exchange or duplication to Γ

and ∆, respectively.
Our earlier example demonstrated a need to alternate between stages at which [WeakL] is

appropriate and stages at which [WeakR] is appropriate. To permit weakening only in appropriate
positions at appropriate times, we stratify weakening with the schematic rules for each i ∈ ω:

Γ ⇒i ∆
[WeakLi]

Γ , Γ ′ ⇒i ∆

Γ ⇒i ∆
[WeakRi]

Γ ⇒i ∆, ∆′

Finally, we track the iterations by ascension rules in which we lift the operations on a sequent
Γ ⇒i ∆ to Γ ⇒i+1 ∆ when certain variable-inclusion provisos are met. These schematic rules
are presented below, where i ∈ ω:

Γ ⇒i ∆
[AscensionLi]

Γ ⇒i+1 ∆

Γ ⇒i ∆
[AscensionRi]

Γ ⇒i+1 ∆

These rules have the provisos that in order to apply [AscensionLi], it must be established that
Var(∆) ⊆ Var(Γ ) while correct applications of [AscensionRi] require that Var(Γ ) ⊆ Var(∆).

In order to more conveniently define our general suite of sequent calculi, we define four types of
collections of weakening and ascension rules:

DEFINITION 6.2
LOddm = {[WeakL2i+1], [AscensionL2i+1] | 2i + 1 % m}.

DEFINITION 6.3
ROddm = {[WeakR2i+1], [AscensionR2i+1] | 2i + 1 % m}.

DEFINITION 6.4
LEvenm = {[WeakL2i], [AscensionL2i] | 2i % m}.
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DEFINITION 6.5
REvenm = {[WeakR2i], [AscensionR2i] | 2i % m}.

These collections permit us to perspicuously define sequent calculi for every one of the infinitely
many consequence relations described in this paper. For each string σ of alternating instances of h
and b, we define a calculus LK[σ ]. These systems are given a bipartite definition, broken apart on
the basis of the initial element of σ . Where a string begins with h, we define LK[σ ] in the following
terms, where ⊕ indicates enriching a sequent calculus with additional rules.

DEFINITION 6.6
For a string hb... of length n, the calculus LK[hb...] is the following:

LK0 ⊕ [Structurali] ⊕ REvenn ⊕ LOddn.

We say that a sequent Γ ⇒ ∆ is provable in LK[hb...] if the labelled sequent Γ ⇒n ∆ is provable.

When σ , on the other hand, counts b as its initial element, we give a dual definition for LK[σ ].

DEFINITION 6.7
For a string bh... of length n, the calculus LK[bh...] is the following:

LK0 ⊕ [Structurali] ⊕ ROddn ⊕ LEvenn.

Again, we say that a sequent Γ ⇒ ∆ is provable in LK[hb...] if the labelled sequent Γ ⇒n ∆ is
provable.

Now, we may proceed to observe that these sequent calculi are indeed appropriate for our matrices
by a general soundness and completeness proof:

THEOREM 6.5
Let σ be a string of alternating instances of h and b. Then

Γ !MCL[σ ] ∆ if and only if Γ ⇒ ∆ is provable in LK[σ ].

PROOF. We prove this by induction on complexity of σ for the two cases in which the terminal
element of σ is either h or b.

The basis step is when σ = Λ, i.e. the empty string. Then derivability of Γ ⇒0 ∆ corresponds to
derivability in LK. As induction hypothesis, then, suppose that for the cases for which σ is of length
m have been covered. Then we cover two cases to establish the result for σ of length m + 1.

In the case in which the terminal element of σ is h, let σ ′ be the string σ without its terminal
element. Then we arrive at LK[σ ] by adding the rules [WeakRm] and [AscensionRm] to the calculus
LK[σ ′]. Then we know that Γ ⇒m ∆ is derivable in LK[σ ] if and only if Var(Γ ) ⊆ Var(∆) and
for a ∆′ ⊆ ∆, Γ ⇒m−1 ∆′ is derivable in LK[σ ′]. By induction hypothesis, this holds if and only
if Γ !MCL[σ ′] ∆′ is valid in MCL[σ ′]. But by Theorem 3.2, this is equivalent to the existence of a
∆ ⊇ ∆′ for which Γ !MCL[σ ′h] ∆ is valid, and MCL[σ ′h] is just MCL[σ ].

The case in which the terminal element of σ is b is carried out in an identical fashion by dualizing
each of the foregoing steps and appealing to Theorem 3.1 rather than Theorem 3.2. "

With Theorem 6.5 in hand, we have provided a recursively defined and countably infinite suite
of authentically two-sided sequent calculi that correspond to any case in which two-valued classical
logic is supplemented with a linear order of contaminating values.
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30 Linear orders of contaminating values

6.3 Cut admissibility in the calculi LK[σ ]

There are many proof-theoretic properties that are worth investigating in the case of the calculi
LK[σ ] and we are unable to examine them all. The plight of the rule of [Cut], however, has been
identified by a referee as one particularly worthy of investigation and we will consider this question
before closing this section.

The rule [Cut], of course, in the case of LK is the following:

Γ ⇒ ∆, ϕ ϕ, Σ ⇒ Ξ
[Cut]

Γ , Σ ⇒ ∆, Ξ
.

For sequent calculi in which [Cut] is included as a rule, one is frequently interested in whether a
system enjoys cut elimination, i.e. whether any sequent provable with [Cut] can be proven without
the rule. The systems LK[σ ] do not include [Cut], however, so the question we will investigate is
whether these systems enjoy cut admissibility, i.e. whether [Cut] can be emulated in the calculi.

We note that it is not on its face obvious that any of the systems LK[σ ] (where σ ̸= Λ) enjoys cut
admissibility. Where Γ ⇒ ∆, ϕ and ϕ, Σ ⇒ Ξ are provable there exist relatively delicate, back-and-
forth-type variable-inclusion properties between Γ and ∆ ∪ {ϕ} on the one hand and Σ ∪ {ϕ} ⇒ Ξ

on the other. The roles that the cut formula ϕ plays in these back-and-forth containments might differ
between the two cases and, moreover, in either of these cases, ϕ may be critical in the satisfaction
appropriate variable-inclusion properties right. That ϕ is eliminable—or that its role may be taken
over by some other formula—is not an obvious fact.

Happily, each of these systems enjoys cut admissilibity and, indeed, enjoys a stronger property in
which [Cut] is admissible for each sequent separator ⇒i. We will say that one of our systems LK[σ ]
enjoys full cut admissibility if [Cut] can be emulated for every indexed sequent separator ⇒i. To put
this more precisely:

DEFINITION 6.8
We say that a calculus LK[σ ] enjoys full cut admissibility if for every index i, whenever the sequents
Γ ⇒i ∆, ϕ and ϕ, Σ ⇒i Ξ are provable in LK[σ ], then there exists an LK[σ ] proof of the sequent
Γ , Σ ⇒i ∆, Ξ .

Note that this is a stronger claim than mere cut admissibility, as Γ ⇒ ∆ holds in a system LK[σ ]
when Γ ⇒i ∆ is derivable for the maximum index i. Hence, a proof of full cut admissibility has cut
admissibility simpliciter as a corollary.

With respect to cut admissibility, we close Section 6 with the observation that all the sequent
calculi LK[σ ] enjoy full cut admissibility.

THEOREM 6.6
For all strings σ comprising alternating instances of h and b, the system LK[σ ] enjoys full cut
admissibility.

PROOF. For an arbitrary σ , we prove this by induction on the subscript of the sequent separator ⇒i.
For the basis step in which i = 0, we note simply that [Cut] is admissible in LK (i.e. LK0), whence
we conclude that the special instance

Γ ⇒0 ∆, ϕ ϕ, Σ ⇒0 Ξ

Γ , Σ ⇒0 ∆, Ξ

is admissible.
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For the induction step, suppose that for all j < i, the corresponding instance of [Cut] for ⇒j
is admissible. Furthermore, suppose that we have LK[σ ] proofs Π and Π ′ of Γ ⇒i ∆, ϕ and
ϕ, Σ ⇒i Ξ , respectively. Now, these two sequents are derived from one of two methods, depending
on the choice of LK[σ ] and value of i:

• There exist LK[σ ]-provable sequents Γ ⇒i−1 ∆′ and ϕ, Σ ⇒i−1 Ξ ′ such that ∆′ ⊆ ∆ ∪
{ϕ}, Ξ ′ ⊆ Ξ , Var(∆′) ⊆ Var(Γ ) and Var(Ξ ′) ⊆ Var(Σ ∪ {ϕ}). Furthermore, the rule
[AscensionLi−1] is applied to each of these sequents, (possibly) followed by applications of
[WeakRi].

• There exist LK[σ ]-provable sequents Γ ′ ⇒i−1 ∆, ϕ and Σ ′ ⇒i−1 Ξ such that Γ ′ ⊆ Γ ,
Σ ′ ⊆ Σ ∪ {ϕ}, Var(Γ ′) ⊆ Var(∆ ∪ {ϕ}) and Var(Σ ′) ⊆ Var(Ξ). Furthermore, the rule
[AscensionRi−1] is applied to each of these sequents, (possibly) followed by applications of
[WeakLi].

• First, consider the former case, for which there are two subcases, one in which ϕ /∈ ∆′ and another
in which ϕ ∈ ∆′. In the former subcase, we can construct the end sequent easily. By hypothesis,
Π contains as a subproof an LK[σ ] proof Π ′′ of the sequent Γ ⇒i−1 ∆′. Our assumptions
about LK[σ ] include the fact that [AscensionLi−1] is applied to this sequent. Hence, the iterative
construction described in Definition 6.6 means that either [WeakLi−1] (if i ̸= 1) or Weakening
simpliciter (if i = 1) is a valid rule of LK[σ ], whence we may derive Γ , Σ ⇒i−1 ∆′. Because
Var(∆′) ⊆ Var(Γ ), it holds also that Var(∆′) ⊆ Var(Γ ∪Σ), whence we may apply [AscensionLi−1]
to yield Γ , Σ ⇒i ∆′. But by hypothesis, we may also apply [WeakRi], whence we can modify Π ′′

to construct an LK[σ ] proof of the sequent Γ , Σ ⇒i ∆, Ξ .
On the other hand, if ϕ ∈ ∆′, then Π has as a subproof an LK[σ ] proof of Γ ⇒i−1 ∆′ $ {ϕ}, ϕ

and Π ′ contains a subproof of ϕ, Σ ⇒i−1 Ξ ′. By induction hypothesis, the instance of [Cut] for
i − 1 is admissible, whence we are guaranteed that there exists an LK[σ ] proof Π ′′ of the sequent
Γ , Σ ⇒i−1 ∆′ $ {ϕ}, Ξ ′. We know that Var(∆′) ⊆ Var(Γ ) and Var(Ξ ′) ⊆ Var(Σ ∪ {ϕ}), entailing
that Var(∆′ ∪Ξ ′) ⊆ Var(Γ ∪Σ ∪{ϕ}). Because ϕ ∈ ∆′, the variables in ϕ appear in Γ , and Var(Γ ∪
Σ∪{ϕ}) = Var(Γ ∪Σ), so we may rewrite this as the fact that Var(∆′∪Ξ ′) ⊆ Var(Γ ∪Σ), licensing
us to apply [AscensionLi−1] to extend Π ′′ to a proof of Γ , Σ ⇒i ∆′ $ {ϕ}, Ξ ′. Finally, a single
application of [WeakRi] is sufficient to convert Π ′′ to an LK[σ ] proof of Γ , Σ ⇒i ∆, Ξ , as desired.
• The second case is largely dual to the first, and we break up subcases in which ϕ /∈ Σ ′ and
ϕ ∈ Σ ′. If ϕ /∈ Σ ′, then, as before, we have an LK[σ ] proof Π of the sequent Σ ′ ⇒i−1 Ξ . Because
[AscensionRi−1] is a rule of LK[σ ], by Definition 6.6, either [WeakRi−1] or weakening without
qualification is valid as well, from which we may turn Π into a proof of the sequent Σ ′ ⇒i−1
∆, Ξ . Again, the hypothesis tells us that Var(Σ ′) ⊆ Var(∆ ∪ Ξ), on which basis we may apply
[AscensionRi−1] to get a proof of Σ ′ ⇒i ∆, Ξ , and a further application of [WeakLi] converts Π

into a LK[σ ] proof of Γ , Σ ⇒i ∆, Ξ .
When ϕ ∈ Σ ′, then our proofs Π and Π ′ have LK[σ ] subproofs of the sequents Γ ′ ⇒i−1

∆, ϕ and Σ ′ $ {ϕ}, ϕ ⇒i−1 Ξ , respectively. By hypothesis, [Cut] holds for ⇒i−1, whence we are
guaranteed that there exists an LK[σ ] proof of the sequent Γ ′, Σ ′ $ {ϕ} ⇒i−1 ∆, Ξ . In this case,
Var(Γ ′) ⊆ Var(∆ ∪ {ϕ}), and Var(Σ ′) ⊆ Var(Ξ); again, because ϕ ∈ Σ ′, Var(ϕ) ⊆ Var(Ξ), the set
Var(∆ ∪ Ξ ∪ {ϕ}) may be simplified to Var(∆ ∪ Ξ). Putting this together, then, we conclude that
Var(Γ ′ ∪ (Σ ′ $ {ϕ})) ⊆ Var(∆ ∪ Ξ). This satisfies the proviso required to apply [AscensionRi−1]
to yield a proof of Γ ′, Σ ′ $ {ϕ} ⇒i ∆, Ξ . To this proof, we may apply [WeakLi] to yield an LK[σ ]
proof of Γ , Σ ⇒i ∆, Ξ , as we had needed. "

We plan to revisit these calculi and variants of them in future work.
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7 Concluding remarks
In this paper, we have identified a countably infinite family of subsystems of classical logic among
which are weak Kleene logic and its paraconsistent dual. We have provided characterizations of each
of the corresponding consequence relations and provided for each a sound and complete two-sided
sequent calculus. These results are exceedingly general and cover a host of very natural many-valued
matrices that have both historical and practical relevance. As any logician familiar with Hilbert’s
Grand Hotel knows, however, the mere fact that one has proven an infinite number of results does
not entail that the work has been completed. With this in mind, we end the paper by describing
several avenues in which this work can be directed.

One project that springs to mind is an investigation into the utility of these systems. As we have
suggested, the current state of the art in applied computer science frequently encounters programs
running in a cascade virtual machines nested in one another. This fact suggests room for applicability
of our results to this field, but much of this hinges on the matter of interpreting a contaminating value
as designated. We plan to devote future work to an investigation into the matter of designation (or
not) of these truth-values.

One formal matter that is entwined with the question of how to best provide a generalization of
the calculi HYB1 and HYB2 is the matter of proof complexity. One way to look at the trade-off
between the calculi that we have described and the method of many-sided sequent calculi is that our
presentation has limited the number of additional rules at the cost of a possibly exponential increase
of the search space. On its face, verifying that Γ ⇒ ∆ is provable seems to require a back-and-forth
procedure grabbing subsets of Γ and ∆ with appropriate variable-inclusion properties until landing
on Γ ′ ⊆ Γ and ∆′ ⊆ ∆ for which we can confirm that Γ ′ ⇒ ∆′ is classically provable. This seems
to indicate a worst-case complexity of verifying provability of a sequent as being in EXPTIME, but
we set aside the investigation into proof complexity for future work.

Finally, in a more theoretical vein, although we have out of convenience interpreted the matrix
MCL as classical logic, our results make clear that many of the characterization results apply mutatis
mutandis to any many-valued logic. (Indeed, the general method for constructing two-sided sequent
calculi ought to carry over in many cases as well.) Investigating the landscape of logics with linearly
ordered contaminating values in more generality would lead to studying appropriate subsystems
of a broad field of many-valued logics. Families of systems like the four-valued logic of first-
degree entailment and its cousins or fuzzy logics suggest that it would be interesting to study how
contaminating values interact with other logical properties, such as relevance, non-determinism,
fuzziness and so forth (some initial steps with respect to investigating contaminating values in
relevance logics can be found in [8]).
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