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Abstract

An ℓ‐cycle decomposition of Kv is said to be equitably

2‐colourable if there is a 2‐vertex‐colouring of Kv such

that each colour is represented (approximately) an

equal number of times on each cycle: more precisely,

we ask that in each cycle C of the decomposition, each

colour appears on ∕ ℓ 2 or ∕ ℓ 2 of the vertices of C.

In this paper we study the existence of equitably

2‐colourable ℓ‐cycle decompositions of Kv, where ℓ is

odd, and prove the existence of such a decomposition

for ≡v 1, ℓ (mod 2ℓ).
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1 | INTRODUCTION

In this paper, we consider the existence of equitably 2‐colourable ℓ‐cycle decompositions of Kv,
where ℓ is odd. We say that a graph Γ decomposes into subgraphs B B B, , …, t1 2 if the edge sets
of the Bi partition the edges of Γ. In the case that ≃ ≃ ⋯≃ ≃B B B Bt1 2 , we speak of a
B‐decomposition of Γ. In particular, an ℓ‐cycle decomposition of Γ is a B‐decomposition of Γ
where B is an ℓ‐cycle Cℓ.

The study of cycle decompositions originates in the 19th century, with the classical results
of Kirkman and Walecki on 3‐cycle and Hamilton cycle decompositions of the complete graph
[17, 19]. If Γ decomposes into cycles, then each vertex of Γ must have even degree. Thus, the
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complete graph Kv admits a cycle decomposition only when v is odd; for v even, it is common to
instead decompose the cocktail party graph K I−v , which is formed from Kv by removing the
edges of a 1‐factor I . Where necessary, we will use the notation K*v to denote Kv if v is odd and
K I−v if v is even. The existence of ℓ‐cycle decompositions of K*v was solved by Alspach and
Gavlas [5] and Šajna [22]; see also [8] for an alternative proof in the odd‐cycle case.

Theorem 1.1 (Alspach and Gavlas [5] and Šajna [22]). There exists a Cℓ‐decomposition of

K*v if and only if ≤ ≤ v3 ℓ and ℓ divides






v

v − 1

2
.

Note that in particular, there exists an ℓ‐cycle decomposition of Kv whenever
≡v 1 (mod 2ℓ) or ℓ is odd and ≡v ℓ (mod 2ℓ).
Decompositions of K*v into cycles of varying lengths have also been studied. In 1981,

Alspach [3] conjectured that the obvious necessary conditions for decomposing K*v into cycles
of given lengths are also sufficient. This was finally proven in 2014 by Bryant, Horsley and
Pettersson.

Theorem 1.2 (Bryant et al. [7]). Let ≥n 3 be an integer and ℓ , ℓ , …, ℓt1 2 be a list of integers
(not necessarily distinct) with ≤ ≤ v3 ℓi for all ∈i t{1, …, }. There is a decomposition of K*v

into cycles of lengths ℓ , ℓ , …, ℓt1 2 if and only if ⋯






vℓ + ℓ + + ℓ =t

v
1 2

( − 1)

2
.

The focus of this paper is a problem related to vertex colourings of cycle decompositions. If
 is a cycle decomposition of Γ, then a c‐colouring of  is a function →ϕ V S: (Γ) , where
 S c= . Informally, a c‐colouring may be thought of as an assignment of c colours to the vertices
of Γ. We will mainly consider the case c = 2, and will denote the colours by red and blue.

Of course, we generally wish such a colouring to satisfy additional properties concerning
the cycles of  . For example, if we require that each cycle have at least two vertices coloured
differently, the colouring is called weak; see [11, 12, 16] for results on weak colourings of cycle
systems. In this paper, we will consider equitable colourings. We say that a c‐colouring of an
ℓ‐cycle decomposition  is equitable if each cycle contains either ∕ cℓ or ∕ cℓ vertices of each
colour, that is, the colours are as equally distributed as possible amongst the vertices of each
cycle. Note that the term equitable colouring also occurs in the literature in other contexts, in
particular to refer to colourings in which the sizes of the colour classes differ by at most 1 (see,
e.g., [14]); our use of the word equitable follows the definition introduced in the Ph.D. thesis of
Waterhouse [26] (see also [1, 2, 18, 27]).

Equitable colourings of cycle systems of the complete and cocktail party graphs were
considered in [1, 2], while the papers [18, 27] consider equitable colourings of complete
multipartite graphs. The main results of these papers restrict their attention to the case that
the number of colours is 2 or 3, and the cycle length is small (at most 6). In particular, in [1, 2],
the authors completely determine the existence of equitably 2‐ or 3‐colourable ℓ‐cycle systems
of Kv and K I−v when the cycle length ℓ is 4, 5 or 6. In [10], the present authors consider
equitable 2‐colourings of even cycle systems of K I−v .

In this paper, we consider equitable 2‐colourings of ℓ‐cycle systems of the complete graph
Kv. A straightforward counting argument (see [1, 10]) shows that no equitably 2‐colourable
ℓ‐cycle decomposition of Kv can exist if ℓ is even; hence necessarily we consider only odd cycle
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length ℓ. We focus on the case where ≡v 1, ℓ (mod 2ℓ), in which there exists an ℓ‐cycle system
of Kv for any ≥ℓ 3. Our main result is the following.

Theorem 1.3. Let ℓ > 5 be odd, and ≡v 1 or ℓ (mod 2ℓ). There is an equitably
2‐colourable ℓ‐cycle decomposition of Kv.

In the case that the cycle length pℓ = is prime, Theorem 1.1 asserts that a p‐cycle system of
Kv exists if and only if ≡v 1 or p p(mod 2 ). Thus, Theorem 1.3, combined with the results of
[1] for cycle length 5 and the nonexistence of an equitably 2‐colourable Steiner triple system
[21] of order greater than 3, gives a complete existence result for equitably 2‐colourable p‐cycle
systems of Kv.

Corollary 1.4. Let p be an odd prime. There exists an equitably 2‐colourable p‐cycle
decomposition of Kv if and only if ≥p 5 and ≡v 1 or p p(mod 2 ), or p v= = 3.

Theorem 1.3 will be proved in Theorem 3.9 for ≡v 1 (mod 2ℓ), and in Theorem 3.10 for
≡v ℓ (mod 2ℓ). As we will see, the proof of Theorem 3.9 relies on the existence of an equitably

2‐colourable ℓ‐cycle decomposition of K2ℓ+1 with colour classes of sizes ℓ and ℓ + 1, and this
will be established in Section 2.1. Note that, moreover, the existence of an equitably
2‐colourable ℓ‐cycle decomposition of K4ℓ+1 cannot be established via the methods used in
proving Theorem 3.9, but requires a somewhat long ad hoc construction, which will be
presented in Section 2.2.

2 | THE ℓ2 + 1 AND ℓ4 + 1 CASE

In this section, we prove the existence of an equitably 2‐colourable ℓ‐cycle decomposition of
K2ℓ+1 (in Section 2.1) and K4ℓ+1 (in Section 2.2).

The constructions in Sections 2.1 and 2.2 will use 2‐rotational cycle systems (see, e.g., [23]),
that is, cycle systems of order n2 + 1 admitting an automorphism having exactly one fixed
point and two cycles of length n each.

The set of vertices will be identified with ∪ ∞( × {0, 1}) { }n , with∞ being the fixed point
as usual in this situation, and we will often denote the vertex a i i( , ), = 0, 1, with ai. The
colourings used will differ in the two cases, but share the property that vertices a0 and a1 will
have different colours. The vertex∞ will have colour blue.

A cycle system will be built via difference methods using a set of base cycles, which will be
developed modulo n( , −), that is, n(mod ) with respect to the first coordinate (with the usual
understanding that∞ ∞i+ = ); each base cycle C used in the decompositions that follow will
in this way give rise to an orbit of d cycles, d n. As usual, the difference arising from an edge of
a cycle a b~i j will be called mixed if ≠i j and pure (or i‐pure) if i j= . In particular, our
convention is that the edge a b~0 1 will give the mixed difference b a n− (mod ), and the edge
a b~i i will give the i‐pure difference b a n±( − ) (mod ).

We point out that the constructions used here are similar to those used in [24, 25] to obtain
almost resolvable odd ℓ‐cycle systems of order 2ℓ + 1 and 4ℓ + 1. In particular, a suitable
colouring of the cycle systems built in [25] gives an equitably 2‐colourable ℓ‐cycle
decomposition of K2ℓ+1 when ≡ℓ 1 (mod 4).
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2.1 | Case v ℓ= 2 + 1

In this section we show the existence of an equitably 2‐colourable ℓ‐cycle decomposition of
K2ℓ+1 with colour classes of sizes ℓ and ℓ + 1. As mentioned before, this cycle system will be
2‐rotational and will arise from a set of three base cycles to be developed modulo (ℓ, −), that is,
(mod ℓ) with respect to the first coordinate; the first cycle contains∞ and has an orbit of length
ℓ, the second base cycle will have trivial stabilizer and give a length ℓ orbit, and the third cycle
is stabilized by ℓ and has an orbit of length one.

To build the cycle containing ∞ we will use a result on graceful labellings. A graceful
labelling of a path P of length k is an injective assignment of the integers k0, …, to the vertices
of P with the property that each integer k1, …, appears as the difference of the endvertices of an
edge (see [15]). For example, the ordered labelling 0, 5, 1, 4, 2, 3 gracefully labels a path of
length 5.

Lemma 2.1. Consider a path with ≥h 2 vertices having labels h0, 1, …, − 1. There is a
graceful labelling of this path, say P0, such that one leaf has label 0, and one, say P1, in
which one leaf has label 1.

The proof follows, for instance, from Theorem 3 in [13].

Theorem 2.2. There is an equitably 2‐colourable ℓ‐cycle decomposition of K2ℓ+1 with
colour classes of sizes ℓ and ℓ + 1.

Proof. Let ∪ ∞V K( ) = ( × {0, 1}) { }2ℓ+1 ℓ ; as already mentioned, we will often denote
the vertex a i i( , ), = 0, 1 with ai for brevity. We colour the vertices by using red on the
vertices with an even label, and blue otherwise in the part labelled 0, and reverse this
colouring in the part with label 1. We colour ∞ blue. We will build a cycle system
developing modulo (ℓ, −).

We can use Lemma 2.1 to construct an ℓ‐cycle ∞C having ℓ − 1 edges of i‐pure
differences ∕ i±1, ±2, …, ±((ℓ − 3) 2), = 0, 1, and one of mixed difference 1, which is
equitably 2‐coloured with respect to the colouring given above, as follows.

Set ∕h = (ℓ − 1) 2 and apply Lemma 2.1 to build paths P0 on the ∕h = (ℓ − 1) 2

vertices h0 , …, ( − 1)0 0, with the last leaf labelled 00, and P1 on h0 , …, ( − 1)1 1, with the
first leaf labelled 11. We obtain the cycle ∞C by concatenating∞ P, 0 and P1.

Now consider the ℓ‐cycle



 


 


 


 


 


 


 


 






C = 0 , (ℓ − 2) , 1 , (ℓ − 3) , 2 , …,

ℓ + 1

2
,
ℓ − 3

2
,
ℓ − 1

2
,
ℓ − 1

2
.1 0 1 0 1

0 1 0 1

The cycle C contains an edge of each mixed difference except for 1 and one edge of
1‐pure difference ∕±(ℓ − 1) 2.

Note that the ℓ‐set of cycles we obtain by developing this cycle on first coordinates
consists of equitably coloured cycles. Indeed the last two vertices will have different
colours in C and all its translates; the remaining vertices form a run of ∕(ℓ − 1) 2

consecutive (mod ℓ) 1‐vertices, and ∕(ℓ − 3) 2 consecutive (mod ℓ) 0‐vertices, starting
from, in the cycle ∕C, 0 , …, (ℓ − 3) 21 1 and ∕(ℓ + 1) 2 , …, (ℓ − 2)0 0. It can be checked that
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this pattern remains equitably coloured in all translates: this is fairly obvious for
≠ ∕C i i+ , 2, (ℓ + 3) 2 and can be checked explicitly in these cases.

Now C and ∞C between them contain an edge of each mixed difference and each pure
difference except for the 0‐pure difference ∕±(ℓ − 1) 2, and ∕(ℓ − 1) 2 is a unit in ℓ;
hence this last difference is covered by the cycle

∕ ∕ ∕∕C = (0 , ((ℓ − 1) 2) , (2(ℓ − 1) 2) , (3(ℓ − 1) 2) , …).(ℓ−1) 2 0 0 0 0

□

Example 2.3. For ℓ = 9, we can take the three cycles

2.2 | Case v ℓ= 4 + 1

The aim of this section is to show an explicit construction for an equitably 2‐colourable ℓ‐cycle
decomposition of K4ℓ+1. We will prove the following.

Theorem 2.4. There is an equitably 2‐colourable ℓ‐cycle decomposition of K4ℓ+1 with
colour classes of sizes 2ℓ and 2ℓ + 1.

As above, we will construct a 2‐rotational cycle system, this time developed modulo (2ℓ, −)

from a set of six base cycles. On part 0 we will colour the vertices from 0 to ℓ − 1 red and those
from ℓ to 2ℓ − 1 blue, and reverse this colouring in part 1. The vertex∞ has colour blue.

To help the reader, we will first present an example to clarify the general construction.

Example 2.5. Let ℓ = 17 and v = 69: we identify the vertices of K69 with × {0, 1}34 ,
and denote the vertex a i i( , ), = 0, 1 with ai. The cycle system has six base cycles which
will be developed (mod 34). The first three cycles C C,p 0 and C1, have orbits of length 34
and, in our example, are as follows:

.

Note that the differences from C0 and C1 cover all the mixed differences except for 0
and ℓ = 17, and in C0 and C1 we also have one edge giving a pure difference, in the
example the 0‐pure difference ±7 in C0 and the 1‐pure difference ±7 in C1. The
mixed differences 0 and ℓ = 17 appear in Cp, and the remaining differences from Cp
are all pure, namely, 0‐pure differences ±{1, 3, 4, 5, 6, 15, 16} and 1‐pure differences
±{1, 3, 4, 5, 6, 8, 10, 16}.

Two base cycles ∞ ∞C C,0 1 will contain the vertex∞ and all remaining 0‐pure (resp.,
1‐pure) differences, except for 0‐pure difference ±2. These will be built using
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Lemma 2.12, which states that it is possible to build cycles ∞C i, = 0, 1i , that will
contain ∞, have edges of i‐pure difference ℓ and any ∕(ℓ − 3) 2 other i‐pure
differences; these cycles will have orbit‐length ℓ. In our case we have

We are left with the 0‐pure difference ±2 that gets covered by the cycle

having orbit length 2.

Proof of Theorem 2.4. Let us now describe the general construction needed to prove the
theorem. As already mentioned, we will use a set of six base cycles, namely,

∞ ∞{ }C C C C C C, , , , ,p0 1
0 1

2
0 , developed modulo (2ℓ, −). The cycles C0 and C1 will cover all

the mixed differences except for 0 and ℓ, and Ci will cover a single i‐pure difference
∈ ∕ ∕ ∕ ∕m i±{(ℓ − 5) 2, (ℓ − 3) 2, (ℓ − 1) 2, (ℓ + 1) 2}, = 0, 1. The construction of C0 and

C1 is somewhat laborious, and it is described in Lemma 2.6.
Let ∕S d d= ±{ , …, }0

1 (ℓ−3) 2 be a set 0‐pure differences of size (ℓ − 3) not containing
m±2, ± or ℓ, and ∕S d d= ±{ , …, }1

1 (ℓ−1) 2 a set 1‐pure differences of size (ℓ − 1) not
containing m± or ℓ. The cycleCp will have on its edges the mixed differences 0 and ℓ, the
0‐pure differences in S0, and the 1‐pure differences in S1. Its construction is to be found in
Lemma 2.8, and in Lemma 2.10 for the case ≡ℓ 3 (mod 8).

The cycles C C C, , p0 1 are all equitably coloured in the colouring described above.
The remaining pure differences will be found in the last three cycles. The cycles

∞ ∞C C,0 1 are built applying Lemma 2.12, which gives us the freedom to use any ℓ − 3

0‐pure and 1‐pure difference not already covered, and their development will also
contain all edges through∞. It is easily checked that these cycles and their translates are
equitably coloured.

The 0‐pure difference ±2 has not yet been used, and this difference can be found
on the last base cycle C = (0 , 2 , 4 , …, (2ℓ − 2) )2

0
0 0 0 0 , which is equitably coloured by

construction, together with its translate. This completes the proof. A summary of the
differences appearing in each cycle appears in Table 1. □

Let us show first how to build two base cycles C0 and C1.
The construction will be different according to the congruence class of ℓ modulo 8.

Lemma 2.6. Let ≥ℓ 7. There exist two ℓ‐cycles, C0 and C1, on vertex set × {0, 1}2ℓ

having among them the two 2ℓ − 2 edges of mixed differences in ⧹{0, 1, …, 2ℓ − 1} {0, ℓ}

and one edge of i‐pure difference m± in C i, = 0, 1i , where m is one of
∕ ∕ ∕ ∕(ℓ − 5) 2, (ℓ − 3) 2, (ℓ − 1) 2, (ℓ + 1) 2. Moreover Ci (i = 0, 1) and its translates

when developed modulo (2ℓ, −) are all equitably 2‐colourable under the colouring
previously described.
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Proof. We will use the following notation: for ∈ ∈x i,4ℓ 2 and ∈a {0, 1, …, 4ℓ − 1},
let p x a( ; )i be the 2‐path x x a x, ( + ) , ( − 2)i i i+1 , with subscripts computed modulo 2. For
instance, p (5, 4) = [5 , 9 , 3 ]0 0 1 0 .

Let z x a b( ; , )i denote the concatenation of b 2‐paths p x a p x a( ; ), ( − 2; + 4),i i

p x a p x b a b( − 4, + 8), …, ( − 2 + 2; + 4 − 4)i i (if b = 0 this is just an empty path). Note
that z x a b( ; , )i is a path of length b2 with vertex set x b x b x({ − 2 , − 2 + 2, …, }

∪i x a x a x a x a b i×{ }) ({ + , + + 2, + + 4, …, + + 2 − 2} × { + 1}). Its initial vertex is
xi and terminal vertex is x b( − 2 )i. Moreover, z x a b( ; , )0 and z x a b( ; , )1 between them
contain an edge of each mixed difference in a a a a b±{ , + 2, + 4, …, + 4 − 2}. For instance,
z (5, 4, 2) = [5 , 9 , 3 , 11 , 1 ]0 0 1 0 1 0 .

Case. ≡ℓ 7 (mod 8)

C0 is the concatenation of paths

∕ ∕

∕

∕ ∕

∕ ∕

z

z

((ℓ − 3) 2; 3, (ℓ − 3) 4),

0 , ((ℓ − 3) 2) ,

((ℓ − 3) 2; 3, (ℓ − 3) 4),

0 , ((ℓ − 1) 2) , ((ℓ − 3) 2) .

1

1 0

0

0 0 1

Note that, except for vertex ∕ C((ℓ − 1) 2) ,0 0 either contains both of x0 and x1, or else
contains neither, so that C0 and all its translates are equicoloured. Also, C0 contains an
edge of 0‐pure difference ∕±(ℓ − 1) 2, and an edge of each mixed difference in

∪ ∪ ∕{−1} ±{3, 5, 7, …, (ℓ − 2)} {−(ℓ − 3) 2}.

C1 is the concatenation of paths

TABLE 1 The differences used in ∞C C C C C, , ,p0 1 2
0 0 and ∞C

1 .

Mixed differences 0, ℓ Cp

⧹{0, 1, …, 2ℓ − 1} {0, ℓ} C0 and C1

0‐Pure differences m± C0

±2 C2
0

S0 Cp

⧹ ∪S m( {0, ±2, ± })2ℓ
0

∞C
0

1‐Pure differences m± C1

S1 Cp

⧹ ∪S m( {0, ± })2ℓ
1

∞C
1

Edges containing∞ ∞C
0 and ∞C

1 and their translates
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∕ ∕

∕ ∕ ∕

∕

∕ ∕

∕ ∕ ∕

∕ ∕

z

z

z

z

((ℓ − 3) 2; 2, (ℓ − 7) 8),

((ℓ + 1) 4; (ℓ + 1) 2, (ℓ + 1) 8)),

0 , ((ℓ − 3) 2) ,

((ℓ − 3) 2; 2, (ℓ − 7) 8),

((ℓ + 1) 4; (ℓ + 1) 2, (ℓ + 1) 8)),

0 , ((ℓ − 1) 2) , ((ℓ − 3) 2) .

0

0

0 1

1

1

1 1 0

As above, C1 and all its translates are equitably coloured. Also, C1 contains an edge of
1‐pure difference ∕±(ℓ − 1) 2, and an edge of each mixed difference in

Case. ≡ℓ 1 (mod 8)

C0 is the concatenation of paths

∕ ∕

∕

∕ ∕

∕

∕ ∕

z

z

((ℓ − 5) 2; 3, (ℓ − 5) 4),

0 , ((ℓ − 5) 2) ,

((ℓ − 5) 2; 3, (ℓ − 5) 4),

0 , (ℓ − 1) , ((ℓ − 1) + (ℓ − 3) 2) ,

((ℓ − 1) + (ℓ − 5) 2) , ((ℓ − 5) 2) .

0

0 1

1

1 0 0

1 0

Note that the three vertices ∕(ℓ − 1) , ((ℓ − 1) + (ℓ − 3) 2)0 0 and ∕((ℓ − 1) + (ℓ − 5) 2)1

cannot all have the same colour, since ∕((ℓ − 1) + (ℓ − 3) 2)0 and ∕((ℓ − 1) + (ℓ − 5) 2)1

have different colours; the same holds in all but two of the translates of this 3‐vertex‐set, and it
is readily seen that in these two cases (ℓ − 1)0 has a different colour. As for the remaining
ℓ − 3 vertices of the cycle say xi, we have that C0 either contains both of x0 and x1, or else
contains neither, so thatC0 and its translates are equitably coloured. Moreover,C0 contains an
edge of 0‐pure difference ∕±(ℓ − 3) 2, and an edge of each mixed difference in

∕ ∪ ∪{−1, (ℓ − 5) 2)} ±{3, 5, 7, …, (ℓ − 4)} ±{(ℓ − 1)}.

C1 is the concatenation of paths

∕ ∕

∕ ∕ ∕

∕

∕ ∕

∕ ∕ ∕

∕

∕ ∕

z

z

z

z

((ℓ − 5) 2; 2, (ℓ − 9) 8),

((ℓ − 1) 4; (ℓ − 1) 2, (ℓ − 1) 8)),

0 , ((ℓ − 5) 2) ,

((ℓ − 5) 2; 2, (ℓ − 9) 8),

((ℓ − 1) 4; (ℓ − 1) 2, (ℓ − 1) 8)),

0 , (ℓ − 2) , ((ℓ − 2) + (ℓ − 3) 2) ,

((ℓ − 2) + (ℓ − 5) 2) , ((ℓ − 5) 2) .

1

1

1 0

0

0

0 1 1

0 1

Reasoning as for C0, the cycle C1 is also equitably coloured: two different colours
appear in the last three vertices, while for the remaining ones the cycle either contains
both of x0 and x1, or else contains neither.
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The cycle C1 contains an edge of 1‐pure difference ∕±(ℓ − 3) 2, and an edge of each
mixed difference in

Case. ≡ℓ 5 (mod 8)

C0 is the concatenation of paths

∕ ∕

∕

∕ ∕

∕

∕ ∕

z

z

((ℓ − 5) 2; 1, (ℓ − 5) 4),

0 , ((ℓ − 5) 2) ,

((ℓ − 5) 2; 1, (ℓ − 5) 4),

0 , (ℓ − 2) , ((ℓ − 2) + (ℓ − 1) 2) ,

((ℓ − 2) + (ℓ − 5) 2) , ((ℓ − 5) 2) .

0

0 1

1

1 0 0

1 0

Reasoning as previously, it is easy to see that C0 is equitably coloured. It contains an
edge of 0‐pure difference ∕±(ℓ − 1) 2, and an edge of each mixed difference in

∕ ∪ ∪{−2, (ℓ − 5) 2} ±{1, 3, 5, 7, …, (ℓ − 6)} ±{(ℓ − 2)}.

C1 is the concatenation of paths

∕ ∕

∕ ∕ ∕

∕

∕ ∕

∕ ∕ ∕

∕

∕ ∕

z

z

z

z

((ℓ − 5) 2; 4, (ℓ − 13) 8),

((ℓ + 3) 4; (ℓ − 1) 2, (ℓ + 3) 8)),

0 , ((ℓ − 5) 2) ,

((ℓ − 5) 2; 4, (ℓ − 13) 8),

((ℓ + 3) 4; (ℓ − 1) 2, (ℓ + 3) 8)),

0 , (ℓ − 4) , ((ℓ − 4) + (ℓ − 1) 2) ,

((ℓ − 4) + (ℓ − 5) 2) , ((ℓ − 5) 2) .

1

1

1 0

0

0

0 1 1

0 1

Reasoning as above, it is easy to see that C1 is also equitably coloured. It contains an
edge of 1‐pure difference ∕±(ℓ − 1) 2, and an edge of each mixed difference in

Case. ≡ℓ 3 (mod 8)

C0 is the concatenation of paths

∕ ∕

∕ ∕ ∕ ∕ ∕

∕ ∕ ∕

∕

∕ ∕

∕ ∕ ∕ ∕ ∕

∕ ∕ ∕

∕

z

z

z

z

((ℓ − 7) 2; 2, (ℓ − 11) 8),

((ℓ − 3) 4) , ((3ℓ − 13) 4) , ((ℓ − 7) 4) , ((3ℓ − 9) 4) , ((ℓ − 11) 4) ,

((ℓ − 11) 4; (ℓ + 13) 2, (ℓ − 11) 8),

0 , ((ℓ − 7) 2) ,

((ℓ − 7) 2; 2, (ℓ − 11) 8),

((ℓ − 3) 4) , ((3ℓ − 13) 4) , ((ℓ − 7) 4) , ((3ℓ − 9) 4) , ((ℓ − 11) 4) ,

((ℓ − 11) 4; (ℓ + 13) 2, (ℓ − 11) 8),

0 , (2ℓ − 1) , ((ℓ − 7) 2) ,

0

0 1 0 1 0

0

0 1

1

1 0 1 0 1

1

1 0 0
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C0 contains an edge of 0‐pure difference ∕±(ℓ − 5) 2, and an edge of each mixed
difference in

∕ ∪ ∕

∪ ∕ ∕ ∕ ∕

∪ ∕ ∕

{1, (ℓ − 7) 2} ±{2, 4, …, (ℓ − 11) 2}

±{(ℓ − 5) 2, (ℓ − 3) 2, (ℓ − 1) 2, (ℓ + 1) 2}

±{(ℓ + 13) 2, (ℓ + 17) 2, …, ℓ − 1}.

C1 is the concatenation of paths

∕ ∕

∕ ∕ ∕ ∕ ∕

∕ ∕ ∕

∕

∕ ∕

∕ ∕ ∕ ∕ ∕

∕ ∕ ∕

∕

z

z

z

z

((ℓ − 7) 2; 3, (ℓ − 11) 8),

((ℓ − 3) 4) , ((3ℓ + 3) 4) , ((ℓ − 7) 4) , ((3ℓ + 7) 4) , ((ℓ − 11) 4) ,

((ℓ − 11) 4; (ℓ + 11) 2, (ℓ − 11) 8),

0 , ((ℓ − 7) 2) ,

((ℓ − 7) 2; 3, (ℓ − 11) 8),

((ℓ − 3) 4) , ((3ℓ + 3) 4) , ((ℓ − 7) 4) , ((3ℓ + 7) 4) , ((ℓ − 11) 4) ,

((ℓ − 11) 4; (ℓ + 11) 2, (ℓ − 11) 8),

0 , (2ℓ − 1) , ((ℓ − 7) 2) .

1

1 0 1 0 1

1

1 0

0

0 1 0 1 0

0

0 1 1

C1 contains an edge of 1‐pure difference ∕±(ℓ − 5) 2, and an edge of each mixed
difference in

∕ ∪ ∕

∪ ∕ ∕ ∕ ∕

∪ ∕ ∕

{−1, −(ℓ − 7) 2} ±{3, 5, …, (ℓ − 9) 2}

±{(ℓ + 3) 2, (ℓ + 5) 2, (ℓ + 7) 2, (ℓ + 9) 2}

±{(ℓ + 11) 2, (ℓ + 15) 2, …, ℓ − 2}.

□

Example 2.7. Case ≡ℓ 7 (mod 8): for ℓ = 15 the cycles are

.

An example for the case ≡ℓ 1 (mod 8) is part of Example 2.5.
Case ≡ℓ 5 (mod 8): for ℓ = 21 the cycles are

Case ≡ℓ 3 (mod 8): for ℓ = 19 the cycles are

.

.

The following results are used to construct the base cycle Cp in the proof of Theorem 2.4 for
≥ℓ 9.
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Lemma 2.8. Let ≥ℓ 7 be odd. If ≥ℓ 9, then for any ∈ ∕m {(ℓ − 3) 2, …, ℓ − 3}, there is
an ℓ‐cycle C on vertex set × {0, 1}2ℓ containing ∕(ℓ − 3) 2 edges of distinct 0‐pure
difference, ∕(ℓ − 1) 2 edges of distinct 1‐pure difference and two edges of mixed differences 0
and ℓ, satisfying the following properties:

1. C contains no edges of 0‐pure difference m±2, ± or ℓ, and no edge of 1‐pure difference
m± or ℓ.

2. For every vertex x0 in C x, 1 is also a vertex in C. In particular, C and its translates when
developed modulo (2ℓ, −) are all equitably 2‐colourable under the colouring previously
described.

If ℓ = 7, then there is a cycle satisfying properties 1 and 2 with m = 3.

Proof. In the case ℓ = 7, we take

and note that C contains no edge of 0‐ or 1‐pure difference ∕m = ±3 = ±(ℓ − 1) 2.
Now suppose ≥ℓ 9. Notationally, let y x a b( ; , )i be the path

x x a b x x a b t, ( + + ) , ( + 1) , ( + + − 1) , …, ,i i i i i

where

∕

∕





t x
a b b

b b
= +

+ 2, if is even,

( + 1) 2, if is odd.

In particular, y x a b( ; , )i contains an edge of each i‐pure difference a a a b, + 1, …, + .
Let y x a b′( ; , )i denote the path y x a b( ; , )i traversed in the opposite order, that is, with
initial vertex ti and terminal vertex xi.

If ℓ > 9, let ∕Y y= (2; 3, (ℓ − 11) 2)0 0 and ∕Y y= ′ (2; 3, (ℓ − 11) 2)1 1 . For ℓ = 9, let Y0

and Y1 be null paths. Note that Yi is a path containing ∕(ℓ − 9) 2 edges of distinct i‐pure
difference in ∕{3, …, (ℓ − 5) 2}, and vertices distinct from 0 , 1i i and ℓi. Moreover, the
vertices of Y1 are precisely those of the form v1 where ∈v V Y( )0 0 . Let the terminal vertex
Y0 (resp., the initial vertex of Y1) be t0 (resp., t1).

Let u be any element of ∕{(ℓ + 1) 2, …, ℓ − 2} such that ∉m u u{ − 2, }. Note that the
number of elements in this set is ∕(ℓ − 3) 2, and at most two of them can equal m or
m + 2; thus since ≥ℓ 9, a suitable element u can be chosen.

Define the cycle C as the concatenation of the following paths:

Y
t t

Y

u

0 1 ℓ 2 ;

,
,

,

2 0 1 ℓ .

0 0 0 0

0

0 1

1

1 1 1 1 1

By construction, C has the required properties. □
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Example 2.9. Let ℓ = 13 and m = 5. Then, choosing u = 8, we get

Lemma 2.10. Let ≡ℓ 3 (mod 8), ≥ℓ 11. There is an ℓ‐cycle C on vertex set × {0, 1}2ℓ

containing ∕(ℓ − 3) 2 edges of distinct 0‐pure difference, ∕(ℓ − 1) 2 edges of distinct 1‐pure
difference and two edges of mixed differences 0 and ℓ, satisfying the following properties:

1. C contains no edges of 0‐pure difference ∕±2, ±(ℓ − 5) 2 or ℓ, and no edge of 1‐pure
difference ∕±(ℓ − 5) 2 or ℓ.

2. For every vertex x0 in C x, 1 is also a vertex in C. In particular, C and its translates when
developed modulo (2ℓ, −) are all equitably 2‐colourable under the colouring previously
described.

Proof. For ℓ = 11, let

For ℓ > 11, the cycle is constructed similarly to that in Lemma 2.8, except that we skip
the edge of pure difference ∕±(ℓ − 5) 2. Define the notation y x a b( ; , )i and y x a b′( ; , )i as
in the proof of Lemma 2.8. Let ∕Y y= (4; 3, (ℓ − 15) 2)0 0 and ∕Y y= ′ (4; 3, (ℓ − 15) 2)1 1 ;
here ∕b = (ℓ − 15) 2 is even so that ∕ ∕t = 4 + 3 + (ℓ − 15) 4 = (ℓ + 13) 4.

The cycle C is the concatenation of the following paths:

∕

∕ ∕

Y
t t

Y

0 1 ℓ 2 ((ℓ + 1) 2) 4 ;

;
;

;

4 ((ℓ + 1) 2) 2 ((ℓ + 3) 2) 0 1 ℓ .

0 0 0 0 0 0

0

0 1

1

1 1 1 1 1 1 1

By construction, C has the required properties. □

Example 2.11. Let ℓ = 19. Then

Finally, the following lemma describes how to build the cycles containing∞.

Lemma 2.12. Let ℓ be odd and let ∕D d d d= { , , …, }1 2 (ℓ−3) 2 be a set of ∕(ℓ − 3) 2 distinct
elements of {1, 2, …, ℓ − 1} with ⋯ ∕d d d> > >1 2 (ℓ−3) 2. There exists an ℓ‐cycle C on vertex
set ∪ ∞{ }2ℓ with ∂ ∪C D( ) = ± {ℓ}.

Proof. For ∕k = 1, 2, …, (ℓ − 3) 2, let s d= (−1)i i
k i

i=1
−1 . Since ∕d d d, , …,1 2 (ℓ−3) 2 is a

strictly decreasing sequence of positive integers and each ≤d ℓ − 1i , note that for each
i s, 0 < < ℓi . Thus

∞ ∕ ∕ ∕C s s s s s s= ( , 0, , , …, , + ℓ, + ℓ, …, + ℓ, ℓ)1 2 (ℓ−3) 2 (ℓ−3) 2 (ℓ−5) 2 1
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is an ℓ‐cycle with vertices in ∪ ∞{ }2ℓ , and it is easy to check that ∂ C( ) is as required.
□

Remark 2.13. If using the 2‐colouring of 2ℓ described at the beginning of this section,
that is one colour on 0, …, ℓ − 1 and a different colour on ℓ, …, 2ℓ − 1, then the cycle
built in Lemma 2.12 is equitably coloured.

3 | EQUITABLY 2 ‐COLOURABLE ℓ‐CYCLE
DECOMPOSITIONS OF Kv WHEN ≡v 1 OR ℓ mod ℓ( 2 )

The aim of this section is to complete the proof of the existence of an equitably 2‐colourable
ℓ‐cycle decomposition of ≡K v, 1v or ℓ (mod 2ℓ). The cases v = 2ℓ + 1 and v = 4ℓ + 1 have
already been established, so if ≡v 1 (mod 2ℓ), we can assume ≥v 6ℓ + 1.

Throughout this section, we make use of lexicographic products. Formally, the lexicographic
product of graphs G and H is the graph G H[ ] with vertex set V G V H( ) × ( ) and edges of the
form g h g h( , )( ′, ′), where ∈gg E G′ ( ) and ∈h h V H, ′ ( ) or g g= ′ and ∈hh E H′ ( ). We will
generally take H to be an empty graph, that is, ≃H Kn , and in this case, we denote G H[ ] by
G n[ ]; the formation ofG n[ ] can be thought of as “blowing up” the vertices ofG by a factor of n.

Our approach for forming an equitably 2‐colourable decomposition in the case
≡v 1 (mod 2ℓ) is as follows. Let v k= 2 ℓ + 1, and view the vertex set of Kv as

∪ ∞( × ) { }k2 ℓ . We partition ×k2 ℓ into k2 parts of size ℓ. Each part will be coloured
with ∕(ℓ + 1) 2 red vertices and ∕(ℓ − 1) 2 blue vertices, while ∞ will be coloured blue. The
parts are then partitioned into pairs; each pair, together with∞, induces a copy of K2ℓ+1, which
is decomposed into equitably coloured ℓ‐cycles. The remaining edges induce a subgraph
isomorphic to K [2ℓ]k , which we decompose into copies of C [ℓ]3 and C [ℓ]5 . These are further
decomposed into equitably 2‐coloured ℓ‐cycles.

When ≡v ℓ (mod 2ℓ), writing v k= (2 + 1)ℓ, we decompose Kv into K [ℓ]k2 +1 together with
k2 + 1 copies of Kℓ. Again, each part is coloured with ∕(ℓ + 1) 2 red vertices and ∕(ℓ − 1) 2 blue
vertices. Each copy of Kℓ is decomposed into equitably coloured Hamiltonian cycles, while
K [ℓ]k2 +1 is again decomposed into copies of C [ℓ]3 and C [ℓ]5 , which we further decompose into
equitably 2‐coloured ℓ‐cycles.

Our first aim will be to show that the graphs C [ℓ]3 and C [ℓ]5 possess an equitably
2‐colourable ℓ‐cycle system; many of the ideas and constructions used here are based on the
results by Alspach, Schellenberg, Stinson and Wagner in [4], and in fact, in most cases our
proofs will only show that the cycle decompositions built in [4] are 2‐equicolourable. Let us
point out that, unlike the authors of [4], our aim is to only build a cycle system, not a
2‐factorization.

When decomposing C [ℓ]s , it is useful to view it as a Cayley graph.

Definition 3.1. Let G be an additive group and let ⊆ GΩ be closed under negation.
The Cayley graph GCay[ , Ω] is the graph with vertex setG, such that gh is an edge if and
only if ∈g h− Ω.

Identifying the vertex set of C [ℓ]s with ×s ℓ, note that ≃C [ℓ] Cay[ × , Ω]s s ℓ , with
∕i iΩ = {(±1, ± ), = 0, 1, …, (ℓ − 1) 2}. As in [4], to obtain an ℓ‐cycle system of C [ℓ]s , we

will partition Ω into disjoint subsets Ω1 and Ω2, and decompose the graphs Cay[ × , Ω ]s ℓ 1
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and Cay[ × , Ω ]s ℓ 2 separately into ℓ‐cycles; often i iΩ = {(±1, ± ) = 0, 1, 2}1 and
∕i iΩ = {(±1, ± ) = 3, …, (ℓ − 1) 2}2 .

Definition 3.2. Given an ℓ‐cycle C a b a b a b= (( , ), ( , ), …, ( , ))0 0 1 1 ℓ−1 ℓ−1 in C [ℓ]s , the
s‐development of C is the set of cycles

∈a i b a i b a i b i{(( + , ), ( + , ), …, ( + , )) },s0 0 1 1 ℓ−1 ℓ−1

that is, the set of cycles obtained from C by developing modulo s( , −).

To decompose C [ℓ]s , as in [4], we employ a Hamiltonian decomposition of an auxiliary
Cayley graph ACay[ , ]ℓ and lift these cycles to ACay[ × , {±1} × ]s ℓ .

Definition 3.3 (Alspach et al. [4]; see also Burgess et al. [9]). LetC c c c= ( , , …, )0 1 ℓ−1 be a
directed Hamiltonian cycle in Kℓ (with vertex set identified with ℓ). Given the directed
Hamiltonian ℓ‐cycle C c c c= ( , , …, )0 1 ℓ−1 , the projection of C onto C [ℓ]s

is the following ℓ‐cycle in C [ℓ]s :

c c s c c c c c((0, ), (1, ), …, ( − 1, ), (0, ), (1, ), …, (0, ), (1, )).s s s0 1 −1 +1 ℓ−2 ℓ−1

The reverse projection of C is the ℓ‐cycle

c s c s c c c s c c

c s c

((0, ), ( − 1, ), ( − 2, ), …, (1, ), (0, ), ( − 1, ), (0, ),

(1, ), …, ( − 1, )).
s s s s

s

0 1 2 −1 +1 +2

+3 ℓ−1

Informally, we can think of the projection of C as wrapping once around the s‐cycle, and
then zig‐zagging between the first two parts, while the reverse projection wraps in the opposite
direction. An edge xy of difference d x y= ±( − ) in C will yield edges of differences d±(1, ) in
C [ℓ]s .

It is straightforward to check that the following lemma holds. For the decomposition part,
see Lemma 2 in [4] and Lemma 2.6 in [9].

Lemma 3.4. If  is a Hamiltonian decomposition for Z ACay[ , ]ℓ , then we obtain an
ℓ‐cycle decomposition for Cay[ × , Ω]s ℓ with AΩ = {±1} × by considering the
s‐development of the projection and reverse projection of C for all ∈C  .

Moreover, if we consistently colour each ℓ‐part with ∕(ℓ + 1) 2 red and ∕(ℓ − 1) 2 blue
vertices, then the cycles we obtain are 2‐equicoloured.

The lemma below easily follows from the main theorem of [6].

Lemma 3.5. The graph ∕ ≥ZCay[ , ±{3, 4, …, (ℓ − 1) 2}], ℓ 7ℓ odd, has a Hamiltonian
decomposition.

Proof. From [6] we have that every 4‐regular connected Cayley graph on a finite abelian
group can be decomposed into two Hamiltonian cycles. When ≡ℓ 1 (mod 4), we obtain a
Hamiltonian decomposition of ∕ZCay[ , ±{3, 4, …, (ℓ − 1) 2}]ℓ by applying this result
iteratively to Z ZCay[ , ±{3, 4}], Cay[ , ±{5, 6}]ℓ ℓ ,…, ∕ ∕ZCay[ , ±{(ℓ − 3) 2, (ℓ − 1) 2}]ℓ . If
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≡ℓ 3 (mod 4), we use the same procedure to obtain a Hamiltonian decomposition for
∕ZCay[ , ±{3, 4, …, (ℓ − 3) 2}]ℓ and note that ∕ZCay[ , ±(ℓ − 1) 2]ℓ is a Hamiltonian cycle.

□

As in [4], the general strategy to construct ℓ‐cycle systems of C [ℓ]s is to separately
decompose the graphs Cay[ × , Ω ]s ℓ 1 and Cay[ × , Ω ]s ℓ 2 , with ∪Ω ˙ Ω = Ω1 2 , into ℓ‐
cycles; with one exception (a direct construction presented in Lemma 3.7) we will have that

i iΩ = {(±1, ± ), = 0, 1, 2}1 and ∕i iΩ = {(±1, ± ), = 3, …, (ℓ − 1) 2}2 . Each decomposition will
be 2‐equicolourable, and will have the property that each part has ∕(ℓ + 1) 2 red and ∕(ℓ − 1) 2

blue vertices.
It is easy to see that such a decomposition exists for Cay[ × , Ω ]s ℓ 2 , since it is enough to

combine Lemmas 3.4 and 3.5: the real work will lie in decomposing Cay[ × , Ω ]s ℓ 1 .

Lemma 3.6. There is an equitably 2‐colourable ℓ‐cycle decomposition of C [ℓ]3 in which
each part has ∕(ℓ + 1) 2 red and ∕(ℓ − 1) 2 blue vertices.

Proof. As mentioned above, we only need to decompose Cay[ × , Ω ]3 ℓ 1 , with
i iΩ = {(±1, ± ), = 0, 1, 2}1 , into ℓ‐cycles, and show that such a decomposition is

equitably 2‐colourable with each part having ∕(ℓ + 1) 2 red and ∕(ℓ − 1) 2 blue vertices.
We obtain the required decomposition by developing the following five base

cycles modulo 3 with respect to the first components, where, in the last cycle,
≡ ∕a (ℓ − 1) 2 (mod 3).

C

C

C

C

C a

a a a a

= ((0, 0), (1, ℓ − 1), (0, ℓ − 2), (1, ℓ − 3), …, (1, 4), (0, 3), (1, 2), (2, 2)),

= ((0, 1), (1, 0), (2, 0), (1, ℓ − 2), (2, ℓ − 2), (1, ℓ − 4), (2, ℓ − 4),

…, (1, 3), (2, 3)),

= ((0, 2), (1, 1), (2, 1), (0, ℓ − 1), (2, ℓ − 1), (0, ℓ − 3), (2, ℓ − 3),

…, (0, 4), (2, 4)),

= ((0, 0), (1, 1), (2, 2), (0, 3), (2, 4), (0, 5), (2, 6), …, (0, ℓ − 2), (2, ℓ − 1)),

= ((0, 0), (1, 2), (2, 4), (0, 6), (1, 8), …, ( , ℓ − 1),

( + 1, 1), ( + 2, 3), ( + 1, 5), ( , 7), …, (0, ℓ − 6, ), (2, ℓ − 4), (1, ℓ − 2)).

1

2

3

4

5

Note that this is just a different presentation of the construction used in the proof of
Theorem 5 in [4]. We will colour each ℓ‐part of the graph C [ℓ]3 with the same pattern: to
ensure that the colouring is equitable, then, we only need to consider the second
components of the vertices in each base cycle. When ≡ℓ 1 (mod 4), we will colour the
vertices in ∕ ∈i i i i{( , 0), ( , 1), …, ( , (ℓ − 1) 2), }3 red and the remaining vertices blue;
when ≡ℓ 3 (mod 4), we will instead colour ∕ ∈i i i i{( , 0), ( , 1), …, ( , (ℓ − 3) 2), }3 blue
and the remaining vertices red; it is easy to check that this colouring is equitable. □

When considering ℓ‐cycle decompositions for C [ℓ]5 , the case ℓ = 7 needs an ad hoc
construction, while for ℓ > 7 we once more rely on a construction from [4].

Lemma 3.7. There is an equitably 2‐colourable 7‐cycle decomposition of C [7]5 in which
each part has four red vertices and three blue vertices.

BURGESS and MEROLA | 433

 15206610, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcd.21937 by C

ochraneItalia, W
iley O

nline L
ibrary on [18/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Proof. In this case, we will give an explicit cycle decomposition: we colour the
vertices in the set ∈i j i j{( , 2 ), , = 0, 1, 2, 3}5 red, and the remaining vertices blue.
Decompose Cay[ × , {(±1, ±2)}]5 ℓ by considering the 5‐development of the
projection and reverse projection of the cycle C = (0, 2, 4, 6, 1, 3, 5), and
Cay[ × , {(±1, 0), (±1, ±1), (±1, ±3)}]5 ℓ with the 5‐development of the following
five starter cycles.

C

C

C

C

C

= ((0, 1), (1, 2), (2, 2), (3, 3), (4, 0), (0, 0), (1, 1)),

= ((0, 3), (1, 2), (2, 5), (3, 2), (4, 6), (0, 6), (1, 3)),

= ((0, 5), (1, 6), (2, 0), (3, 3), (4, 4), (0, 4), (1, 5)),

= ((0, 1), (1, 0), (2, 4), (3, 3), (4, 6), (0, 5), (1, 4)),

= ((0, 4), (1, 0), (2, 6), (3, 2), (4, 1), (0, 5), (1, 1)).

1

2

3

4

5

□

Lemma 3.8. There is an equitably 2‐colourable ℓ‐cycle decomposition of C [ℓ]5 for any
odd ≥ℓ 7 in which each part has ∕(ℓ + 1) 2 red and ∕(ℓ − 1) 2 blue vertices.

Proof. The case ℓ = 7 follows from the previous lemma; for ℓ > 7, we consider once
more the construction used in the proof of Theorem 5 in [4]. This construction, though
lacking the compact presentation seen for C [ℓ]3 , has the same pattern of that case in the
second components of the vertices of the cycles. It is then possible to see that the same
colouring presented in the proof of Lemma 3.6 will once more give an equitably
2‐colourable cycle system. □

We now turn to constructing equitably 2‐colourable ℓ‐cycle decompositions of Kv.

Theorem 3.9. If ≡v 1 (mod 2ℓ), then there is an equitably 2‐colourable ℓ‐cycle
decomposition of Kv.

Proof. The result is true when v = 2ℓ + 1 and v = 4ℓ + 1 by Theorems 2.2 and 2.4, so
we henceforth assume ≥v 6ℓ + 1.

Let v k= 2 ℓ + 1, where ≥k 3. Let the vertex set of Kv be ∪ ∞( × ) { }k2 ℓ . For each
element ∈x k2 , we colour ∕(ℓ + 1) 2 vertices of x{ } × ℓ red and ∕(ℓ − 1) 2 blue. Vertex
∞ is coloured blue.

To find an ℓ‐cycle decomposition of Kv, we first decompose Kv into k subgraphs
isomorphic to K2ℓ+1 (on vertex sets ∪ ∞i i({2 , 2 + 1} × ) { }ℓ for each ∈i k{0, …, − 1}),
along with a copy of K I( − )[ℓ]k2 (where the 1‐factor I is given by the set of edges

k k{{0, 1}, {2, 3}, …, {2 − 2, 2 − 1}}). Each copy of K2ℓ+1 has ℓ blue vertices and ℓ + 1 red
vertices. On each, we place a copy of an ℓ‐cycle decomposition of K2ℓ+1 from
Theorem 2.2, with the colour classes corresponding to the existing colouring.

It remains to decompose K I( − )[ℓ]k2 . To this, first note that since ≥k 3, we can write
∕k k k k m n2 (2 − 2) 2 = 2 ( − 1) = 3 + 5 for some non‐negative integers m and n; thus

K I−k2 can be decomposed into m cycles of length 3 and n cycles of length 5 by
Theorem 1.2. Blowing up each vertex by ℓ, we obtain a decomposition of K I( − )[ℓ]k2 into
subgraphs isomorphic to C [ℓ]3 and C [ℓ]5 , where each part of size ℓ has ∕(ℓ − 1) 2 blue
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vertices and ∕(ℓ + 1) 2 red vertices. On each of these subgraphs, place an equitably 2‐
coloured ℓ‐cycle decomposition using Lemma 3.6 or 3.8. □

Theorem 3.10. Let ≡v ℓ (mod 2ℓ). There is an equitably 2‐colourable ℓ‐cycle
decomposition of Kv.

Proof. Let v k k= 2 ℓ + ℓ = ℓ(2 + 1). We form an ℓ‐cycle decomposition of Kv as

follows. First, writing ( ) k k m n= (2 + 1) = 3 + 5
k2 + 1

2
for some non‐negative integers m

and n, we may decompose K k2 +1 into m cycles of length 3 and n cycles of length 5 by
Theorem 1.2. Now blow up each vertex by a factor of ℓ, so that each vertex becomes a
part of size ℓ and each cycle becomes a copy of C [ℓ]3 or C [ℓ]5 . Colour each part with

∕(ℓ + 1) 2 vertices red and ∕(ℓ − 1) 2 blue. On each copy of C [ℓ]3 or C [ℓ]5 , place an
equitably 2‐coloured ℓ‐cycle decomposition by Lemma 3.6 or 3.8. Finally, on each part of
size ℓ, place a Hamiltonian decomposition of Kℓ, which is clearly equitably coloured. □

4 | CONCLUSION

In this paper, we have shown that there is an equitably 2‐colourable ℓ‐cycle decomposition of
Kv whenever ≡ℓ 1 or ℓ (mod 2ℓ). A comparable result for even orders, namely, that there is an
equitably 2‐colourable ℓ‐cycle decomposition of K I−v for all ≡ℓ 0 or 2 (mod ℓ), was
previously shown by the authors in [10] (along with various other existence results for even
cycle length). While these results do not entirely settle the spectrum of equitably 2‐colourable
cycle decompositions, they do provide further evidence that equitably colourable cycle systems
exist widely, in stark contrast with equitably colourable balanced incomplete block designs (see
[20]). On the basis of this evidence, together with the results of [1] for small cycle lengths, we
make the following conjectures.

Conjecture 4.1. If ≥ ≥v ℓ 5 are odd integers, then there exists an equitably 2‐colourable
ℓ‐cycle decomposition of Kv if and only if ℓ v v( − 1)

2
.

Conjecture 4.2. If ≥ ≥v ℓ 4 are even integers, then there exists an equitably

2‐colourable ℓ‐cycle decomposition of K I−v if and only if ℓ v v( − 2)

2
.

If ℓ is even and v is odd, it is known that no equitably 2‐colourable ℓ‐cycle decomposition of
Kv exists [1]. On the other hand, the existence of equitably 2‐colourable ℓ‐cycle decompositions
of K I−v with ℓ odd and v even cannot be easily ruled out; indeed, if ℓ = 5, an equitably
2‐colourable cycle decomposition of K I−v exists for every admissible even order v [1]. We
leave the more general existence question of equitably 2‐colourable odd cycle decomposition of
the cocktail party graph as an open problem.

Likewise, this paper has not considered equitable c‐colourings with c > 2. The case c = 3

was considered for small cycle lengths in [2]; nevertheless, the question of when there exists an
equitably c‐colourable ℓ‐cycle decomposition of Kv or K I−v remains wide open in general.
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