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Stochastic reconstruction of a spatio-temporal Hawkes process with

isotropic excitation: an application to road accidents

Pierfrancesco Alaimo Di Loro1,∗ and Marco Mingione2

1 Department GEPLI, Libera Università Maria Ss. Assunta (LUMSA); p.alaimodiloro@lumsa.it
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Abstract. We propose a semi-parametric procedure to estimate a periodic spatio-temporal Hawkes

process model for the road accidents occurred in Rome during 2021. The model’s specication in-

cludes daily and weekly components able to catch the cyclical occurrence of such events and a spatial

intensity function to derive accurate risk-maps of trafc collisions. The model also envisions a spatio-

temporal excitation component that, differently from previous attempts, preserves an isotropic behavior

in space. Estimation is performed using the stochastic reconstruction algorithm, where ad-hoc bound-

ary correction strategies have been implemented to reduce the well-known bias on the borders. Results

conrm the inhomogeneous and clustered pattern characterizing such phenomena and show that≈ 1%
of all occurred crashed in the study area are an effect of previous events.

Keywords. Semi-parametric; Hawkes process; EM algorithm; Space-time; Road accidents.

1 Introduction

According to the latest report of the National Statistical Institute, more than 150,000 road accidents
occurred during 2021 in the Italian territory, of which 2,875 were deaths within 30 days. Early estimates
for the rst semester in 2022 (January-June) highlight an increasing – though not alarming – number
of road accidents compared to the pandemic period. The major causes of such events can be addressed
to distracted driving, failure to give way, and speeding. Although the long-term trend of road accidents
in Italy has been decreasing in the last two decades, the social costs of such events (in economic and
lives terms) is still huge, making their monitoring essential for the identication crashes hot-spots, and
the timely implementation prevention policies. Recent technological developments are nally enabling
straightforward and cheap ways of recording the exact space-time location of the vehicles at the moment
of the accident, favouring the implementation of advanced statistical techniques to model the dynamics
of the accidents occurrences. For example, since 2014, road authorities of the City of Rome are assigned
the task to record time and location of every car accident on which their intervention is required. These
geo-referenced records are collected monthly and published for public use at https://dati.comune.
roma.it/catalog/dataset?tags=Incidenti&groups=sicurezza-urbana, in the spirit of the open-
data [10]. This huge gold-mine of public data has already drawn some attention [7, 3].
The most natural way to model and describe the observed point-pattern is represented by spatio-temporal
point-processes [8, 9]. A very interesting challenge in road-accident modeling is understanding whether
the occurrence of a road accident increases the risk of other events in its close proximity [1] and, if so,
quantifying the number of subsequent crashes that have been triggered by the rst occurrence. This sort
of cascading effect might be due to the direct of effect of the original crash or its indirect consequences:



2 THE MODEL

increased trafc congestion, lane reduction, etc. This particular dynamic is known as self-excitation

and it is the dening property of the Hawkes process [13]. It has been largely used in the literature to
characterize the clustered point-patterns arising from earthquakes [20, 24] or nancial shocks [4, 14].
Its application has been recently extended to many more contexts: crimes [19, 22], infectious diseases
[6, 5], and nally road accidents [17, 15].
For estimation purposes, we here take the lead from the stochastic-reconstruction of the spatio-temporal
Hawkes process of [22] and propose alternative boundary correction and smoothing techniques. The
work is similar in spirit to [15], who applies the model to road-accidents occurring on a single (uni-
dimensional) one-way road. We work on the full Euclidean space and smooth the excitation function in
such a way that its isotropy is preserved. More details are provided in Section 2. We include an original
application on the road accidents occurring on the Rome surface in 2021, as described in Sections 3.
Finally, Section 4 provides a nal discussion.

2 The model

We seek to model the occurrence of trafc collisions over a spatio-temporal domain Q = D × [0,T ],
where D ⊆ R

2 denotes the spatial dimension. We assume that the number of car-crashes N(B× [t1, t2]),
where B ⊂ D and [t1, t2] ⊂ [0,T ] is the result of a simple and (locally) nite spatio-temporal point pro-
cess, that can be dened through suitable specication of the conditional intensity function λc(s, t) =

limds,dt→0
E[N(ds,dt)|Ht ]

ds·dt , where Ht = {(u,τ)}τ<t is the history of he process up to time t (t excluded).
As suggested in Section 1, point patterns arising from road accidents present an inhomogeneous and
clustered pattern: (i) events are not spread uniformly along the observed region Q , mainly because the
risk of collision is affected by environmental factors; (ii) events may exhibit a self-excitation behaviour
due to the sudden and unexpected slowdowns or other consequential trafc events.
Here, we consider the space-time separable, periodic and non-parametric version of the Hawkes process
model proposed by [22]. Its conditional intensity function has the following form:

λc(s, t) = µ0 ·µs(s) ·µt (t)+A ·

 t

0


D
gs(s−u) ·gt(t− τ)N (du×dτ) . (1)

where µs(·),µt(·) are the spatial and temporal background intensities, gs(·),gt(·) are the spatial and tem-
poral excitation functions, µ0,A> 0 are two real-valued parameters that have the role of relaxation coef-
cients. The background is a function describing the space-time varying general risk of a car accident.
The spatial term is static along time and accounts for differing risk of collision due to low visibility,
higher presence of intersections, etc. The temporal term is constant through space and it is obtained
as the product of three further functions µt(·) = µd (t) · µw (t) · µtr (t), where µd(·),µw(·) model the daily
and weekly periodicity and µt(·) represents the long-term trend. Daily and weekly seasonality is an
ubiquitous feature of trafc data reecting daily ‘rush-hour’ commuting patterns, and weekly differences
such as between the 5-day working week to the 2-day weekend. The excitation component describes
the increase in risk occurring in the close space-time proximity of a previous accident. [22] considers
a potentially anisotropic excitation in space, whose magnitude depends on the whole separation vector
s
′ −s

′ = (x′ − x,y′ − y) with s= (x,y). We retain the space-time separability but modify this expression
by making it dependent on the euclidean distance only, i.e. g(s′ −s, t ′ − t) = gs(||s

′ −s||) ·gt(|t
′ − t|).

Since pursuing a completely non-parametric estimation of such a complex model may suffer of a number
of numerical and statistical complications, the background and excitation functions are forced to have
average equal to 1 and integral equal to 1, respectively. Therefore, the two relaxation coefcients µ0 and
A are introduced to regulate the overall level of the background and excitation components.
The non-parametric estimation of every component in (1) can be obtained through the stochastic recon-
struction algorithm [24, 21].

GRASPA 2023 Workshop 2



2.1 Stochastic reconstruction 2 THE MODEL

2.1 Stochastic reconstruction

Let {(si, ti)}
N
i=1 be an observed point pattern over region D××[0,T ]⊂ R

2×R
+. The stochastic recon-

struction relies on a combination of weighted kernel averaging, to smooth separately each component,
and the Expectation-Maximization (EM) algorithm, to update the weights at each iteration until conver-
gence.
The background components are smoothed by averaging each single event (si, ti) with weights propor-
tional to the relative importance of the background intensity on the overall intensity in that same location:

φ(si, ti) = µ0
µs(si) ·µd(ti)µw(ti)µt(ti)

λc(si, ti)
, where φ(si, ti) = φi f orall i. (2)

The reconstruction of the excitation components is obtained by weighted kernel smoothing of all the
observed pairwise space and time lags, i.e. given two arbitrary points p = (s, t) and p

′ = (s′, t ′) the
lag vector is p−p

′ = (||s− s
′||, t − t ′). Each pair contributes with a weight proportional to the rela-

tive importance of its specic inter-event excitation with respect to the overall intensity on the excited

location:

ρ(s, t,s′, t ′) =


A·gs(||s′−s||)·gt(|t ′−t|)

λc(s′,t ′)
t < t ′

0 t ≥ t ′,
, with ρ(si, ti,s j, t j) = ρi j ∀ i, j. (3)

Theoretical justication to the weighting scheme is based on [8] and it is further discussed in [22].
The isotropic smoothing of the spatial excitation function deserves further discussion. Indeed, we must
consider that the larger the distance and the wider is the circle on which two points at the same distance
may lie. Therefore, the naive smoothing of inter-event distances is not representative of the real intensity
at each specic distance, as such intensities are spread across circles of different sizes. We can re-weight
the contribution of each pair of points by the inverse of the circumference it lies upon, similarly to what
it is done when estimating the pair-correlation function [9], i.e.:

ĝs(d) ∝
n

∑
i, j=1

ρi, j
khs (d− (di j))

2πdi j
,

where di j = ||s j −si||. This procedure has the only drawback of being not very robust for the distance
approaching 0 as the variance of the estimate grows indenitely. However, we can stop at a reasonable
small value υ> 0 and extend the estimate down to 0 linearly without much loss of information.
Finally, it is well known how kernel smoothing is affected by severe boundary issues when the domain
is limited. This problem must be tackled separately, and differently, for each component. We consider
a buffering area B ⊃ Q to overcome this in the spatial and trend components of the background. This
amounts to collecting and considering data just outside the domain Q when smoothing but not when
evaluating the likelihood [23]. We consider the periodic correction for the remaining background com-
ponents, as in [15].
Finally, the triggering function have a single natural border in 0. We considered a correction approach
based on domain transforms. In practice, the pairs distances ||s j −si|| and |t j − ti| are converted to the
log-scale log(||s j−si||) and log(|t j− ti|), so to eliminate the border, and smoothed. The resulting den-
sity is then re-converted into the original scale by applying the jacobian [18, 16].
Once all the functions involved in the expression of the conditional intensity function have been esti-
mated and normalized, we must estimate the two relaxation coefcients µ0 and A. The most natural way
to estimate the values that best t the observed point pattern would be maximum likelihood estimation
(MLE), conditionally on the non-parametrically estimated background and intensity functions. The log-
likelihood function of {(si, ti)}

n
i=1, realization of a nite and simple spatial-temporal point process over

a bounded domain Q =D× [0,T ], is known and can be evaluated as:

log(Lλc) =
n

∑
i=1

log(λc(si, ti,))−
 T

0


D
λc(σ,τ)dσdτ, (4)

GRASPA 2023 Workshop 3



3 APPLICATION TO ROAD ACCIDENTS IN ROME

for whatever λc(·, ·). In particular, we consider the conditional intensity function dened in (1) and rely
on numerical optimization methods to get the MLE of µ0 and A.
It is clear how the relaxation coefcients are needed in order to weight the smoothing of the various
components, while the smoothed versions of each components are needed in order to get log(Lµ0,A) and
estimate µ0 and A. This circularity can be solved as proposed by [22], specically alternating between
nding the optimal relaxation coefcients given background and excitation forms and viceversa, within
the EM algorithm. For the sake of brevity, we do not report here the algorithm, but point the interested
reader to the original paper of [22]. Convergence can be checked using different criteria. Eventually,
after a reasonable number of iterations (which is application-dependent), the log-likelihood increments
atten and a (local) maximum has been found. There is no guarantee that the optimum is global, therefore
multiple runs starting from different initial guesses are suggested. One main drawback of this algorithm
resides in its computational complexity, that is mostly affected by the smoothing of the excitation func-
tion (that scales quadratically with the number of points) and the likelihood maximization. One idea to
reduce the burden of the former, is to assume that triggering gets negligible after a pre-specied distance
in time and/or space (excitation tapering). This can sensibly reduce the number of eligible pairs for the
smoothing. In order to make this procedure viable on our large set of data, the core part of the algorithm
has been coded in C++, exploiting parallelization whenever possible.

3 Application to road accidents in Rome

We estimate the model described in Section 2 to all road accidents that occurred in 2021 inside the
Grande Raccordo Anulare, the major ring road surrounding Rome city center, for which the intervention
of the local Police Department was required (i.e. does not include all the cases in which the involved
subjects achieved a friendly agreement). A total of n = 21012 occurred in 2021, with a weekly rate of
404 road accidents, also corresponding to more than 55 each day and 2.4 each hour. Figure 1a shows the
purely spatial point pattern through the whole year, while Figure 1b the corresponding daily (and weekly
in red) temporal evolution. These highlight a slight increasing trend during the whole study period with
evident seasonal behavior and a couple of main hot-spots: one placed in the city center (behind Vatican
City) and another one in the South-East part of the city.

(a) (b)

Figure 1: (a) spatial locations and (b) time-series of daily (black line) and weekly (red line) road accidents
occurred in Roma Capitale during 2021.

Results E-M algorithm converged after 50 iterations in less than 1 hour of computational time, yielding
the estimates of µ̂0 = 0.127 and Â = 0.013. The long-term trend component (not shown for the sake of
brevity) highlights seasonal variations, with the major peaks estimated to occur in July, November and
January, and major valleys estimated in August and December. This can be mainly explained by the
fact that Roman citizens usually rush before summer and Christmas Holidays to nish all their open

GRASPA 2023 Workshop 4
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businesses, and then leave the city soon after for vacation. Figure 2d shows the estimted daily periodic
component and highlights a higher risk during the central hours of the day (7 a.m. – 7 p.m.), with the
peaks estimated from 8 a.m. to 10 a.m. (rush hours in the morning where people go to work and schools
start) and from 3.30 p.m. to 5.30 p.m.. Figure 2a shows the estimated spatial background, highlighting
two major risk areas: one placed right behind Vatican City and another one at big crossroad between
Via Statilia, Via San Quintino and Via Carlo Emanuele Primo, on the west side of Rome Central Station
which is usually very busy during the whole day. Spatial triggering is limited at 1km radius, however
the triggering effect is estimated to be practically null over 500m already (see Figure 2b). The estimated
temporal triggering is instead visualized in Figure 2c and unsurprisingly decreases as time passes from
the occurrence of an event: in particular, the triggering is practically null after 1/4 of a day, i.e. 6 hours.

(a) (b) (c) (d)

Figure 2: (a) estimated spatial spatial background intensity. Estimated (b) spatial and (c) temporal exci-
tation components. (d) estimated daily background

4 Discussion

This paper proposes some new strategies to t semi-parametrically a periodic spatio-temporal Hawkes
process while correcting for the boundary biases and preserving isotropy in the spatial excitation compo-
nent. We provide a specic application to road accidents following previous attempts that were limited
due to computational limitations [2]. We here attain improved performances by implementing the core
of the algorithm in C++, allowing the consideration of data for a whole year.
Nevertheless, there is still large room for improvements as the method is still tailored to euclidean spaces.
However, when dealing with road accidents, it should account for the urban road network. [12, 11] con-
sider the linear network in a similar model specication, and we are currently working to combine their
ideas and our proposal in an efcient and feasible fashion so that the full application could be adapted to
the linear road network of Rome.
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