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Abstract

Physarum Polycephalum is a slime mold that apparently is

able to solve shortest path problems. A mathematical model

has been proposed by biologists to describe the feedback

mechanism used by the slime mold to adapt its tubular

channels while foraging two food sources s0 and s1. We prove

that, under this model, the mass of the mold will eventually

converge to the shortest s0-s1 path of the network that the

mold lies on, independently of the structure of the network

or of the initial mass distribution.

This matches the experimental observations by the

biologists and can be seen as an example of a “natural

algorithm”, that is, an algorithm developed by evolution

over millions of years.

1 Introduction

Physarum Polycephalum is a slime mold that apparently
is able to solve shortest path problems. Nakagaki,
Yamada, and Tóth [NYT00] report about the following
experiment; see Figure 1. They built a maze, covered it
by pieces of Physarum (the slime can be cut into pieces
which will reunite if brought into vicinity), and then
fed the slime with oatmeal at two locations. After a
few hours the slime retracted to a path that follows the
shortest path in the maze connecting the food sources.
The authors report that they repeated the experiment
with different mazes; in all experiments, Physarum
retracted to the shortest path. There are several videos
available on the web that show the mold in action [you].

The paper [TKN07] proposes a mathematical model
for the behavior of the slime and argues extensively
that the model is adequate. We will not repeat the
discussion here but only define the model. Physarum
is modeled as an electrical network with time varying
resistors. We have a simple undirected graph G =
(N,E) with distinguished nodes s0 and s1 modeling
the food sources. Each edge e ∈ E has a positive
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Figure 1: The experiment in [NYT00] (reprinted from
there): (a) shows the maze uniformly covered by
Physarum; yellow color indicates presence of Physarum.
Food (oatmeal) is provided at the locations labelled AG.
After a while the mold retracts to the shortest path con-
necting the food sources as shown in (b) and (c). (d)
shows the underlying abstract graph. The video [you]
shows the experiment.

length Le and a positive diameter De(t); Le is fixed,
but De(t) is a function of time. The resistance Re(t) of
e is Re(t) = Le/De(t). We force a current of value 1
from s0 to s1. Let Qe(t) be the resulting current over
edge e = (u, v), where (u, v) is an arbitrary orientation
of e. The diameter of any edge e evolves according to
the equation

(1.1) Ḋe(t) = |Qe(t)| −De(t),

where Ḋe is the derivative of De with respect to time.
In equilibrium (Ḋe = 0 for all e), the flow through any
edge is equal to its diameter. In non-equilibrium, the
diameter grows (shrinks) if the absolute value of the flow
is larger (smaller) than the diameter. In the sequel, we
will mostly drop the argument t as is customary in the
treatment of dynamical systems.

The model is readily turned into a computer sim-
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ulation. In an electrical network every vertex v has a
potential pv; pv is a function of time. We may fix ps1 to
zero. For an edge e = (u, v), the flow across e is given
by (pu − pv)/Re. We have flow conservation in every
vertex except for s0 and s1, we inject one unit at s0 and
remove one unit at s1. Thus

bv =
∑

u∈δ(v)

pv − pu
Ruv

where δ(v) is the set of neighbors of v and bs0 = 1,
bs1 = −1 and bv = 0 otherwise. The node potentials
can be computed by solving a linear system (either
directly or iteratively). Tero et al. [TKN07] were the
first to perform simulations of the model. They report
that the network always converges to the shortest s0-s1
path, i.e., the diameters of the edges on the shortest
path converge to one and the diameters on the edges
outside the shortest path converge to zero. This holds
true for any initial condition and assumes uniqueness of
the shortest path.

Miyaji and Ohnishi [MO07, MO08] initiated the
analytical investigation of the model. They argued
convergence against the shortest path if G is a planar
graph and s0 and s1 lie on the same face in some
embedding of G.

2 Our Results

Our main result is a convergence proof for all graphs.
For a network G = (V,E, s0, s1, L), where (Le)e∈E is
a positive length function on the edges of G, we use
G0 = (V,E0) to denote the subgraph of all shortest
source-sink paths, L∗ to denote the length of a shortest
source-sink path, and E∗ to denote the set of all source-
sink flows of value one in G0. If we define the cost of
flow Q as

∑

e LeQe, then E∗ is the set of minimum cost
source-sink flows of value one. If the shortest source-
sink path is unique, E∗ is a singleton. The dynamics is
attracted by a set A, if the distance (measured in any
Lp-norm) between D(t) and A converges to zero.

Theorem 2.1. Let G = (V,E, s0, s1, L) be an undi-
rected network with positive length function (Le)e∈E.
Let De(0) > 0 be the diameter of edge e at time zero.
The dynamics (1.1) are attracted to E∗. If the short-
est source-sink path is unique, the dynamics converges
to the flow of value one along the shortest source-sink
path.

We conjecture that the dynamics converges to an
element of E∗, but only show attraction to E∗. A key
part of our proof is to show that the function

(2.2) V =
1

minS∈C CS

∑

e∈E

LeDe + (C{s0} − 1)2

decreases along all trajectories starting in a non-
equilibrium configuration. Here, C is the set of all s0-s1
cuts, i.e., the set of all S ⊆ N with s0 ∈ S and s1 6∈ S,
CS =

∑

e∈δ(S) De is the capacity of the cut S when the

capacity of edge e is set to De, and minS∈C CS (also
abbreviated by C) is the capacity of the minimum cut.
The first term in the definition of V is the normalized
hardware cost; for any edge, the product of its length
and its diameter may be interpreted as the hardware
cost of the edge; the normalization is by the capacity of
the minimum cut. We show that the first term decreases
except when the maximum flow F in the network with
capacities De is unique and moreover |Qe| = |Fe|/C for
all e. The second term decreases as long as the capacity
of the cut defined by s0 is different from 1. We show
that the capacity of the minimum cut converges to one.
We infer from the decrease of V along all trajectories
that |De − |Qe|| converges to zero for all e. In the next
step, we show that the potential difference ∆ = ps0−ps1
between source and sink converges to the length L∗ of a
shortest-source sink path. We use this to conclude that
De andQe converge to zero for any edge e 6∈ E0. Finally,
we show that the dynamics is attracted by E∗. We found
the function V by a mixture of analytical investigation
of a network of parallel links (see the full version of
this article [BMV11]), extensive computer simulations,
and guessing. Functions decreasing along all trajecto-
ries are called Lyapunov functions in dynamical systems
theory [HS74]. Observe that the system (1.1) is defined
by a vector field that is not continuously differentiable.
Also, the function V is not everywhere differentiable.
This introduces some technical difficulties.

The direction of the flow across an edge depends on
the initial conditions and time. We do not know whether
flow directions can change infinitely often or whether
they become ultimately fixed. Under the assumption
that flow directions stabilize, we can characterize the
(late stages of the) convergence process. An edge e =
{u, v} becomes horizontal if limt→∞ |pu − pv| = 0 and
it becomes directed from u to v (directed from v to u)
if pu > pv for all large t (pv > pu for all large t). An
edge stabilizes if it either becomes horizontal or directed
and a network stabilizes if all its edges stabilize. If a
network stabilizes, we partition its edges into a set Eh

of horizontal edges and a set
−→
E of directed edges. If

{u, v} becomes directed from u to v, then (u, v) ∈
−→
E .

We introduce the notion of a decay rate. Let
r ≤ 0. A quantity D(t) decays with rate at least r,
if for every ε > 0 there is a constant A such that
lnD(t) ≤ A+ (r + ε)t for all t. A quantity D(t) decays
with rate at most r, if for every ε > 0 there is a constant
a such that lnD(t) ≥ a + (r − ε)t for all t. A quantity
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D(t) decays with rate r, if it decays with rate at least
and at most r.

Lemma 2.1. For e ∈ Eh, De decays with rate −1 and
|Qe| decays with rate at least −1.

We define a decomposition of G into paths P0 to
Pk, an orientation of these paths, a slope f(Pi) for each
Pi, a vertex labelling p∗, and an edge labelling r. P0 is
a1 shortest s0-s1 path in G, f(P0) = 1, re = f(P0) − 1
for all e ∈ P0, and p∗v = dist(v, s1) for all v ∈ P0, where
dist(v, s1) is the shortest path distance from v to s1. For
1 ≤ i ≤ k, we have2 Pi = argmaxP∈P f(P ), where P is
the set of all paths P in G with the following properties:
(1) the startpoint a and the endpoint b of P lie on
P0∪ . . .∪Pi−1, p

∗
a ≥ p∗b , and f(P ) = (p∗a−p∗b)/L(P ); (2)

no interior vertex of P lies on P0 ∪ . . . ∪ Pi−1; and (3)
no edge of P belongs to P0 ∪ . . . ∪ Pi−1. If p

∗
a > p∗b , we

direct Pi from a to b. If p∗a = p∗b , we leave the edges in
Pi undirected. We set re = f(Pi)− 1 for all edges of Pi,
and p∗v = p∗b + f(Pi) distPi

(v, b) for every interior vertex
v of Pi. Figure 2(a) illustrates the path decomposition.

Lemma 2.2. There is an i0 ≤ k such that

f(P0) > f(P1) > . . . > f(Pi0) >

> 0 = f(Pi0+1) = . . . = f(Pk).

Theorem 2.2. If a network stabilizes,
−→
E =

∪i≤i0E(Pi), the orientation of any edge e ∈
−→
E

agrees with the orientation induced by the path decom-
position, and Eh = ∪i>i0E(Pi). The potential of each
node v converges to p∗v. The diameter of each edge
e ∈ E \ P0 decays with rate re.

We cannot prove that flow directions stabilize in
general. For series-parallel graphs flow directions triv-
ially stabilize. The Wheatstone graph shown in Fig-
ure 2(b) is the simplest graph, where flow directions
may change over time.

Theorem 2.3. The Wheatstone graph stabilizes.

The uncapacitated transportation problem gener-
alizes the shortest path problem. With each vertex v
a supply/demand bv is associated. It is assumed that
∑

v bv = 0. Nodes with positive bv are called supply
nodes and nodes with negative bv are called demand
nodes. In the shortest path problem, exactly two ver-
tices have non-zero supply/demand. A feasible solution
to the transportation problem is a flow f satisfying the
mass balance constraints, i.e., for every vertex v, bv is

1We assume that P0 is unique.
2We assume that Pi is unique except if f(Pi) = 0.

equal to the net flow out of v. The cost of a solution is
∑

e Lefe. The Physarum solver for the transportation
problem is as follows: At any fixed time the currents
(Qe)e∈E are a feasible solution to the transportation
problem which also satisfies Ohm’s law. The dynamics
evolve according to (1.1). The equilibria, i.e., |Qe| = De

for all e, are precisely the flows with the equal-length
property. Orient the edges in the direction of Q and
drop the edges of flow zero. In the resulting graph, any
two distinct directed paths with the same source and
sink have the same length. Let E be the set of equilib-
ria.

Theorem 2.4. The dynamics (1.1) is attracted to the
set of equilibria E. If any two equilibria have distinct
cost, the dynamics converge to an optimum solution of
the transportation problem.

Theorem 2.1 is stronger in two respects. There we
show attraction to the set of equilibria of minimum cost
(now only to the set of equilibria) and convergence to
the optimum solution if the optimum solution is unique
(now only if no two equilibria have the same cost).

3 Related Work

Miyaji and Ohnishi [MO07, MO08] initiated the analyti-
cal investigation of the model. They argued convergence
against the shortest path if G is a planar graph and s0
and s1 lie on the same face in some embedding of G. Ito
et al. [IJNT11] study the dynamics (1.1) in a directed
graph G = (V,E); they do not claim that the model
is justified on biological grounds. Each directed edge e
has a diameter De. Let U be the underlying undirected
graph. The conductivity of an undirected edge {u, v}
is the sum of the conductivities of the edges uv and vu
(if both exist). The node potentials and flows in U are
defined as above. The dynamics for the diameter of the
directed edge uv is then Ḋuv = Quv−Duv. The dynam-
ics of this model is very different from the dynamics of
our model. The flow Quv may be positive and large
because Dvu is large. The dynamics will increase Duv

(if present) and decrease Dvu. The model is simpler to
analyze. They prove that the directed model is able to
solve transportation problems.

4 Discussion and Open Problems

Physarum may be seen as an example of a natural
computer, i.e., a computer developed by evolution over
millions of years. It apparently can do more than
computing shortest paths and solving transportation
problems. In [TTS+10] the computational capabilities
of Physarum are applied to network design and it is
shown in lab and computer experiments that Physarum
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Figure 2: Part (a) illustrates the path decomposition. All edges are assumed to have length 1; P0 = (e1),
P1 = (e2, e3, e4), P2 = (e5, e6), p

∗
s0 = 1, p∗s1 = 0, p∗v = 1/3, p∗u = 2/3, p∗w = 1/2, f(P1) = 1/3, and f(P2) = 1/6.

Part (b) shows the Wheatstone graph. The direction of the flow on edge {u, v} may change over time; the flow
on all other edges is always from left to right.

can compute approximate Steiner trees. No theoretical
analysis is available. The book [Ada10] and the tutorial
[NTK+09] contain many illustrative examples of the
computational power of this slime mold.

Chazelle [Cha09] advocates the study of natural al-
gorithms; i.e., “algorithms developed by evolution over
millions of years”, using computer science techniques.
Traditionally, the analysis of such algorithms was the
domain of biology, systems theory, and physics. Com-
puter science brings new tools. For example, in our
analysis, we crucially use the max-flow min-cut theo-
rem. Natural algorithms can also give inspiration for
the development of new combinatorial algorithms. A
good example is [CKM+11], where electrical flows are
essential for an approximation algorithm for undirected
network flow.

We have only started the theoretical investigation
of Physarum computation. Many interesting ques-
tions are open. We prove convergence for the dynam-
ics Ḋe = f(|Qe|) − De where f is the identity func-
tion. The biological literature also suggests the use of
f(x) = xγ/(1+x) for some parameter γ. Can one prove
convergence for other functions f? We prove that flow
directions stabilize in the Wheatstone graph. Do they
stabilize in general? We prove, but only for stabiliz-
ing networks, that the diameters of edges not on the
shortest path converge to zero exponentially for large t.
What can be said about the initial stages of the pro-
cess? The Physarum computation is fully distributed;
node potentials depend only on the potentials of the
neighbors, currents are determined by potential differ-
ences of edge endpoints, and the update rule for edge
diameters is local. Can the Physarum computation be
used as the basis for an efficient distributed shortest
path algorithm? What other problems can be provably

solved with Physarum computations?

5 The Convergence Proof for the Shortest Path

Problem

For the convergence proof, we will use some fundamen-
tal principles from the theory of electrical networks as
they can be found, for example, in [Bol98, Chapters II,
IX]. We start from the following simple facts. Recall
that C is the set of s0-s1 cuts and CS =

∑

e∈δ(S) De.

Also, let Lmin = mine Le, Lmax = maxe Le, n = |N |,
m = |E|.

Lemma 5.1. The following hold for any edge e ∈ E and
any cut S ∈ C:

(i) |Qe| ≤ 1.

(ii)
∑

e∈δ({s0})
|Qe| = 1.

(iii) De(t) ≥ De(0) exp(−t) for all t,

(iv) De(t) ≤ 1 + (De(0)− 1) exp(−t) for all t.

(v) Re ≥ Lmin/2 for all sufficiently large t.

(vi) CS(t) ≥ 1 + (CS(0) − 1) exp(−t) for all t, with
equality if S = {s0}.

(vii) C{s0} → 1 as t → ∞.

(viii) Orient the edges according to the direction of the
flow. For sufficiently large t, there is a directed
source-sink path of edges of diameter at least
1/2m.

(ix) |∆e| ≤ 2nmLmax for all sufficiently large t.

(x) Ḋe/De ∈ [−1, 2nmLmax/Lmin] for all sufficiently
large t.
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We will prove convergence for general graphs. In the
following we will always assume that t is large enough
that all the claims of Lemma 5.1 requiring a sufficiently
large t hold. Recall that D ∈ R

E
+ is an equilibrium

point when Ḋe = 0 for all e ∈ E, which is equivalent to
De = |Qe| for all e ∈ E.

Lemma 5.2. At an equilibrium point, minS∈C CS =
C{s0} = 1.

Proof.

1 ≤ min
S∈C

∑

e∈δ(S)

|Qe| = min
S∈C

CS ≤

≤ C{s0} =
∑

e∈δ({s0})

|Qe| = 1.

Lemma 5.3. The equilibria are precisely the flows of
value 1 in which all source-sink paths have the same
length. If no two source-sink paths have the same length,
the equilibria are precisely the simple source-sink paths.

Proof. Let Q be a flow of value 1 in which all source-
sink paths have the same length. We orient the edges
such that Qe ≥ 0 for all e and show that D = Q
is an equilibrium point. Let E1 be the set of edges
carrying positive flow and let V1 be the set of vertices
lying on a source-sink path consisting of edges in E1.
For v ∈ V1, set its potential to the length of the
paths from v to s1 in (V1, E1); observe that all such
paths have the same length by assumption. Let Q′ be
the electrical flow induced by the potentials and edge
diameters. For any edge e = (u, v) ∈ E1 we have
Q′

e = De∆e/Le = De = Qe. Thus Q′ = Q. For any
edge e 6∈ E1, we have Qe = 0 = De. We conclude that
D is an equilibrium point.

Let D be an equilibrium point and let Qe be the
corresponding current along edge e, where we orient
the edges so that Qe ≥ 0 for all e ∈ E. Whenever
De > 0, we have ∆e = QeLe/De = Le because of the
equilibrium condition. Since all directed s0-s1 paths
span the same potential difference, all directed path
from s0 to s1 in {e ∈ E : De > 0} have the same
length. Moreover, by Lemma 5.2, minS CS = 1. Thus
D is a flow of value 1.

Lemma 5.4. Let W = (C{s0}−1)2. Then Ẇ = −2W ≤
0, with equality iff C{s0} = 1.

The following functions play a crucial role. Let C =
minS∈C CS and

VS =
1

CS

∑

e∈E

LeDe for each S ∈ C,

V = max
S∈C

VS +W,

h = −
1

C

∑

e∈E

Re|Qe|De +
1

C2

∑

e∈E

ReD
2
e .

Lemma 5.5. Let S be a minimum capacity cut at time
t. Then V̇S(t) ≤ −h(t).

Proof. Let X be the characteristic vector of δ(S), that
is, Xe = 1 if e ∈ δ(S) and 0 otherwise. Observe that
CS = C since S is a minimum capacity cut. We have

V̇S =
∑

e

∂VS

∂De
Ḋe

=
∑

e

1

C2

(

LeC −
∑

e′

Le′De′Xe

)

(|Qe| −De)

=
1

C

∑

e

Le|Qe| −
1

C2

(

∑

e′

Le′De′

)(

∑

e

Xe|Qe|

)

+

−
1

C

∑

e

LeDe +
1

C2

(

∑

e′

Le′De′

)(

∑

e

XeDe

)

≤
1

C

∑

e

Re|Qe|De −
1

C2

∑

e

ReD
2
e+

−
1

C

∑

e

LeDe +
1

C

∑

e

LeDe

= −h.

The only inequality follows from Le = ReDe and
∑

e Xe|Qe| ≥ 1, which holds because at least a unit
current must cross S.

Lemma 5.6. Let f(t) = maxS∈C fS(t) where each fS is
continuous and differentiable. If ḟ(t) exists, then there
is S ∈ C such that f(t) = fS(t) and ḟ(t) = ḟS(t).

Lemma 5.7. V̇ exists almost everywhere. If V̇ (t) exists,
then V̇ (t) ≤ −h(t) − 2W (t) ≤ 0, and V̇ (t) = 0 iff
∀e, Ḋe(t) = 0.

Proof. V is Lipschitz-continuous, since it is the maxi-
mum of a finite set of continuously differentiable func-
tions. Since V is Lipschitz-continuous, the set of t’s
where V̇ (t) does not exist has zero Lebesgue measure
(see for example [CLSW98, Ch. 3], [MN92, Ch. 3]).
When V̇ (t) exists, one has V̇ (t) = Ẇ (t) + V̇S(t) for
some S of minimum capacity (Lemma 5.6). Then
V̇ (t) ≤ −h(t)− 2W (t) by Lemmas 5.4 and 5.5.
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The fact that W ≥ 0 is clear. We now show that
h ≥ 0. To this end, let F represent a maximum s0-s1
flow in an auxiliary network having the same structure
asG and where the capacity on edge e is set equal toDe.
In other words, F is an s0-s1 flow satisfying |Fe| ≤ De

for all e ∈ E and having maximum value. By the max-
flow min-cut theorem, this maximum value is equal to
C = minS∈C CS . But then,

− h =
1

C

∑

e

Re|Qe|De −
1

C2

∑

e

ReD
2
e

≤
1

C

(

∑

e

ReQ
2
e

)1/2(
∑

e

ReD
2
e

)1/2

−
1

C2

∑

e

ReD
2
e

≤
1

C

(

∑

e

Re
F 2
e

C2

)1/2(
∑

e

ReD
2
e

)1/2

−
1

C2

∑

e

ReD
2
e

≤
1

C2

(

∑

e

ReD
2
e

)1/2(
∑

e

ReD
2
e

)1/2

−
1

C2

∑

e

ReD
2
e

= 0,

where we used the following inequalities:

- the Cauchy-Schwarz inequality:

∑

e

(R1/2
e |Qe|)(R

1/2
e De) ≤

≤ (
∑

e

ReQ
2
e)

1/2 (
∑

e

ReD
2
e)

1/2;

- Thomson’s Principle [Bol98, Theorem IX.2]: Q is
a minimum energy flow of unit value, F/C is a
feasible flow of unit value and hence

∑

e ReQ
2
e ≤

∑

eRe(Fe/C)2;

- |Fe| ≤ De for all e ∈ E.

Finally, one can have h = 0 if and only if all
the above inequalities are equalities, which implies that
|Qe| = |Fe|/C = De/C for all e. And W = 0 iff
∑

e∈δ({s0})
De = 1 =

∑

e∈δ({s0})
|Qe|. So h = W = 0 iff

|Qe| = De for all e.

The next lemma is a necessary technicality.

Lemma 5.8. The function t 7→ h(t) is Lipschitz-
continuous.

Lemma 5.9. |De−|Qe|| converges to zero for all e ∈ E.

Proof. Consider again the function h. We claim h → 0
as t → ∞. If not, there is ε > 0 and an infinite
unbounded sequence t1, t2, . . . such that h(ti) ≥ ε for all
i. Since h is Lipschitz-continuous (Lemma 5.8), there is

δ such that h(ti+δ′) ≥ h(ti)−ε/2 ≥ ε/2 for all δ′ ∈ [0, δ]
and all i. So by Lemma 5.7, V̇ (t) ≤ −h(t) ≤ −ε/2
for every t in [ti, ti + δ] (except possibly a zero measure
set), meaning that V decreases by at least εδ/2 infinitely
many times. But this is impossible since V is positive
and nonincreasing.

Thus for any ε > 0, there is t0 such that h(t) ≤ ε
for all t ≥ t0. Then, recalling that Re ≥ Lmin/2 for all
sufficiently large t (Lemma 5.1.v), we find

∑

e

Lmin

2

(

De

C
− |Qe|

)2

≤
∑

e

Re

(

De

C
− |Qe|

)2

=
1

C2

∑

e

ReD
2
e +

∑

e

ReQ
2
e −

2

C

∑

e

Re|Qe|De

≤
2

C2

∑

e

ReD
2
e −

2

C

∑

e

Re|Qe|De

= 2h ≤ 2ε,

where we used once more the inequality
∑

e ReQ
2
e ≤

∑

e ReD
2
e/C

2, which was proved in Lemma 5.7. This
implies that for each e, De/C − |Qe| → 0 as t → ∞.
Summing across e ∈ δ({s0}), and using Lemma 5.1.ii,
we obtain C{s0}/C − 1 → 0 as t → ∞. From Lemma
5.1, C{s0} → 1 as t → ∞, so C → 1 as well.

To conclude, we show that De/C − |Qe| → 0 and
C → 1 together imply De − |Qe| → 0. Let ε > 0 be
arbitrary. For all sufficiently large t, |De/C − |Qe|| ≤ ε,
|1− C| ≤ ε, De ≤ 2, and C ≥ 1/2. Thus

|De − |Qe|| ≤ |De −De/C|+ |De/C − |Qe|| ≤

≤ De
|C − 1|

C
+ |De/C − |Qe|| ≤ 5ε.

Lemma 5.10. Let ∆ = ps0 − ps1 be the potential differ-
ence between source and sink. Then ∆ converges to the
length L∗ of a shortest source-sink path.

Proof. Let L be the set of lengths of simple source-sink
paths. We first show that ∆ converges to a point in L
and then show convergence to L∗.

Orient edges according to the direction of the flow.
By Lemma 5.1.viii, there is a directed source-sink path
P of edges of diameter at least 1/2m. Let ε > 0 be
arbitrary. We will show |∆−LP | ≤ ε. For this it suffices
to show |∆e −Le| ≤ ε/n for any edge e of P , where ∆e

is the potential drop on e. By Ohm’s law the potential
drop on e is ∆e = (Qe/De)Le and hence |∆e − Le| =
Le|Qe/De−1| = Le|(Qe−De)/De| ≤ 2mLmax|Qe−De|.
The claim follows since |Qe −De| converges to zero.

The set L is finite. Let ε be positive and smaller
than half the minimal distance between two elements
in L. By the preceeding paragraph, there is for all
sufficiently large t a path Pt such that |∆ − LPt

| ≤ ε.
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Since ∆ is a continuous function of time, LPt
must

become constant. We have now shown that ∆ converges
to an element in L.

We will next show that ∆ converges to L∗. Assume
otherwise and let P ′ be a shortest undirected source-
sink path. Let WP ′ =

∑

e∈P ′ Le lnDe. This function
was already used by Miyaji and Ohnishi [MO08]. We
have

ẆP ′ =
∑

e∈P ′

Le

De
(|Qe| −De) =

∑

e∈P ′

|∆e| −
∑

e∈P ′

Le ≥

≥ ps0 − ps1 − LP ′ = ∆− L∗.

Let δ > 0 be such that there is no source-sink path with
length in the open interval (L∗, L∗+2δ). Then ∆−L∗ ≥
δ for all sufficently large t and hence ẆP ′ ≥ δ for all
sufficiently large t. Thus WP ′ goes to +∞. However
WP ′ ≤ nLmax for all sufficiently large t since De ≤ 2 for
all e and t large enough. This is a contradiction. Thus
∆ converges to L∗.

Lemma 5.11. Let e be any edge that does not lie on a
shortest source-sink path. Then De and Qe converge to
zero.

Proof. Since |De − |Qe|| converges to zero, it suffices
to prove that Qe converges to zero. Assume otherwise.
Then there is a δ > 0 such that |Qe| ≥ δ for arbitrarily
large t.

Consider any such t and orient the edges according
to the direction of the flow at time t. Let e = (u, v).
Because of flow conservation, there must be an edge
into u and an edge out of v carrying flow at least Qe/n.
Continuing in this way, we obtain a source-sink path P
in which every edge carries flow at least Qe/n

n ≥ δ/nn;
P depends on time and LP > L∗ always. We will
show |∆− LP | ≤ (LP − L∗)/4 for sufficiently large t, a
contradiction to the fact that ∆ converges to L∗. For
this it suffices to show |∆g − Lg| ≤ (LP − L∗)/(4n) for
any edge g of P , where ∆g is the potential drop on g. By
Ohm’s law the potential drop on g is ∆g = (Qg/Dg)Lg

and hence |∆g − Lg| = |Qg/Dg − 1|Lg = |(Qg −
Dg)/Dg|Lg ≤ Lmax|Qg −Dg|/Dg. For large enough t,
|Qg − Dg| ≤ min(δ/(2nn), δ(LP − L∗)/(8nn+1Lmax)).
Then Dg ≥ Qg − |Qg − Dg| ≥ δ/(2nn) and hence
Lmax|Qg −Dg|/Dg ≤ (LP − L∗)/(4n).

Recall that E∗ is the set of flows of value one in the
network of shortest source-sink paths.

Theorem 5.1. The dynamics are attracted by E∗. If
the shortest source-sink path is unique, the dynamics
converges against the flow of value 1 on the shortest
source-sink path.

Proof. Q is a source-sink flow of value one at all times.
We show first that Q is attracted to E∗. Orient the
edges in the direction of the flow. We can decompose Q
into flowpaths. For an oriented path P , let 1P be the
unit flow along P . We can write Q =

∑

P xp1P , where
xP is the flow along the path P . This decomposition is
not unique. We group the flowpath into two sets, the
paths running inside G0 and the paths using an edge
outside G0, i.e.,

Q = Q0 +Q1, where Q0 =
∑

P is a path in G0

xP 1P .

Q0 is a flow in G0 and each flowpath in Q1 is a non-
shortest source-sink path.3 We show that the value of
Q0 converges to one.

Assume otherwise. Then there is a δ > 0 such that
the value of Q1 is at least δ for arbitrarily large times t.
At any such time there is an edge e 6∈ E0 carrying flow
at least δ/m; this holds since source-sink cuts contain at
most m edges. Since there are only finitely many edges,
there must be an edge e 6∈ E0 for which Qe does not
converge to zero, a contradiction to Lemma 5.11.

We have now shown that the distance between Q
and E∗ converges to zero. By Lemma 5.9, |De − |Qe||
converges to zero for all e and hence the distance
betweenQ andD converges to zero. ThusD is attracted
by E∗.

Finally, if the shortest source-sink path is unique,
E∗ is a singleton and hence D converges to the flow of
value one along the shortest source-sink path.
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