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Abstract

We revise the format proposed by Bowen in [R. M. Bowen. Int. J. Eng.
Sci., 18(9):1129–1148, 1980.] to describe incompressible porous media by use
of the theory of mixtures. We then show that this format is equivalent the
those proposed more recently to model the diffusion of a fluid in a strained
solid.

1 Introduction.

Mechanical theories describing polymer gels, and, more generally, a strained solid
through which diffusion of a fluid takes place, have been put together using two
different approaches. The early papers [4, 13] and the more recent work [5] model
the gel as the superposition of two interacting continuous bodies: an incompressible
solid, representing the polymeric network, and an incompressible fluid. The equations
governing the evolution of these continua are obtained through an adaptation of
Truesdell’s theory of interacting continua [15]. Another series of papers [1, 10, 6, 8],
adapt the original ideas of Gibbs [9] and Biot [2, 3] to model a polymeric gel as
a single continuum whereby diffusion of a chemical species takes place, driven by
the gradient of its chemical potential. Within this theory, constituive equations are
obtained from a dissipation principle that takes explicitly into account the energetic
flux associated to the motion of the fluid relative to the solid.
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Given this state of matters provides a motivation to investigatate the relationships
between the the two approaches. The contribution we give in this paper is twofold:
we offer a revised exposition of the ideas in [4] in the special case when when the
intercting continua are incompressible; we then show that the isothermal version
of dissipation principle underlying the theory of gels within the setting of the à la
Biot approach can be recovered, by making the appropriate identifications, from the
corresponding principle in the setting of the theory of interacting continua.

Although our discussion focuses on bulk equations, it would be equally important
to discuss boundary conditions. The latter issue is however quite delicate, because
mixture theory involves multiple velocities and multiple stresses, an information that
is typically not available at the boundary. As a result, the formulation of boundary
conditions requires a sort of “homogenization”, and different homogenization criteria
may be devised. An discussion of these issues, with some example of possible homog-
enization choices, may be found in the paper [12]. For more recent developments in
this direction we refer to [11] and [14], where continuum thermodynamics has been
used to derive boundary conditions in a systematic manner.

2 The compound continuum

2.1 Kinematics

Index convention. In the foregoing developments, the free index α runs between
1 and the number N of constituents, while the free index β runs between 2 and N :

α ∈ {1, . . . , N}, β ∈ {2, . . . , N}.

The same convention is used for summations. Thus,

∑
α

≡
N∑
α=1

, and
∑
β

≡
N∑
β=2

.

The subscript 1 shall be replaced by s (standing for “solid”) and, when there is only
one fluid component, the subscript 2 shall be replaced by f (standing for “fluid”).
Accordingly:

• if N = 2 then s ≡ 1 and f ≡ 2.
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2.1.1 The description of the motion of a compound continuum.

Generically speaking a compound continuum is a collection of N continuum bodies,
which we refer to as constituents, which can permeate each other by occupying the
same region of space at the same time. The motion of each body is described in
the same fashion as in standard continuum mechanics: one introduces a reference
configurations Bα, where α = 1, . . . , N is the index that labels the constituent; then
the motion of the α–th constituent of the mixture is specified by a function

x = χα(X, t)

which associates to each material particle X in Bα the position x occupied by that
particle at time t. The functions χα(X, t) are assumed to be smooth. In particular,
the deformation gradients

Gradχα :=
∂χα
∂X

, (1)

and the velocities

χ̇α :=
∂χα
∂t

, (2)

are well defined. For t fixed, the function χα(·, t) is referred to as the configuration
of the α–th constituent at time t.

2.1.2 Eulerian and Lagrangean descriptions of a field.

Definitions (18) and (2) express the deformation gradient and the velocity as func-
tions of the referential label X. We say that these definitions provide a Lagrangean
representation of these fields.

Now, mixture theory inherits from continuum mechanics the requirement that
each configuration be a one-to-one mapping, thus forbidding interpenetration be-
tween parts of the same body. Because of this fact, given a Lagrangean field we can
provide a Eulerian representation where the independent variable X is replaced by
x. For example, we define the spatial (Eulerian) velocity field of constituent α as:1

vα(x, t) = χ̇α(χ−1
α (x, t), t).

Of course, the reciprocal operation starting from a spatial field ϕ(x, t) can be carried
out to define its Lagrangean (referential) representation

Φ(X, t) = ϕ(χ(X, t), t).

1Here χ−1(·, t) denotes the inverse of the configuration χα(·, t) at time t.
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In particular, given a spatial field ϕα(x, t) related to component α, the material time
derivative of ϕ following the motion of the constituent α is denoted by a grave accent:

ϕ̀α :=
∂Φα

∂t
=
∂ϕα
∂t

+ gradϕα · vα. (3)

When computing the time derivative of field that has already a subscript α, we shall
omit the double specification of the index α on top of the dot. If the field refers to
a component β different from α, or to no component at all (in which case β is to be
omitted) we write

α

ϕ̀β:=
∂Φβ

∂t
=
∂ϕβ
∂t

+ gradϕβ · vα. (4)

Convention. Although ϕ and Φ are different functions, they represent the same
physical quantity. To avoid the proliferation of symbols, we shall avoid when possible
using different symbols for the Lagrangian and Eulerian descriptions of a field. Which
description is to be understood at a particular point of our development should be
clear from the context.

2.2 Partial stresses and internal forces

A difference between mixture theory and conventional continuum theories is that
different constituents can engage the same region of space. In fact, the images
of two configurations χα(·, t) and χβ(·, t) (α 6= β) need not be disjoint. In other
words, two distinct bodies may interpenetrate each other and interact. The token
used in mixture theory to model the interactions between superposed constituent is
an internal body force field that accompanies contact forces and the external body
forces. The equilibrium equation that affirm balance between stress of a constituent,
the external and the internal forces acting on a constituent may be derived through
the principle of virtual powers. Additional properties shall be derived by recourse to
invariance principles.

2.2.1 Internal and external powers.

Given a spatial region Ω, the internal mechanical power expended within Ω is a linear
functional of the individual velocities of the mixture costituents:

Wint(Ω)[v1, . . . ,vn] :=
∑
α

∫
Ω

(Tα · grad vα + fα · vα) . (5)
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The external power expended on the part occupying the spatial region Ω is

Wext(Ω)[v1, . . . ,vn] :=
∑
α

(∫
∂Ω

tα · vα +

∫
Ω

bα · vα
)
. (6)

2.2.2 Principle of virtual powers and balance equations.

The principle of virtual powers for every region Ω yields the pointwise form of the
equilibrium equations

− div Tα + fα = bα, (7)

as well as the Cauchy’s representation:

tα(x,n) = Tα(x)n (8)

of the contact force tα acting at point x on the boundary of a region Ω whose outward
unit normal is n.

2.2.3 Invariance of the internal power.

The invariance of the internal power over superposed rigid velocities yields that the
internal forces add up to null: ∑

α

fα = 0, (9)

and that the total stress :
T :=

∑
α

Tα ∈ Sym .

is a symmetric tensor:
T ∈ Sym .

The fields Tα are called partial stresses. Although they need not be symmetric, their
sum must be symmetric.

2.3 Further bits of kinematics

2.3.1 The bulk specific volume.

Since we leave inertial effects out of the picture, we shall not introduce the concept
of mass and mass density. Instead, we shall make use of the notion of bulk specific
volumes

φα =
1

det Fα

,

which obey the same laws of conservation as for mass in continuum mechanics:
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Lemma 1. The bulk specific volumes obey:

φ̀α + φα div vα = 0, (10a)

and, equivalently,
∂φα
∂t

+ div(φαvα) = 0. (10b)

The interpretation of the bulk specific volume is the following: consider a part
Pα of the body Bα. At a given time t0, the material particles within the part Pα will
engage the spatial region

Ωα = χα(Pα, t0).

If the diameter of Pα is small compared to the characteristic scale of oscillation of
the fields of interest (typically, this scale may be identified with the norm |Fα| of the
deformation gradient), then the volume of the spatial region Ωα is approximately:2

vol Ωα ' φα volPα.

Thus, φα accounts for how much of spatial volume is engaged by a unit volume in
the reference configuration.

2.3.2 The true specific volume.

When referring to the region Ωα as being “engaged” by the part Pα we purportedly
do not use the verbal adjective “occupied”. In fact, there is a class of physical
systems, called multicomponent mixtures, that can be modeled by the theory of
interacting continua (for example, a mixture of tiny air bubbles in water), but whose
constituents are not truly superposed. For these systems, an observation performed

2Let consider any extensive physical quantity that measures the amount of material of constituent
(mass, number of molecules, etc.). Let cα and Cα be the densities of this quantity in the current and
reference configuration. Under the assumption that there are no chemical reactions that convert one
constituent into another, the amount of material contained in a part Pα is equal to that contained
in the region χα(Pα, t) occupied by Pα at time t:∫

Pα
Cα(X) =

∫
χα(Pα,t)

cα(x, t).

This yields

φα =
cα
Cα

.

In particular, if Cα does not depend on X in the reference configuration, then φα is proportional
to the density cα.
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at an intermediate scale, smaller than that at which the theory gives good results
(but still larger than that at which the continuum hypothesis breaks down) reveals
that the constituents are not at all superposed: they occupy disjoint regions within
Sα. Although these regions are so finely mixed that they cannot be distinguished at
the macroscopic scale, within each region one can find only one component, whose
true specific volume need not be the same as its bulk specific volume.

2.3.3 The incompressibility constraint.

For a single constituent, the incompressibility constraint consists in the requirement
that the true specific volume be equal to 1. By drawing a cartoon one immediately
realizes that:

• for a multicomponent mixture whose constituents are incompressible, the bulk
specific volume φα is the fraction of the volume occupied by the α–th con-
stituent in a mesoscopic region of space.

Since volume fractions add up to 1, for an incompressible multicomponent mixture
the following incompressibility constraint holds:∑

α

φα = 1. (11)

Lemma 2 (Velocity constraint imposed by incompressibility). Every velocity field
consistent with (11) must satisfy∑

α

(φα div vα + gradφα · vα) = 0. (12)

Remark 1. One would be tempted to argue from (11) that
∑

α φ̀α = 0. Note
however that the partial derivative in this sum are performed following the individual
constituents.

2.3.4 The mean velocity.

We define the material derivative of ϕ following the motion of the mixture as

ϕ̇ := ∂tϕ+ gradϕ · v, (13)

where
v =

∑
α

φαvα. (14)

is the average velocity of the mixture.
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Lemma 3. Assume that ϕ is continuously differentiable with respect to x and t.
Then

ϕ̇ =
∑
α

φα
α

ϕ̀,

Remark 2 (The velocity of the mixture). The choice of the weights in (14) appears
arbitrary. As a possible selection criterion for a definition of the velocity v of the mix-
ture would be to asking that the power expended by the total stress on the velocity
be equal to the sum of the individual powers expended within the constitutents:

T · grad v =
∑
α

(Tα · grad vα + fα · vα) .

2.4 Three formulations of the dissipation principle for a sys-
tem of superposed continua

2.4.1 Partwise and pointwise formulation.

Given a region Ω let Ωα(t) be a time dependent region convecting with the component
α

Ωα(t) = χα(Pα, t),

such that
Ωα(t0) = Ω.

The dissipation principle dictates that there exists referential state fields Ψα satisfy-
ing the inequality∑

α

d

dt

∣∣∣∣
t=t0

∫
Pα

Ψα −
∫

Ω

λ
∑
α

(φα div vα + gradφα · vα) ≤ Wint(Ω)[v1, . . . ,vn]

for every realizable process and for every region Ω. Here λ is the pressure, the
Lagrange multiplier associated to the incompressibility constraint (12).

Proposition 1. If the dissipation inequality holds true for every region Ω and for
every process, then the following inequality holds pointwise:3∑

α

(
−φαΨ̀α + (Tα + φαλI) · grad vα + (fα + λ gradφα) · vα

)
≥ 0.

3Here Ψα stands for the Eulerian representation of the specific free energy.
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2.4.2 Pointwise formulation using spatial densities: the chemical–
potential tensor.

On introducing the spatial free energy densities

ψα = φαΨα,

and owing to the identities ψ̀α = φ̀αΨα +φαΨ̀α and φ̀α = −φα div vα, we can rewrite
the pointwise dissipation inequality as

−
∑
α

(
ψ̀α + φα(Kα − λI) · grad vα

)
+
∑
β

(fβ + λ gradφα) · vα ≥ 0, (15)

where
Kα := ΨαI− φ−1

α Tα (16)

is called chemical potential tensor of the α–th constituent.4

2.4.3 Formulation using spatial control volumes: the total free energy
and the boundary flux.

We introduce the total free energy density:

ψ =
∑
α

ψα.

Proposition 2. The dissipation inequality is equivalent to

d

dt

∫
Ω

ψ +

∫
∂Ω

ψαvα · n ≤ Wint(Ω)[v1, . . . ,vn]. (17)

The second term on the left–hand side is interpreted as the boundary influx of free
energy.

2.5 Constitutive equations

2.5.1 Partial free energies.

We assume that the referential free energy densitiy of each component α depends on
the deformation gradient of the solid component and on the volume fractions of the
fluid components:

Ψα = Ψ̂α(F, φ2, . . . , φN) ≡ Ψ̂α(F, φβ), (18)

4See Eq. 2.42 of the paper [4] by Bowen.
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Here and in the following we omit specifying the subscript of the deformation gradient
of the solid component:5

F ≡ Fs.

As apparent from (18), the free energy density of the α–th constituent depends not
only on the configuration χα(·, t) of that constituent, but also on the configurations
of the other constituents. The corresponding spatial free energy densities obey the
following constitutive precriptions:6

ψ̂s(F, φβ) = det F−1Ψ̂s(F, φβ), φ̂β(F, φβ) = φβΨ̂β(F, φβ).

The total free energy of the mixture per unit spatial volume is the sum of the indi-
vidual energies

ψ =
∑
α

ψ̂α(F, φβ) =: ψ̂(F, φβ). (19)

It is important to notice that the free energy of the α–th component of the mix-
ture depends not only on Fα, but also on the deformation gradients of all other
components.

Proposition 3. The dissipation inequality (15) is satisfied for all admissible pro-
cesses if and only if

−
∑
α

φαK
(d)
α · grad vα +

∑
α

f (d)
α · vα ≥ 0, (20)

where

K(d)
s = Ks − λI + φ−1

s

∂ψ

∂F
FT , (21a)

K
(d)
β = Kβ − λI− ∂ψ

∂φβ
I, for β ≥ 2, (21b)

and

f (d)
s = fs + λ gradφs − gradψs +

∂ψ

∂F
: grad F, (22a)

f
(d)
β = fβ + λ gradφβ − gradψβ +

∂ψ

∂φβ
gradφβ, β ≥ 2. (22b)

where ∂Ψ
∂F

: grad F = ∂ψ
∂Fij

Fij,kek.
5This will not be source of ambiguities, since it is only the deformation gradient of the solid

component that is relevant to our development.
6Here the symbol φβ in the argument of ψ̂s and Ψ̂s stands for the ordered list (φβ)β≥2 of the

volume fractions of the fluid components.

10



Proof (sketch). A routine computation gives based on (3), (10b), and on the identity

grad vs = ḞF−1,

yields ∑
α

ψ̀α =
∑
α

∂ψα
∂t

+
∑
α

gradψα · vα

=
∂ψ

∂t
+
∑
α

gradψα · vα

=
∂ψ

∂F
FT · grad vs −

∑
β

φβ
∂ψ

∂φβ
div vβ

+ gradψs · vs −
∂ψ

∂F
· grad F[vs]

+
∑
β

(gradψβ −
∂ψ

∂φβ
gradφβ) · vβ.

Substitution into (15) yields the thesis.

Remark 3. We notice that since ψ =
∑

α ψα and
∑

α φα = 1, the energetic parts of
the internal forces, defined by

f (e)
s = −λ gradφs + gradψs −

∂ψ

∂F
: grad F, and

f
(e)
β = −λ gradφβ + gradψβ −

∂ψ

∂φβ
gradφβ, β ≥ 2,

(23)

add up to null: ∑
α

f (e)
α = 0. (24)

Remark 4. The splitting (25) can also be written as Kα = K
(e)
α + K

(d)
α , with

K(e)
s = −φ−1

s

∂ψ

∂F
FT + λI, (25a)

K
(e)
β =

∂ψ

∂φβ
I + λI, for β ≥ 2, (25b)

the energetic parts of the chemical potential tensors.
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Remark 5 (Alternative expressions for the stresses). We note that, since φα =
1/ det Fα, on letting det Fα = Jα, we can write

∂φα
∂Fα

=
∂J−1

α

∂Fα

= −J−1
α F−Tα = −φαF−Tα , (26)

hence
∂(φαΨα)

∂Fα

FT
α = φα

∂Ψα

∂Fα

FT
α − φαΨαI. (27)

We also notice that if Ψβ depends on Fα only through the volume fraction φα, then

∂(φβΨβ)

∂Fα
FT
α = −φβφα

∂Ψβ

∂φα
I. (28)

From these observations, (34) can be given the form

φ−1
s Ts =

∂Ψs

∂F
FT −

(
λ+

∑
β≥2

φβ
∂Ψs

∂φβ

)
I−K(d)

s , (29a)

φ−1
β Tβ = −

(
λ+

∑
α

φα
∂Ψα

∂φβ

)
I−K

(d)
β , β ≥ 2. (29b)

In some applications, it is convenient to express the dependence of the free energy
of the solid component in the form

Ψ̂α(F, φβ) = Ψα(F, φs, φβ). (30)

In these cases, the expression (29) are replaced by

φ−1
s Ts =

∂Ψs

∂F
FT −

(
λ+

∑
α

φα
∂Ψα

∂φs

)
I−K(d)

s , (31)

φ−1
β Tβ = −

(
λ+

∑
α

φα
∂Ψα

∂φβ

)
I−K

(d)
β , β ≥ 2. (32)

The scalar field

πα =
∑
α

φα
∂Ψα

∂φs
(33)

is the osmotic pressure of the α-th component.
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2.5.2 Reduced balance equations.

From definition (16) of the chemical potential tensor we get the expression Tα =
−φαKα + ψαI of the partial stress in terms of chemical potential tensor and partial
free energy. Substitution of this expression into (25) yields a set of reduced constitu-
tive prescriptions for the stresses:

Ts =
∂ψ

∂F
FT + φs(Ψs − λ)I− φsK(d)

s , (34a)

Tβ = −φβ
∂ψ

∂φβ
I + φβ (Ψβ − λ) I− φβK(d)

β . (34b)

These prescriptions, when substituted along with (22) into the equilibrium equations
(7) yield

div
∂ψ

∂F
FT − φs gradλ+

∂ψ

∂F
: grad F + bs = f (d)

s + div
(
φsK

(d)
s

)
(35a)

− φβ grad

(
∂ψ

∂φβ
+ λ

)
+

∂ψ

∂φβ
gradφβ + bβ = f

(d)
β + div

(
φβK

(d)
β

)
. (35b)

2.5.3 Alternative format for the reduced balance equations.

From the condition
∑

α fα = 0 (which we recall is a consequence of frame indifference

of the internal power) and from (22) we find
∑

α f
(d)
α = 0. It is convenient to write

both the equilibrium equations and the reduced dissipation inequality in a form that
does not involve fs explicitly. As to the equilibrium equations, this is done by adding
the equations (35b) to (35a) to get:7

div

(
∂ψ

∂F
FT + ψI−

∑
β

φβ
∂ψ

∂φβ

)
− gradλ+ b = div

(∑
α

φαK
(d)
α

)
(36a)

− φβ grad

(
∂ψ

∂φβ
+ λ

)
+ bβ = f

(d)
β + div

(
φβK

(d)
β

)
. (36b)

The reduced dissipation inequality, on the other hand, is equivalent to

−
∑
α

φαK
(d)
α · grad vα +

∑
β

f
(d)
β · (vβ − vs) ≥ 0. (37)

7Note that ∂ψ
∂F : gradF +

∑
β
∂ψ
∂φβ

gradφβ = gradψ = div(ψI).
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Remark 6. The weighted sum ψ =
∑

α φαΨα represents the free energy per unit
volume of the mixture. It is immediately seen that the total Cauchy stress T =∑

α Tα depends only on ψ. Indeed, from (34) we have:8

T :=
∑
α

Tα =
∂ψ

∂F
FT + (ψ − λ)I−

∑
β

φβ
∂ψ

∂φβ
−
∑
α

φαK
(d)
α . (38)

If we add the partial balances (7) and we use the fact that the internal forces add
up to null, we obtain

− div T = b, (39)

which coincides with (36). In the case of a body made of a single incompressible
constituent, the above equation reduces to

T =
∂ψ

∂F
FT + (ψ − λ)I. (40)

In this case the referential and spatial energies coincide, because the Jacobian of the
deformation map is equal to 1, and so we recover the standard constitutive equation.

2.5.4 Evolution equations.

It is immediate from Proposition 3 that constitutive equations consistent with the
dissipation inequality (37) are

K(d)
α = 0, (41a)

f
(d)
β = φβkβ(vβ − vs), kβ = k̂β(φ2, . . . , φn). (41b)

This choice models a mixture of an incompressible elastic solid and N − 1 incom-
pressible inviscid fluids. In particular, the chemical potential tensors of the fluids are
Kβ = µβI, where

µβ = −(λ+ pβ), pβ :=
∂ψ

∂φβ
. (42)

The fields pβ are called partial pressures. The following system governing the evolu-
tion of the mixture is arrived at:

div

(
∂ψ

∂F
FT + ψI−

∑
β

φβ
∂ψ

∂φβ

)
− gradλ+ b = 0, (43a)

kβ(vβ − vs) = − grad (pβ + λ) . (43b)

A couple of remarks are in order:

8See also Eq. 3.22 of Bowen’s paper [4], where the total stress is called the inner part of the
stress and is denoted by TI .
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• the evolution equations (35) do not depend on how the total free energy ψ
splits into its addenda ψα;

• however, the boundary conditions in terms of stresses depend on such splitting.
Thus how one chooses this splitting has relevant physical consequences;

Remark 7. In continuum mechanics a loading environment is modeled by prescribing
boundary conditions of traction. These conditions are translated in terms of stress
through the Cauchy relation (see (8)), regardless what the constitutive prescription
for the stress be. Once the constitutive equation for the free energy is provided, these
conditions lead to a precise mathematical statement through a sequence of steps free
of ambiguity. For a superposition of continua, however, there is ambiguity concern-
ing the expression of the partial stresses because of the manifold of choices for the
free energies of the individual components. As a result, the same set of boundary
conditions of traction type will lead to different mathematical statements concerning
boundary conditions, according to what choice has been made for the free energies.

2.5.5 Ascribing the entire free energy to the solid constituent.

In this case ψβ = 0 for all β = 2, . . . , N . The total spatial free energy coincides with
that of the solid constituent:

ψ(F, φβ) = ψs(F, φβ) = φsΨs(F, φβ) = (detF)−1Ψs(F, φβ).

Then
∂ψ

∂F
FT = (detF)−1∂Ψs

∂F
FT − ψs.

Therefore, the Cauchy stress of the solid constituent is

Ts = φs
∂Ψs

∂F
FT − φsλI.

Moreover, the partial pressures are given by:

pβ = φs
∂Ψs

∂φβ

and the Cauchy stress of the fluid constituent β is

Tβ = −φβ(pβ + λ)I, .
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The total Cauchy stress is therefore:

T =
∑
α

Tα = φs
∂Ψs

∂F
FT −

(∑
β

φβpβ + λ

)
I (44)

Note that we can write

Tβ = −φβqβI, qβ = pβ + λ.

2.6 The special case of two constituents with ψβ = 0.

2.6.1 Spatial description

When the number of fluid constituents reduces to 1, the volumetric constraint (11)
yields φf = 1−φs, and hence, because of (12), φf = (detF− 1)/detF. Thus without
loss of generality one can assume that Ψs does not depend on φf :

9

∂Ψs

∂φf
= 0.

In this case, one has one more reason to think of the free energy as entirely pertaining
to the solid constituent and assume ψf = 0. In this special case, the constitutive
equation (44) delivering the total stress takes the form

T = φs
∂Ψs

∂F
FT − λI,

and the partial pressure pf vanishes. The motion equation of the fluid constituent
(35b) becomes

kf (vf − vs) = − gradλ. (45)

3 An alternative expression of the internal power

and for the dissipation inequality

In this section we show that the power expenditure within the setting of theories
based on interacting continua [4, 5] and within the setting of a single continuum

9If this is not the case, one can introduce the constitutive mapping:

Ψ̃s(F) := Ψ̂s

(
F,

detF− 1

detF

)
.
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with microstructure [8] according to Biot’s approach are equivalent, provided that
the two power functionals are evaluated at states that are compatibile with the
balance equations.

3.1 The dissipation inequality for a two–component mix-
ture.

Again, consider a situation when there is only one fluid constituent and the free
energy of the mixture (including the interaction energy) is ascribed entirely to the
solid constituent, that is to say, ψf = 0. In this case, the dissipation inequality for a
fixed spatial region Ω is

d

dt

∫
Ω

ψs +

∫
∂Ω

ψsvs · n ≤
∫

Ω

(Ts · grad vs + Tf · grad vf + fs · vs + ff · vf ) . (46)

For the reader’s sake we recall the following facts:

• ψs denotes the free energy of the solid constituent per unit spatial volume.
Such quantity is related to the corresponding free energy density Ψs per unit
referential volume of the solid constituent by

ψs = φsΨs,

where φs = 1/det F is the volume fraction of the solid constituent.

• Ts and Tf are the partial Cauchy stresses of the solid and of the fluid, and

T = Ts + Tf

is the total stress.

• the fluid stress is Tf = −φfλI, where φf is the fluid volume fraction and λ is
the Lagrange multiplier associated to the incompressibility constraint.

• −fs and−ff are the body forces acting on each continuum due to the interaction
with the other continuum.

• under the assumption that external body forces vanish, the principle of virtual
powers entails a balance equation

− div Tα + fα = 0

for each constituent α = 1, 2.
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• invariance of the internal power with respect to superposition of translation
fields entails that the interaction forces add up to null: ff + fs = 0, so that the
dissipation inequality can be rewritten as

d

dt

∫
Ω

ψs+

∫
∂Ω

ψsvs·n ≤
∫

Ω

(Ts · grad vs + Tf · grad vf + ff · (vf − vs)) . (47)

3.2 The molar flux and the molar chemical potential.

Now, we perform a sequence of formal manipulations to rewrite the right–hand side
of the dissipation inequality:

Wint(Ω)[vs,vf ] =

∫
Ω

(Ts · grad vs + Tf · grad vf + ff · (vf − vs))

=

∫
Ω

(Ts + Tf ) · grad vs + Tf · grad(vf − vs) + ff · (vf − vs)

(on recalling the identity div Tf = ff and on setting T = Ts + Tf )

=

∫
Ω

T · grad vs +

∫
∂Ω

Tfn · (vf − vs)

(on defining the molar flux of fluid relative to the solid h = (φf/v)(vf−vs),
where v is the molar volume)

=

∫
Ω

T · grad vs +

∫
∂Ω

v

φf
Tfn · h

(on recalling that Tf = −φfλI for the fluid constituent)

=

∫
Ω

T · grad vs −
∫
∂Ω

vλh · n

(on introducing the molar chemical potential µ = vλ)

=

∫
Ω

T · grad vs −
∫
∂Ω

µh · n.

We have thus proved the following result.

18



Proposition 4. The dissipation inequality (47) is equivalent to

d

dt

∫
Ω

ψs +

∫
∂Ω

ψsvs · n ≤
∫

Ω

T · grad vs −
∫
∂Ω

µh · n. (48)

where, if v the molar volume of the fluid molecules, then

h = (φf/v)(vf − vs)

is the molar flux of fluid relative to the solid, and

µ = vλ

is the molar chemical potential of the fluid.

Remark 8. The ratio
c = φf/v (49)

is the spatial concentraion (number of moles) of fluid per unit volume.

3.3 Recovering the dissipation inequality of the homoge-
nized solid

Next, consider a time-dependent spatial region Ω(t) that convects with the solid:

Ω(t) = χs(Ps, t) for some body part Ps of the solid,

and coincides with Ω at a given time t0:

Ω(t0) = Ω.

It is standard to establish that, at time t0,

d

dt

∫
Ω

ψs +

∫
∂Ω

ψsvs · n =
d

dt

∫
Ω(t)

ψs =

∫
Ω

φsΨ̇s. (50)

Thus, the dissipation inequality can be given the form∫
Ω

φsΨ̇s ≤
∫

Ω

T · grad vs +

∫
∂Ω

µh · n. (51)

Using (51), it is now straightforward to prove the next proposition, which yields the
dissipation inequality used in [8], where the mixture is treated as a single solid.
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Proposition 5. Satisfaction of the the dissipation inequality (48) for every spatial
control volume Ω engaged by the solid component is equivalent to asking that, for
each body part Ps of the solid,∫

Ps
Ψ̇s ≤

∫
Ps

TR · gradR vs +

∫
∂Ps

µhR · nR, (52)

where
TR = TF? = (det F)TF−T, hR = (F?)Th = (det F)F−1h. (53)

are, respectively, the referential stress and the referential flux, gradR denotes the
referential gradient and nR is the outward unit normal to Ps.

3.4 Referential form of the motion equation of the fluid con-
stituent.

Recalling the identity
gradR λ = FT gradλ.

we can write the spatial form of the motion equation (45) as

− gradR λ− kf (det F)−1FTFhR = 0.

This yields the following relation for the referential flux:

hR = −k−1
f (det F)(FTF)−1 gradR λ = −(vkf )

−1(det F)(FTF)−1 gradR µ. (54)

This relation that agrees with the constitutive equation for the flux adopted in [8].
There is an important difference, however: according to [8], (54) is a constitutive
equation. In our case, it is the consequence of an equilibrium equation.

4 Comparison with a theory describing perfusion

in a porous matrix

The virtual-power format for poromechanics offered in [7], which has been proposed
to describe perfusion and adsorption in a porous matrix, may be interpreted as being
partway between the Biot-type framework and theories based on interacting continua.
In accordance with Biot’s point of view, the solid constituent plays a predominant
role, since its reference configuration is used as the background on which all phenom-
ena are described. On the other hand, as in the theory of superposed continua: (i)
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the velocity of the fluid component, rather than its flux, appears explicitly in the
power expenditure; (ii) Darcy’s law emerges as a combination of a force balance and
a constitutive equation. In particular, the pressure appears in the position of a force
both in the virtual-work formulation and in the dissipation inequality.

We shall limit our attention to a maimed version of that theory, whereby pores are
fully saturated and the balance principle for the interstitial fluid mass (specifically,
[7, Eq. 4]) does not include mass supply. In that version, the referential internal
power expended within the typical part Ps is:

Wint(Ps)[vs,vs] =

∫
Ps

(
TR · gradR vs + ff,R · (vf − vs)− pvċR

)
. (55)

We recall that cR is the spatial concentration (density of moles) of the fluid compo-
nent multiplied by the ratio J between the current volume and the referential volume,
and is related to the actual concentration c and to the spatial volume fraction φf of
the fluid by:

cR = Jc = Jvφf . (56)

To compare our (55) with the statement [7, Eq. 11], one should bear in mind that
the latter contains both the internal and the external virtual power expenditure.
In particular, the body forces bs and bf in [7, Eq. 11] account not only for the
interaction force between the two constituents, but also the interaction of these
constituent with the exterior. Moreover, the same token leading to (9), namely,
invariance of the internal power under a change of observer, entails that the internal
forces acting on each constituent must sum to null. Finally, the porosity field ϕ in [7],
which is interpreted as the amount of actual volume of physical space occupied by
the pores per unit volume in the reference configuration, is the product vcR between
the molar volume v and the referential molar concentration cR.10

A key step in [7] is the introduction of a perfusion velocity

w = F−1(vf − vs), (57)

as the material field deemed appropriate to describe the motion of the fluid relative
to the solid. This field is related to the referential concentration by the referential

10On denoting by dVpores,cur, dVfluid,cur, and by dN , respectively, the volume occupied by the
pores, the volume occupied by the fluid, and the number moles of fluid contained in an infinitesimal
volume dVcur in the current configuration, we have, under the assumption of saturation, that
dVpores,cur = dVfluid,cur. Thus, since dN

dVfluid,cur
= v is the fluid molar density, and c = dN

dVcur
is the

current fluid concentration, we can write
dVpores,cur
dVcur

= dN
dVcur

dVpores,cur
dN = cv. The porosity ϕ in [7]

stands for
dVpores,cur
dVref

, thus we can write ϕ = J
dVpores,cur
dVcur

, where J is the Jacobian. Thus, we can

make the identification ϕ = cRv.
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molar balance
ċR + divR(cRw) = 0. (58)

The referential molar balance may be obtained in several ways. We illustrate a
derivation at the end of the present section, starting from an analogous statement
(see (65) below) which we have already derived in the spatial setting.

Although (58) involves rates, it is actually a holonomic constraint. Indeed, given
any deformation map χsf mapping the reference space of the solid component into
itself, taken among the many which we may choose to describe the motion of the
fluid component velocity w, the integration of (58) yields that the Jacobian Jsf =
det gradRχsf obeys:11

JsfcR = constant. (59)

With the position (57) and (58), the internal-power expenditure (55) takes the
form of a linear functional on the pair (vs,w) (cf. [7, Eq. 12]):

Wint(Ps)[vs,w] =

∫
Ps

(
TR · gradR vs + FT ff,R ·w + pv div(cRw)

)
. (60)

Now, we can perform a change of variable to write the internal power in terms of the
spatial description of the fields of interest. Observe that on setting f̃f = Jff,R, we
have ∫

Ps
FT ff,R ·w =

∫
Ω

JFT ff,R ·w =

∫
Ω

f̃f · (vf − vs), (61)

Moreover, we have∫
Ps
pv divR(cRw) =

∫
Ps

gradR(pv) · cRw −
∫
∂Ps

pvcRw · nR

=

∫
Ω

J−1FT grad(pv) · cRw −
∫
∂Ω

pvcRw · F−?n

=

∫
Ω

grad(pv) · c(vf − vs)−
∫
∂Ω

pvc(vf − vs) · n

=

∫
Ω

pv div(c(vf − vs))

=

∫
Ω

pvc div(vf − vs) + pv∇c · (vf − vs)

(62)

11It follow from (59) that virtual variations of referential concentration and perfusion velocity
are related by the constraint

δcR + divR(cRδw) = 0.
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Thus, the internal power can be written as

Wint(Ps)[vs,vf ] =

∫
Ps

(
T · grad vs − pvcI · grad(vf − vs) + (f̃f + pv∇c) · (vf − vs)

)
.

(63)
We now recover the expression (5) of the internal power (in the special case n = 2),
provided we set

Ts = T + pcvI, Tf = −pvcI, fs = f̃f + pv∇c, (64)

where the last term is the so-called buoyancy force, related to spatial changes of fluid
concentration (i.e. spatial changes of porosity).

We conclude this section by checking that the referential molar balance (58) may
be obtained from the spatial molar balance for the fluid components :

∂c

∂t
+ div(cvf ) = 0, (65)

the latter being a consequence of the second equality in the chain (56) and — given
that the molar volume v of the (incompressible) fluid component is constant — of
the identity (10b). From the relation cR(X, t) = J(X, t)c(χs(X, t), t) and from the
identity J̇ = J div vs we obtain

ċR = J
(
c div vs +

∂c

∂t
+ grad c · vs

)
= J div

(
c(vs − vf )

)
. (66)

Now, recall that for every time-dependent spatial vector field a,

J(div a)r = divR((F∗)Tar), (67)

where ar, the referential description of a, is related to a by ar(X, t) = a(χs(X, t), t).
As a result we obtain

ċR = divR(c(F∗)T (vf − vs)r) = divR(JcF−1(vf − vs)) = divR(cRw), (68)

as desired.
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