To attack the problem of “computing with the additives”, we introduce a notion of sliced proof-net for the polarized fragment of linear logic. We prove that this notion yields computational objects, sequentializable in the absence of cuts. We then show how the injectivity property of denotational semantics guarantees the “canonicity” of sliced proof-nets, and prove injectivity for the fragment of polarized linear logic corresponding to the simply typed λ-calculus with pairing.

Laurent, O., TORTORA DE FALCO, L. (2004). Slicing polarized additive normalization. In Linear Logic in Computer Science (pp. 247-282) [10.1017/CBO9780511550850.008].

Slicing polarized additive normalization

TORTORA DE FALCO, LORENZO
2004-01-01

Abstract

To attack the problem of “computing with the additives”, we introduce a notion of sliced proof-net for the polarized fragment of linear logic. We prove that this notion yields computational objects, sequentializable in the absence of cuts. We then show how the injectivity property of denotational semantics guarantees the “canonicity” of sliced proof-nets, and prove injectivity for the fragment of polarized linear logic corresponding to the simply typed λ-calculus with pairing.
2004
9780521608572
Laurent, O., TORTORA DE FALCO, L. (2004). Slicing polarized additive normalization. In Linear Logic in Computer Science (pp. 247-282) [10.1017/CBO9780511550850.008].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/167803
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact