We consider a long--range homogeneous chain where the local variables are the generators of the direct sum of $N$ $\mathfrak{e}(3)$ interacting Lagrange tops. We call this classical integrable model rational ``Lagrange chain'' showing how one can obtain it starting from $\mathfrak{su}(2)$ rational Gaudin models. Moreover we construct one- and two--point integrable maps (B\"acklund transformations).
Musso, F., Petrera, M., Ragnisco, O., Satta, G. (2004). Backlund transformations for the rational Lagrange chain.
Backlund transformations for the rational Lagrange chain
MUSSO, FABIO;PETRERA, Matteo;RAGNISCO, Orlando;SATTA, GIOVANNI
2004-01-01
Abstract
We consider a long--range homogeneous chain where the local variables are the generators of the direct sum of $N$ $\mathfrak{e}(3)$ interacting Lagrange tops. We call this classical integrable model rational ``Lagrange chain'' showing how one can obtain it starting from $\mathfrak{su}(2)$ rational Gaudin models. Moreover we construct one- and two--point integrable maps (B\"acklund transformations).File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.