Internet of Robotic Things (IoRT) is a new concept introduced for the first time by ABI Research. Unlike the Internet of Things (IoT), IoRT provides a dynamic actuation and is considered as the new evolution of IoT. This new concept will bring new opportunities and challenges, while providing new business ideas for IoT and roboticsâ entrepreneurs. In this work, we will focus particularly on two issues: (i) connectivity maintenance among multiple IoRT robots, and (ii) their collective coverage. We will propose (i) IoT-based, and (ii) a neural network control scheme to efficiently maintain the global connectivity among multiple mobile robots to a desired quality-of-service (QoS) level. The proposed approaches will try to find a trade-off between collective coverage and communication quality. The IoT-based approach is based on the computation of the algebraic connectivity and the use of virtual force algorithm. The neural network controller, in turn, is completely distributed and mimics perfectly the IoT-based approach. Results show that our approaches are efficient, in terms of convergence time, connectivity, and energy consumption.
Razafimandimby, C., Loscri, V., Vegni, A.M. (2017). Towards Efficient Deployment in Internet of Robotic Things. In Internet of Things (pp. 21-37). Springer International Publishing [10.1007/978-3-319-61300-0_2].
Towards Efficient Deployment in Internet of Robotic Things
VEGNI, ANNA MARIA
2017-01-01
Abstract
Internet of Robotic Things (IoRT) is a new concept introduced for the first time by ABI Research. Unlike the Internet of Things (IoT), IoRT provides a dynamic actuation and is considered as the new evolution of IoT. This new concept will bring new opportunities and challenges, while providing new business ideas for IoT and roboticsâ entrepreneurs. In this work, we will focus particularly on two issues: (i) connectivity maintenance among multiple IoRT robots, and (ii) their collective coverage. We will propose (i) IoT-based, and (ii) a neural network control scheme to efficiently maintain the global connectivity among multiple mobile robots to a desired quality-of-service (QoS) level. The proposed approaches will try to find a trade-off between collective coverage and communication quality. The IoT-based approach is based on the computation of the algebraic connectivity and the use of virtual force algorithm. The neural network controller, in turn, is completely distributed and mimics perfectly the IoT-based approach. Results show that our approaches are efficient, in terms of convergence time, connectivity, and energy consumption.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.