Hysteresis is discussed as a multi-scale material feature that can strongly affect the dynamic performance of a structure. It is shown that the hysteresis exhibited by assemblies of short wire ropes can be tailored via a synergistic use of different dissipation mechanisms (inter-wire frictional sliding, phase transformations) combined with geometric nonlinearities. The blend of material and geometric nonlinearities is a powerful and promising way to design new advantageous types of hysteretic responses in macro- or micro-scale devices and structures. Indeed, moving from macro-scale structures towards much smaller material scales, carbon nanotubes in nanocomposites are shown to dissipate energy through stick-slip with the polymer chains. The hysteresis of these materials can be largely modified and optimized by adjusting the micro-structural constitutive features. Recent experimental and modeling efforts are discussed in the context of new directions in material design and dynamic behavior of nanocomposites.

Lacarbonara, W., Talò, M., Carboni, B., & Lanzara, G. (2017). Tailoring of hysteresis across different material scales. In Springer Proceedings in Physics (pp. 227-250). Springer Science and Business Media, LLC [10.1007/978-3-319-63937-6_13].

Tailoring of hysteresis across different material scales

Lacarbonara, Walter;Lanzara, Giulia
2017

Abstract

Hysteresis is discussed as a multi-scale material feature that can strongly affect the dynamic performance of a structure. It is shown that the hysteresis exhibited by assemblies of short wire ropes can be tailored via a synergistic use of different dissipation mechanisms (inter-wire frictional sliding, phase transformations) combined with geometric nonlinearities. The blend of material and geometric nonlinearities is a powerful and promising way to design new advantageous types of hysteretic responses in macro- or micro-scale devices and structures. Indeed, moving from macro-scale structures towards much smaller material scales, carbon nanotubes in nanocomposites are shown to dissipate energy through stick-slip with the polymer chains. The hysteresis of these materials can be largely modified and optimized by adjusting the micro-structural constitutive features. Recent experimental and modeling efforts are discussed in the context of new directions in material design and dynamic behavior of nanocomposites.
9783319639369
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11590/334475
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact