Motivated by classification issues in marine studies, we propose a hidden semi-Markov model to segment toroidal time series according to a finite number of latent regimes. The time spent in a given regime and the chances of a regime switching event are separately modeled by a battery of regression models that depend on time-varying covariates.

Lagona, F., Mingione, M. (2023). Segmenting toroidal time series by nonhomogeneous hidden semi-Markov models. In G.G. Pietro Coretto (a cura di), CLADAG 2023 Book of abstracts and short papers (pp. 197-200). Pearson Education Resources.

Segmenting toroidal time series by nonhomogeneous hidden semi-Markov models

Francesco Lagona
;
Marco Mingione
2023-01-01

Abstract

Motivated by classification issues in marine studies, we propose a hidden semi-Markov model to segment toroidal time series according to a finite number of latent regimes. The time spent in a given regime and the chances of a regime switching event are separately modeled by a battery of regression models that depend on time-varying covariates.
2023
9788891935632
Lagona, F., Mingione, M. (2023). Segmenting toroidal time series by nonhomogeneous hidden semi-Markov models. In G.G. Pietro Coretto (a cura di), CLADAG 2023 Book of abstracts and short papers (pp. 197-200). Pearson Education Resources.
File in questo prodotto:
File Dimensione Formato  
215_PDFsam_CLADAG-2023.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 216.69 kB
Formato Adobe PDF
216.69 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/450674
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact