We derive, by a biorthonormal state approach, the analogy of Berry's phase factor for open, non-conservative systems, for both adiabatic and non-adiabatic evolution. In the latter case, a (non-unitary) evolution operator method is exploited. An application is given to the optical supermode propagation in the free-electron laser.

Dattoli, G., Mignani, R., Torre, A. (1990). GEOMETRICAL PHASE IN THE CYCLIC EVOLUTION OF NON-HERMITIAN SYSTEMS. JOURNAL OF PHYSICS. A, MATHEMATICAL AND GENERAL, 23(24), 5795-5806 [10.1088/0305-4470/23/24/020].

GEOMETRICAL PHASE IN THE CYCLIC EVOLUTION OF NON-HERMITIAN SYSTEMS

MIGNANI, ROBERTO;
1990-01-01

Abstract

We derive, by a biorthonormal state approach, the analogy of Berry's phase factor for open, non-conservative systems, for both adiabatic and non-adiabatic evolution. In the latter case, a (non-unitary) evolution operator method is exploited. An application is given to the optical supermode propagation in the free-electron laser.
1990
Dattoli, G., Mignani, R., Torre, A. (1990). GEOMETRICAL PHASE IN THE CYCLIC EVOLUTION OF NON-HERMITIAN SYSTEMS. JOURNAL OF PHYSICS. A, MATHEMATICAL AND GENERAL, 23(24), 5795-5806 [10.1088/0305-4470/23/24/020].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/114179
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 79
social impact