Muskhelishvili complex potentials are used to solve the problem of an infinite elastic plane containing an elliptic inhomogeneity with a slid¬ing interface but no eigen¬strain. The boundary conditions considered are (a) continuity of normal tractions and displacements and vanishing shear tractions at the interface, and (b) vanishing stresses at infinity. After a conformal mapping of the elastic plane, the solution is ob¬tained in terms of a set of infinite algebraic equations yielding the Laurent's expansion coefficients of the complex potentials. Distinct sets of for¬mulae must be written for a circular inhomogeneity (degenerate el¬lipse) and an elliptic inhomogeneity (no degen¬eracy), and in both cases no closed form solution is obtainable. For an elliptic inhomo¬geneity the solution requires iteration and recursion, and implies van¬ishing stresses in the inhomogeneity when the system is loaded with a remote uniform shear parallel to the axes of the ellipse.
I potenziali complessi di Muskhelishvili vengono usati per risolvere il problema di un piano elastico infinito contenente una disomogeneità ellittica con interfaccia scorrevole e che non sia all' origine di un campo di sforzi interni. Si considerano le condizioni al contorno: (a) continuità delle trazioni e degli spostamenti normali e annullamento delle trazioni tangenziali all' interfaccia; (b) annullamento degli sforzi all' infinito. Mediante una trasformazione conforme del piano elastico, la soluzione viene espressa in termini di un sistema di infinite equazioni algebriche per i coefficienti degli sviluppi di Laurent dei potenziali complessi. Si trova che occorre scrivere distinti sistemi per i casi di disomogeneità circolare (ellisse degenere) e di disomogeneità ellittica (non circolare). In ambedue i casi non è otttenibile una soluzione in forma chiusa. Nel caso di disomogeneità ellittica la soluzione consiste in formule ricorrenti e richiede iterazione; inoltre, essa implica l' annullamento del campo di sforzi nella disomogeneità quando il sistema è soggetto ad uno sforzo di taglio uniforme applicato all' infinito parallelamente agli assi dell' ellisse.
Stagni, L. (1991). Elastic field perturbation by an elliptic inhomogeneity with a sliding interface. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 42, 811-820.
Elastic field perturbation by an elliptic inhomogeneity with a sliding interface.
STAGNI, Luigi
1991-01-01
Abstract
Muskhelishvili complex potentials are used to solve the problem of an infinite elastic plane containing an elliptic inhomogeneity with a slid¬ing interface but no eigen¬strain. The boundary conditions considered are (a) continuity of normal tractions and displacements and vanishing shear tractions at the interface, and (b) vanishing stresses at infinity. After a conformal mapping of the elastic plane, the solution is ob¬tained in terms of a set of infinite algebraic equations yielding the Laurent's expansion coefficients of the complex potentials. Distinct sets of for¬mulae must be written for a circular inhomogeneity (degenerate el¬lipse) and an elliptic inhomogeneity (no degen¬eracy), and in both cases no closed form solution is obtainable. For an elliptic inhomo¬geneity the solution requires iteration and recursion, and implies van¬ishing stresses in the inhomogeneity when the system is loaded with a remote uniform shear parallel to the axes of the ellipse.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.