The effects of infill panels on the response of r.c. frames subjected to seismic action are widely recognized. Numerous experimental investigations were effected and several analytical models were developed on this subject. This work, which is part of a larger project dealing with specific materials and structures commonly used in Italy, discusses experimental tests on masonry and samples of bare and infilled portals. The experimental activity includes tests on elemental materials, and 12 wall samples. Finally, three one-bay one-story reinforced concrete frames, designed according to the outdated Italian technical code D.M. 1996 without seismic details, were tested (bare and infilled) under constant vertical and cyclic lateral load. The first cracks observed on the framed walls occurred at a drift of about 0.3%, reaching its maximum capacity at a drift of 0.5% while retaining its capacity up to a drift of 0.6%. Infill contributed to both the stiffness and strength of the bare reinforced concrete frame at small drifts thus improving overall system behavior. In addition to the experimental activities, previously mentioned, the recalibration of a model proposed by Comberscue (1996) was evaluated. The accuracy of an OpenSees non linear fiber based model of the prototype tested, including a strut element was verified through a comparison with the final experimental results. This work has been partially supported by research grant DPC-ReLUIS 2014.
Bergami, A.V., Nuti, C. (2015). Experimental tests and global modeling of masonry infilled frames. EARTHQUAKES AND STRUCTURES, 9(2) [10.12989/eas.2015.9.2.281].
Experimental tests and global modeling of masonry infilled frames
BERGAMI, ALESSANDRO VITTORIO
;NUTI, CAMILLO
2015-01-01
Abstract
The effects of infill panels on the response of r.c. frames subjected to seismic action are widely recognized. Numerous experimental investigations were effected and several analytical models were developed on this subject. This work, which is part of a larger project dealing with specific materials and structures commonly used in Italy, discusses experimental tests on masonry and samples of bare and infilled portals. The experimental activity includes tests on elemental materials, and 12 wall samples. Finally, three one-bay one-story reinforced concrete frames, designed according to the outdated Italian technical code D.M. 1996 without seismic details, were tested (bare and infilled) under constant vertical and cyclic lateral load. The first cracks observed on the framed walls occurred at a drift of about 0.3%, reaching its maximum capacity at a drift of 0.5% while retaining its capacity up to a drift of 0.6%. Infill contributed to both the stiffness and strength of the bare reinforced concrete frame at small drifts thus improving overall system behavior. In addition to the experimental activities, previously mentioned, the recalibration of a model proposed by Comberscue (1996) was evaluated. The accuracy of an OpenSees non linear fiber based model of the prototype tested, including a strut element was verified through a comparison with the final experimental results. This work has been partially supported by research grant DPC-ReLUIS 2014.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.