Remote sensing (RS), also known as “Earth Observation (EO)”, is a well-established methodology for multidisciplinary applications and represents a neuralgic tool both for research and didactics, since it makes it possible not only to obtain very useful and interesting data and information but also to implement and make use of an integrated approach for collecting inputs from different sources, processing and interpreting them and presenting the results through a variety of multimedia outputs. That is obviously true also in the case of volcanic environments and activities, in the quiescence, activity and post-event phases. During the last years, the applications of satellite and aerial images, generated from data acquired in different spectral bands, namely in the visible, infrared and microwave parts of the electromagnetic spectrum, have enormously increased. Thus, in this paper, after a brief framework about some basic elements of remote sensing, we above all provide a literary review, underlying some important examples which permit us to develop interdisciplinary approaches and to highlight different fields of application. Then, after having provided some input in a didactic perspective, we synthetically describe the main peculiarities and kind of activities that characterise some volcanoes, for which the European Space Agency (ESA-ESRIN) has provided relevant images. Then, for each volcano, we propose an interpretive analysis of these images, supported by the previous explanations, in order to propose a possible scheme of referral and some guidelines to define a geographical and interdisciplinary framework aimed at showing new didactic and research horizons, where theoretical, methodological and applicative knowledge and skills converge, collaborating in a socially useful operative field.
Fea, M., Giacomelli, L., Pesaresi, C., Scandone, R. (2013). Remote sensing and interdisciplinary approach for studying volcanoes environment and activity. J-READING-JOURNAL OF RESEARCH AND DIDACTICS IN GEOGRAPHY, 1, 151-182 [10.4458/0900-14].
Remote sensing and interdisciplinary approach for studying volcanoes environment and activity
SCANDONE, Roberto
2013-01-01
Abstract
Remote sensing (RS), also known as “Earth Observation (EO)”, is a well-established methodology for multidisciplinary applications and represents a neuralgic tool both for research and didactics, since it makes it possible not only to obtain very useful and interesting data and information but also to implement and make use of an integrated approach for collecting inputs from different sources, processing and interpreting them and presenting the results through a variety of multimedia outputs. That is obviously true also in the case of volcanic environments and activities, in the quiescence, activity and post-event phases. During the last years, the applications of satellite and aerial images, generated from data acquired in different spectral bands, namely in the visible, infrared and microwave parts of the electromagnetic spectrum, have enormously increased. Thus, in this paper, after a brief framework about some basic elements of remote sensing, we above all provide a literary review, underlying some important examples which permit us to develop interdisciplinary approaches and to highlight different fields of application. Then, after having provided some input in a didactic perspective, we synthetically describe the main peculiarities and kind of activities that characterise some volcanoes, for which the European Space Agency (ESA-ESRIN) has provided relevant images. Then, for each volcano, we propose an interpretive analysis of these images, supported by the previous explanations, in order to propose a possible scheme of referral and some guidelines to define a geographical and interdisciplinary framework aimed at showing new didactic and research horizons, where theoretical, methodological and applicative knowledge and skills converge, collaborating in a socially useful operative field.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.