The amyloid peptides Aβ1-42 and Aβ25-35 strongly inhibited the activity of constitutive neuronal and endothelial nitric oxide synthases (i.e., NOS-I and NOS-III, respectively) in cellfree assays. The molecular mechanism of NOS inhibition by Aβ fragments was studied in detail with Aβ25-35. The inhibitory ability was mostly NADPH-dependent and specific for the soluble form of Aβ25-35. Optical, fluorescence, and NMR spectroscopy showed that the soluble, but not aggregated, Aβ25-35 interacted with NADPH, thus suggesting that a direct recruitment of NADPH may result in diminished availability of the redox cofactor for NOS functioning. To assess the physiological relevance of our findings, rat neuronal-like PC12 and glioma C6 cell lines were used as cellular models. After Aβ25-35 internalization into cells was verified, the activity of constitutive NOS was measured using the DAF-2DA detection system and found to be severely impaired upon Aβ25-35 uptake. Consistent with previous results on the molecular cross-talk between NOS isoforms, repression of constitutive NOS by Aβ25-35 resulted in enhanced expression of inducible NOS (NOS-II) mRNA in C6 cells. Our results represent the first evidence that amyloid fragments impair constitutive NOS activity in cell-free and cellular systems, providing a possible molecular mechanism for the onset and/or maintenance of Alzheimer’s disease.

Venturini, G., Colasanti, M., Persichini, T., Fioravanti, E., Ascenzi, P., Palomba, L., et al. (2002). Beta-amyloid inhibits NOS activity by subtracting NADPH availability. THE FASEB JOURNAL, 16, 1970-1972 [10.1096/fj.02-0186fje].

Beta-amyloid inhibits NOS activity by subtracting NADPH availability

PERSICHINI, TIZIANA;
2002-01-01

Abstract

The amyloid peptides Aβ1-42 and Aβ25-35 strongly inhibited the activity of constitutive neuronal and endothelial nitric oxide synthases (i.e., NOS-I and NOS-III, respectively) in cellfree assays. The molecular mechanism of NOS inhibition by Aβ fragments was studied in detail with Aβ25-35. The inhibitory ability was mostly NADPH-dependent and specific for the soluble form of Aβ25-35. Optical, fluorescence, and NMR spectroscopy showed that the soluble, but not aggregated, Aβ25-35 interacted with NADPH, thus suggesting that a direct recruitment of NADPH may result in diminished availability of the redox cofactor for NOS functioning. To assess the physiological relevance of our findings, rat neuronal-like PC12 and glioma C6 cell lines were used as cellular models. After Aβ25-35 internalization into cells was verified, the activity of constitutive NOS was measured using the DAF-2DA detection system and found to be severely impaired upon Aβ25-35 uptake. Consistent with previous results on the molecular cross-talk between NOS isoforms, repression of constitutive NOS by Aβ25-35 resulted in enhanced expression of inducible NOS (NOS-II) mRNA in C6 cells. Our results represent the first evidence that amyloid fragments impair constitutive NOS activity in cell-free and cellular systems, providing a possible molecular mechanism for the onset and/or maintenance of Alzheimer’s disease.
2002
Venturini, G., Colasanti, M., Persichini, T., Fioravanti, E., Ascenzi, P., Palomba, L., et al. (2002). Beta-amyloid inhibits NOS activity by subtracting NADPH availability. THE FASEB JOURNAL, 16, 1970-1972 [10.1096/fj.02-0186fje].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/117244
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 36
social impact