On a special line bundle L on a projective curve C we introduce a geometric condition called (Δ<inf>q</inf>). When L D KC, this condition implies gon(C) ≥ q +2. For an arbitrary special L, we show that (Δ<inf>3</inf>) implies that L has the well-known property (M<inf>3</inf>), generalising a similar result proved by Voisin in the case L = K<inf>C</inf>.

Aprodu, M., Sernesi, E. (2015). Secant spaces and syzygies of special line bundles on curves. ALGEBRA & NUMBER THEORY, 9(3), 585-600 [10.2140/ant.2015.9.585].

Secant spaces and syzygies of special line bundles on curves

SERNESI, Edoardo
2015-01-01

Abstract

On a special line bundle L on a projective curve C we introduce a geometric condition called (Δq). When L D KC, this condition implies gon(C) ≥ q +2. For an arbitrary special L, we show that (Δ3) implies that L has the well-known property (M3), generalising a similar result proved by Voisin in the case L = KC.
2015
Aprodu, M., Sernesi, E. (2015). Secant spaces and syzygies of special line bundles on curves. ALGEBRA & NUMBER THEORY, 9(3), 585-600 [10.2140/ant.2015.9.585].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/117370
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact