Generalizing work of Gilmer and Heinzer, we de7ne a t#-domain to be a domain R in which M∈M1 RM = M∈M2 RM for any two distinct subsets M1 and M2 of the set of maximal t-ideals of R. We provide characterizations of these domains, and we show that polynomial rings over t#-domains are again t#-domains. Finally, we study overrings of t#-domains.
Gabelli, S., Houston, E., Lucas, T. (2004). The t#-property for integral domains. JOURNAL OF PURE AND APPLIED ALGEBRA, 194, 281-298 [10.1016/j.jpaa.2004.05.002].
The t#-property for integral domains
GABELLI, Stefania;
2004-01-01
Abstract
Generalizing work of Gilmer and Heinzer, we de7ne a t#-domain to be a domain R in which M∈M1 RM = M∈M2 RM for any two distinct subsets M1 and M2 of the set of maximal t-ideals of R. We provide characterizations of these domains, and we show that polynomial rings over t#-domains are again t#-domains. Finally, we study overrings of t#-domains.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.