Generalizing work of Gilmer and Heinzer, we de7ne a t#-domain to be a domain R in which M∈M1 RM = M∈M2 RM for any two distinct subsets M1 and M2 of the set of maximal t-ideals of R. We provide characterizations of these domains, and we show that polynomial rings over t#-domains are again t#-domains. Finally, we study overrings of t#-domains.

Gabelli, S., Houston, E., Lucas, T. (2004). The t#-property for integral domains. JOURNAL OF PURE AND APPLIED ALGEBRA, 194, 281-298 [10.1016/j.jpaa.2004.05.002].

The t#-property for integral domains

GABELLI, Stefania;
2004-01-01

Abstract

Generalizing work of Gilmer and Heinzer, we de7ne a t#-domain to be a domain R in which M∈M1 RM = M∈M2 RM for any two distinct subsets M1 and M2 of the set of maximal t-ideals of R. We provide characterizations of these domains, and we show that polynomial rings over t#-domains are again t#-domains. Finally, we study overrings of t#-domains.
2004
Gabelli, S., Houston, E., Lucas, T. (2004). The t#-property for integral domains. JOURNAL OF PURE AND APPLIED ALGEBRA, 194, 281-298 [10.1016/j.jpaa.2004.05.002].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/118327
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact